Through the wall: extracellular vesicles in Gram-positiv

Nature Reviews Microbiology 13, 620-630 DOI: 10.1038/nrmicro3480

Citation Report

#	Article	IF	CITATIONS
1	Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing <i>Cryptococcus</i> Alkaline Extracts. MBio, 2015, 6, e01905-15.	1.8	73
2	Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 2015, 13, 605-619.	13.6	1,277
3	The Development of Centellaasiatica Extract-Loaded BSA Nanoparticles Production to Improve Bioavailability. Oriental Journal of Chemistry, 2016, 32, 2425-2434.	0.1	7
4	Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles. Frontiers in Cell and Developmental Biology, 2016, 4, 125.	1.8	21
5	Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Frontiers in Microbiology, 2016, 7, 1034.	1.5	74
6	Sodium Copper Chlorophyllin Immobilization onto Hippospongia communis Marine Demosponge Skeleton and Its Antibacterial Activity. International Journal of Molecular Sciences, 2016, 17, 1564.	1.8	25
7	Extracellular Vesicles in Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2016, 17, 1801.	1.8	62
8	Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS ONE, 2016, 11, e0165588.	1.1	88
9	A Perspective on the Trends and Challenges Facing Porphyrinâ€Based Antiâ€Microbial Materials. Small, 2016, 12, 3609-3644.	5.2	117
10	Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections. Future Microbiology, 2016, 11, 955-972.	1.0	19
11	Lipid-Targeting Peptide Probes for Extracellular Vesicles. Journal of Cellular Physiology, 2016, 231, 2327-2332.	2.0	7
12	CSDB_GT: a new curated database on glycosyltransferases. Glycobiology, 2017, 27, 285-290.	1.3	22
13	The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). Water Intelligence Online, 2016, 15, 9781780407425-9781780407425.	0.3	30
14	Sources and Functions of Extracellular Small RNAs in Human Circulation. Annual Review of Nutrition, 2016, 36, 301-336.	4.3	110
15	Recyclable <i>Escherichia coli</i> -Specific-Killing AuNP–Polymer (ESKAP) Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 11309-11317.	4.0	48
16	ESX secretion systems: mycobacterial evolution to counter host immunity. Nature Reviews Microbiology, 2016, 14, 677-691.	13.6	306
17	New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development. Current Topics in Microbiology and Immunology, 2016, 398, 365-417.	0.7	10
18	New weapons in the Cryptococcus infection toolkit. Current Opinion in Microbiology, 2016, 34, 67-74.	2.3	29

#	Article	IF	CITATIONS
19	<i>Mycobacterium tuberculosis</i> lipoproteins in virulence and immunity – fighting with a doubleâ€edged sword. FEBS Letters, 2016, 590, 3800-3819.	1.3	47
20	Bacterial membrane vesicles: Biogenesis, immune regulation and pathogenesis. Cellular Microbiology, 2016, 18, 1518-1524.	1.1	161
21	Zinc Homeostasis at the Bacteria/Host Interface—From Coordination Chemistry to Nutritional Immunity. Chemistry - A European Journal, 2016, 22, 15992-16010.	1.7	66
22	Global Identification of Biofilm-Specific Proteolysis in Candida albicans. MBio, 2016, 7, .	1.8	63
23	Sending a message: extracellular vesicles of pathogenic protozoan parasites. Nature Reviews Microbiology, 2016, 14, 669-675.	13.6	99
24	Potential Roles of Fungal Extracellular Vesicles during Infection. MSphere, 2016, 1, .	1.3	95
25	Mass Spectrometry Analysis of the Extracellular Peptidome of <i>Lactococcus lactis</i> : Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. Journal of Proteome Research, 2016, 15, 3214-3224.	1.8	21
26	A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus. MBio, 2016, 7, .	1.8	132
27	Functions and biosynthesis of membrane vesicles produced actively by Gram-positive bacteria . Japanese Journal of Lactic Acid Bacteria, 2016, 27, 10-16.	0.1	0
28	Bacterial outer membrane vesicles: New insights and applications. Molecular Membrane Biology, 2016, 33, 125-137.	2.0	43
29	How Our Other Genome Controls Our Epi-Genome. Trends in Microbiology, 2016, 24, 777-787.	3.5	72
30	Multifaceted Interfaces of Bacterial Competition. Journal of Bacteriology, 2016, 198, 2145-2155.	1.0	208
31	<i>Leishmania</i> hijacking of the macrophage intracellular compartments. FEBS Journal, 2016, 283, 598-607.	2.2	43
32	Regulation of the fungal secretome. Current Genetics, 2016, 62, 533-545.	0.8	83
33	More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions. Current Genetics, 2016, 62, 265-270.	0.8	15
34	Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy, 2017, 24, 157-166.	2.3	106
35	MicroRNAs at the epicenter of intestinal homeostasis. BioEssays, 2017, 39, 1600200.	1.2	37
36	Vesicles Spread Susceptibility to Phages. Cell, 2017, 168, 13-15.	13.5	39

#	Article	IF	CITATIONS
37	Immunoactive Clostridial Membrane Vesicle Production Is Regulated by a Sporulation Factor. Infection and Immunity, 2017, 85, .	1.0	26
38	A singleâ€stranded DNA aptamer against mannoseâ€capped lipoarabinomannan enhances antiâ€ŧuberculosis activity of macrophages through downregulation of lipidâ€sensing nuclear receptor peroxisome proliferatorâ€activated receptor γ expression. Microbiology and Immunology, 2017, 61, 92-102.	0.7	21
39	Membrane vesicle-mediated bacterial communication. ISME Journal, 2017, 11, 1504-1509.	4.4	131
40	Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens. Applied Nanoscience (Switzerland), 2017, 7, 83-93.	1.6	42
41	Urinary extracellular vesicles. A promising shortcut to novel biomarker discoveries. Cell and Tissue Research, 2017, 369, 217-227.	1.5	35
42	In Situ Forming and H ₂ O ₂ -Releasing Hydrogels for Treatment of Drug-Resistant Bacterial Infections. ACS Applied Materials & Interfaces, 2017, 9, 16890-16899.	4.0	73
43	Membrane vesicles and horizontal gene transfer in prokaryotes. Current Opinion in Microbiology, 2017, 38, 16-21.	2.3	148
44	Effects of N-acetyl-L-cysteine on the membrane vesicle release and growth of respiratory pathogens. FEMS Microbiology Letters, 2017, 364, .	0.7	22
45	Dendritic Cell Sensing of Hydrophobic Di- and Triacylated Lipopeptides Self-Assembled within Synthetic Virus-like Particles. Journal of Immunology, 2017, 199, 734-749.	0.4	5
46	Exosomes purified from a single cell type have diverse morphology. Journal of Extracellular Vesicles, 2017, 6, 1329476.	5.5	202
47	An evaluation of Minor Groove Binders as anti-fungal and anti-mycobacterial therapeutics. European Journal of Medicinal Chemistry, 2017, 136, 561-572.	2.6	15
48	Induction of Invertebrate Larval Settlement; Different Bacteria, Different Mechanisms?. Scientific Reports, 2017, 7, 42557.	1.6	90
49	Extracellular vesicles – A promising avenue for the detection and treatment of infectious diseases?. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 56-61.	2.0	46
50	Effects of CCK-8 and Cystathionine γ-Lyase/Hydrogen Sulfide System on Acute Lung Injury in Rats. Inflammation, 2017, 40, 174-183.	1.7	13
51	Acquisition of Phage Sensitivity by Bacteria through Exchange of Phage Receptors. Cell, 2017, 168, 186-199.e12.	13.5	102
52	Lightâ€Activated Antibacterial Nanoscale Films: Metalloâ€Organics for Catalytic Generation of Chemically Accessible Singletâ€Oxygen in Water. ChemistrySelect, 2017, 2, 577-582.	0.7	8
53	Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Scientific Reports, 2017, 7, 39742.	1.6	69
54	What Is New? Recent Knowledge on Fungal Extracellular Vesicles. Current Fungal Infection Reports, 2017, 11, 141-147.	0.9	11

#	Article	IF	CITATIONS
55	Fabrication of zinc (II) functionalized l -phenylalanine in situ grafted starch and its antibacterial activity and cytotoxicity. Journal of Functional Foods, 2017, 38, 205-213.	1.6	5
56	Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans. Nanoscale, 2017, 9, 15911-15922.	2.8	15
57	Soil biota contributions to soil aggregation. Nature Ecology and Evolution, 2017, 1, 1828-1835.	3.4	257
58	Unpackaging the Roles of Streptomyces Natural Products. Cell Chemical Biology, 2017, 24, 1194-1195.	2.5	7
59	Mannheimia haemolytica A2 secretes different proteases into the culture medium and in outer membrane vesicles. Microbial Pathogenesis, 2017, 113, 276-281.	1.3	15
60	Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nature Microbiology, 2017, 2, 1485-1492.	5.9	56
61	Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nature Communications, 2017, 8, 481.	5.8	224
62	A Link between Linearmycin Biosynthesis and Extracellular Vesicle Genesis Connects Specialized Metabolism and Bacterial Membrane Physiology. Cell Chemical Biology, 2017, 24, 1238-1249.e7.	2.5	41
63	Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelfâ€Life Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1243-1268.	5.9	344
64	Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Scientific Reports, 2017, 7, 8813.	1.6	64
65	Extracellular vesicles for personalized therapy decision support in advanced metastatic cancers and its potential impact for prostate cancer. Prostate, 2017, 77, 1416-1423.	1.2	22
66	Biosorption properties of RGO/Al2O3 nanocomposite flakes modified with Ag, Au, and Pd for water purification. Journal of Alloys and Compounds, 2017, 724, 869-878.	2.8	14
67	Bacterial membrane vesicles transport their DNA cargo into host cells. Scientific Reports, 2017, 7, 7072.	1.6	267
68	Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nature Communications, 2017, 8, 1968.	5.8	77
70	Electrospun boronic acid-containing polymer membranes as fluorescent sensors for bacteria detection. Reactive and Functional Polymers, 2017, 121, 23-31.	2.0	27
71	<i>Staphylococcus aureus</i> extracellular vesicles (EVs): surface-binding antagonists of biofilm formation. Molecular BioSystems, 2017, 13, 2704-2714.	2.9	33
72	Bifunctional antimicrobial conjugates and hybrid antimicrobials. Natural Product Reports, 2017, 34, 832-885.	5.2	140
73	Host-Pathogen Interface: Progress in Understanding the Pathogenesis of Infection Due to Multidrug-Resistant Bacteria in the Intensive Care Unit. Journal of Infectious Diseases, 2017, 215, S1-S8.	1.9	6

#	Article	IF	CITATIONS
74	The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microbial Pathogenesis, 2017, 110, 1-6.	1.3	88
75	Replacing a Century Old Technique – Modern Spectroscopy Can Supplant Gram Staining. Scientific Reports, 2017, 7, 3810.	1.6	18
76	Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME Journal, 2017, 11, 394-404.	4.4	96
77	<i>Candida albicans</i> Modifies the Protein Composition and Size Distribution of THP-1 Macrophage-Derived Extracellular Vesicles. Journal of Proteome Research, 2017, 16, 87-105.	1.8	28
78	Nanomaterialsâ€based biosensors for detection of microorganisms and microbial toxins. Biotechnology Journal, 2017, 12, .	1.8	46
79	Proteomic analysis of extracellular vesicles derived from <i>Propionibacterium acnes</i> . Proteomics - Clinical Applications, 2017, 11, 1600040.	0.8	39
80	A Comparative Study of Chemical Constituents and Antimicrobial Activity of Essential Oil of <i>Litchi chinensis</i> Growing in Different Geographical Areas of India. Journal of Essential Oil-bearing Plants: JEOP, 2017, 20, 1627-1632.	0.7	1
81	Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. Journal of Experimental Botany, 2017, 68, 5485-5495.	2.4	201
82	Effects of low-molecular weight alcohols on bacterial viability. Romanian Journal of Laboratory Medicine, 2017, 25, 335-343.	0.1	11
83	Physiology and Pathology of Multidrug-Resistant Bacteria: Phage-Related Therapy. , 2017, , .		Ο
84	ANALYSIS OF THE POTENTIAL OF STREPTOCOCCUS SALIVARIUS ISOLATED FROM THE SALIVA AND TONGUE DORSUM TO INHIBIT THE GROWTH OF FUSOBACTERIUM NUCLEATUM. International Journal of Applied Pharmaceutics, 2017, 9, 8.	0.3	0
85	Metagenome Analysis of Bodily Microbiota in a Mouse Model of Alzheimer Disease Using Bacteria-derived Membrane Vesicles in Blood. Experimental Neurobiology, 2017, 26, 369-379.	0.7	98
86	The Therapeutic Benefit of Bacterial Membrane Vesicles. International Journal of Molecular Sciences, 2017, 18, 1287.	1.8	119
87	Editorial: An Omics Perspective on Fungal Infection: Toward Next-Generation Diagnosis and Therapy. Frontiers in Microbiology, 2017, 8, 85.	1.5	1
88	The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Frontiers in Microbiology, 2017, 8, 422.	1.5	90
89	Detection and Physicochemical Characterization of Membrane Vesicles (MVs) of Lactobacillus reuteri DSM 17938. Frontiers in Microbiology, 2017, 8, 1040.	1.5	80
90	Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Frontiers in Microbiology, 2017, 8, 1666.	1.5	96
91	SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review. Frontiers in Microbiology, 2017, 8, 2431.	1.5	77

#	Article	IF	CITATIONS
92	<i>Paracoccidioides</i> Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators of Inflammation, 2017, 2017, 1-19.	1.4	55
93	Immunomodulatory role for membrane vesicles released by THP-1 macrophages and respiratory pathogens during macrophage infection. BMC Microbiology, 2017, 17, 216.	1.3	18
94	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	5.5	38
95	Significances of OMV and Extracellular Vesicle Proteomics. Journal of Data Mining in Genomics & Proteomics, 2017, 08, .	0.5	1
96	Production of Chitosan/Zinc Oxide Complex by Ultrasonic Treatment with Antibacterial Activity. Journal of Bacteriology & Parasitology, 2017, 08, .	0.2	6
97	Innate Immune Responses to Cryptococcus. Journal of Fungi (Basel, Switzerland), 2017, 3, 35.	1.5	25
98	What will membrane vesicles (MVs) bring to bacterial communication?. Microbes and Environments, 2017, 32, 185-187.	0.7	7
99	The impact of bacteriophages on phyllosphere bacterial abundance and composition. Molecular Ecology, 2018, 27, 2025-2038.	2.0	82
100	Fungal extracellular vesicles: modulating host–pathogen interactions by both the fungus and the host. Microbes and Infection, 2018, 20, 501-504.	1.0	55
101	Surfaceâ€Enhanced Raman Scattering for Rapid Detection and Characterization of Antibioticâ€Resistant Bacteria. Advanced Healthcare Materials, 2018, 7, e1701335.	3.9	85
102	Antibacterial activity by ZnO nanorods and ZnO nanodisks: A model used to illustrate "Nanotoxicity Threshold― Journal of Industrial and Engineering Chemistry, 2018, 62, 333-340.	2.9	40
103	Targeting Inflammatory Vasculature by Extracellular Vesicles. AAPS Journal, 2018, 20, 37.	2.2	19
104	Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work?. Biotechnology Advances, 2018, 36, 968-985.	6.0	95
105	Isolation, Characterization, and Metal Response of Novel, Acid-Tolerant Penicillium spp. from Extremely Metal-Rich Waters at a Mining Site in Transbaikal (Siberia, Russia). Microbial Ecology, 2018, 76, 911-924.	1.4	18
106	Studies of black silicon and black diamond as materials for antibacterial surfaces. Biomaterials Science, 2018, 6, 1424-1432.	2.6	64
107	Interaction of cationic antimicrobial peptides from Australian frogs with lipid membranes. Peptide Science, 2018, 110, e24061.	1.0	16
108	Extracellular vesicles as mediators of immunopathology in infectious diseases. Immunology and Cell Biology, 2018, 96, 694-703.	1.0	19
109	Immunomodulatory Effects of Pneumococcal Extracellular Vesicles on Cellular and Humoral Host Defenses. MBio, 2018, 9, .	1.8	72

#	Article	IF	CITATIONS
110	The Drug Delivery System of Centella asiatica extract-loaded Gelatin Nanoparticles using of One-step desolvation Method. , 2018, , .		4
111	Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nature Communications, 2018, 9, 1379.	5.8	213
112	Extracellular vesicles as key mediators of plant–microbe interactions. Current Opinion in Plant Biology, 2018, 44, 16-22.	3.5	156
113	Vertically Aligned Graphene Coating is Bactericidal and Prevents the Formation of Bacterial Biofilms. Advanced Materials Interfaces, 2018, 5, 1701331.	1.9	72
114	Extracellular Vesicles in Human Reproduction in Health and Disease. Endocrine Reviews, 2018, 39, 292-332.	8.9	146
115	Propionibacterium acnes-Derived Extracellular Vesicles Promote Acne-Like Phenotypes in Human Epidermis. Journal of Investigative Dermatology, 2018, 138, 1371-1379.	0.3	46
116	The functional RNA cargo of bacterial membrane vesicles. FEMS Microbiology Letters, 2018, 365, .	0.7	64
117	Antibacterial [2-(Methacryloyloxy) ethyl] Trimethylammonium Chloride Functionalized Reduced Graphene Oxide/Poly(ethylene- <i>co</i> -vinyl alcohol) Multilayer Barrier Film for Food Packaging. Journal of Agricultural and Food Chemistry, 2018, 66, 732-739.	2.4	47
118	Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. Advanced Science, 2018, 5, 1700449.	5.6	67
119	The external face of Candida albicans : A proteomic view of the cell surface and the extracellular environment. Journal of Proteomics, 2018, 180, 70-79.	1.2	44
120	Fabrication of silver chloride nanoparticles using a plant serine protease in combination with photoactivation and investigation of their biological activities. Biotechnology and Applied Biochemistry, 2018, 65, 572-579.	1.4	3
121	Mycobacterial extracellular vesicles and host pathogen interactions. Pathogens and Disease, 2018, 76,	0.8	21
122	A tethered bilayer lipid membrane that mimics microbial membranes. Physical Chemistry Chemical Physics, 2018, 20, 12958-12969.	1.3	36
123	Comparative lipidomic profiling of the human commensal bacterium <i>Propionibacterium acnes</i> acnes	1.7	17
124	Photodynamic therapy of Curcuma longa extract stimulated with blue light against Aggregatibacter actinomycetemcomitans. Photodiagnosis and Photodynamic Therapy, 2018, 22, 101-105.	1.3	38
125	Extracellular Vesicle RNA: A Universal Mediator of Microbial Communication?. Trends in Microbiology, 2018, 26, 401-410.	3.5	162
126	Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Applied Materials & Interfaces, 2018, 10, 10729-10740.	4.0	69
127	Conjugated Polymer with Aggregation-Directed Intramolecular Förster Resonance Energy Transfer Enabling Efficient Discrimination and Killing of Microbial Pathogens. Chemistry of Materials, 2018, 30, 3244-3253.	3.2	55

#	Article	IF	CITATIONS
128	Outer Membrane Vesicles Facilitate Trafficking of the Hydrophobic Signaling Molecule CAI-1 between Vibrio harveyi Cells. Journal of Bacteriology, 2018, 200, .	1.0	73
129	Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infectious Diseases, 2018, 4, 881-892.	1.8	33
130	Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiology Reviews, 2018, 42, 388-423.	3.9	126
131	Analysis of extracellular vesicles produced in the biofilm by the dimorphic yeast <i>Pichia fermentans</i> . Journal of Cellular Physiology, 2018, 233, 2759-2767.	2.0	40
132	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. Microbiology Spectrum, 2017, 5, .	1.2	25
133	The evolution of the Glycomic Codes of extracellular matrices. BioSystems, 2018, 164, 112-120.	0.9	20
134	Mycobacterium spp , 2018, , 103-119.		0
135	Bioaerosols Over the Indo-Gangetic Plain: Influence of Biomass Burning Emission and Ambient Meteorology. Energy, Environment, and Sustainability, 2018, , 93-121.	0.6	2
136	Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 2018, 225, 51-75.	10.8	257
137	Biogenesis and function of ESCRT-dependent extracellular vesicles. Seminars in Cell and Developmental Biology, 2018, 74, 66-77.	2.3	292
138	ANTIBACTERIAL ACTIVITY OF Samanea saman LEAF ETHANOL EXTRACT AGAINST Escherichia coli AND Staphylococcus aureus AND ITS TOTAL FLAVONOID AND PHENOLIC CONTENTS. Jurnal Kimia, 2018, , 121.	0.1	1
139	Peptides of the Innate Immune System of Plants. Part I. Structure, Biological Activity, and Mechanisms of Action. Russian Journal of Bioorganic Chemistry, 2018, 44, 573-585.	0.3	10
140	The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Scientific Reports, 2018, 8, 17247.	1.6	124
141	The Mechanism behind Bacterial Lipoprotein Release: Phenol-Soluble Modulins Mediate Toll-Like Receptor 2 Activation via Extracellular Vesicle Release from Staphylococcus aureus. MBio, 2018, 9, .	1.8	67
142	Enterococcus faeciumTIR-Domain Genes Are Part of a Gene Cluster Which Promotes Bacterial Survival in Blood. International Journal of Microbiology, 2018, 2018, 1-17.	0.9	7
143	Fungal Extracellular Vesicles. , 2018, , 333-333.		0
144	A Single Extracellular Vesicle (EV) Flow Cytometry Approach to Reveal EV Heterogeneity. Angewandte Chemie - International Edition, 2018, 57, 15675-15680.	7.2	107
145	Candida albicans biofilm–induced vesicles confer drug resistance through matrix biogenesis. PLoS Biology, 2018, 16, e2006872.	2.6	173

#	Article	IF	CITATIONS
146	A Single Extracellular Vesicle (EV) Flow Cytometry Approach to Reveal EV Heterogeneity. Angewandte Chemie, 2018, 130, 15901-15906.	1.6	5
147	Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing. International Journal of Pharmaceutics, 2018, 552, 340-351.	2.6	66
148	Staphylococcus aureus Extracellular Vesicles Elicit an Immunostimulatory Response in vivo on the Murine Mammary Gland. Frontiers in Cellular and Infection Microbiology, 2018, 8, 277.	1.8	54
149	Extracellular Vesicles in Fungi: Composition and Functions. Current Topics in Microbiology and Immunology, 2018, 422, 45-59.	0.7	36
150	Pathogen-Derived Extracellular Vesicle-Associated Molecules That Affect the Host Immune System: An Overview. Frontiers in Microbiology, 2018, 9, 2182.	1.5	95
151	Microbe-derived extracellular vesicles as a smart drug delivery system. Translational and Clinical Pharmacology, 2018, 26, 103.	0.3	37
152	Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. Journal of Controlled Release, 2018, 290, 46-55.	4.8	90
153	Extracellular Vesicles From the Dermatophyte Trichophyton interdigitale Modulate Macrophage and Keratinocyte Functions. Frontiers in Immunology, 2018, 9, 2343.	2.2	79
154	The Expanding Role of Vesicles Containing Aquaporins. Cells, 2018, 7, 179.	1.8	11
155	The Development of an Effective Bacterial Single-Cell Lysis Method Suitable for Whole Genome Amplification in Microfluidic Platforms. Micromachines, 2018, 9, 367.	1.4	31
156	Commentary: Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models. Frontiers in Microbiology, 2018, 9, 2346.	1.5	2
157	Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Frontiers in Microbiology, 2018, 9, 2286.	1.5	84
158	Antibody to Poly-N-acetyl glucosamine provides protection against intracellular pathogens: Mechanism of action and validation in horse foals challenged with Rhodococcus equi. PLoS Pathogens, 2018, 14, e1007160.	2.1	39
159	The Antibacterial and Antioxidant Activity of Centella Asiatica Chloroform Extract-loaded Gelatin Nanoparticles. MATEC Web of Conferences, 2018, 187, 02002.	0.1	3
160	Global Transcriptomic Analysis and Function Identification of Malolactic Enzyme Pathway of Lactobacillus paracasei L9 in Response to Bile Stress. Frontiers in Microbiology, 2018, 9, 1978.	1.5	27
161	Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body. Biochemical Society Transactions, 2018, 46, 1021-1027.	1.6	103
162	The "hole―story of predatory outer-membrane vesicles. Canadian Journal of Microbiology, 2018, 64, 589-599.	0.8	16
163	Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chemical Society Reviews, 2018, 47, 5312-5337.	18.7	44

#	Article	IF	CITATIONS
164	Antimicrobial Properties of 2D MnO ₂ and MoS ₂ Nanomaterials Vertically Aligned on Graphene Materials and Ti ₃ C ₂ MXene. Langmuir, 2018, 34, 7192-7200.	1.6	111
165	A novel extracellular vesicle-associated endodeoxyribonuclease helps Streptococcus pneumoniae evade neutrophil extracellular traps and is required for full virulence. Scientific Reports, 2018, 8, 7985.	1.6	49
166	Bioinspired bactericidal surfaces with polymer nanocone arrays. Journal of Colloid and Interface Science, 2018, 528, 389-399.	5.0	73
167	Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Scientific Reports, 2018, 8, 8065.	1.6	66
168	Synthesis of 4-hydroxy-3-methylchalcone from Reimer-Tiemann reaction product and its antibacterial activity test. IOP Conference Series: Materials Science and Engineering, 2018, 349, 012036.	0.3	2
169	Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab on A Chip, 2018, 18, 2441-2452.	3.1	74
170	Microbial Physiology of the Digestive Tract and Its Role in Inflammatory Bowel Diseases. , 2018, , 795-810.		9
171	Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites. Journal of Materials Science and Technology, 2018, 34, 2359-2367.	5.6	46
172	Synthesis, morpho-structural properties and antibacterial effect of silicate-based composites containing graphene oxide/hydroxyapatite. Materials Chemistry and Physics, 2018, 217, 48-53.	2.0	35
173	Antimicrobial textile nanofinishes. , 2018, , 145-161.		2
174	All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. International Journal of Medical Microbiology, 2018, 308, 872-881.	1.5	17
175	Drivers of persistent infection: pathogen-induced extracellular vesicles. Essays in Biochemistry, 2018, 62, 135-147.	2.1	20
176	Peeling the onion: the outer layers of Cryptococcus neoformans. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180040.	0.8	45
177	Molecular Microbiome Analysis. , 2018, , 49-65.		0
178	Gram-Positive Bacterial Extracellular Vesicles and Their Impact on Health and Disease. Frontiers in Microbiology, 2018, 9, 1502.	1.5	191
179	Targeting Glycans on Human Pathogens for Vaccine Design. Current Topics in Microbiology and Immunology, 2018, 428, 129-163.	0.7	5
180	Staphylococcus aureus Membrane-Derived Vesicles Promote Bacterial Virulence and Confer Protective Immunity in Murine Infection Models. Frontiers in Microbiology, 2018, 9, 262.	1.5	65
181	16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows. Frontiers in Microbiology, 2018, 9, 767.	1.5	39

ARTICLE

182 Innate Immunity against Cryptococcus, from Recognition to Elimination. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 7

183	Small Meets Smaller: Effects of Nanomaterials on Microbial Biology, Pathology, and Ecology. ACS Nano, 2018, 12, 6351-6359.	7.3	66
184	Hybrid nanocarriers based on PLGA-vegetable oil: A novel approach for high lipophilic drug delivery. Journal of Drug Delivery Science and Technology, 2018, 46, 162-172.	1.4	10
185	The architectures of iterative type I PKS and FAS. Natural Product Reports, 2018, 35, 1046-1069.	5.2	143
186	Using Magnetic lons to Probe and Induce Magnetism of Pyrophosphates, Bacteria, and Mammalian Cells. ACS Applied Materials & Interfaces, 2018, 10, 30837-30843.	4.0	4
187	Therapeutic effects of kefir grain Lactobacillus-derived extracellular vesicles in mice with 2,4,6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease. Journal of Dairy Science, 2018, 101, 8662-8671.	1.4	81
188	Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. Journal of Proteomics, 2018, 187, 28-38.	1.2	74
189	<i>Mycobacterium tuberculosis</i> Pst/SenX3-RegX3 Regulates Membrane Vesicle Production Independently of ESX-5 Activity. MBio, 2018, 9, .	1.8	46
190	Immunomodulatory Functions of the Gastrointestinal Tract. , 2018, , 685-771.		2
191	Nitric Oxide, an Old Molecule With Noble Functions in Pseudomonas aeruginosa Biology. Advances in Microbial Physiology, 2018, 72, 117-145.	1.0	19
192	Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Scientific Reports, 2018, 8, 9182.	1.6	59
193	Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams. Microbial Ecology, 2019, 77, 559-573.	1.4	12
194	Proteomic Analysis of Antigen 60 Complex of M. bovis Bacillus Calmette-Guérin Reveals Presence of Extracellular Vesicle Proteins and Predicted Functional Interactions. Vaccines, 2019, 7, 80.	2.1	6
195	Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications Biology, 2019, 2, 305.	2.0	106
196	Characterization of Aspergillus fumigatus Extracellular Vesicles and Their Effects on Macrophages and Neutrophils Functions. Frontiers in Microbiology, 2019, 10, 2008.	1.5	60
197	The <i>Mycobacterium tuberculosis</i> capsule: a cell structure with key implications in pathogenesis. Biochemical Journal, 2019, 476, 1995-2016.	1.7	74
198	Paraimmunobiotic Bifidobacteria Modulate the Expression Patterns of Peptidoglycan Recognition Proteins in Porcine Intestinal Epitheliocytes and Antigen Presenting Cells. Cells, 2019, 8, 891.	1.8	6
199	Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium <i>Clostridium thermocellum</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	7

ARTICLE IF CITATIONS # Mycorrhizosphere Bacterial Communities and their Sensitivity to Antibacterial Activity of 200 0.7 17 Ectomycorrhizal Fungi. Microbes and Environments, 2019, 34, 191-198. Microbicide surface nano-structures. Critical Reviews in Biotechnology, 2019, 39, 964-979. 5.1 Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Frontiers in 202 1.6 68 Pharmacology, 2019, 10, 751. Answers to naysayers regarding microbial extracellular vesicles. Biochemical Society Transactions, 44 2019, 47, 1005-1012. Deciphering Fungal Extracellular Vesicles: From Cell Biology to Pathogenesis. Current Clinical 204 1.8 12 Microbiology Reports, 2019, 6, 89-97. Microalgae protoplasts isolation and fusion for biotechnology research. Revista Colombiana De BiotecnologÃa, 2019, 21, 101-112. Intestinal microbiome composition and its relation to joint pain and inflammation. Nature 206 5.8 176 Communications, 2019, 10, 4881. Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers. Journal of 1.4 28 Drug Delivery Science and Technology, 2019, 54, 101239. A safe ride in extracellular vesicles $\hat{a} \in \hat{a}$ small RNA trafficking between plant hosts and pathogens. 208 3.5 44 Current Opinion in Plant Biology, 2019, 52, 140-148. Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms 209 5.8 and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792. Extracellular vesicles-based drug delivery system for cancer treatment. Cogent Medicine, 2019, 6, 210 0.7 43 1635806. Fungal Physiology and Immunopathogenesis. Current Topics in Microbiology and Immunology, 2019, , . 211 Isolation, characterization and analysis of pro-inflammatory potential of Klebsiella pneumoniae outer 212 1.3 28 membrane vesicles. Microbial Pathogenesis, 2019, 136, 103719. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy. Cancers, 1.7 56 2019, 11, 1314. Sanggenon D from root bark of mulberry inhibits the growth of Staphylococcus aureus by 214 2.58 moderating the fatty acid biosynthesis system. Industrial Crops and Products, 2019, 140, 111719. Natural and engineered bacterial outer membrane vesicles. Biophysics Reports, 2019, 5, 184-198. The Pathogenic Factors from Oral Streptococci for Systemic Diseases. International Journal of 216 1.8 39 Molecular Sciences, 2019, 20, 4571. Plasmid Characteristics Modulate the Propensity of Gene Exchange in Bacterial Vesicles. Journal of 28 Bacteriology, 2019, 201, .

#	Article	IF	CITATIONS
218	IgA-enhancing effects of membrane vesicles derived from <i>Lactobacillus sakei</i> subsp. <i>sakei</i> NBRC15893. Bioscience of Microbiota, Food and Health, 2019, 38, 23-29.	0.8	40
219	Different epithelial cell response to membrane vesicles produced by Listeria monocytogenes cultured with or without salt stress. Microbial Pathogenesis, 2019, 133, 103554.	1.3	5
220	The Gram-Positive Bacterial Cell Wall. Microbiology Spectrum, 2019, 7, .	1.2	74
221	Bacterial Single Cell Whole Transcriptome Amplification in Microfluidic Platform Shows Putative Gene Expression Heterogeneity. Analytical Chemistry, 2019, 91, 8036-8044.	3.2	26
222	Mycobacterium tuberculosis extracellular vesicle-associated lipoprotein LpqH as a potential biomarker to distinguish paratuberculosis infection or vaccination from tuberculosis infection. BMC Veterinary Research, 2019, 15, 188.	0.7	18
223	Bariatric/Metabolic Surgery Induces Noticeable Changes of Microbiota and Their Secreting Extracellular Vesicle Composition in the Gut. Obesity Surgery, 2019, 29, 2470-2484.	1.1	10
224	Stain-resistant, superomniphobic flexible optical plastics based on nano-enoki mushroom-like structures. Journal of Materials Chemistry A, 2019, 7, 15698-15706.	5.2	19
225	An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids, 2019, 96, 546-554.	5.6	107
226	Evaluation of the effects of extracellular vesicles derived from Faecalibacterium prausnitzii on lung cancer cell line. Biologia (Poland), 2019, 74, 889-898.	0.8	23
227	Proteinâ€facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Letters, 2019, 593, 1508-1527.	1.3	31
228	Phylogenetics and antibacterial properties of exopolysaccharides from marine bacteria isolated from Mauritius seawater. Annals of Microbiology, 2019, 69, 957-972.	1.1	17
229	Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 2019, 57, 147-165.	3.8	155
230	Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids and Surfaces B: Biointerfaces, 2019, 181, 6-15.	2.5	99
231	High-Throughput Synthesis of Antimicrobial Copolymers and Rapid Evaluation of Their Bioactivity. Macromolecules, 2019, 52, 3975-3986.	2.2	70
232	Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS Applied Bio Materials, 2019, 2, 2208-2218.	2.3	30
233	Modulating bioactivities of primary ammonium-tagged antimicrobial aliphatic polycarbonates by varying length, sequence and hydrophobic side chain structure. Biomaterials Science, 2019, 7, 2288-2296.	2.6	15
234	Extracellular Vesicle-Mediated RNA Release in <i>Histoplasma capsulatum</i> . MSphere, 2019, 4, .	1.3	38
235	Bacterial communication through membrane vesicles. Bioscience, Biotechnology and Biochemistry,	0.6	37

#	Article	IF	CITATIONS
236	Galectin-3 Inhibits Paracoccidioides brasiliensis Growth and Impacts Paracoccidioidomycosis through Multiple Mechanisms. MSphere, 2019, 4, .	1.3	26
237	Distributions of Extracellular Peptidases Across Prokaryotic Genomes Reflect Phylogeny and Habitat. Frontiers in Microbiology, 2019, 10, 413.	1.5	55
238	Fungal Extracellular Vesicles with a Focus on Proteomic Analysis. Proteomics, 2019, 19, e1800232.	1.3	65
239	A micro-Raman and chemometric study of urinary tract infection-causing bacterial pathogens in mixed cultures. Analytical and Bioanalytical Chemistry, 2019, 411, 3165-3177.	1.9	29
240	Lysozyme sorption by pure-silica zeolite MFI films. Materials Today Communications, 2019, 19, 352-359.	0.9	7
241	Ecology of Pathogens and Antibiotic-resistant Bacteria in Environments: Challenges and Opportunities. Microbes and Environments, 2019, 34, 1-4.	0.7	12
243	Overlooked Broad-Host-Range Vector Particles in the Environment. , 2019, , 135-195.		1
244	Mechanism of action of the moonlighting protein EfTu as a Substance P sensor in Bacillus cereus. Scientific Reports, 2019, 9, 1304.	1.6	11
245	Extracellular Vesicles from the Protozoa Acanthamoeba castellanii: Their Role in Pathogenesis, Environmental Adaptation and Potential Applications. Bioengineering, 2019, 6, 13.	1.6	15
246	Characterization of membrane vesicles released by <i>Mycobacterium avium</i> in response to environment mimicking the macrophage phagosome. Future Microbiology, 2019, 14, 293-313.	1.0	23
247	Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template. Journal of Sol-Gel Science and Technology, 2019, 89, 764-775.	1.1	36
248	The Gram-Positive Bacterial Cell Wall. , 0, , 3-18.		5
249	Peptidase Activity of Proteinivorax Bacteria and Their Possible Ecological Role in the Microbial Communities of Tanatar Soda Lakes (Altai Krai, Russia). Microbiology, 2019, 88, 773-776.	0.5	2
250	Toxoplasma gondii Intravacuolar-Network-Associated Dense Granule Proteins Regulate Maturation of the Cyst Matrix and Cyst Wall. MSphere, 2019, 4, .	1.3	25
251	Detection and Quantification of eDNA-Associated Bacterial Membrane Vesicles by Flow Cytometry. International Journal of Molecular Sciences, 2019, 20, 5307.	1.8	21
252	Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels. Lab on A Chip, 2019, 19, 4064-4070.	3.1	21
253	The conical shape of DIM lipids promotes <i>Mycobacterium tuberculosis</i> infection of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25649-25658.	3.3	49
254	Extracellular Vesicles—Connecting Kingdoms. International Journal of Molecular Sciences, 2019, 20, 5695.	1.8	177

#	Article	IF	CITATIONS
255	Optimized Isolation of Extracellular Vesicles From Various Organic Sources Using Aqueous Two-Phase System. Scientific Reports, 2019, 9, 19159.	1.6	54
256	Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant <i>Klebsiella pneumoniae</i> to Meropenem. ACS Nano, 2019, 13, 14377-14387.	7.3	42
258	Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nature Communications, 2019, 10, 5656.	5.8	81
259	Rapid Microbial Identification and Antibiotic Resistance Detection by Mass Spectrometric Analysis of Membrane Lipids. Analytical Chemistry, 2019, 91, 1286-1294.	3.2	39
260	Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 2019, 17, 13-24.	13.6	706
261	Antibacterial activity and cytotoxicity of l†phenylalanine-oxidized starch-coordinated zinc (II). International Journal of Biological Macromolecules, 2019, 123, 133-139.	3.6	8
262	Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiology Reviews, 2019, 43, 273-303.	3.9	289
263	Extracellular Vesicles: A Prevalent Tool for Microbial Gene Delivery?. Proteomics, 2019, 19, e1800170.	1.3	7
265	Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate. Journal of Proteomics, 2019, 197, 106-114.	1.2	16
266	Extracellular Vesicles as Carriers of Suicide mRNA and/or Protein in Cancer Therapy. Methods in Molecular Biology, 2019, 1895, 87-96.	0.4	2
267	Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. Journal of Biological Chemistry, 2019, 294, 1202-1217.	1.6	108
268	Antibiotics Stimulate Formation of Vesicles in <i>Staphylococcus aureus</i> in both Phage-Dependent and -Independent Fashions and via Different Routes. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	86
269	Kill the Real with the Fake: Eliminate Intracellular <i>Staphylococcus aureus</i> Using Nanoparticle Coated with Its Extracellular Vesicle Membrane as Active-Targeting Drug Carrier. ACS Infectious Diseases, 2019, 5, 218-227.	1.8	87
270	Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Analytical Chemistry, 2019, 91, 277-295.	3.2	85
271	<i>Staphylococcus aureus</i> â€derived extracellular vesicles induce monocyte recruitment by activating human dermal microvascular endothelial cells <i>inÂvitro</i> . Clinical and Experimental Allergy, 2019, 49, 68-81.	1.4	23
272	Outer membrane vesicles for vaccination and targeted drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1523.	3.3	105
273	Bacterial extracellular vesicles: A new way to decipher hostâ€microbiota communications in inflammatory dermatoses. Experimental Dermatology, 2020, 29, 22-28.	1.4	30
274	Characterization of Gardnerella vaginalis membrane vesicles reveals a role in inducing cytotoxicity in vaginal epithelial cells. Anaerobe, 2020, 61, 102090.	1.0	15

#	Article	IF	CITATIONS
275	The secretome of <i>Pichia pastoris</i> in fedâ€batch cultivations is largely independent of the carbon source but changes quantitatively over cultivation time. Microbial Biotechnology, 2020, 13, 479-494.	2.0	15
276	Extracellular Vesicles Released From the Skin Commensal Yeast Malassezia sympodialis Activate Human Primary Keratinocytes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 6.	1.8	39
277	Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice. PLoS ONE, 2020, 15, e0225481.	1.1	41
278	Outer Membrane Vesiculation Facilitates Surface Exchange and InÂVivo Adaptation of Vibrio cholerae. Cell Host and Microbe, 2020, 27, 225-237.e8.	5.1	73
279	Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. Journal of Power Sources, 2020, 450, 227633.	4.0	13
280	Gelatin/zein fiber mats encapsulated with resveratrol: Kinetics, antibacterial activity and application for pork preservation. Food Hydrocolloids, 2020, 101, 105577.	5.6	62
281	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	4.6	152
282	Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nature Protocols, 2020, 15, 40-67.	5.5	130
283	Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. International Journal of Molecular Sciences, 2020, 21, 107.	1.8	142
284	In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC Genomics, 2020, 21, 671.	1.2	27
285	Human Gut Commensal Membrane Vesicles Modulate Inflammation by Generating M2-like Macrophages and Myeloid-Derived Suppressor Cells. Journal of Immunology, 2020, 205, 2707-2718.	0.4	31
286	Emerging role of bacterial extracellular vesicles in cancer. Oncogene, 2020, 39, 6951-6960.	2.6	91
287	Streptococcus mutans Membrane Vesicles Harboring Glucosyltransferases Augment Candida albicans Biofilm Development. Frontiers in Microbiology, 2020, 11, 581184.	1.5	26
288	Combating Actions of Green 2D-Materials on Gram Positive and Negative Bacteria and Enveloped Viruses. Frontiers in Bioengineering and Biotechnology, 2020, 8, 569967.	2.0	34
289	Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. International Journal of Molecular Sciences, 2020, 21, 7355.	1.8	36
290	Lipoproteins in Gram-Positive Bacteria: Abundance, Function, Fitness. Frontiers in Microbiology, 2020, 11, 582582.	1.5	41
291	Biofilm formation and extracellular microvesicles—The way of foodborne pathogens toward resistance. Electrophoresis, 2020, 41, 1718-1739.	1.3	16
292	Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Frontiers in Cellular and Infection Microbiology, 2020, 10, 346.	1.8	91

#	Article	IF	Citations
	Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular		
293	Vesicles: Host-Pathogen Interactions Beyond the Wall. Frontiers in Immunology, 2020, 11, 1230.	2.2	25
294	Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 595029.	1.8	29
295	Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins, 2020, 12, 721.	1.5	13
296	Extracellular Vesicles Derived from Kefir Grain Lactobacillus Ameliorate Intestinal Inflammation via Regulation of Proinflammatory Pathway and Tight Junction Integrity. Biomedicines, 2020, 8, 522.	1.4	30
297	An OMV-Based Nanovaccine Confers Safety and Protection against Pathogenic Escherichia coli via Both Humoral and Predominantly Th1 Immune Responses in Poultry. Nanomaterials, 2020, 10, 2293.	1.9	21
298	Extracellular vesicles in cardiovascular disease. Advances in Clinical Chemistry, 2021, 103, 47-95.	1.8	33
299	Circulating 16S RNA in Biofluids: Extracellular Vesicles as Mirrors of Human Microbiome?. International Journal of Molecular Sciences, 2020, 21, 8959.	1.8	27
300	Nutritional Conditions Modulate C. neoformans Extracellular Vesicles' Capacity to Elicit Host Immune Response. Microorganisms, 2020, 8, 1815.	1.6	16
301	Significant increase in the secretion of extracellular vesicles and antibiotics resistance from methicillin-resistant Staphylococcus aureus induced by ampicillin stress. Scientific Reports, 2020, 10, 21066.	1.6	22
302	Correlation between Exogenous Compounds and the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes. Microorganisms, 2020, 8, 1211.	1.6	37
303	Extracellular Vesicles Influence the Growth and Adhesion of Staphylococcus epidermidis Under Antimicrobial Selective Pressure. Frontiers in Microbiology, 2020, 11, 1132.	1.5	5
304	Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-κB Pathway. Frontiers in Microbiology, 2020, 11, 1544.	1.5	45
305	<i>Lactobacillus plantarum</i> â€derived extracellular vesicles induce antiâ€inflammatory M2Âmacrophage polarization <i>in vitro</i> . Journal of Extracellular Vesicles, 2020, 9, 1793514.	5.5	69
306	<i>Filifactor alocis</i> â€derived extracellular vesicles inhibit osteogenesis through TLR2 signaling. Molecular Oral Microbiology, 2020, 35, 202-210.	1.3	15
307	Effect of the Extracellular Vesicle RNA Cargo From Uropathogenic Escherichia coli on Bladder Cells. Frontiers in Molecular Biosciences, 2020, 7, 580913.	1.6	9
308	Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Science Advances, 2020, 6, .	4.7	19
309	Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values. Applied Microbiology and Biotechnology, 2020, 104, 9733-9748.	1.7	16
310	Computational prediction of microRNAs in Histoplasma capsulatum. Microbial Pathogenesis, 2020, 148, 104433.	1.3	1

#	Article	IF	CITATIONS
311	Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Scientific Reports, 2020, 10, 18293.	1.6	50
312	Vaccination Strategies Against Highly Variable Pathogens. Current Topics in Microbiology and Immunology, 2020, , .	0.7	1
313	Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures. Frontiers in Microbiology, 2020, 11, 2088.	1.5	67
314	Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles. Pathogens, 2020, 9, 754.	1.2	13
315	Synthesis, DNA/RNA-interaction and biological activity of benzo[k,l]xanthene lignans. Bioorganic Chemistry, 2020, 104, 104190.	2.0	4
316	Bacteriaâ€Derived Nanoparticles: Multifunctional Containers for Diagnostic and Therapeutic Applications. Advanced Healthcare Materials, 2020, 9, e2000893.	3.9	17
317	Characterization of Extracellular Vesicles Produced by Aspergillus fumigatus Protoplasts. MSphere, 2020, 5, .	1.3	43
318	Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers. Experimental and Molecular Medicine, 2020, 52, 1288-1297.	3.2	42
319	Probiotic Escherichia coli Nissle 1917-derived outer membrane vesicles enhance immunomodulation and antimicrobial activity in RAW264.7 macrophages. BMC Microbiology, 2020, 20, 268.	1.3	38
320	Brain tumor diagnostic model and dietary effect based on extracellular vesicle microbiome data in serum. Experimental and Molecular Medicine, 2020, 52, 1602-1613.	3.2	13
321	The Impacts of Sortase A and the 4′-Phosphopantetheinyl Transferase Homolog Sfp on Streptococcus mutans Extracellular Membrane Vesicle Biogenesis. Frontiers in Microbiology, 2020, 11, 570219.	1.5	12
322	Polydopamine-modified interface improves the immobilization of natural bioactive-dye onto textile and enhances antifungal activity. Biointerphases, 2020, 15, 041011.	0.6	4
323	Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific Reports, 2020, 10, 13478.	1.6	35
324	Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Scientific Reports, 2020, 10, 21829.	1.6	29
325	Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets. International Journal of Molecular Sciences, 2020, 21, 9634.	1.8	14
326	<p>Size-Dependent Antibacterial Immunity of Staphylococcus aureus Protoplast-Derived Particulate Vaccines</p> . International Journal of Nanomedicine, 2020, Volume 15, 10321-10330.	3.3	7
327	Mesoporous Silica Nanoparticles as a Potential Platform for Vaccine Development against Tuberculosis. Pharmaceutics, 2020, 12, 1218.	2.0	14
328	Membrane Vesicle Production as a Bacterial Defense Against Stress. Frontiers in Microbiology, 2020, 11, 600221.	1.5	51

#	Article	IF	CITATIONS
329	Cross-Kingdom Extracellular Vesicles EV-RNA Communication as a Mechanism for Host–Pathogen Interaction. Frontiers in Cellular and Infection Microbiology, 2020, 10, 593160.	1.8	33
330	Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Scientific Reports, 2020, 10, 19237.	1.6	33
331	Plant-associated fungal biofilms—knowns and unknowns. FEMS Microbiology Ecology, 2020, 96, .	1.3	15
332	Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chromatography-Mass Spectrometry. International Journal of Molecular Sciences, 2020, 21, 8076.	1.8	17
333	Vesiduction: the fourth way of <scp>HGT</scp> . Environmental Microbiology, 2020, 22, 2457-2460.	1.8	59
334	Galactofuranose-Related Enzymes: Challenges and Hopes. International Journal of Molecular Sciences, 2020, 21, 3465.	1.8	7
335	Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. European Respiratory Journal, 2020, 56, 1902320.	3.1	17
336	The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms, 2020, 8, 670.	1.6	39
337	Bacteriophage-Antibiotic Combination Strategy: an Alternative against Methicillin-Resistant Phenotypes of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
338	Effect of itraconazole on Staphylococcus aureus biofilm and extracellular vesicles formation. Microbial Pathogenesis, 2020, 147, 104267.	1.3	15
339	Within-species variation in OMV cargo proteins: the <i>Myxococcus xanthus</i> OMV pan-proteome. Molecular Omics, 2020, 16, 387-397.	1.4	28
340	Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Scientific Reports, 2020, 10, 8467.	1.6	45
341	Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nature Communications, 2020, 11, 3178.	5.8	43
342	Exploiting bacterial outer membrane vesicles as a cross-protective vaccine candidate against avian pathogenic Escherichia coli (APEC). Microbial Cell Factories, 2020, 19, 119.	1.9	32
343	A transcriptome analysis of the antibacterial mechanism of flavonoids from Sedum aizoon L. against Shewanella putrefaciens. World Journal of Microbiology and Biotechnology, 2020, 36, 94.	1.7	19
344	Bio-Aerosols Negatively Affect Prochlorococcus in Oligotrophic Aerosol-Rich Marine Regions. Atmosphere, 2020, 11, 540.	1.0	11
345	Effect of Borrelia burgdorferi Outer Membrane Vesicles on Host Oxidative Stress Response. Antibiotics, 2020, 9, 275.	1.5	16
346	Roles of membrane vesicles from Streptococcus mutans for the induction of antibodies to glucosyltransferase in mucosal immunity. Microbial Pathogenesis, 2020, 149, 104260.	1.3	11

#	Article	IF	CITATIONS
347	Erg6 affects membrane composition and virulence of the human fungal pathogen Cryptococcus neoformans. Fungal Genetics and Biology, 2020, 140, 103368.	0.9	28
348	Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens. Frontiers in Microbiology, 2020, 11, 365.	1.5	104
349	Liposomes for Antibiotic Encapsulation and Delivery. ACS Infectious Diseases, 2020, 6, 896-908.	1.8	86
350	Surface plasmon resonance assay for exosomes based on aptamer recognition and polydopamine-functionalized gold nanoparticles for signal amplification. Mikrochimica Acta, 2020, 187, 251.	2.5	31
351	Bacterial Membrane Vesicles. , 2020, , .		10
352	Outer membrane vesicles catabolize lignin-derived aromatic compounds in <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9302-9310.	3.3	82
353	Streptococcal Extracellular Membrane Vesicles Are Rapidly Internalized by Immune Cells and Alter Their Cytokine Release. Frontiers in Immunology, 2020, 11, 80.	2.2	64
354	The Uptake, Trafficking, and Biodistribution of Bacteroides thetaiotaomicron Generated Outer Membrane Vesicles. Frontiers in Microbiology, 2020, 11, 57.	1.5	107
355	Bacterial RNA in extracellular vesicles: A new regulator of host-pathogen interactions?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194519.	0.9	26
356	Small RNAs in Outer Membrane Vesicles and Their Function in Host-Microbe Interactions. Frontiers in Microbiology, 2020, 11, 1209.	1.5	37
357	Emendations to tissue typology in discomycetes. Mycological Progress, 2020, 19, 543-558.	0.5	3
358	Proteomic characterization of extracellular vesicles produced by several wine yeast species. Microbial Biotechnology, 2020, 13, 1581-1596.	2.0	26
359	Isolation and Characterization of Extracellular Vesicles Secreted In Vitro by Porcine Microbiota. Microorganisms, 2020, 8, 983.	1.6	9
360	Movement of small RNAs in and between plants and fungi. Molecular Plant Pathology, 2020, 21, 589-601.	2.0	71
361	Extracellular Vesicles Derived from Senescent Fibroblasts Attenuate the Dermal Effect on Keratinocyte Differentiation. International Journal of Molecular Sciences, 2020, 21, 1022.	1.8	29
362	Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiology Ecology, 2020, 96, .	1.3	198
363	Extracellular Vesicles with Possible Roles in Gut Intestinal Tract Homeostasis and IBD. Mediators of Inflammation, 2020, 2020, 1-14.	1.4	42
364	Stimulatory effects of Lactobacillus casei derived extracellular vesicles on toll-like receptor 9 gene expression and cytokine profile in human intestinal epithelial cells. Journal of Diabetes and Metabolic Disorders, 2020, 19, 223-231	0.8	20

#	Article	IF	CITATIONS
365	Deciphering the Roles of Interspace and Controlled Disorder in the Bactericidal Properties of Nanopatterns against Staphylococcus aureus. Nanomaterials, 2020, 10, 347.	1.9	29
366	Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today, 2020, 32, 100854.	6.2	35
367	An overview of cell disruption methods for intracellular biomolecules recovery. Preparative Biochemistry and Biotechnology, 2020, 50, 635-654.	1.0	57
368	Inside-out: from endosomes to extracellular vesicles in fungal RNA transport. Fungal Biology Reviews, 2020, 34, 89-99.	1.9	18
369	Cracking Open Bacterial Membrane Vesicles. Frontiers in Microbiology, 2019, 10, 3026.	1.5	121
370	Orchestration of human macrophage NLRP3 inflammasome activation by <i>Staphylococcus aureus</i> extracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3174-3184.	3.3	100
371	The Multiple Facets of Plant–Fungal Interactions Revealed Through Plant and Fungal Secretomics. Frontiers in Plant Science, 2019, 10, 1626.	1.7	62
372	Synergism between <i>Corynebacterium</i> and <i>Streptococcus sanguinis</i> reveals new interactions between oral commensals. ISME Journal, 2020, 14, 1154-1169.	4.4	29
373	Using gadolinium ions as affinity probes to selectively enrich and magnetically isolate bacteria from complex samples. Analytica Chimica Acta, 2020, 1113, 18-25.	2.6	10
374	The future of quantum dot fluorescent labelling of extracellular vesicles for biomedical applications. Nano Futures, 2020, 4, 022001.	1.0	5
375	Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives. Polymers, 2020, 12, 972.	2.0	17
376	Role of the ESCRT Pathway in Laccase Trafficking and Virulence of Cryptococcus neoformans. Infection and Immunity, 2020, 88, .	1.0	20
377	The Contribution of Membrane Vesicles to Bacterial Pathogenicity in Cystic Fibrosis Infections and Healthcare Associated Pneumonia. Frontiers in Microbiology, 2020, 11, 630.	1.5	25
378	Classical methods and perspectives for manipulating the human gut microbial ecosystem. Critical Reviews in Food Science and Nutrition, 2021, 61, 234-258.	5.4	13
379	Antibacterial and antibiofilm properties of ZnO nanoparticles synthesis using gum arabic as a potential new generation antibacterial agent. Materials Today: Proceedings, 2021, 41, 1-8.	0.9	15
380	Extracellular vesicles in food biotechnology. Microbial Biotechnology, 2021, 14, 8-11.	2.0	5
381	<i>Mycobacterium tuberculosis</i> extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Critical Reviews in Microbiology, 2021, 47, 13-33.	2.7	17
382	Membrane vesicles from a Dietzia bacterium containing multiple cargoes and their roles in iron delivery. Environmental Microbiology, 2021, 23, 1009-1019.	1.8	10

#	Article	IF	CITATIONS
383	iTRAQ®-based quantitative proteomics reveals the proteomic profiling of methicillin-resistant Staphylococcus aureus-derived extracellular vesicles after exposure to imipenem. Folia Microbiologica, 2021, 66, 221-230.	1.1	4
384	The Role of Macrophages in Staphylococcus aureus Infection. Frontiers in Immunology, 2020, 11, 620339.	2.2	129
385	Purification of membrane vesicles from Gram-positive bacteria using flow cytometry, after iodixanol density-gradient ultracentrifugation. Research in Microbiology, 2021, 172, 103792.	1.0	1
386	Extracellular vesicles of bacteria as potential targets for immune interventions. Human Vaccines and Immunotherapeutics, 2021, 17, 897-903.	1.4	10
387	Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiology Reviews, 2021, 45, .	3.9	13
388	Microbial vesicle-mediated communication: convergence to understand interactions within and between domains of life. Environmental Sciences: Processes and Impacts, 2021, 23, 664-677.	1.7	9
389	Pathogenesis Mediated by Bacterial Membrane Vesicles. Sub-Cellular Biochemistry, 2021, 97, 101-150.	1.0	6
390	Prokaryotic Cell Structure and Function. , 2021, , 43-79.		1
392	Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nature Biomedical Engineering, 2021, 5, 467-480.	11.6	17
393	Staphylococcus aureus Extracellular Vesicles: A Story of Toxicity and the Stress of 2020. Toxins, 2021, 13, 75.	1.5	34
394	A Survey of Molecular Communication in Cell Biology: Establishing a New Hierarchy for Interdisciplinary Applications. IEEE Communications Surveys and Tutorials, 2021, 23, 1494-1545.	24.8	42
395	Fungal Extracellular Vesicles in Pathophysiology. Sub-Cellular Biochemistry, 2021, 97, 151-177.	1.0	5
396	Mycolic acid-containing bacteria trigger distinct types of membrane vesicles through different routes. IScience, 2021, 24, 102015.	1.9	16
397	Antibacterial Activity of Polyvinyl Alcohol/WO ₃ Films Assisted by Near-Infrared Light and Its Application in Freshness Monitoring. Journal of Agricultural and Food Chemistry, 2021, 69, 1068-1078.	2.4	30
398	Prokaryotic Basis of Eukaryotic Eco-Evo Development. , 2021, , 313-330.		0
399	Characterization and function of membrane vesicles in Gram-positive bacteria. Applied Microbiology and Biotechnology, 2021, 105, 1795-1801.	1.7	34
400	Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responsesÂinÂbroilers. Journal of Animal Science and Biotechnology, 2021, 12, 25.	2.1	76
401	Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength. Advanced Science, 2021, 8, 2004831.	5.6	71

#	Article	IF	CITATIONS
402	Exosomeâ€Like Nanoparticles From Lactobacillus rhamnosus GG Protect Against Alcoholâ€Associated Liver Disease Through Intestinal Aryl Hydrocarbon Receptor in Mice. Hepatology Communications, 2021, 5, 846-864.	2.0	35
403	A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. Journal of NeuroImmune Pharmacology, 2021, 16, 270-288.	2.1	30
404	Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	58
406	Extracellular Vesicles and Their Role in <i>Staphylococcus aureus</i> Resistance and Virulence. Infectious Diseases, 0, , .	4.0	2
407	Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor–Immune Interactions. International Journal of Molecular Sciences, 2021, 22, 3374.	1.8	9
408	Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation. Microorganisms, 2021, 9, 593.	1.6	2
409	Threat at One End of the Plant: What Travels to Inform the Other Parts?. International Journal of Molecular Sciences, 2021, 22, 3152.	1.8	6
410	Environmental Plasticity of the RNA Content of Staphylococcus aureus Extracellular Vesicles. Frontiers in Microbiology, 2021, 12, 634226.	1.5	18
411	Bacterial membrane vesicle and its diversity. Drug Delivery System, 2021, 36, 138-144.	0.0	1
412	Microbiome Markers of Pancreatic Cancer Based on Bacteria-Derived Extracellular Vesicles Acquired from Blood Samples: A Retrospective Propensity Score Matching Analysis. Biology, 2021, 10, 219.	1.3	20
413	<i>Staphylococcus aureus</i> membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. Journal of Extracellular Vesicles, 2021, 10, e12080.	5.5	80
414	Membrane vesicles from periodontal pathogens and their potential roles in periodontal disease and systemic illnesses. Journal of Periodontal Research, 2021, 56, 646-655.	1.4	15
415	Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. International Journal of Molecular Sciences, 2021, 22, 4235.	1.8	50
416	Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. International Journal of Molecular Sciences, 2021, 22, 3858.	1.8	16
417	Altered Composition of Microbiota in Women with Ovarian Endometrioma: Microbiome Analyses of Extracellular Vesicles in the Peritoneal Fluid. International Journal of Molecular Sciences, 2021, 22, 4608.	1.8	15
418	Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. ISME Journal, 2021, 15, 2892-2905.	4.4	36
419	Autolysisâ€mediated membrane vesicle formation in <i>Bacillus subtilis</i> . Environmental Microbiology, 2021, 23, 2632-2647.	1.8	23
420	Microbiome and osteoarthritis: New insights from animal and human studies. International Journal of Rheumatic Diseases, 2021, 24, 984-1003.	0.9	6

#	Article	IF	CITATIONS
421	Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development. International Journal of Molecular Sciences, 2021, 22, 4823.	1.8	24
422	Characterization of Feces-Derived Bacterial Membrane Vesicles and the Impact of Their Origin on the Inflammatory Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 667987.	1.8	21
423	Microbial signalling in colonic motility. International Journal of Biochemistry and Cell Biology, 2021, 134, 105963.	1.2	4
424	Microbiota dysbiosis and functional outcome in acute ischemic stroke patients. Scientific Reports, 2021, 11, 10977.	1.6	28
425	Extracellular vesicles in the context of Mycobacterium tuberculosis infection. Molecular Immunology, 2021, 133, 175-181.	1.0	18
426	Microbiota–host communications: Bacterial extracellular vesicles as a common language. PLoS Pathogens, 2021, 17, e1009508.	2.1	110
427	ESX-1-Independent Horizontal Gene Transfer by Mycobacterium tuberculosis Complex Strains. MBio, 2021, 12, .	1.8	14
428	Prophylactic and therapeutic vaccine against Pseudomonas aeruginosa keratitis using bacterial membrane vesicles. Vaccine, 2021, 39, 3152-3160.	1.7	8
430	Extracellular Vesicle Analysis by Paper Spray Ionization Mass Spectrometry. Metabolites, 2021, 11, 308.	1.3	9
431	Immunomodulatory roles and novel applications of bacterial membrane vesicles. Molecular Immunology, 2021, 134, 72-85.	1.0	40
432	Recent Advances of Nanotechnology-Facilitated Bacteria-Based Drug and Gene Delivery Systems for Cancer Treatment. Pharmaceutics, 2021, 13, 940.	2.0	16
433	Higher Prevalence of Bacteroides fragilis in Crohn's Disease Exacerbations and Strain-Dependent Increase of Epithelial Resistance. Frontiers in Microbiology, 2021, 12, 598232.	1.5	18
434	A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. ELife, 2021, 10, .	2.8	26
436	Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. Annual Review of Plant Biology, 2021, 72, 497-524.	8.6	85
437	Bacteria- and host-derived extracellular vesicles – two sides of the same coin?. Journal of Cell Science, 2021, 134, .	1.2	11
438	Exosomes in Intestinal Inflammation. Frontiers in Pharmacology, 2021, 12, 658505.	1.6	24
439	Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review. Molecules, 2021, 26, 3447.	1.7	24
440	Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts. PLoS Pathogens, 2021, 17, e1009656.	2.1	23

#	Article	IF	Citations
441	Bacterial extracellular vesicles: Understanding biology promotes applications as nanopharmaceuticals. Advanced Drug Delivery Reviews, 2021, 173, 125-140.	6.6	47
442	Approaches to surface engineering of extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 173, 416-426.	6.6	87
443	The Antibacterial Effect of Bacteriophage-Like Gold Nanoparticles. Nano, 2021, 16, 2150075.	0.5	1
444	A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms, 2021, 9, 1323.	1.6	1
445	The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair and Regeneration, 2021, 29, 864-880.	1.5	5
449	Lipoproteins Are Responsible for the Pro-Inflammatory Property of Staphylococcus aureus Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 7099.	1.8	17
450	The molecular mechanisms of listeriolysin O-induced lipid membrane damage. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183604.	1.4	16
451	Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Scientific Reports, 2021, 11, 13756.	1.6	22
452	Biological Effect of Streptococcus pyogenes-Released Extracellular Vesicles on Human Monocytic Cells, Induction of Cytotoxicity, and Inflammatory Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711144.	1.8	8
453	NAD+-targeting by bacteria: an emerging weapon in pathogenesis. FEMS Microbiology Reviews, 2021, 45,	3.9	8
454	The paradoxical and still obscure properties of fungal extracellular vesicles. Molecular Immunology, 2021, 135, 137-146.	1.0	23
455	Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Molecular Aspects of Medicine, 2021, 81, 100999.	2.7	20
456	Identification of Biomarkers for Systemic Distribution of Nanovesicles From Lactobacillus johnsonii N6.2. Frontiers in Immunology, 2021, 12, 723433.	2.2	10
457	Communication is key: extracellular vesicles as mediators of infection and defence during host–microbe interactions in animals and plants. FEMS Microbiology Reviews, 2022, 46, .	3.9	33
458	Postoperative pain and the gut microbiome. Neurobiology of Pain (Cambridge, Mass), 2021, 10, 100070.	1.0	14
459	Intramolecular Charge Transfer-Based Conjugated Oligomer with Fluorescence, Efficient Photodynamics, and Photothermal Activities. ACS Applied Bio Materials, 2021, 4, 6565-6574.	2.3	12
460	Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annual Review of Microbiology, 2021, 75, 609-630.	2.9	111
461	Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. Journal of Hazardous Materials, 2021, 416, 126236.	6.5	57

#	Article	IF	Citations
463	Molecular genetics for probiotic engineering: dissecting lactic acid bacteria. Trends in Microbiology, 2022, 30, 293-306.	3.5	35
464	Pneumococcal Extracellular Vesicles Modulate Host Immunity. MBio, 2021, 12, e0165721.	1.8	19
465	Functional effectiveness of double essential oils@yam starch/microcrystalline cellulose as active antibacterial packaging. International Journal of Biological Macromolecules, 2021, 186, 873-885.	3.6	11
466	Extracellular Vesicles From Sporothrix brasiliensis Yeast Cells Increases Fungicidal Activity in Macrophages. Mycopathologia, 2021, 186, 807-818.	1.3	2
467	Prophylactic vaccine delivery systems against epidemic infectious diseases. Advanced Drug Delivery Reviews, 2021, 176, 113867.	6.6	22
468	Bacterial Membrane-Derived Vesicles Attenuate Vancomycin Activity against Methicillin-Resistant Staphylococcus aureus. Microorganisms, 2021, 9, 2055.	1.6	6
469	Biomimetic Bacterial Membrane Vesicles for Drug Delivery Applications. Pharmaceutics, 2021, 13, 1430.	2.0	22
470	Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins, 2021, 13, 677.	1.5	102
471	Role of Outer Membrane Vesicles in Serratia grimesii Interactions with Caco-2 Cells. Cell and Tissue Biology, 2021, 15, 473-481.	0.2	0
472	Polyhexamethylene biguanide hydrochloride anchored polymeric elastic fibers with robust antibacterial performance. Journal of Applied Polymer Science, 2022, 139, 51633.	1.3	5
473	Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Science of the Total Environment, 2022, 806, 150568.	3.9	62
474	Presence of distinctive microbiome in the first-pass meconium of newborn infants. Scientific Reports, 2021, 11, 19449.	1.6	14
475	Extracellular Vesicles: Emerging Therapeutics in Cutaneous Lesions. International Journal of Nanomedicine, 2021, Volume 16, 6183-6202.	3.3	12
476	In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. ELife, 2021, 10, .	2.8	16
477	Immunomodulatory effects exerted by extracellular vesicles from Staphylococcus epidermidis and Staphylococcus aureus isolated from bone-anchored prostheses. Biomaterials, 2021, 278, 121158.	5.7	17
478	pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Research International, 2021, 147, 110532.	2.9	19
479	Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2021, 165, 233-240.	0.2	4
480	Tribological, cytotoxicity and antibacterial properties of graphene oxide/carbon fibers/polyetheretherketone composite coatings on Ti–6Al–4V alloy as orthopedic/dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104659.	1.5	23

#	Article	IF	CITATIONS
481	The therapeutic triad of extracellular vesicles: As drug targets, as drugs, and as drug carriers. Biochemical Pharmacology, 2021, 192, 114714.	2.0	17
482	Effect of cinnamon essential oil nanoemulsions on microbiological safety and quality properties of chicken breast fillets during refrigerated storage. LWT - Food Science and Technology, 2021, 152, 112376.	2.5	27
483	Positively-charged microcrystalline cellulose microparticles: Rapid killing effect on bacteria, trapping behavior and excellent elimination efficiency of biofilm matrix from water environment. Journal of Hazardous Materials, 2022, 424, 127299.	6.5	14
484	Common, existing and future applications of antimicrobial textile materials. , 2021, , 119-163.		0
485	Solid-phase synthesis of coralmycin A/ <i>epi</i> -coralmycin A and desmethoxycoralmycin A. Organic and Biomolecular Chemistry, 2021, 19, 6291-6300.	1.5	3
486	Extracellular membrane vesicles and nanotubes in Archaea. MicroLife, 2021, 2, .	1.0	11
487	Introduction, History, and Discovery of Bacterial Membrane Vesicles. , 2020, , 1-21.		4
488	Bacterial Membrane Vesicles and Their Applications as Vaccines and in Biotechnology. , 2020, , 219-251.		6
489	Biogenesis and Function of Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria, and Fungi. , 2020, , 47-74.		5
490	Construction of Er-doped ZnO/SiO2 composites with enhanced antimicrobial properties and analysis of antibacterial mechanism. Ceramics International, 2020, 46, 20932-20942.	2.3	23
491	Tiny but mighty: bacterial membrane vesicles in food biotechnological applications. Current Opinion in Biotechnology, 2018, 49, 179-184.	3.3	20
492	β-Lactams against the Fortress of the Gram-Positive <i>Staphylococcus aureus</i> Bacterium. Chemical Reviews, 2021, 121, 3412-3463.	23.0	52
493	Extrusion of extracellular membrane vesicles from hyphal tips of Streptomyces venezuelae coupled to cell-wall stress. Microbiology (United Kingdom), 2019, 165, 1295-1305.	0.7	8
502	Extracellular vesicles and infectious diseases: new complexity to an old story. Journal of Clinical Investigation, 2016, 126, 1181-1189.	3.9	200
503	Small RNA trafficking at the forefront of plant–pathogen interactions. F1000Research, 2018, 7, 1633.	0.8	6
504	Traveling into Outer Space: Unanswered Questions about Fungal Extracellular Vesicles. PLoS Pathogens, 2015, 11, e1005240.	2.1	63
505	Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries, 2016, 4, e70.	1.5	8
506	Extracellular vesicles: An emerging platform in gram-positive bacteria. Microbial Cell, 2020, 7, 312-322.	1.4	60

	C	ITATION REPORT	
#	Article	IF	CITATIONS
507	Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy. , 2020, 3, 356-370.		15
508	Extraction and Evaluation of Outer Membrane Vesicles from Two Important Gut Microbiota Member Bacteroides fragilis and Bacteroides thetaiotaomicron. Cell Journal, 2020, 22, 344-349.	^{s,} 0.2	5
510	Medical Function of Bacterial Extracellular Vesicles. Iranian Journal of Medical Microbiology, 2018, 12, 140-159.	0.1	1
511	Extracellular vesicles (exosomes) in prokaryotic organisms: role in their biology and realization of their pathogen potential. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, , 118-130.	0.1	3
512	Cholesterol-Dependent Cytolysins Produced by Vaginal Bacteria: Certainties and Controversies. Frontiers in Cellular and Infection Microbiology, 2019, 9, 452.	1.8	19
513	Imidazole and Imidazolium Antibacterial Drugs Derived from Amino Acids. Pharmaceuticals, 2020, 13 482.	3, 1.7	28
514	Antimicrobial Activity of Musa acuminata Peel Extract against Gram-Positive Bacteria. International Journal of Life Sciences and Biotechnology, 2020, 3, 191-196.	0.2	5
515	A Method for Isolation and Proteomic Analysis of Outer Membrane Vesicles from Fecal Samples by LC-MS/MS. Journal of Proteomics and Bioinformatics, 2019, 12, 38-42.	0.4	7
516	Temperature Influences the Composition and Cytotoxicity of Extracellular Vesicles in Staphylococcus aureus. MSphere, 2021, 6, e0067621.	5 1.3	22
517	Monoclonal antibodies from humans with Mycobacterium tuberculosis exposure or latent infection recognize distinct arabinomannan epitopes. Communications Biology, 2021, 4, 1181.	2.0	12
518	Repurposing of the Tamoxifen Metabolites to Treat Methicillin-Resistant Staphylococcus epidermidis and Vancomycin-Resistant Enterococcus faecalis Infections. Microbiology Spectrum, 2021, 9, e0040	321. ^{1.2}	4
519	Engineered Remolding and Application of Bacterial Membrane Vesicles. Frontiers in Microbiology, 2021, 12, 729369.	1.5	9
520	The extracellular vesicle generation paradox: a bacterial point of view. EMBO Journal, 2021, 40, e108174.	3.5	58
521	Extracellular vesicle production in Gramâ€positive bacteria. Microbial Biotechnology, 2022, 15, 1055-1057.	2.0	4
522	Burkholderia pseudomallei Toxins and Clinical Implications. , 2016, , 1-19.		0
523	Nanovesicles: Diagnostic and Therapeutic Tools in Nanoscale Medicine. Applied Science and Convergence Technology, 2016, 25, 103-107.	0.3	1
525	Analysis of the Bacterial Vesicles' Enhanced Toxicological Threat Via Electron Microscopy. Advances in Medical Technologies and Clinical Practice Book Series, 2017, , 19-43.	0.3	3
526	Burkholderia pseudomallei Toxins and Clinical Implications. Toxinology, 2017, , 1-19.	0.2	0

#	ARTICLE Optimization of the medium composition for production of antimicrobial substances by bacillus	IF	Citations
527	subtilis ATCC 6633. Acta Periodica Technologica, 2017, , 245-259.	0.5	1
529	Burkholderia pseudomallei Toxins and Clinical Implications. Toxinology, 2018, , 31-49.	0.2	0
530	Outer Membrane Vesicles Facilitate Trafficking of the Hydrophobic Signalling Molecule CAI-1 Between <i>Vibrio harveyi </i> Cells. SSRN Electronic Journal, 0, , .	0.4	0
531	Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. , 0, , 389-408.		2
532	A Novel Pathway for Bacterial Membrane Vesicle Formation. Oleoscience, 2018, 18, 227-231.	0.0	0
534	ç [∞] èŒãŒæ"¾å‡ºã™ã,‹è†œå°èƒžã®æ–°ãŸã³å±•é–‹. Kagaku To Seibutsu, 2018, 56, 79-81.	0.0	0
535	Standardization of Sampling for Isolation of Exosome-Like Small-Extracellular Vesicles from Peripheral Blood from Reproductive-Aged Women. Open Journal of Obstetrics and Gynecology, 2018, 08, 1063-1070.	0.1	0
539	IDENTIFIKASI GENOTIP CTX-M PADA Escherichia coli PENGHASIL EXTENDED SPECTRUM BETA LACTAMASE (ESBL) YANG RESISTEN PADA CEPHALOSPORIN GENERASI III DI RSUP WAHIDIN SUDIROHUSODO MAKASSAR. Majalah Farmasi Dan Farmakologi, 2019, 23, 5-9.	0.1	1
540	FİTOPATOJEN BAKTERİLERE AİT SALGI SİSTEMLERİNİN GENEL ÖZELLİKLERİ. Eskişehir Teknik Ür Teknoloji Dergisi - C YaÅŸam Bilimleri Ve Biyoteknoloji, 2019, 8, 238-260.	niversitesi 0.1	Bilim Ve
541	Extracellular vesicles in plant host-microbe interaction. Trillium Extracellular Vesicles, 2019, 1, 46-50.	0.1	0
543	Membrane Vesicles from the Gut Microbiota and Their Interactions with the Host. , 2020, , 189-217.		3
544	Photocatalytic and Antimicrobial Properties of [AgTiO ₂]:[Clay] Nanocomposite Prepared with Clay Different Ratios. Modern Research in Catalysis, 2020, 09, 47-61.	1.2	4
545	Chronic Release of Tailless Phage Particles from Lactococcus lactis. Applied and Environmental Microbiology, 2022, 88, AEM0148321.	1.4	13
546	Bacterial membrane vesicles shape <i>Staphylococcus aureus</i> skin colonization and induction of innate immune responses. Experimental Dermatology, 2022, 31, 349-361.	1.4	10
547	Study of Microbial Extracellular Vesicles: Separation by Density Gradients, Protection Assays and Labelling for Live Tracking. Bio-protocol, 2020, 10, e3502.	0.2	3
548	Bacterial extracellular vesicles as cell-cell communication mediators. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 572-588.	0.1	4
550	Preparation of Bacterial Outer Membrane Vesicles for Characterisation of Periplasmic Proteins in Their Native Environment. Bio-protocol, 2020, 10, e3853.	0.2	3
551	Extracellular Vesicles in the Environment. , 2020, , 75-99.		4

ARTICLE IF CITATIONS # Biofilm formation of Staphylococcus epidermidis imaged using atmospheric scanning electron 553 1.9 8 microscopy. Analytical and Bioanalytical Chemistry, 2021, 413, 7549-7558. Microbiotaâ€derived extracellular vesicles in interkingdom communication in the gut. Journal of 554 5.5 Extracellular Vesicles, 2021, 10, e12161. Extracellular Vesicles as Central Mediators of COPD Pathophysiology. Annual Review of Physiology, 555 9 5.6 2022, 84, 631-654. Effects of pH on the Properties of Membrane Vesicles Including Glucosyltransferase in Streptococcus mutans. Microorganisms, 2021, 9, 2308. PanB over-representation as part of pyrazinamide action: a proteomic insight. Future Microbiology, 558 1.0 0 2021, 16, 1303-1308. Label-Free Classification of Bacterial Extracellular Vesicles by Combining Nanoplasmonic Sensors 2.4 With Machine Learning. IEEE Sensors Journal, 2022, 22, 1128-1137. Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis 562 2.520 via PDK1/AKT/Bcl-2 signaling pathway. Microbiological Research, 2022, 255, 126921. Bioinspired, injectable, tissue-adhesive and antibacterial hydrogel for multiple tissue regeneration by 2.3 minimally invasive therapy. Applied Materials Today, 2022, 26, 101290. Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered. Applied and Environmental 564 1.4 18 Microbiológy, 2022, 88, AEM0188121. Interactions Between Grapheneâ€Based Materials and Biological Surfaces: A Review of Underlying Molecular Mechanisms. Advanced Materials Interfaces, 2021, 8, 2101132. Delivery of Toxins and Effectors by Bacterial Membrane Vesicles. Toxins, 2021, 13, 845. 566 12 1.5 <i>Prochlorococcus</i> extracellular vesicles: molecular composition and adsorption to diverse 1.8 microbes. Environmental Microbiology, 2022, 24, 420-435. Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to 568 0.8 20 community benefit. Biofouling, 2021, 37, 1022-1039. Production and Composition of Group B Streptococcal Membrane Vesicles Vary Across Diverse Lineages. Frontiers in Microbiology, 2021, 12, 770499. 1.5 Extracellular Vesicles from Fusarium graminearum Contain Protein Effectors Expressed during 570 1.5 26 Infection of Corn. Journal of Fungi (Basel, Switzerland), 2021, 7, 977. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Frontiers in Microbiology, 2021, 12, 785856. An Update on the Role of Extracellular Vesicles in the Pathogenesis of Necrotizing Enterocolitis and 572 1.8 17 Inflammatory Bowel Diseases. Cells, 2021, 10, 3202. Multifunctional colorimetric cellulose acetate membrane incorporated with Perilla frutescens (L.) 573 5.1 Britt. anthocyanins and chamomile essential oil. Carbohydrate Polymers, 2022, 278, 118914.

ARTICLE IF CITATIONS # Filamentous Fungi Extracellular Vesicles. Current Topics in Microbiology and Immunology, 2021, 432, 0.7 1 574 45-55. Bacterial membrane vesicles and phages in blood after consumption of <i>Lacticaseibacillus 4.3 rhamnosus</i>JB-1. Gut Microbes, 2021, 13, 1993583. Contributions of Extracellular Vesicles to Fungal Biofilm Pathogenesis. Current Topics in 576 0.7 2 Microbiology and Immunology, 2021, 432, 67-79. Membrane vesicles from antibiotic-resistant Staphylococcus aureus transfer antibiotic-resistance to antibiotic-susceptible Escherichia coli. Journal of Applied Microbiology, 2022, 132, 2746-2759. Antibacterial activity of V- doped rod-like MgO crystals decorated with nanoflake layer. Ceramics 579 2.3 11 International, 2022, 48, 10579-10591. 580 Immunomodulatory and antiinflammatory mechanisms of probiotics., 2022, , 321-341. Low-Molecular-Weight Polylysines with Excellent Antibacterial Properties and Low Hemolysis. ACS 581 2.6 14 Biomaterials Science and Engineering, 2022, 8, 903-911. Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication. MBio, 2022, 1.8 21 13, e0327221. Polarity-Sensitive Fluorescent Probe for Reflecting the Packing Degree of Bacterial Membrane Lipids. 583 3.2 12 Analytical Chemistry, 2022, 94, 3303-3312. From fundamental biology to the search for innovation: The story of fungal extracellular vesicles. 584 1.6 European Journal of Cell Biology, 2022, 101, 151205. How Streptomyces thrive: Advancing our understanding of classical development and uncovering 585 1.0 5 new behaviors. Advances in Microbial Physiology, 2022, 80, 203-236. Emerging Roles of Extracellular Vesicles in Pneumococcal Infections: Immunomodulators to 1.8 Potential Novel Vaccine Candidates. Frontiers in Cellular and Infection Microbiology, 2022, 12, 836070. Inhibitors of Bacterial Extracellular Vesicles. Frontiers in Microbiology, 2022, 13, 835058. 587 1.5 16 A Comprehensive Review of the Current and Future Role of the Microbiome in Pancreatic Ductal 588 1.7 Adenocarcinoma. Cancers, 2022, 14, 1020. Gut Microbiota-Derived Small Extracellular Vesicles Endorse Memory-like Inflammatory Responses in 589 1.4 14 Murine Neutrophils. Biomedicines, 2022, 10, 442. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced 38 murine model of liver injury. Scientific Reports, 2022, 12, 2453. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer 591 4.3 34 treatment. Seminars in Cancer Biology, 2022, 86, 80-100. Novel directions of precision oncology: circulating microbial DNA emerging in cancer-microbiome 1.3 areas. Precision Clinical Medicine, 2022, 5, .

#	Article	IF	CITATIONS
593	Biological Functions and Applications of Virus-Related Bacterial Nanoparticles: A Review. International Journal of Molecular Sciences, 2022, 23, 2595.	1.8	4
594	Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Frontiers in Microbiology, 2022, 13, 817844.	1.5	18
595	A novel bioactive postbiotics: from microbiota-derived extracellular nanoparticles to health promoting. Critical Reviews in Food Science and Nutrition, 2023, 63, 6885-6899.	5.4	4
596	Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iranian Journal of Microbiology, 0, , .	0.8	4
597	Antimicrobial Activity of Cellulose Based Materials. Polymers, 2022, 14, 735.	2.0	16
598	Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus <i>Penicilium chrysogenum</i> . Advanced Biology, 2022, 6, e2101322.	1.4	9
599	Inflammatory Response of Primary Cultured Bovine Mammary Epithelial Cells to Staphylococcus aureus Extracellular Vesicles. Biology, 2022, 11, 415.	1.3	5
600	Extracellular vesicle formation in <i>Lactococcus lactis</i> is stimulated by prophageâ€encoded holin–lysin system. Microbial Biotechnology, 2022, 15, 1281-1295.	2.0	17
601	The Role of Bacterial Membrane Vesicles in Human Health and Disease. Frontiers in Microbiology, 2022, 13, 828704.	1.5	15
602	DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell and Bioscience, 2022, 12, 37.	2.1	41
603	Effects of Growth Stage on the Characterization of Enterotoxin A-Producing Staphylococcus aureus-Derived Membrane Vesicles. Microorganisms, 2022, 10, 574.	1.6	4
604	Probiotics, Their Extracellular Vesicles and Infectious Diseases. Frontiers in Microbiology, 2022, 13, 864720.	1.5	16
605	Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. Journal of Extracellular Vesicles, 2022, 11, e12212.	5.5	4
606	Gut Microbiota Ecosystem Governance of Host Inflammation, Mitochondrial Respiration and Skeletal Homeostasis. Biomedicines, 2022, 10, 860.	1.4	15
607	Tiny in size, big in impact: Extracellular vesicles as modulators of mood, anxiety and neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 2022, 135, 104582.	2.9	9
608	Uncertainties in the antibacterial mechanisms of graphene family materials. Nano Today, 2022, 43, 101436.	6.2	22
609	Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioactive Materials, 2022, 14, 169-181.	8.6	65
610	Algal Cells-Derived Extracellular Vesicles: A Review With Special Emphasis on Their Antimicrobial Effects. Frontiers in Microbiology, 2021, 12, 785716.	1.5	7

#	Article	IF	CITATIONS
611	Nanotechnology-Employed Bacteria-Based Delivery Strategy for Enhanced Anticancer Therapy. International Journal of Nanomedicine, 2021, Volume 16, 8069-8086.	3.3	14
613	Development of DNA Aptamers to Visualize Release of Mycobacterial Membrane-Derived Extracellular Vesicles in Infected Macrophages. Pharmaceuticals, 2022, 15, 45.	1.7	4
615	Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Science Advances, 2022, 8, eabg8335.	4.7	41
616	Bacterial membrane vesicles for vaccine applications. Advanced Drug Delivery Reviews, 2022, 185, 114294.	6.6	38
657	A new horizon of precision medicine: combination of the microbiome and extracellular vesicles. Experimental and Molecular Medicine, 2022, 54, 466-482.	3.2	21
658	Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Proceedings of the United States of America, 2022, 119, e2200795119.	3.3	15
659	Characterization of Cr(Vi) Reduction and Fe(Iii) Reduction by Clostridium Sp. Lq25. SSRN Electronic Journal, O, , .	0.4	0
660	The polyene antifungal candicidin is selectively packaged into membrane vesicles in Streptomyces S4. Archives of Microbiology, 2022, 204, 289.	1.0	3
661	From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Frontiers in Oncology, 2022, 12, .	1.3	0
662	Surface Interactions Studies of Novel Two-Dimensional Molybdenum Disulfide with Gram-Negative and Gram-Positive Bacteria. Analytical Letters, 2023, 56, 357-371.	1.0	3
663	Extracellular vesicles: Emerging tools as therapeutic agent carriers. Acta Pharmaceutica Sinica B, 2022, 12, 3822-3842.	5.7	33
664	Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines, 2022, 10, 1121.	1.4	20
665	Spray-dried pneumococcal membrane vesicles are promising candidates for pulmonary immunization. International Journal of Pharmaceutics, 2022, 621, 121794.	2.6	6
666	The Potential Role of Gut Microbial-Derived Exosomes in Metabolic-Associated Fatty Liver Disease: Implications for Treatment. Frontiers in Immunology, 2022, 13, .	2.2	7
667	Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Advanced Drug Delivery Reviews, 2022, 186, 114321.	6.6	36
668	Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Advanced Drug Delivery Reviews, 2022, 186, 114340.	6.6	16
669	Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology, 2022, 11, 804.	1.3	36
670	Candida albicans Hyphal Extracellular Vesicles Are Different from Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response. Microbiology Spectrum, 2022, 10, .	1.2	13

#	Article	IF	CITATIONS
672	Recent progress in label-free techniques for characterization of extracellular vesicle heterogeneity. Scientia Sinica Chimica, 2022, 52, 1636-1648.	0.2	1
673	Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Research and Therapy, 2022, 24, .	1.6	6
674	CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. Starch/Staerke, 0, , 2200001.	1.1	0
676	Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Frontiers in Immunology, 0, 13, .	2.2	9
677	Extracellular Vesicles in Mycobacteria and Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
678	Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. Advanced Materials, 2023, 35, .	11.1	33
679	Pre-Exposure With Extracellular Vesicles From Aspergillus fumigatus Attenuates Inflammatory Response and Enhances Fungal Clearance in a Murine Model Pulmonary Aspergillosis. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	7
680	Membrane particles evoke a serotype-independent cross-protection against pneumococcal infection that is dependent on the conserved lipoproteins MalX and PrsA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
681	Engineered microbial systems for advanced drug delivery. Advanced Drug Delivery Reviews, 2022, 187, 114364.	6.6	18
682	Isolation of Extracellular Vesicles from Candida auris. Methods in Molecular Biology, 2022, , 173-178.	0.4	2
683	Pathogenicity and Growth Conditions Modulate Fonsecaea Extracellular Vesicles' Ability to Interact With Macrophages. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
684	Dissemination of virulence and resistance genes among <i>Klebsiella pneumoniae</i> via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenemâ€resistant hypervirulent <i>Klebsiella pneumoniae</i> . Transboundary and Emerging Diseases. 2022. 69	1.3	9
685	Immunogenicity of Mycobacterial Extracellular Vesicles Isolated From Host-Related Conditions Informs About Tuberculosis Disease Status. Frontiers in Microbiology, 0, 13, .	1.5	7
686	The role of peptidoglycan hydrolases in the formation and toxicity of <i>Pseudomonas aeruginosa</i> membrane vesicles. MicroLife, 2022, 3, .	1.0	4
687	Biological implications of mycobacterial lipids on NKT-cells stimulation. , 2022, , 163-183.		0
688	Application of extracellular vesicles in the diagnosis and treatment of infection and bacterial resistance. , 2022, , 577-590.		0
689	Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells. Journal of Microbiology, 2022, 60, 735-745.	1.3	8
690	Bioinformatics strategies for studying the molecular mechanisms of fungal extracellular vesicles with a focus on infection and immune responses. Briefings in Bioinformatics, 2022, 23, .	3.2	1

#	Article	IF	CITATIONS
691	Antimicrobial Effect of Extracellular Vesicles Derived From Human Oral Mucosal Epithelial Cells on Candida albicans. Frontiers in Immunology, 0, 13, .	2.2	4
692	Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiology Reviews, 2022, 46, .	3.9	1
693	Synthesis, characterization, and photocatalytic antibacterial activities of porous Ce-doped TiO2 microspheres using pine pollen as novel biotemplates. Journal of Materials Science, 2022, 57, 15276-15297.	1.7	2
694	The roles of extracellular vesicles in the immune system. Nature Reviews Immunology, 2023, 23, 236-250.	10.6	228
695	A rapid method for isolation of bacterial extracellular vesicles from culture media using epsilon-poly-L–lysine that enables immunological function research. Frontiers in Immunology, 0, 13, .	2.2	8
696	Different responses of representative denitrifying bacterial strains to gatifloxacin exposure in simulated groundwater denitrification environment. Science of the Total Environment, 2022, 850, 157929.	3.9	9
697	Biological Functions and Cross-Kingdom Host Gene Regulation of Small RNAs in Lactobacillus plantarum-Derived Extracellular Vesicles. Frontiers in Microbiology, 0, 13, .	1.5	2
698	Graphene Oxide (GO): A Promising Nanomaterial against Infectious Diseases Caused by Multidrug-Resistant Bacteria. International Journal of Molecular Sciences, 2022, 23, 9096.	1.8	15
699	Study on cinnamon essential oil release performance based on pH-triggered dynamic mechanism of active packaging for meat preservation. Food Chemistry, 2023, 400, 134030.	4.2	17
700	Inhibition of microbial pathogens in farmed fish. Marine Pollution Bulletin, 2022, 183, 114003.	2.3	10
701	Unweaving the NET: Microbial strategies for neutrophil extracellular trap evasion. Microbial Pathogenesis, 2022, 171, 105728.	1.3	3
702	Plant-mediated green synthesis of nanocomposite-based multifunctional adsorbent with antibacterial activity and high removal efficiency of micropollutants from contaminated waters. Journal of Water Process Engineering, 2022, 49, 103025.	2.6	11
703	Engineered bacterial extracellular vesicles for osteoporosis therapy. Chemical Engineering Journal, 2022, 450, 138309.	6.6	22
704	The distinct roles of exosomes in innate immune responses and therapeutic applications in cancer. European Journal of Pharmacology, 2022, 933, 175292.	1.7	21
705	Concise synthesis of E/F ring spiroethers from tigogenin. Carbaanalogs of steroidal sapogenins and their biological activity. Journal of Steroid Biochemistry and Molecular Biology, 2022, 224, 106174.	1.2	3
706	Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics, 2022, 12, 6576-6594.	4.6	31
707	Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process. Analytical Chemistry, 2022, 94, 12416-12426.	3.2	17
708	Rhodococcus equi-Derived Extracellular Vesicles Promoting Inflammatory Response in Macrophage through TLR2-NF-κB/MAPK Pathways. International Journal of Molecular Sciences, 2022, 23, 9742.	1.8	2

#	Article	IF	CITATIONS
709	Functional Characterization of Extracellular Vesicles from Baker's Yeast Saccharomyces Cerevisiae as a Novel Vaccine Material for Immune Cell Maturation. Journal of Pharmaceutical Sciences, 2023, 112, 525-534.	1.6	7
710	A common vesicle proteome drives fungal biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
711	The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 2023, 21, 70-86.	13.6	133
712	Exogenously Scavenged and Endogenously Synthesized Heme Are Differentially Utilized by Mycobacterium tuberculosis. Microbiology Spectrum, 0, , .	1.2	4
713	Novel colorimetric films based on polyvinyl alcohol/sodium carboxymethyl cellulose doped with anthocyanins and betacyanins to monitor pork freshness. Food Chemistry, 2023, 404, 134426.	4.2	35
714	Zinc-Silver Doped Mesoporous Hydroxyapatite Synthesized via Ultrasonic in Combination with Sol-Gel Method for Increased Antibacterial Activity. Sustainability, 2022, 14, 11756.	1.6	6
715	Outer membrane vesicles as molecular biomarkers for Gram-negative sepsis: Taking advantage of nature's perfect packages. Journal of Biological Chemistry, 2022, 298, 102483.	1.6	8
716	Machine-learning algorithms for asthma, COPD, and lung cancer risk assessment using circulating microbial extracellular vesicle data and their application to assess dietary effects. Experimental and Molecular Medicine, 2022, 54, 1586-1595.	3.2	5
717	Unravelling the DNA sequences carried by Streptomyces coelicolor membrane vesicles. Scientific Reports, 2022, 12, .	1.6	6
718	Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium <i>Lacticaseibacillus casei</i> BL23. MBio, 2022, 13, .	1.8	9
719	Metallic Nanoparticles and Nano-Based Bioactive Formulations as Nano-Fungicides for Sustainable Disease Management in Cereals. , 2022, , 315-343.		0
720	Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance. International Journal of Molecular Sciences, 2022, 23, 11553.	1.8	9
721	Outer Membrane Vesicles: A Challenging Yet Promising Platform for COVID-19 Vaccines. , 0, , .		0
722	Mussel-Inspired Surface Functionalization of Porous Albumin Cryogels Supporting Synergistic Antibacterial/Antioxidant Activity and Bone-Like Apatite Formation. Gels, 2022, 8, 679.	2.1	6
723	Transfection reagent artefact likely accounts for some reports of extracellular vesicle function. Journal of Extracellular Vesicles, 2022, 11, .	5.5	8
724	The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus,ÂLactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals, 2022, 15, 1293.	1.7	9
725	Exosome-like nanovesicles derived from Phellinus linteus inhibit Mical2 expression through cross-kingdom regulation and inhibit ultraviolet-induced skin aging. Journal of Nanobiotechnology, 2022, 20, .	4.2	16
726	Biofunction and clinical potential of extracellular vesicles from methicillin-resistant Staphylococcus aureus. Microbiological Research, 2023, 266, 127238.	2.5	1

#	Article	IF	CITATIONS
727	Bacterial extracellular vesicle applications in cancer immunotherapy. Bioactive Materials, 2023, 22, 551-566.	8.6	8
728	Phospholipid-Membrane-Based Nanovesicles Acting as Vaccines for Tumor Immunotherapy: Classification, Mechanisms and Applications. Pharmaceutics, 2022, 14, 2446.	2.0	6
729	Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	18
730	Membrane-Binding Biomolecules Influence the Rate of Vesicle Exchange between Bacteria. Applied and Environmental Microbiology, 2022, 88, .	1.4	1
731	Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. Journal of Fungi (Basel, Switzerland), 2022, 8, 1172.	1.5	0
732	Extracellular Vesicles Contribute to Mixed-Fungal Species Competition during Biofilm Initiation. MBio, 2022, 13, .	1.8	3
733	Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Experimental and Therapeutic Medicine, 2022, 24, .	0.8	1
734	Extracellular membrane vesicles from Limosilactobacillus reuteri strengthen the intestinal epithelial integrity, modulate cytokine responses and antagonize activation of TRPV1. Frontiers in Microbiology, 0, 13, .	1.5	10
735	Cooperative Antibacterial Enzyme-Ag-Polymer Nanocomposites. ACS Nano, 2022, 16, 19013-19024.	7.3	18
736	Enhancing the antibacterial activity of Lactobacillus reuteri against Escherichia coli by random mutagenesis and delineating its mechanism. Food Bioscience, 2023, 51, 102209.	2.0	9
737	Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomedicine and Pharmacotherapy, 2023, 157, 114046.	2.5	12
738	Engineering probiotic-derived outer membrane vesicles as functional vaccine carriers to enhance immunity against SARS-CoV-2. IScience, 2023, 26, 105772.	1.9	12
739	Inhibitory effect of the combination of xylitol and funoran on Streptococcus mutans biofilm formation on the uncoated surface. Archives of Microbiology, 2022, 204, .	1.0	0
740	Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics, 2022, 14, 2597.	2.0	1
741	Extracellular Vesicles from Bothrops jararaca Venom Are Diverse in Structure and Protein Composition and Interact with Mammalian Cells. Toxins, 2022, 14, 806.	1.5	1
742	A Study on the Chemistry and Biological Activity of 26-Sulfur Analogs of Diosgenin: Synthesis of 26-Thiodiosgenin S-Mono- and Dioxides, and Their Alkyl Derivatives. Molecules, 2023, 28, 189.	1.7	0
743	Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus. Functional and Integrative Genomics, 2023, 23, .	1.4	1
744	Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: Contribution of the non-human primate model to a better understanding?. Frontiers in Reproductive Health, 0, 4, .	0.6	5

#	Article	IF	CITATIONS
745	Visualizing extracellular vesicle biogenesis in gram-positive bacteria using super-resolution microscopy. BMC Biology, 2022, 20, .	1.7	9
747	Secretome Analysis of the Plant Biostimulant Bacteria Strains Bacillus subtilis (EB2004S) and Lactobacillus helveticus (EL2006H) in Response to pH Changes. International Journal of Molecular Sciences, 2022, 23, 15144.	1.8	5
748	RNA Dialogues in Fungal–Plant Relationships. , 2023, , 31-51.		3
749	Novel Horizons in Postbiotics: Lactobacillaceae Extracellular Vesicles and Their Applications in Health and Disease. Nutrients, 2022, 14, 5296.	1.7	11
750	Antibacterial activity and mechanism of flavonoids from Chimonanthus salicifolius S. Y. Hu. and its transcriptome analysis against Staphylococcus aureus. Frontiers in Microbiology, 0, 13, .	1.5	3
751	Facile Synthesis of Zinc Indium Oxide Nanofibers Distributed with Low Content of Silver for Superior Antibacterial Activity. Small Structures, 2023, 4, .	6.9	26
752	Identification of faecalÂextracellular vesicles as novel biomarkers for the nonâ€invasive diagnosis and prognosis of colorectal cancer. Journal of Extracellular Vesicles, 2023, 12, .	5.5	14
753	Effect of gut microbiome-derived metabolites and extracellular vesicles on hepatocyte functions in a gut-liver axis chip. Nano Convergence, 2023, 10, .	6.3	6
754	Pathogen-Derived Extracellular Vesicles: Emerging Mediators of Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2023, 36, 218-227.	1.4	5
755	Bacterial Membrane Mimetics: From Biosensing to Disease Prevention and Treatment. Biosensors, 2023, 13, 189.	2.3	3
756	Synthesis and biological activity of iron(II), iron(III), nickel(II), copper(II) and zinc(II) complexes of aliphatic hydroxamic acids. Journal of Coordination Chemistry, 0, , 1-30.	0.8	2
757	Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infectious Agents and Cancer, 2023, 18, .	1.2	7
758	Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. Scientific Reports, 2023, 13, .	1.6	6
759	Nanoscale imaging and force probing of single microbial cells by atomic force microscopy. , 2023, , 187-217.		1
760	Membrane Protein Amuc_1100 Derived from Akkermansia muciniphila Facilitates Lipolysis and Browning <i>via</i> Activating the AC3/PKA/HSL Pathway. Microbiology Spectrum, 2023, 11, .	1.2	11
761	Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Advanced Drug Delivery Reviews, 2023, 196, 114774.	6.6	4
762	Bacterial multicellular behavior in antiviral defense. Current Opinion in Microbiology, 2023, 74, 102314.	2.3	8
764	Switching from membrane disrupting to membrane crossing, an effective strategy in designing antibacterial polypeptide. Science Advances, 2023, 9, .	4.7	13

#	Article	IF	CITATIONS
765	Caveolin-1 regulates OMV-induced macrophage pro-inflammatory activation and multiple Toll-like receptors. Frontiers in Immunology, 0, 14, .	2.2	2
766	Cryo-electron microscopy of extracellular vesicles associated with the marine toxic dinoflagellate Alexandrium minutum. Harmful Algae, 2023, 123, 102389.	2.2	2
767	Interactions between extracellular vesicles and microbiome in human diseases: New therapeutic opportunities. , 2023, 2, .		6
768	Microcrystalline cellulose for active food packaging applications: A review. Food Packaging and Shelf Life, 2023, 36, 101048.	3.3	22
769	Extracellular vesicles in bacterial and fungal diseases – Pathogenesis to diagnostic biomarkers. Virulence, 2023, 14, .	1.8	1
770	Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Frontiers in Microbiology, 0, 14, .	1.5	7
771	A Close Look into the Composition and Functions of Fungal Extracellular Vesicles Produced by Phytopathogens. Molecular Plant-Microbe Interactions, 2023, 36, 228-234.	1.4	2
772	Determinants of synergistic cell-cell interactions in bacteria. Biological Chemistry, 2023, 404, 521-534.	1.2	1
773	Dietary-Derived Exosome-like Nanoparticles as Bacterial Modulators: Beyond MicroRNAs. Nutrients, 2023, 15, 1265.	1.7	4
774	The Metagenomic Composition and Effects of Fecal-Microbe-Derived Extracellular Vesicles on Intestinal Permeability Depend on the Patient's Disease. International Journal of Molecular Sciences, 2023, 24, 4971.	1.8	3
775	Transcriptome responses of intestinal epithelial cells induced by membrane vesicles of Listeria. Current Research in Microbial Sciences, 2023, 4, 100185.	1.4	2
776	Composition and functions of bacterial membrane vesicles. Nature Reviews Microbiology, 2023, 21, 415-430.	13.6	72
777	Mechanical, barrier, and antimicrobial properties of anchote (Coccinia abyssinica) starch films containing cellulose nanocrystals and rosemary essential oil. Biomass Conversion and Biorefinery, 2023, 13, 7333-7347.	2.9	2
778	Surface-enhanced Raman spectroscopy for monitoring antibacterial activity of imidazole derivative (1-benzyl-3-(secâ€'butyl)-1H-imidazole-3-ium bromide) against Bacillus subtilis and Escherichia coli. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103533.	1.3	1
779	Predatory Strategies of Myxococcus xanthus: Prey Susceptibility to OMVs and Moonlighting Enzymes. Microorganisms, 2023, 11, 874.	1.6	6
780	Postbiotics against Obesity: Perception and Overview Based on Pre-Clinical and Clinical Studies. International Journal of Molecular Sciences, 2023, 24, 6414.	1.8	8
782	Pseudomonas aeruginosa-Derived Extracellular Vesicles Modulate Corneal Inflammation: Role in Microbial Keratitis?. Infection and Immunity, 2023, 91, .	1.0	1
783	Effect of Probiotic-derived Extracellular Vesicles on Innate Immunity and Their Usability. Yakugaku Zasshi, 2023, 143, 365-368.	0.0	0

#	Article	IF	CITATIONS
784	<i>In silico</i> and <i>inâ€vitro</i> Identification of Compounds with Dual Pharmacological Activity against Metionylâ€ŧRNA Synthetase and Isoleucylâ€ŧRNA Synthetase of <i>Staphylococcus aureus</i> . ChemistrySelect, 2023, 8, .	0.7	3
785	Advances in the Study of Bacterial Outer Membrane Vesicles Regulating the Functional Activity of Immune Cells. Hans Journal of Biomedicine, 2023, 13, 178-183.	0.0	0
787	Nanosystems for antimicrobial interventions: advanced synthesis and implementation strategies. , 2023, , 3-22.		1
788	Extracellular Vesicles of the Plant Pathogen Botrytis cinerea. Journal of Fungi (Basel, Switzerland), 2023, 9, 495.	1.5	5
791	Preparation of Protein-Enriched Outer Membrane Vesicles from Escherichia Coli for In Situ Structural Biology of Outer Membrane Proteins. Methods in Molecular Biology, 2023, , 247-257.	0.4	0
811	Staphylococcus aureus. , 2023, , 3-20.		0
834	Extracellular RNAs released by plant-associated fungi: from fundamental mechanisms to biotechnological applications. Applied Microbiology and Biotechnology, 2023, 107, 5935-5945.	1.7	4
880	The Human Breast Milk Microbiome: Establishment and Resilience of Microbiota over the Mother–Infant Relationship. , 2023, , 173-185.		0
882	Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomaterials Science, 2024, 12, 863-895.	2.6	0
884	Recent advances in combatting bacterial infections <i>via</i> well-designed metallacycles/metallacages. Dalton Transactions, 2024, 53, 3434-3444.	1.6	0
889	BP-EVs: A Novel Source of EVs in the Nanocarrier Field. Physiology, 0, , .	4.0	0
890	Membrane Vesicles of Clostridioides difficile and Other Clostridial Species. Advances in Experimental Medicine and Biology, 2024, , 315-327.	0.8	0
894	New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. Methods in Molecular Biology, 2024, , 183-194.	0.4	1
895	Extraction and Purification of Outer Membrane Vesicles and Their Associated RNAs. Methods in Molecular Biology, 2024, , 11-24.	0.4	1
896	RNA Extraction from Gram-Positive Bacteria Membrane Vesicles Using a Polymer-Based Precipitation Methods in Molecular Biology, 2024, , 3-10.	0.4	0
899	Pathogenesis of fungal infections. , 2024, , 2797-2812.		0