Oncolytic viruses: a new class of immunotherapy drugs

Nature Reviews Drug Discovery 14, 642-662 DOI: 10.1038/nrd4663

Citation Report

#	Article	IF	CITATIONS
1	Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends in Cancer, 2015, 1, 266-277.	3.8	73
2	Oncolytic Virus Therapy for Malignant Glioma using G47Δ. Japanese Journal of Neurosurgery, 2016, 25, 973-978.	0.0	0
3	Oncolytic Viral Therapy of Glioblastoma: Will this Soon become a Reality?. Chemotherapy, 2016, 05, .	0.0	0
4	Spotlight on talimogene laherparepvec for the treatment of melanoma lesions in the skin and lymph nodes. Oncolytic Virotherapy, 2016, Volume 5, 91-98.	6.0	13
5	Viruses as nanomedicine for cancer. International Journal of Nanomedicine, 2016, Volume 11, 4835-4847.	3.3	24
6	High-throughput screening to enhance oncolytic virus immunotherapy. Oncolytic Virotherapy, 2016, 5, 15.	6.0	6
7	Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 298-308.	1.8	115
8	From Benchtop to Bedside: A Review of Oncolytic Virotherapy. Biomedicines, 2016, 4, 18.	1.4	49
9	Establishment of a Tumour–Stroma Airway Model (OncoCilAir) to Accelerate the Development of Human Therapies against Lung Cancer. ATLA Alternatives To Laboratory Animals, 2016, 44, 479-485.	0.7	12
10	Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. Journal of Controlled Release, 2016, 237, 78-88.	4.8	51
11	Oncolytic Viruses: Therapeutics With an Identity Crisis. EBioMedicine, 2016, 9, 31-36.	2.7	82
12	Cancer immunotherapy trials: leading a paradigm shift in drug development. , 2016, 4, 42.		35
13	Whole cell vaccination using immunogenic cell death by an oncolytic adenovirus is effective against a colorectal cancer model. Molecular Therapy - Oncolytics, 2016, 3, 16031.	2.0	34
14	Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers. Molecular Therapy, 2016, 24, 1492-1501.	3.7	110
15	Predictive and Prognostic Clinical Variables in Cancer Patients Treated With Adenoviral Oncolytic Immunotherapy. Molecular Therapy, 2016, 24, 1323-1332.	3.7	28
16	Development of Advanced Therapy Medicinal Products: A Case for Early Scientific Advice. , 2016, , 293-303.		2
17	Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews, 2016, 45, 4074-4126.	18.7	313
18	Cancer immunotherapy: the beginning of the end of cancer?. BMC Medicine, 2016, 14, 73.	2.3	908

TATION PEDO

#	Article	IF	CITATIONS
19	Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR Journal, 2016, 57, 63-72.	1.8	10
20	Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine, 2016, 34, 5082-5089.	1.7	26
21	Novel epi-virotherapeutic treatment of pancreatic cancer combining the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus. International Journal of Oncology, 2016, 49, 1931-1944.	1.4	17
22	A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annual Review of Virology, 2016, 3, 283-307.	3.0	113
23	Oncolytic herpes simplex virus interactions with the host immune system. Current Opinion in Virology, 2016, 21, 26-34.	2.6	44
24	Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy. Biochemical Pharmacology, 2016, 116, 176-187.	2.0	16
27	Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice. Human Gene Therapy Clinical Development, 2016, 27, 145-151.	3.2	9
28	Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell, 2016, 166, 288-298.	13.5	508
29	Biopharmaceuticals and gene vectors opening new avenues in cancer immune therapy. Therapeutic Delivery, 2016, 7, 419-422.	1.2	3
30	Emerging role of immunotherapy in urothelial carcinoma—Immunobiology/biomarkers. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 556-565.	0.8	23
31	Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16034.	1.8	183
32	Clinical Trials with IL-12 in Cancer Immunotherapy. SpringerBriefs in Immunology, 2016, , 43-75.	0.1	1
33	Cancer Immunotherapy: Selected Targets and Smallâ€Molecule Modulators. ChemMedChem, 2016, 11, 450-466.	1.6	99
34	Talimogene laherparepvec in advanced melanoma. Expert Opinion on Orphan Drugs, 2016, 4, 781-788.	0.5	0
36	Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy. Journal of Virology, 2016, 90, 5343-5352.	1.5	46
37	Clostridium novyi-NT in cancer therapy. Genes and Diseases, 2016, 3, 144-152.	1.5	73
38	CD8+ T-cell Immune Evasion Enables Oncolytic Virus Immunotherapy. EBioMedicine, 2016, 5, 59-67.	2.7	29
39	Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy. Clinical Cancer Research, 2016, 22, 1048-1054.	3.2	226

		CITATION REPOR	2T	
#	Article	IF		Citations
40	First oncolytic virus approved for melanoma immunotherapy. Oncolmmunology, 2016, 5, e11	15641. 2.1	L	247
41	Talimogene Laherparepvec: First Clobal Approval. Drugs, 2016, 76, 147-154.	4.9)	105
42	Intralesional treatment of metastatic melanoma: a review of therapeutic options. Cancer Imm Immunotherapy, 2017, 66, 647-656.	unology, 2.0)	34
43	Clinical Considerations for Oncolytic Viral Therapies: A Regulatory Perspective. Clinical Pharmacology and Therapeutics, 2017, 101, 580-582.	2.3	3	3
44	Regulation Mechanisms of Viral IRES-Driven Translation. Trends in Microbiology, 2017, 25, 54	6-561. 3.5	5	123
45	Group B adenovirus enadenotucirev infects polarised colorectal cancer cells efficiently from the basolateral surface expected to be encountered during intravenous delivery to treat dissemination cancer. Virology, 2017, 505, 162-171.	ie ated 1.1	-	16
46	Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induce cell adoptive therapy. Oncolmmunology, 2017, 6, e1264563.	d killer 2.1	L	23
47	Armed Oncolytic Adenovirus–Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Cl Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2017, 77, 2040-2051.	himeric 0.4	4	170
48	Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T activation. Oncolmmunology, 2017, 6, e1285992.	cell 2.1	L	60
49	The expanding role of immunotherapy. Cancer Treatment Reviews, 2017, 54, 74-86.	3.4	ŧ	100
50	NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12-Ex Maraba Virus Cellular Vaccine. Cancer Immunology Research, 2017, 5, 211-221.	pressing 1.6	b	57
51	The changing landscape of clinical trial and approval processes in China. Nature Reviews Clinic Oncology, 2017, 14, 577-583.	al 12.	.5	46
52	Imaging Manifestations of Pseudoprogression in Metastatic Melanoma Nodes Injected with T Laherparepvec: Initial Experience. American Journal of Neuroradiology, 2017, 38, 1218-1222.	alimogene 1.2	2	5
53	Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of V Virus-Mediated Oncolysis. Molecular Therapy - Oncolytics, 2017, 5, 41-61.	accinia 2.0)	26
54	Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biological Chemistry, 2017, 398, 891-909.	1.2	2	21
55	Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Science Immunology, 201	7, 2, . 5.6	5	101
56	Delivering safer immunotherapies for cancer. Advanced Drug Delivery Reviews, 2017, 114, 79	-101. 6.6	5	233
57	Recent advances in genetic modification of adenovirus vectors for cancer treatment. Cancer S 2017, 108, 831-837.	Science, 1.7	,	70

#	Article	IF	CITATIONS
58	Oncolytic Herpes Simplex Virus Inhibits Pediatric Brain Tumor Migration and Invasion. Molecular Therapy - Oncolytics, 2017, 5, 75-86.	2.0	22
59	Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 201701002.	3.3	33
60	Gene Therapy 2017: Progress and Future Directions. Clinical and Translational Science, 2017, 10, 242-248.	1.5	113
61	Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nature Communications, 2017, 8, 14754.	5.8	268
62	Partners in Crime: Combining Oncolytic Viroimmunotherapy with Other Therapies. Molecular Therapy, 2017, 25, 836-838.	3.7	4
63	Single vs. combination immunotherapeutic strategies for glioma. Expert Opinion on Biological Therapy, 2017, 17, 543-554.	1.4	17
64	Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. , 2017, 178, 31-47.		89
65	Convection-Enhanced Delivery. Neurotherapeutics, 2017, 14, 358-371.	2.1	204
66	Deletion of <i>F4L</i> (ribonucleotide reductase) in vaccinia virus produces a selective oncolytic virus and promotes antiâ€ŧumor immunity with superior safety in bladder cancer models. EMBO Molecular Medicine, 2017, 9, 638-654.	3.3	36
67	Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. American Journal of Clinical Dermatology, 2017, 18, 1-15.	3.3	215
68	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	3.2	95
69	The renaissance of antiâ€neoplastic immunity from tumor cell demise. Immunological Reviews, 2017, 280, 194-206.	2.8	53
70	Mechanisms regulating T-cell infiltration and activity in solid tumors. Annals of Oncology, 2017, 28, xii18-xii32.	0.6	276
71	Cancer: Towards a general theory of the target. BioEssays, 2017, 39, 1700059.	1.2	2
72	Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models. Molecular Therapy - Oncolytics, 2017, 6, 80-89.	2.0	35
73	Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncolmmunology, 2017, 6, e1371896.	2.1	36
74	Competing forces maintain the <i>Hydra</i> metaorganism. Immunological Reviews, 2017, 279, 123-136.	2.8	33
75	Immune responses in the thyroid cancer microenvironment: making immunotherapy a possible mission. Endocrine-Related Cancer, 2017, 24, T311-T329.	1.6	23

#	Article	IF	CITATIONS
76	Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy. Immunotherapy, 2017, 9, 837-849.	1.0	1
77	Myxoma Virus Optimizes Cisplatin for the Treatment of Ovarian Cancer InÂVitro and in a Syngeneic Murine Dissemination Model. Molecular Therapy - Oncolytics, 2017, 6, 90-99.	2.0	20
78	Virotherapy Research in Germany: From Engineering to Translation. Human Gene Therapy, 2017, 28, 800-819.	1.4	19
79	The development of activatable lytic peptides for targeting triple negative breast cancer. Cell Death Discovery, 2017, 3, 17037.	2.0	20
80	Advances in cancer stem cell targeting: How to strike the evil at its root. Advanced Drug Delivery Reviews, 2017, 120, 89-107.	6.6	58
81	Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Current Opinion in Immunology, 2017, 47, 35-43.	2.4	43
82	Bioselection of coxsackievirus B6 strain variants with altered tropism to human cancer cell lines. Archives of Virology, 2017, 162, 3355-3362.	0.9	10
83	Intratumoral Approaches for the Treatment of Melanoma. Cancer Journal (Sudbury, Mass), 2017, 23, 40-47.	1.0	45
84	Immunotherapy in Non–Small Cell Lung Cancer Treatment. Journal of Thoracic Imaging, 2017, 32, 300-312.	0.8	47
85	Opportunities and challenges in the immunological therapy of pediatric malignancy: a concise snapshot. European Journal of Pediatrics, 2017, 176, 1163-1172.	1.3	11
86	Viral cancer therapies: are they ready for combination with other immunotherapies?. Future Oncology, 2017, 13, 1569-1571.	1.1	1
87	Infection: a Cause of and Cure for Cancer. Current Pharmacology Reports, 2017, 3, 315-320.	1.5	13
88	Oncolytic virotherapy as an immunotherapeutic strategy for multiple myeloma. Blood Cancer Journal, 2017, 7, 640.	2.8	19
89	Future Interventional Oncology Catheter-Based Therapies. Digestive Disease Interventions, 2017, 01, 225-232.	0.3	0
90	Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nature Communications, 2017, 8, 1395.	5.8	115
91	Insertion of the Type-I IFN Decoy Receptor B18R in a miRNA-Tagged Semliki Forest Virus Improves Oncolytic Capacity but Results in Neurotoxicity. Molecular Therapy - Oncolytics, 2017, 7, 67-75.	2.0	6
92	Cancer immunotherapy: Breakthrough or "deja vu, all over again�. Tumor Biology, 2017, 39, 101042831770776.	0.8	7
93	A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models. Biochemical and Biophysical Research Communications, 2017, 491, 469-477.	1.0	47

#	Article	IF	CITATIONS
94	Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment. Scientific Reports, 2017, 7, 5170.	1.6	33
95	Structural and functional characterization of a DARPin which inhibits Ras nucleotide exchange. Nature Communications, 2017, 8, 16111.	5.8	77
96	Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6157-E6165.	3.3	90
97	State of play and clinical prospects of antibody gene transfer. Journal of Translational Medicine, 2017, 15, 131.	1.8	45
98	Virus–host interactions under hypoxia. Microbes and Infection, 2017, 19, 193-203.	1.0	31
99	Prime-boost using separate oncolytic viruses in combination with checkpoint blockade improves anti-tumour therapy. Gene Therapy, 2017, 24, 21-30.	2.3	61
100	Preclinical Evaluation of AdVince, an Oncolytic Adenovirus Adapted for Treatment of Liver Metastases from Neuroendocrine Cancer. Neuroendocrinology, 2017, 105, 54-66.	1.2	24
101	Inactivation of Cancer Mutations Utilizing CRISPR/Cas9. Journal of the National Cancer Institute, 2017, 109, .	3.0	30
102	Oncolytic Viruses in Cancer Treatment. JAMA Oncology, 2017, 3, 841.	3.4	426
103	Immunotherapy approaches in the treatment of malignant brain tumors. Cancer, 2017, 123, 734-750.	2.0	75
105	Beyond Alkylating Agents for Gliomas: <i>Quo Vadimus</i> ?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 175-186.	1.8	6
106	Considerations for the Development of Innovative Therapies Against Aggressive Neuroblastoma: Immunotherapy and Twist1 Targeting. , 2017, , .		0
107	Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity. Viruses, 2017, 9, 382.	1.5	36
108	Gene expression profiling of hematologic malignant cell lines resistant to oncolytic virus treatment. Oncotarget, 2017, 8, 1213-1225.	0.8	8
109	Targeting Autophagy for Oncolytic Immunotherapy. Biomedicines, 2017, 5, 5.	1.4	11
110	Editorial of the Special Issue: Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer. Biomedicines, 2017, 5, 52.	1.4	5
111	Immunotherapy for Pediatric Brain Tumors. Brain Sciences, 2017, 7, 137.	1.1	24
112	Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Frontiers in Immunology, 2017, 8, 555.	2.2	76

#	Article	IF	CITATIONS
113	Sharpening the Edge for Precision Cancer Immunotherapy: Targeting Tumor Antigens through Oncolytic Vaccines. Frontiers in Immunology, 2017, 8, 800.	2.2	13
114	Modulation of the Intratumoral Immune Landscape by Oncolytic Herpes Simplex Virus Virotherapy. Frontiers in Oncology, 2017, 7, 136.	1.3	40
115	Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Frontiers in Oncology, 2017, 7, 149.	1.3	75
116	Combining Oncolytic Adenovirus with Radiation—A Paradigm for the Future of Radiosensitization. Frontiers in Oncology, 2017, 7, 153.	1.3	32
117	Oncolytic Viral Therapy for Mesothelioma. Frontiers in Oncology, 2017, 7, 179.	1.3	37
118	Oncolytic Viruses—Natural and Genetically Engineered Cancer Immunotherapies. Frontiers in Oncology, 2017, 7, 202.	1.3	107
119	Manipulation of Innate and Adaptive Immunity through Cancer Vaccines. Journal of Immunology Research, 2017, 2017, 1-7.	0.9	31
120	Oncolytic Virus-Based Immunotherapies for Hepatocellular Carcinoma. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	37
121	Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virotherapy, 2017, Volume 6, 39-49.	6.0	32
122	Cytokine Therapy in the Tumor Microenvironment. , 2017, , 239-256.		0
123	Prospects for combined use of oncolytic viruses and CAR T-cells. , 2017, 5, 90.		84
124	Viroimmunotherapy for Colorectal Cancer: Clinical Studies. Biomedicines, 2017, 5, 11.	1.4	25
125	Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines, 2017, 5, 3.	1.4	29
126	11R-P53 and GM-CSF Expressing Oncolytic Adenovirus Target Cancer Stem Cells with Enhanced Synergistic Activity. Journal of Cancer, 2017, 8, 199-206.	1.2	8
127	Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus. Journal of Clinical Investigation, 2017, 127, 2957-2967.	3.9	58
128	Targeting Melanoma with Cancer-Killing Viruses. The Open Virology Journal, 2017, 11, 28-47.	1.8	8
129	Development of Molecularly Targeted Agents and Immunotherapies in Glioblastoma: A Personalized Approach. Clinical Medicine Insights: Oncology, 2018, 12, 117955491875907.	0.6	4
130	Application of Oncolytic Virus as a Therapy of Cancer. , 2018, , 361-382.		0

#	Article	IF	CITATIONS
131	Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nature Communications, 2018, 9, 1524.	5.8	21
132	Metastatic tumor cells detection and antiâ€metastatic potential with vesicular stomatitis virus in immunocompetent murine model of osteosarcoma. Journal of Orthopaedic Research, 2018, 36, 2562-2569.	1.2	5
133	Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Molecular Therapy, 2018, 26, 1414-1422.	3.7	111
134	Oncolytic viruses as engineering platforms for combination immunotherapy. Nature Reviews Cancer, 2018, 18, 419-432.	12.8	288
135	Endogenous Akt Activity Promotes Virus Entry and Predicts Efficacy of Novel Chimeric Orthopoxvirus in Triple-Negative Breast Cancer. Molecular Therapy - Oncolytics, 2018, 9, 22-29.	2.0	23
136	Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell, 2018, 33, 581-598.	7.7	393
137	Intravenous injections of the oncolytic virus M1 as a novel therapy for muscle-invasive bladder cancer. Cell Death and Disease, 2018, 9, 274.	2.7	28
138	Multiple proteins differing between laboratory stocks of mammalian orthoreoviruses affect both virus sensitivity to interferon and induction of interferon production during infection. Virus Research, 2018, 247, 40-46.	1.1	13
139	Therapeutic cancer vaccines: From initial findings to prospects. Immunology Letters, 2018, 196, 11-21.	1.1	75
140	Cancer immunotherapy beyond immune checkpoint inhibitors. Journal of Hematology and Oncology, 2018, 11, 8.	6.9	174
141	Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treatment Reviews, 2018, 64, 11-20.	3.4	76
142	Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy. Journal of Virology, 2018, 92, .	1.5	12
143	Harnessing Protease Activity to Improve Cancer Care. Annual Review of Cancer Biology, 2018, 2, 353-376.	2.3	70
144	Production and Purification of High-Titer Newcastle Disease Virus for Use in Preclinical Mouse Models of Cancer. Molecular Therapy - Methods and Clinical Development, 2018, 9, 181-191.	1.8	32
145	Fighting Cancer with Viruses: Oncolytic Virus Therapy in China. Human Gene Therapy, 2018, 29, 151-159.	1.4	49
146	A Vesicular Stomatitis Virusâ€Inspired DNA Nanocomplex for Ovarian Cancer Therapy. Advanced Science, 2018, 5, 1700263.	5.6	16
147	Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends in Immunology, 2018, 39, 209-221.	2.9	153
148	Thyroid dysfunctions secondary to cancer immunotherapy. Journal of Endocrinological Investigation, 2018, 41, 625-638.	1.8	59

#	Article	IF	CITATIONS
149	Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1506.	3.3	33
150	Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. Journal of Immunology, 2018, 200, 450-458.	0.4	78
151	Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Science Translational Medicine, 2018, 10, .	5.8	288
152	Development of a Safe and Effective Vaccinia Virus Oncolytic Vector WR-î"4 with a Set of Gene Deletions on Several Viral Pathways. Molecular Therapy - Oncolytics, 2018, 8, 27-40.	2.0	22
153	Therapeutic Targets of FDA-Approved Immunotherapies in Oncology. , 2018, , 21-37.		3
154	Oncolytic activity of a coxsackievirus B3 strain in human endometrial cancer cell lines. Virology Journal, 2018, 15, 65.	1.4	15
155	Oncolytic activity of the rhabdovirus VSVâ€GP against prostate cancer. International Journal of Cancer, 2018, 143, 1786-1796.	2.3	29
156	Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells <i>In Vitro</i> and <i>In Vivo</i> . Cancer Research, 2018, 78, 3363-3374.	0.4	54
157	Armed oncolytic viruses: A kick-start for anti-tumor immunity. Cytokine and Growth Factor Reviews, 2018, 41, 28-39.	3.2	110
158	Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Molecular Therapy, 2018, 26, 1008-1019.	3.7	103
159	What is oncolytic virotherapy?. Archives of Disease in Childhood: Education and Practice Edition, 2018, 103, 43-45.	0.3	3
160	Current strides in AAV-derived vectors and SIN channels further relieves the limitations of gene therapy. Egyptian Journal of Medical Human Genetics, 2018, 19, 69-75.	0.5	0
161	Modified T-cells (using TCR and CTAs), chimeric antigen receptor (CAR) and other molecular tools in recent gene therapy. Egyptian Journal of Medical Human Genetics, 2018, 19, 153-157.	0.5	1
162	Novel chimeric parapoxvirus CF189 as an oncolytic immunotherapy in triple-negative breast cancer. Surgery, 2018, 163, 336-342.	1.0	20
163	Oncolytic Herpes Simplex Viruses as a Paradigm for the Treatment of Cancer. Annual Review of Cancer Biology, 2018, 2, 155-173.	2.3	29
164	A review of methods for comparing treatments evaluated in studies that form disconnected networks of evidence. Research Synthesis Methods, 2018, 9, 148-162.	4.2	19
165	State of the Art Treatment and Surveillance Imaging of Glioblastomas. Seminars in Roentgenology, 2018, 53, 23-36.	0.2	7
166	Is cyclin-dependent kinase 9 a novel specific molecular target of adult T-cell leukemia/lymphoma?. Journal of Laboratory and Precision Medicine, 2018, 3, 9-9.	1.1	0

#	Article	IF	CITATIONS
167	Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials. Clinical and Translational Medicine, 2018, 7, 35.	1.7	96
168	SOCS4 expressed by recombinant HSV protects against cytokine storm in a mouse model. Oncology Reports, 2018, 41, 1509-1520.	1.2	7
169	Biologic and Immunotherapy Developments in Advanced Hepatocellular Carcinoma. , 2018, , .		0
170	A New Role for Vitamin D: The Enhancement of Oncolytic Viral Therapy in Pancreatic Cancer. Biomedicines, 2018, 6, 104.	1.4	13
171	Role of the cGAS–STING pathway in cancer development and oncotherapeutic approaches. EMBO Reports, 2018, 19, .	2.0	115
172	The role of neoantigen in immune checkpoint blockade therapy. Experimental Hematology and Oncology, 2018, 7, 28.	2.0	99
173	Relationship between Cell Receptors and Tumor Cell Sensitivity to Oncolytic Enteroviruses. Bulletin of Experimental Biology and Medicine, 2018, 166, 58-62.	0.3	3
174	Oncolytic herpes simplex virus and immunotherapy. BMC Immunology, 2018, 19, 40.	0.9	56
175	MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Science Translational Medicine, 2018, 10, .	5.8	97
176	Oncolytic virus immunotherapy: future prospects for oncology. , 2018, 6, 140.		197
177	Progress in gene therapy using oncolytic vaccinia virus as vectors. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2433-2440.	1.2	22
178	Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Annals of Oncology, 2018, 29, 2163-2174.	0.6	145
179	Seneca Valley Virus Exploits TEM8, a Collagen Receptor Implicated in Tumor Growth. Frontiers in Oncology, 2018, 8, 506.	1.3	19
180	Harnessing the immune system in glioblastoma. British Journal of Cancer, 2018, 119, 1171-1181.	2.9	138
181	An ecosystem framework for understanding and treating disease. Evolution, Medicine and Public Health, 2018, 2018, 270-286.	1.1	11
182	On the Importance of Host MicroRNAs During Viral Infection. Frontiers in Genetics, 2018, 9, 439.	1.1	160
183	The Intestinal Virome and Immunity. Journal of Immunology, 2018, 201, 1615-1624.	0.4	81
184	A phase I trial of oncolytic adenovirus ICOVIR-5 administered intravenously to melanoma patients. Human Gene Therapy Clinical Development, 2018, , .	3.2	3

#	Article	IF	CITATIONS
185	Application of PK-PD Modeling and Simulation Approaches for Immuno-Oncology Drugs. , 2018, , 207-222.		2
186	Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomedical Journal, 2018, 3, e7.	0.4	8
187	Antitumorâ€specific Tâ€cell responses induced by oncolytic adenovirus ONCOSâ€102 (AdV5/3â€D24â€GMâ€CSF peritoneal mesothelioma mouse model. Journal of Medical Virology, 2018, 90, 1669-1673.	⁻) in 2.5	36
188	Combining Tumor Vaccination and Oncolytic Viral Approaches with Checkpoint Inhibitors: Rationale, Pre-Clinical Experience, and Current Clinical Trials in Malignant Melanoma. American Journal of Clinical Dermatology, 2018, 19, 657-670.	3.3	14
189	Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Seminars in Cancer Biology, 2018, 53, 90-109.	4.3	62
190	Exploiting Viruses to Treat Diseases. New England Journal of Medicine, 2018, 379, 194-196.	13.9	6
191	Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients. Clinical Cancer Research, 2018, 24, 4680-4693.	3.2	20
192	Systemically Administered Sindbis Virus in Combination with Immune Checkpoint Blockade Induces Curative Anti-tumor Immunity. Molecular Therapy - Oncolytics, 2018, 9, 51-63.	2.0	22
193	Immunotherapy for Hepatocellular Carcinoma: Current Advances and Future Expectations. Journal of Immunology Research, 2018, 2018, 1-8.	0.9	57
194	Superagonist IL-15-Armed Oncolytic Virus Elicits Potent Antitumor Immunity and Therapy That Are Enhanced with PD-1 Blockade. Molecular Therapy, 2018, 26, 2476-2486.	3.7	107
195	Oncolytic virotherapy for anaplastic and poorly differentiated thyroid cancer: a promise or a clinical reality?. International Journal of Endocrine Oncology, 2018, 5, IJE10.	0.4	1
196	Molecular Targeted Therapy of Pediatric Neoplasms. Molecular Pathology Library, 2018, , 67-86.	0.1	0
197	New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics: Targets and Therapy, 2018, Volume 12, 43-60.	3.0	32
198	Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers, 2018, 10, 124.	1.7	35
199	Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Letters, 2018, 434, 56-69.	3.2	33
200	Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses, 2018, 10, 90.	1.5	76
201	Adenovirus Coding for Interleukin-2 and Tumor Necrosis Factor Alpha Replaces Lymphodepleting Chemotherapy in Adoptive T Cell Therapy. Molecular Therapy, 2018, 26, 2243-2254.	3.7	39
202	Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy, 2018, 10, 779-786.	1.0	58

# 203	ARTICLE Virus-Based Therapeutic Approaches. , 2018, , 243-276.	IF	Citations 3
204	Remission of Spontaneous Canine Tumors after Systemic Cellular Viroimmunotherapy. Cancer Research, 2018, 78, 4891-4901.	0.4	33
205	The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. Frontiers in Immunology, 2018, 9, 9.	2.2	124
206	Viruses, bacteria, and parasites – oh my! a resurgence of interest in microbial-based therapy for cancer. , 2018, 6, 3.		14
207	Generation and comparative genomics of synthetic dengue viruses. BMC Bioinformatics, 2018, 19, 140.	1.2	1
208	Integrating oncolytic viruses in combination cancer immunotherapy. Nature Reviews Immunology, 2018, 18, 498-513.	10.6	448
209	Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens. Current Cancer Drug Targets, 2018, 18, 162-170.	0.8	16
210	Oncolytic Virotherapy and Gene Therapy Strategies for Hepatobiliary Cancers. Current Cancer Drug Targets, 2018, 18, 188-201.	0.8	9
211	Active-site mTOR inhibitors augment HSV1-dICPO infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathogens, 2018, 14, e1007264.	2.1	20
212	Going (Reo)Viral: Factors Promoting Successful Reoviral Oncolytic Infection. Viruses, 2018, 10, 421.	1.5	18
213	The Role of Oncolytic Viruses in the Treatment of Melanoma. Current Oncology Reports, 2018, 20, 80.	1.8	28
214	Radiation and Local Anti-CD40 Generate an Effective in situ Vaccine in Preclinical Models of Pancreatic Cancer. Frontiers in Immunology, 2018, 9, 2030.	2.2	77
215	Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. OncoImmunology, 2018, 7, e1503032.	2.1	67
216	Please stand by: how oncolytic viruses impact bystander cells. Future Virology, 2018, 13, 671-680.	0.9	5
217	Oncolytic Viruses as Therapeutic Tools for Pediatric Brain Tumors. Cancers, 2018, 10, 226.	1.7	23
218	Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin <i> in vitro</i> . Journal of Cancer, 2018, 9, 1033-1049.	1.2	16
219	The importance of imaging strategies for pre-clinical and clinical in vivo distribution of oncolytic viruses. Oncolytic Virotherapy, 2017, Volume 7, 25-35.	6.0	7
220	Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clinical Cancer Research, 2018, 24, 5198-5205.	3.2	66

#	Article	IF	CITATIONS
221	An oncolytic measles virus–sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro-Oncology, 2018, 20, 1606-1615.	0.6	19
222	Immunotherapy of Cancer. , 2019, , 1033-1048.e1.		3
223	Cancer immunotherapy for metastasis: past, present and future. Briefings in Functional Genomics, 2019, 18, 140-146.	1.3	10
224	Viral-Based Therapies in Melanoma. , 2019, , 699-715.		0
225	Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1., 2019, 7, 214.		86
226	Investigating Macrophages Plasticity Following Tumour–Immune Interactions During Oncolytic Therapies. Acta Biotheoretica, 2019, 67, 321-359.	0.7	11
227	Virus oncolÃŧicos: un arma contra el cáncer. Revista Facultad De Medicina, 2019, 67, 331-324.	0.0	0
228	Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study. Frontiers in Immunology, 2019, 10, 1848.	2.2	56
229	Building on the anti-PD1/PD-L1 backbone: combination immunotherapy for cancer. Expert Opinion on Investigational Drugs, 2019, 28, 695-708.	1.9	38
230	Generation of recombinant measles virus containing the wild-type P gene to improve its oncolytic efficiency. Microbial Pathogenesis, 2019, 135, 103631.	1.3	0
231	Viral hijacking of cellular metabolism. BMC Biology, 2019, 17, 59.	1.7	318
232	Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. Progress in Molecular Biology and Translational Science, 2019, 164, 217-292.	0.9	15
233	Immune checkpoint blockade in glioma. , 2019, , 387-396.		0
234	Immunomodulatory Methods. , 2019, , 297-334.		2
235	Oncolytic Immunotherapy. Surgical Oncology Clinics of North America, 2019, 28, 419-430.	0.6	8
236	The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: a meta-analysis. Experimental Hematology and Oncology, 2019, 8, 26.	2.0	58
237	Upregulation of CENPM promotes hepatocarcinogenesis through mutiple mechanisms. Journal of Experimental and Clinical Cancer Research, 2019, 38, 458.	3.5	49
238	Virotherapy as a Potential Therapeutic Approach for the Treatment of Aggressive Thyroid Cancer. Cancers, 2019, 11, 1532.	1.7	15

#	Article	IF	CITATIONS
239	Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nature Communications, 2019, 10, 4801.	5.8	56
240	Localized Treatment with Oncolytic Adenovirus Delta-24-RGDOX Induces Systemic Immunity against Disseminated Subcutaneous and Intracranial Melanomas. Clinical Cancer Research, 2019, 25, 6801-6814.	3.2	27
241	The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles. Materials, 2019, 12, 2671.	1.3	23
242	Coxsackievirus Type B3 Is a Potent Oncolytic Virus against KRAS-Mutant Lung Adenocarcinoma. Molecular Therapy - Oncolytics, 2019, 14, 266-278.	2.0	31
243	Virotherapy: Current Trends and Future Prospects for Treatment of Colon and Rectal Malignancies. Cancer Investigation, 2019, 37, 393-414.	0.6	4
244	<p>Mesenchymal stem cell therapy assisted by nanotechnology: a possible combinational treatment for brain tumor and central nerve regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 5925-5942.	3.3	37
245	The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. British Journal of Cancer, 2019, 121, 647-658.	2.9	23
247	Intravenous Injections of a Rationally Selected Oncolytic Herpes Virus as a Potent Virotherapy for Hepatocellular Carcinoma. Molecular Therapy - Oncolytics, 2019, 15, 153-165.	2.0	19
248	Development of a Nursing Policy for the Administration of an Oncolytic Virus in the Outpatient Setting. Seminars in Oncology Nursing, 2019, 35, 150928.	0.7	2
249	Viral-Based Therapies in Melanoma. , 2019, , 1-17.		0
250	Cold Tumors: A Therapeutic Challenge for Immunotherapy. Frontiers in Immunology, 2019, 10, 168.	2.2	733
251	Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Science Translational Medicine, 2019, 11, .	5.8	67
252	Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. Plant Biotechnology Journal, 2019, 17, 1010-1026.	4.1	44
253	Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks. International Journal of Molecular Sciences, 2019, 20, 621.	1.8	16
254	Expression of costimulatory and inhibitory receptors in FoxP3+ regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Advances in Cancer Research, 2019, 144, 193-261.	1.9	19
255	Precision Medicine-Enabled Cancer Immunotherapy. Cancer Treatment and Research, 2019, 178, 189-205.	0.2	9
256	H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. Viruses, 2019, 11, 562.	1.5	40
257	Combination of Cetuximab and Oncolytic Virus Canerpaturev Synergistically Inhibits Human Colorectal Cancer Growth. Molecular Therapy - Oncolytics, 2019, 13, 107-115.	2.0	17

#	Article	IF	CITATIONS
258	Oncolytic Activity of the Vaccine Strain of Type 3 Poliovirus on the Model of Rat Glioma C6 Cells. Bulletin of Experimental Biology and Medicine, 2019, 167, 111-115.	0.3	2
259	An efficient or methodical review of immunotherapy against breast cancer. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22339.	1.4	14
260	Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncolmmunology, 2019, 8, e1591875.	2.1	78
261	Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Molecular Therapy - Oncolytics, 2019, 13, 93-106.	2.0	107
262	Prospect of Plasmacytoid Dendritic Cells in Enhancing Anti-Tumor Immunity of Oncolytic Herpes Viruses. Cancers, 2019, 11, 651.	1.7	12
263	Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy, 2019, 11, 677-689.	1.0	124
264	Histone Deacetylase Inhibitors Enhance Cell Killing and Block Interferon-Beta Synthesis Elicited by Infection with an Oncolytic Parainfluenza Virus. Viruses, 2019, 11, 431.	1.5	18
265	National Cancer Institute (NCI) state of the science: Targeted radiosensitizers in colorectal cancer. Cancer, 2019, 125, 2732-2746.	2.0	19
266	Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Frontiers in Immunology, 2019, 10, 453.	2.2	177
267	Extremely Low Organ Toxicity and Strong Antitumor Activity of miR-34-Regulated Oncolytic Coxsackievirus B3. Molecular Therapy - Oncolytics, 2019, 12, 246-258.	2.0	18
268	Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system Expert Opinion on Biological Therapy, 2019, 19, 443-455.	1.4	26
269	Immunobiochemical Reconstruction of Influenza Lung Infection—Melanoma Skin Cancer Interactions. Frontiers in Immunology, 2019, 10, 4.	2.2	11
270	Fludarabine as an Adjuvant Improves Newcastle Disease Virus-Mediated Antitumor Immunity in Hepatocellular Carcinoma. Molecular Therapy - Oncolytics, 2019, 13, 22-34.	2.0	11
271	Beyond PD-1 Immunotherapy in Malignant Melanoma. Dermatology and Therapy, 2019, 9, 243-257.	1.4	28
272	Perspectives on immunotherapy via oncolytic viruses. Infectious Agents and Cancer, 2019, 14, 5.	1.2	24
273	Orthotopic hepatocellular carcinoma: molecular imaging-monitored intratumoral hyperthermia-enhanced direct oncolytic virotherapy. International Journal of Hyperthermia, 2019, 36, 343-349.	1.1	15
274	What is the future of cancer care? A technology foresight assessment of experts' expectations. Economics of Innovation and New Technology, 2019, 28, 635-652.	2.1	11
275	Immunotherapy in extensive small cell lung cancer. Experimental Hematology and Oncology, 2019, 8, 5.	2.0	32

		ITATION REPORT	
#	Article	IF	CITATIONS
276	Engineered T Cell Therapies from a Drug Development Viewpoint. Engineering, 2019, 5, 140-149.	3.2	8
277	Gut viruses firm the "Great Wall― Precision Clinical Medicine, 2019, 2, 209-212.	1.3	0
278	<p>Virus–Receptor Interactions: Structural Insights For Oncolytic Virus DevelopmentOncolytic Virotherapy, 2019, Volume 8, 39-56.</p>	gt;. 6.0	26
279	DNX-2401: an investigational drug for the treatment of recurrent glioblastoma. Expert Opinion on Investigational Drugs, 2019, 28, 1041-1049.	1.9	28
280	Artificially cloaked viral nanovaccine for cancer immunotherapy. Nature Communications, 2019, 10, 5747.	5.8	86
281	Enhanced Therapeutic Efficacy of a Novel Oncolytic Herpes Simplex Virus Type 2 Encoding an Antibo Against Programmed Cell Death 1. Molecular Therapy - Oncolytics, 2019, 15, 201-213.	ody 2.0	20
282	Biological treatment of pediatric sarcomas by combined virotherapy and NK cell therapy. BMC Cance 2019, 19, 1172.	2r, 1.1	21
283	Melanoma vaccines: clinical status and immune endpoints. Melanoma Research, 2019, 29, 109-118.	0.6	19
284	Targeted Therapy of Human Glioblastoma Combining the Oncolytic Properties of Parvovirus H-1 and Attenuated Strains of the Vaccinia Virus. Molecular Genetics, Microbiology and Virology, 2019, 34, 140-147.	0.0	2
285	Treatment of a stage III rima glottidis patient with the oncolytic virus Rigvir. Medicine (United States 2019, 98, e17883.	s), 0.4	3
286	Rationale of Immunotherapy in Hepatocellular Carcinoma and Its Potential Biomarkers. Cancers, 201 11, 1926.	19, 1.7	27
287	Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clinical Cancer Research, 2019, 25, 1624-1638.	3.2	49
288	Oncolytic Activity of a Novel Influenza A Virus Carrying Granulocyte-Macrophage Colony-Stimulating Factor in Hepatocellular Carcinoma. Human Gene Therapy, 2019, 30, 330-338.	5 1.4	9
289	Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics, 2019, 9, 126-151.	4.6	128
290	Ushering in Integrated T Cell Repertoire Profiling in Cancer. Trends in Cancer, 2019, 5, 85-94.	3.8	19
291	A single mutation in the mammalian orthoreovirus S1 gene is responsible for increased interferon sensitivity in a virus mutant selected in Vero cells. Virology, 2019, 528, 73-79.	1.1	10
292	The complicated effects of obesity on cancer and immunotherapy. Immunotherapy, 2019, 11, 11-1	.4. 1.0	10
293	Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews Drug Discovery, 2019, 18, 197-218.	21.5	2,005

		REPORT	
# 294	ARTICLE Cancer Immunotherapy: Bevond Checkpoint Blockade, Annual Review of Cancer Biology, 2019, 3, 55-75,	IF 2.3	CITATIONS
295	Caprine herpesvirus 1 (CpHV-1) as a potential candidate for oncolytic virotherapy. Cancer Biology and Therapy, 2019, 20, 42-51.	1.5	14
296	Cancer Diagnostics and Therapeutics. Bioanalysis, 2019, , 33-66.	0.1	0
297	Virotherapy-recruited PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by IL-10-mediated dendritic cell suppression. Oncolmmunology, 2019, 8, e1518672.	2.1	27
298	Clinical immunotherapeutic approaches for the treatment of head and neck cancer. International Journal of Oral and Maxillofacial Surgery, 2019, 48, 419-436.	0.7	10
299	Immunotherapeutic Approaches in Cancer. , 2019, , 19-44.		4
300	Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. Journal of Cellular Physiology, 2019, 234, 8636-8646.	2.0	58
301	A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. Human Gene Therapy, 2019, 30, 352-364.	1.4	66
302	Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cellular and Molecular Immunology, 2019, 16, 40-52.	4.8	110
303	Arming an Oncolytic Herpes Simplex Virus Type 1 with a Single-chain Fragment Variable Antibody against PD-1 for Experimental Glioblastoma Therapy. Clinical Cancer Research, 2019, 25, 290-299.	3.2	88
304	Advancing Biomarker Development Through Convergent Engagement: Summary Report of the 2nd International Danube Symposium on Biomarker Development, Molecular Imaging and Applied Diagnostics; March 14–16, 2018; Vienna, Austria. Molecular Imaging and Biology, 2020, 22, 47-65.	1.3	4
305	Evaluation of Newcastle disease virus mediated dendritic cell activation and crossâ€priming tumorâ€specific immune responses <i>ex vivo</i> . International Journal of Cancer, 2020, 146, 531-541.	2.3	9
306	Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nature Reviews Clinical Oncology, 2020, 17, 49-64.	12.5	92
307	Immune Effects of M51R Vesicular Stomatitis Virus Treatment of Carcinomatosis From Colon Cancer. Journal of Surgical Research, 2020, 245, 127-135.	0.8	11
308	Modulation of the tumor microenvironment with an oncolytic adenovirus for effective T-cell therapy and checkpoint inhibition. Methods in Enzymology, 2020, 635, 205-230.	0.4	9
309	Role of cell surface proteoglycans in cancer immunotherapy. Seminars in Cancer Biology, 2020, 62, 48-67.	4.3	59
310	The Landmark Series: Regional Therapy of Recurrent Cutaneous Melanoma. Annals of Surgical Oncology, 2020, 27, 35-42.	0.7	4
311	Design and application of oncolytic viruses for cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 25-36.	3.3	84

#	Article	IF	Citations
312	Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proceedings of the National Academy of Sciences of the	3.3	140
	United States of America, 2020, 117, 1119-1128.		
313	Gene Therapy in Oncology. , 2020, , 470-485.e5.		2
314	Virus-derived materials: bury the hatchet with old foes. Biomaterials Science, 2020, 8, 1058-1072.	2.6	10
315	Promising approaches in cancer immunotherapy. Immunobiology, 2020, 225, 151875.	0.8	49
316	The Oncolytic Virus in Cancer Diagnosis and Treatment. Frontiers in Oncology, 2020, 10, 1786.	1.3	72
317	Tumors driven by <i>RAS</i> signaling harbor a natural vulnerability to oncolytic virus M1. Molecular Oncology, 2020, 14, 3153-3168.	2.1	7
318	Zika virus-based immunotherapy enhances long-term survival of rodents with brain tumors through upregulation of memory T-cells. PLoS ONE, 2020, 15, e0232858.	1.1	8
319	From Conventional Therapies to Immunotherapy: Melanoma Treatment in Review. Cancers, 2020, 12, 3057.	1.7	50
320	The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opinion on Therapeutic Targets, 2020, 24, 1159-1181.	1.5	33
321	The Role of Zinc-Finger Antiviral Proteins in Immunity against Viruses. Molecular Genetics, Microbiology and Virology, 2020, 35, 78-84.	0.0	8
322	Clinical landscape of oncolytic virus research in 2020. , 2020, 8, e001486.		191
323	Biodistribution Analysis of Oncolytic Adenoviruses in Canine Patient Necropsy Samples Treated with Cellular Virotherapy. Molecular Therapy - Oncolytics, 2020, 18, 525-534.	2.0	2
324	Gene therapy: a double-edged sword with great powers. Molecular and Cellular Biochemistry, 2020, 474, 73-81.	1.4	44
325	Bovine pestivirus is a new alternative virus for multiple myeloma oncolytic virotherapy. Journal of Hematology and Oncology, 2020, 13, 89.	6.9	13
326	Bi- and Tri-Specific T Cell Engager-Armed Oncolytic Viruses: Next-Generation Cancer Immunotherapy. Biomedicines, 2020, 8, 204.	1.4	41
327	Molecular Mechanisms and Potential Therapeutic Reversal of Pancreatic Cancer-Induced Immune Evasion. Cancers, 2020, 12, 1872.	1.7	18
328	Resistance to immune checkpoint inhibitors in non-small cell lung cancer: biomarkers and therapeutic strategies. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592093790.	1.4	49
329	Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine and Growth Factor Reviews, 2020, 56, 83-93.	3.2	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
331	The secrets of telomerase: Retrospective analysis and future prospects. Life Sciences, 20	20, 257, 118115.	2.0	11
332	Assessing the oncolytic potential of rotavirus on mouse myeloma cell line Sp2/0-Ag14. B 40, 362-381.	omedica, 2020,	0.3	3
333	Immunotherapy in Gastrointestinal Cancers. Visceral Medicine, 2020, 36, 231-237.		0.5	7
334	Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Lo Systemic Anti-tumor Treatment. Molecular Therapy - Oncolytics, 2020, 19, 253-264.	ocal and	2.0	21
335	Integrity of the Antiviral STING-mediated DNA Sensing in Tumor Cells Is Required to Sust Immunotherapeutic Efficacy of Herpes Simplex Oncolytic Virus. Cancers, 2020, 12, 3407	ain the	1.7	26
336	The Present Status of Immuno-Oncolytic Viruses in the Treatment of Pancreatic Cancer. `12, 1318.	Viruses, 2020,	1.5	12
337	Combined p14ARF and Interferon- $\hat{1}^2$ Gene Transfer to the Human Melanoma Cell Line SK-Oncolysis and Immune Activation. Frontiers in Immunology, 2020, 11, 576658.	MEL-147 Promotes	2.2	6
338	The armed oncolytic adenovirus ZD55-IL-24 eradicates melanoma by turning the tumor c self-state into the nonself-state besides direct killing. Cell Death and Disease, 2020, 11, 1	ells from the 022.	2.7	18
339	Fluorescent Tagged Vaccinia Virus Genome Allows Rapid and Efficient Measurement of C Potential and Discovery of Oncolytic Modulators. Biomedicines, 2020, 8, 543.	Incolytic	1.4	8
340	Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers, 2020, 12, 2	3552.	1.7	53
341	<p>Antitumor Efficacy of Oncolytic Herpes Virus Type 1 Armed with GM-CSF in Mu Melanoma Xenografts</p> . Cancer Management and Research, 2020, Volume 12, 1	ine Uveal 1803-11812.	0.9	7
342	Lonidamine potentiates the oncolytic efficiency of M1 virus independent of hexokinase 2 inhibition of antiviral immunity. Cancer Cell International, 2020, 20, 532.	but via	1.8	5
343	Heterologous prime-boost immunization co-targeting dual antigens inhibit tumor growth Oncolmmunology, 2020, 9, 1841392.	ı and relapse.	2.1	8
344	Oncolytic vaccinia virus reinvigorates peritoneal immunity and cooperates with immune inhibitor to suppress peritoneal carcinomatosis in colon cancer. , 2020, 8, e000857.	checkpoint		37
345	Myxoma Virus-Loaded Mesenchymal Stem Cells in Experimental Oncolytic Therapy of Mu Pulmonary Melanoma. Molecular Therapy - Oncolytics, 2020, 18, 335-350.	rine	2.0	18
346	Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate esta tumors and prime systemic immunity. Nature Cancer, 2020, 1, 882-893.	ablished	5.7	113
347	Cancer stem cell plasticity in glioblastoma multiforme: a perspective on future directions oncolytic virotherapy. Future Oncology, 2020, 16, 2251-2264.	in	1.1	2
348	<i>Fusobacterium nucleatum</i> host-cell binding and invasion induces IL-8 and CXCL1 s drives colorectal cancer cell migration. Science Signaling, 2020, 13, .	secretion that	1.6	148

#	Article	IF	CITATIONS
349	Autologous Transplantation Using Donor Leukocytes Loaded ExÂVivo with Oncolytic Myxoma Virus Can Eliminate Residual Multiple Myeloma. Molecular Therapy - Oncolytics, 2020, 18, 171-188.	2.0	10
350	Absent in melanoma 2 enhances antiâ€ŧumour effects of CAIX promotor controlled conditionally replicative adenovirus in renal cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 10744-10755.	1.6	4
351	Oncolytic virotherapy for pancreatic ductal adenocarcinoma: A glimmer of hope after years of disappointment?. Cytokine and Growth Factor Reviews, 2020, 56, 141-148.	3.2	8
352	Assessing and Overcoming Resistance Phenomena against a Genetically Modified Vaccinia Virus in Selected Cancer Cell Lines. International Journal of Molecular Sciences, 2020, 21, 7618.	1.8	8
353	Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Science Translational Medicine, 2020, 12, .	5.8	140
354	Antitumor efficacy of oncolytic HSV-1 expressing cytosine deaminase is synergistically enhanced by DPD down-regulation and EMT inhibition in uveal melanoma xenograft. Cancer Letters, 2020, 495, 123-134.	3.2	8
355	Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell, 2020, 38, 454-472.	7.7	190
356	Oncolytic Immunotherapy: Can't Start a Fire Without a Spark. Cytokine and Growth Factor Reviews, 2020, 56, 94-101.	3.2	9
357	Nucleic Acid-Based Approaches for Tumor Therapy. Cells, 2020, 9, 2061.	1.8	40
358	Generation of Genetically RGD Ï f 1-Modified Oncolytic Reovirus That Enhances JAM-A-Independent Infection of Tumor Cells. Journal of Virology, 2020, 94, .	1.5	10
359	Translational Considerations to Improve Response and Overcome Therapy Resistance in Immunotherapy for Hepatocellular Carcinoma. Cancers, 2020, 12, 2495.	1.7	12
360	Distinguishing melanophages from tumor in melanoma patients treated with talimogene laherparepvec. Melanoma Research, 2020, 30, 410-415.	0.6	7
361	Evaluation of Tumor Specificity and Immunity of Thymidine Kinase-Deleted Vaccinia Virus Guang9 Strain. OncoTargets and Therapy, 2020, Volume 13, 7683-7697.	1.0	1
362	Systematic Characterization of the Biodistribution of the Oncolytic Virus M1. Human Gene Therapy, 2020, 31, 1203-1213.	1.4	17
363	Immune gene therapy of cancer. Turkish Journal of Medical Sciences, 2020, 50, 1679-1690.	0.4	9
364	Therapeutic strategies to remodel immunologically cold tumors. Clinical and Translational Immunology, 2020, 9, e1226.	1.7	23
365	Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration, 2020, 99, 903-929.	1.2	18
366	Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers, 2020, 12, 3659.	1.7	6

#	Article	IF	Citations
367	Species D Adenoviruses as Oncolytic Viral Vectors. Viruses, 2020, 12, 1399.	1.5	5
368	Biology- and Location-Oriented Precision Treatment of Rectal Cancer: Present and Future. Visceral Medicine, 2020, 36, 381-387.	0.5	1
369	Recombinant Vaccinia Virus Promising for Melanoma Treatment. Molecular Genetics, Microbiology and Virology, 2020, 35, 97-104.	0.0	2
370	Past, Present and Future of Oncolytic Reovirus. Cancers, 2020, 12, 3219.	1.7	68
371	Genetic and Immune Changes Associated with Disease Progression under the Pressure of Oncolytic Therapy in A Neuroblastoma Outlier Patient. Cancers, 2020, 12, 1104.	1.7	12
372	Efficacy of a Third-Generation Oncolytic Herpes Virus G47î" in Advanced Stage Models of Human Gastric Cancer. Molecular Therapy - Oncolytics, 2020, 17, 205-215.	2.0	48
373	A Combination of Cowpea Mosaic Virus and Immune Checkpoint Therapy Synergistically Improves Therapeutic Efficacy in Three Tumor Models. Advanced Functional Materials, 2020, 30, 2002299.	7.8	37
374	<p>Immunotherapy for Medulloblastoma: Current Perspectives</p> . ImmunoTargets and Therapy, 2020, Volume 9, 57-77.	2.7	33
375	<p>An Oncolytic Vaccinia Virus Armed with GM-CSF and IL-24 Double Genes for Cancer Targeted Therapy</p> . OncoTargets and Therapy, 2020, Volume 13, 3535-3544.	1.0	18
376	Combination immunotherapy of oncolytic virus nanovesicles and PD-1 blockade effectively enhances therapeutic effects and boosts antitumour immune response. Journal of Drug Targeting, 2020, 28, 982-990.	2.1	4
377	Novel recombinant coxsackievirus B3 with genetically inserted basic peptide elicits robust antitumor activity against lung cancer. Cancer Medicine, 2020, 9, 5210-5220.	1.3	8
378	Effective Treatment of Glioblastoma Multiforme With Oncolytic Virotherapy: A Case-Series. Frontiers in Oncology, 2020, 10, 702.	1.3	25
379	Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Therapy, 2021, 28, 697-717.	2.3	15
380	Cellular microparticles for tumor targeting delivery: from bench to bedside. Chemical Communications, 2020, 56, 6171-6188.	2.2	11
381	The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Research, 2020, 30, 507-519.	5.7	480
382	Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. , 2020, 8, e000294.		37
383	A Review of Cancer Immunotherapy: From the Past, to the Present, to the Future. Current Oncology, 2020, 27, 87-97.	0.9	554
384	Oncolytic Adenoviruses: Strategies for Improved Targeting and Specificity. Cancers, 2020, 12, 1504.	1.7	18

#	Article	IF	CITATIONS
385	OvirusTdb: A database of oncolytic viruses for the advancement of therapeutics in cancer. Virology, 2020, 548, 109-116.	1.1	16
386	Efficacy and Safety of Oncolytic Viruses in Randomized Controlled Trials: A Systematic Review and Meta-Analysis. Cancers, 2020, 12, 1416.	1.7	22
387	Spectrum-Wide Exploration of Human Adenoviruses for Breast Cancer Therapy. Cancers, 2020, 12, 1403.	1.7	14
388	Injectable Therapies for Regional Melanoma. Surgical Oncology Clinics of North America, 2020, 29, 433-444.	0.6	5
389	From threat to cure: understanding of virus-induced cell death leads to highly immunogenic oncolytic influenza viruses. Cell Death Discovery, 2020, 6, 48.	2.0	18
390	Antitumor efficacy of cytosine deaminase-armed vaccinia virus plus 5-fluorocytosine in colorectal cancers. Cancer Cell International, 2020, 20, 243.	1.8	12
391	<p>Virus–Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development</p> . Oncolytic Virotherapy, 2020, Volume 9, 1-15.	6.0	25
392	Modeling Oncolytic Viral Therapy, Immune Checkpoint Inhibition, and the Complex Dynamics of Innate and Adaptive Immunity in Glioblastoma Treatment. Frontiers in Physiology, 2020, 11, 151.	1.3	33
393	Bibliogrpahy. , 2020, , 327-335.		0
394	Replicative conditioning of Herpes simplex type 1 virus by Survivin promoter, combined to ERBB2 retargeting, improves tumour cell-restricted oncolysis. Scientific Reports, 2020, 10, 4307.	1.6	19
395	Synthetic Immunogenic Cell Death Mediated by Intracellular Delivery of STING Agonist Nanoshells Enhances Anticancer Chemo-immunotherapy. Nano Letters, 2020, 20, 2246-2256.	4.5	86
396	Development of oncolytic virotherapy: from genetic modification to combination therapy. Frontiers of Medicine, 2020, 14, 160-184.	1.5	40
397	MicroRNA Involvement in Signaling Pathways During Viral Infection. Frontiers in Cell and Developmental Biology, 2020, 8, 143.	1.8	98
398	Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers, 2020, 12, 767.	1.7	2
399	Chemovirotherapy of Lung Squamous Cell Carcinoma by Combining Oncolytic Adenovirus With Gemcitabine. Frontiers in Oncology, 2020, 10, 229.	1.3	3
401	Intratumoral Delivery of a PD-1–Blocking scFv Encoded in Oncolytic HSV-1 Promotes Antitumor Immunity and Synergizes with TIGIT Blockade. Cancer Immunology Research, 2020, 8, 632-647.	1.6	42
402	Oncolytic viruses for cancer immunotherapy. Journal of Hematology and Oncology, 2020, 13, 84.	6.9	166
403	Use of cell fusion proteins to enhance adenoviral vector efficacy as an anti-cancer therapeutic. Cancer Gene Therapy, 2021, 28, 745-756.	2.2	5

#	Article	IF	Citations
404	A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annual Review of Virology, 2020, 7, 537-557.	3.0	20
405	The Double-Edged Sword Role of Viruses in Gastric Cancer. Cancers, 2020, 12, 1680.	1.7	6
406	Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers, 2020, 12, 1699.	1.7	27
407	Biopolymers and natural polymers. , 2020, , 245-256.		3
408	A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opinion on Biological Therapy, 2020, 20, 1187-1201.	1.4	35
409	Real-time monitoring of oncolytic VSV properties in a novel in vitro microphysiological system containing 3D multicellular tumor spheroids. PLoS ONE, 2020, 15, e0235356.	1.1	1
410	Overcoming Tumor Resistance to Oncolyticvaccinia Virus with Anti-PD-1-Based Combination Therapy by Inducing Antitumor Immunity in the Tumor Microenvironment. Vaccines, 2020, 8, 321.	2.1	13
411	The two-faces of NK cells in oncolytic virotherapy. Cytokine and Growth Factor Reviews, 2020, 56, 59-68.	3.2	20
412	Advances in Anti-Cancer Immunotherapy: Car-T Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets. Cancers, 2020, 12, 1826.	1.7	46
413	Cancer immunotherapy comes of age and looks for maturity. Nature Communications, 2020, 11, 3325.	5.8	93
414	Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. European Journal of Pharmacology, 2020, 874, 172991.	1.7	49
415	Targeting STAT3 enhances NDVâ€induced immunogenic cell death in prostate cancer cells. Journal of Cellular and Molecular Medicine, 2020, 24, 4286-4297.	1.6	24
416	Evaluation of Bystander Infection of Oncolytic Virus using a Medium Flow Integrated 3D In Vitro Microphysiological System. Advanced Biology, 2020, 4, 1900143.	3.0	6
417	Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncolmmunology, 2020, 9, 1729300.	2.1	29
418	Poly(cyclodextrin)â€Polydrug Nanocomplexes as Synthetic Oncolytic Virus for Locoregional Melanoma Chemoimmunotherapy. Advanced Functional Materials, 2020, 30, 1908788.	7.8	33
419	Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunology, Immunotherapy, 2020, 69, 1015-1027.	2.0	29
420	<p>Embelin Promotes Oncolytic Vaccinia Virus-Mediated Antitumor Immunity Through Disruption of IL-6/STAT3 Signaling in Lymphoma</p> . OncoTargets and Therapy, 2020, Volume 13, 1421-1429.	1.0	5
421	Traveling through phase-parameter portrait. , 2020, , 225-249.		0

#	Article	IF	CITATIONS
422	Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Science Translational Medicine, 2020, 12, .	5.8	117
423	Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer and Metastasis Reviews, 2020, 39, 211-233.	2.7	42
424	Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death and Disease, 2020, 11, 48.	2.7	103
425	Directing Traffic: How to Effectively Drive T Cells into Tumors. Cancer Discovery, 2020, 10, 185-197.	7.7	68
426	Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials, 2020, 235, 119795.	5.7	65
427	Establishing Suspension Cell Cultures for Improved Manufacturing of Oncolytic Adenovirus. Biotechnology Journal, 2020, 15, 1900411.	1.8	6
428	An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nature Communications, 2020, 11, 336.	5.8	22
429	The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells, 2020, 9, 207.	1.8	38
430	Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Frontiers in Immunology, 2020, 11, 683.	2.2	102
431	Delivery and Biosafety of Oncolytic Virotherapy. Frontiers in Oncology, 2020, 10, 475.	1.3	88
432	Immunostimulatory oncolytic virotherapy for multiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Therapy, 2020, 27, 948-959.	2.2	28
433	In vivo antitumor activity by dual stromal and tumor-targeted oncolytic measles viruses. Cancer Gene Therapy, 2020, 27, 910-922.	2.2	9
434	Naturally Occurring and Engineered Alphaviruses Sensitive to Double-Stranded-RNA-Activated Protein Kinase Show Restricted Translation in Mammalian Cells, Increased Sensitivity to Interferon, and Marked Oncotropism. Journal of Virology, 2020, 94, .	1.5	6
435	Virotherapy: From single agents to combinatorial treatments. Biochemical Pharmacology, 2020, 177, 113986.	2.0	27
436	Computer-aided designing of oncolytic viruses for overcoming translational challenges of cancer immunotherapy. Drug Discovery Today, 2020, 25, 1198-1205.	3.2	12
437	Anti-tumor Synergistic Effect of a Dual Cancer-Specific Recombinant Adenovirus and Paclitaxel on Breast Cancer. Frontiers in Oncology, 2020, 10, 244.	1.3	6
438	External Beam Radiation Therapy and Enadenotucirev: Inhibition of the DDR and Mechanisms of Radiation-Mediated Virus Increase. Cancers, 2020, 12, 798.	1.7	11
439	Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Cancer Immunology, Immunotherapy, 2021, 70, 1405-1417.	2.0	19

#	Article	IF	CITATIONS
440	Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Molecular Therapy, 2021, 29, 505-520.	3.7	48
441	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 12792-12815.	1.6	14
442	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 12682-12705.	7.2	151
443	Oncolytic virotherapy: Challenges and solutions. Current Problems in Cancer, 2021, 45, 100639.	1.0	51
444	Macrophage polarization contributes to the efficacy of an oncolytic HSV-1 targeting human uveal melanoma in a murine xenograft model. Experimental Eye Research, 2021, 202, 108285.	1.2	11
445	cCAS-STINC signaling in cancer immunity and immunotherapy. Biomedicine and Pharmacotherapy, 2021, 133, 110972.	2.5	45
446	The Identification and Development of a Novel Oncolytic Virus: Alphavirus M1. Human Gene Therapy, 2021, 32, 138-149.	1.4	11
447	The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy?. Expert Opinion on Drug Discovery, 2021, 16, 391-410.	2.5	20
448	Design, synthesis and evaluation of PD-L1 peptide antagonists as new anticancer agents for immunotherapy. Bioorganic and Medicinal Chemistry, 2021, 30, 115951.	1.4	7
449	Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS Nano, 2021, 15, 7-20.	7.3	34
450	Combining Oncolytic Viruses with Chimeric Antigen Receptor T Cell Therapy. Human Gene Therapy, 2021, 32, 150-157.	1.4	18
451	Recombinant oncolytic adenovirus expressing a soluble PVR elicits long-term antitumor immune surveillance. Molecular Therapy - Oncolytics, 2021, 20, 12-22.	2.0	6
452	A novel vaccinia virus enhances anti-tumor efficacy and promotes a long-term anti-tumor response in a murine model of colorectal cancer. Molecular Therapy - Oncolytics, 2021, 20, 71-81.	2.0	11
453	Recurrent bladder cancer in aging societies: Importance of major histocompatibility complex class I antigen presentation. International Journal of Cancer, 2021, 148, 1808-1820.	2.3	1
454	Assessment of replication of bovine herpesvirus type 4 in human glioblastoma and breast cancer cells as a potential oncolytic virus. Virus Genes, 2021, 57, 31-39.	0.7	2
455	T-cell-based immunotherapy in colorectal cancer. Cancer Letters, 2021, 498, 201-209.	3.2	48
456	New Drugs for Recurrent or Metastatic Nasopharyngeal Cancer. , 2021, , 337-352.		2
457	Metastatic cancer: How one can address the therapeutic challenge. , 2021, , 485-514.		0

ARTICLE IF CITATIONS Adopting an alternative structure for clinical trials in immunotherapy. Expert Review of Anticancer 1.1 1 458 Therapy, 2021, 21, 373-375. Microbial Nanoparticles for Cancer Treatment., 2021, , 217-235. Bacterial and Viral Therapies of Cancer: Background, Mechanism and Perspective. Journal of 460 0.1 0 Biosciences and Medicines, 2021, 09, 132-142. Oncolytic Viruses., 2021, , 658-661. Oncolytic Engineering of ICP34.5 and LAT of Herpes Simplex Virus Type 1. Yangtze Medicine, 2021, 05, 462 0.1 1 106-116. Viral Immune Therapy and Other Virotherapies for Advanced Mesothelioma: Are We Ready for Clinical Trials of Viral Immune Therapy?. Respiratory Disease Series, 2021, , 291-301. 0.1 Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future 464 2.6 10 directions. International Journal of Biological Sciences, 2021, 17, 2666-2682. Revisiting immunogenic cell death to improve treatment response in cancer., 2021, , 65-90. 465 Can Surgeons Expand the Role of Oncolvtic Viruses for Cancer Treatment? An Editorial Comment on 466 "Fighting Fire with Fire: Oncolytic Virotherapy in Thoracic Malignanciesâ€. Annals of Surgical 0.7 0 Oncology, 2021, 28, 2432-2433. Generation of a Novel Mesothelin-Targeted Oncolytic Herpes Virus and Implemented Strategies for 1.8 Manufacturing. International Journal of Molecular Sciences, 2021, 22, 477 Immune Stimulating Antibodyâ€Photosensitizer Conjugates via Fcâ€Mediated Dendritic Cell Phagocytosis and Phototriggered Immunogenic Cell Death for <i>KRĂS</i>â€Mutated Pancreatic Cancer Treatment. 468 5.2 18 Small, 2021, 17, e2006650. Real-Time Visualization and Quantification of Oncolytic M1 Virus <i>In Vitro</i> and <i>In Vivo</i>. 1.4 Human Gene Therapy, 2021, 32, 158-165. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications 471 1.8 27 to Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 1964. Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy. Analytical Chemistry, 2021, 93, 4100-4107. 3.2 Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers, 2021, 13, 588. 473 1.7 18 Personalizing Oncolytic Virotherapy for Glioblastoma: In Search of Biomarkers for Response. Cancers, 2021, 13, 614. 474 23 Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function and 475 1.7 18 Therapeutic Response. Cancers, 2021, 13, 711. Oncolytic Virus Alphavirus M1: A New and Promising Weapon to Fight Cancer. Human Gene Therapy, 476 1.4 2021, 32, 136-137.

#	Article	IF	CITATIONS
477	Inhibition of glioma using a novel non-neurotoxic vesicular stomatitis virus. Neurosurgical Focus, 2021, 50, E9.	1.0	10
478	Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity. Molecular Pharmaceutics, 2021, 18, 1014-1025.	2.3	12
479	Vaccinia virus-based vector against infectious diseases and tumors. Human Vaccines and Immunotherapeutics, 2021, 17, 1578-1585.	1.4	20
480	IL-36γ-armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor immunity. Cancer Immunology, Immunotherapy, 2021, 70, 2467-2481.	2.0	13
481	Oncolytic Adenovirus ORCA-010 Activates Proinflammatory Myeloid Cells and Facilitates T Cell Recruitment and Activation by PD-1 Blockade in Melanoma. Human Gene Therapy, 2021, 32, 178-191.	1.4	7
482	Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduction and Targeted Therapy, 2021, 6, 72.	7.1	191
483	Combining vanadyl sulfate with Newcastle disease virus potentiates rapid innate immune-mediated regression with curative potential in murine cancer models. Molecular Therapy - Oncolytics, 2021, 20, 306-324.	2.0	12
484	Redirecting the Immune Microenvironment in Acute Myeloid Leukemia. Cancers, 2021, 13, 1423.	1.7	23
485	Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Experimental Hematology and Oncology, 2021, 10, 18.	2.0	64
486	Intraperitoneal Chemotherapy for Peritoneal Metastases: Technical Innovations, Preclinical and Clinical Advances and Future Perspectives. Biology, 2021, 10, 225.	1.3	2
487	Advancing oncolytic virus therapy by understanding the biology. Nature Reviews Clinical Oncology, 2021, 18, 197-198.	12.5	19
488	Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Molecular Cancer, 2021, 20, 55.	7.9	57
489	Promises and challenges of adoptive T-cell therapies for solid tumours. British Journal of Cancer, 2021, 124, 1759-1776.	2.9	113
490	Oncolytic activity of naturally attenuated herpes-simplex virus HF10 against an immunocompetent model of oral carcinoma. Molecular Therapy - Oncolytics, 2021, 20, 220-227.	2.0	6
491	Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Molecular Therapy - Oncolytics, 2021, 20, 459-469.	2.0	27
492	Chemogenetic ON and OFF switches for RNA virus replication. Nature Communications, 2021, 12, 1362.	5.8	6
493	The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiology, 2021, 16, 341-368.	1.0	5
494	Application of Serum Free Medium Cultured Vero Cells for the Production of Recombinant Oncolytic Herpes Simplex Virus 2. IOP Conference Series: Earth and Environmental Science, 2021, 714, 032001.	0.2	0

#	Article	IF	CITATIONS
495	Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angewandte Chemie, 2021, 133, 9437-9442.	1.6	3
496	Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angewandte Chemie - International Edition, 2021, 60, 9351-9356.	7.2	21
497	Humanized Mouse Models to Evaluate Cancer Immunotherapeutics. Annual Review of Cancer Biology, 2021, 5, 119-136.	2.3	25
498	Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Molecular Diagnosis and Therapy, 2021, 25, 301-313.	1.6	9
499	Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase I/II clinical trial. , 2021, 9, e002224.		41
500	Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunology, Immunotherapy, 2021, 70, 3541-3555.	2.0	7
501	Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. , 2021, 9, e002203.		44
502	Epigenomics and immunotherapeutic advances in pediatric brain tumors. Npj Precision Oncology, 2021, 5, 34.	2.3	9
503	Coxsackievirus B3—Its Potential as an Oncolytic Virus. Viruses, 2021, 13, 718.	1.5	17
504	Compact Cell Imaging Device (CoCID) provides insights into the cellular origins of viral infections. JPhys Photonics, 2021, 3, 031002.	2.2	9
505	Strategies to sensitize cancer cells to immunotherapy. Human Vaccines and Immunotherapeutics, 2021, 17, 2595-2601.	1.4	9
506	A bibliometric review of oncolytic virus research as a novel approach for cancer therapy. Virology Journal, 2021, 18, 98.	1.4	10
507	Nanoparticle-enabled innate immune stimulation activates endogenous tumor-infiltrating T cells with broad antigen specificities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
508	The therapeutic landscape of hepatocellular carcinoma. Med, 2021, 2, 505-552.	2.2	20
509	Immunotherapy and Gene Therapy for Oncoviruses Infections: A Review. Viruses, 2021, 13, 822.	1.5	3
510	Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Seminars in Cancer Biology, 2022, 86, 1122-1142.	4.3	6
511	CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Frontiers in Neuroscience, 2021, 15, 662064.	1.4	80
512	Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell International, 2021, 21, 262.	1.8	31

#	Article	IF	CITATIONS
513	The Effect of Herpes Simplex Virus-Type-1 (HSV-1) Oncolytic Immunotherapy on the Tumor Microenvironment. Viruses, 2021, 13, 1200.	1.5	14
514	Viral Control of Glioblastoma. Viruses, 2021, 13, 1264.	1.5	7
515	Cytotoxic T lymphocyteâ€associated protein 4 antibody aggrandizes antitumor immune response of oncolytic virus <scp>M1</scp> via targeting regulatory T cells. International Journal of Cancer, 2021, 149, 1369-1384.	2.3	8
516	Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Therapy, 2022, 29, 647-660.	2.2	40
517	Mathematical modeling of tumor surface growth with necrotic kernels. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0
518	Remodeling of the tumor microenvironment using an engineered oncolytic vaccinia virus improves PD-L1 inhibition outcomes. Bioscience Reports, 2021, 41, .	1.1	7
519	Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers, 2021, 13, 2761.	1.7	19
520	Recombinant Newcastle Disease Virus Immunotherapy Drives Oncolytic Effects and Durable Systemic Antitumor Immunity. Molecular Cancer Therapeutics, 2021, 20, 1723-1734.	1.9	5
521	Combined with interventional therapy, immunotherapy can create a new outlook for tumor treatment. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2837-2860.	1.1	4
522	C-REV Retains High Infectivity Regardless of the Expression Levels of cGAS and STING in Cultured Pancreatic Cancer Cells. Cells, 2021, 10, 1502.	1.8	6
523	Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells, 2021, 10, 1541.	1.8	24
524	Relapsed and refractory classical Hodgkin lymphoma: could virotherapy help solve the equation?. Human Vaccines and Immunotherapeutics, 2021, 17, 3502-3510.	1.4	0
525	Advancing to the era of cancer immunotherapy. Cancer Communications, 2021, 41, 803-829.	3.7	90
526	Concurrent expression of HP-NAP enhances antitumor efficacy of oncolytic vaccinia virus but not for Semliki Forest virus. Molecular Therapy - Oncolytics, 2021, 21, 356-366.	2.0	7
527	Local Destruction of Tumors and Systemic Immune Effects. Frontiers in Oncology, 2021, 11, 708810.	1.3	8
528	Optimization of the Administration Strategy for the Armed Oncolytic Adenovirus ZD55-IL-24 in Both Immunocompromised and Immunocompetent Mouse Models. Human Gene Therapy, 2021, , .	1.4	3
529	Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 707198.	1.8	17
530	PD-1/PD-L1 immune checkpoint blockade-based combinational treatment: Immunotherapeutic amplification strategies against colorectal cancer. International Immunopharmacology, 2021, 96, 107607.	1.7	11

#	Article	IF	CITATIONS
531	Efficacy and safety of oncolytic viruses in advanced or metastatic cancer: a network meta-analysis. Virology Journal, 2021, 18, 158.	1.4	6
532	Virotherapy in Germany—Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses, 2021, 13, 1420.	1.5	19
533	Mechanistic Modeling of a Novel Oncolytic Virus, V937, to Describe Viral Kinetic and Dynamic Processes Following Intratumoral and Intravenous Administration. Frontiers in Pharmacology, 2021, 12, 705443.	1.6	11
534	Immunotherapy in Glioblastoma: A Clinical Perspective. Cancers, 2021, 13, 3721.	1.7	16
535	A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell International, 2021, 21, 406.	1.8	30
536	Biological basis for novel mesothelioma therapies. British Journal of Cancer, 2021, 125, 1039-1055.	2.9	14
537	Oncolytic Coxsackievirus and the Mechanisms of its Effects on Cancer: A Narrative Review. Current Cancer Therapy Reviews, 2021, 17, 173-178.	0.2	0
538	Phase I dose-escalation study of endoscopic intratumoral injection of OBP-301 (Telomelysin) with radiotherapy in oesophageal cancer patients unfit for standard treatments. European Journal of Cancer, 2021, 153, 98-108.	1.3	25
539	Clinical Responses of Oncolytic Coxsackievirus A21 (V937) in Patients With Unresectable Melanoma. Journal of Clinical Oncology, 2021, 39, 3829-3838.	0.8	44
540	Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Human Gene Therapy, 2022, 33, 237-249.	1.4	2
541	The Potential Applications of Stem Cells for Cancer Treatment. Current Stem Cell Research and Therapy, 2022, 17, 26-42.	0.6	2
542	Cell-based immunotherapy approaches for colorectal cancer: main achievements and challenges. Future Oncology, 2021, 17, 3253-3270.	1.1	3
543	The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses, 2021, 13, 1570.	1.5	11
544	Prior Exposure to Coxsackievirus A21 Does Not Mitigate Oncolytic Therapeutic Efficacy. Cancers, 2021, 13, 4462.	1.7	2
545	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	2.3	7
546	^{Î2} -adrenergic receptor inhibition enhances oncolytic herpes virus propagation through STAT3 activation in gastric cancer. Cell and Bioscience, 2021, 11, 174.	2.1	4
547	Next-generation immunotherapies for brain metastatic cancers. Trends in Cancer, 2021, 7, 809-822.	3.8	6
548	Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Molecular Therapy - Oncolytics, 2021, 22, 129-142.	2.0	37

#	Article	IF	CITATIONS
549	Oncolytic virotherapy in hematopoietic stem cell transplantation. Human Immunology, 2021, 82, 640-648.	1.2	9
550	Elucidating mechanisms of antitumor immunity mediated by live oncolytic vaccinia and heat-inactivated vaccinia. , 2021, 9, e002569.		9
551	The genome position of a therapeutic transgene strongly influences the level of expression in an armed oncolytic human adenovirus vector. Virology, 2021, 561, 87-97.	1.1	1
552	Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. Molecular Therapy - Oncolytics, 2021, 22, 265-276.	2.0	6
553	Interaction Between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Frontiers in Oncology, 2021, 11, 744679.	1.3	7
554	Integrating Immunotherapy with Chemotherapy: A New Approach to Drug Repurposing. , 0, , .		10
555	High-dose VitC plus oncolytic adenoviruses enhance immunogenic tumor cell death and reprogram tumor immune microenvironment. Molecular Therapy, 2022, 30, 644-661.	3.7	12
556	Cancer Stem Cell for Tumor Therapy. Cancers, 2021, 13, 4814.	1.7	12
557	Oncolytic virus therapy in cancer: A current review. World Journal of Virology, 2021, 10, 229-255.	1.3	65
558	Immunotherapy for gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs): a 2021 update. Cancer Immunology, Immunotherapy, 2022, 71, 761-768.	2.0	4
559	Advances and new frontiers for immunotherapy in colorectal cancer: Setting the stage for neoadjuvant success?. Molecular Therapy - Oncolytics, 2021, 22, 1-12.	2.0	24
560	Hyaluronidase expression within tumors increases virotherapy efficacy and TÂcell accumulation. Molecular Therapy - Oncolytics, 2021, 22, 27-35.	2.0	13
561	Application Route and Immune Status of the Host Determine Safety and Oncolytic Activity of Oncolytic Coxsackievirus B3 Variant PD-H. Viruses, 2021, 13, 1918.	1.5	4
562	The promise and perils of immunotherapy. Blood Advances, 2021, 5, 3709-3725.	2.5	23
563	Combination Immunotherapies to Overcome Intrinsic Resistance to Checkpoint Blockade in Microsatellite Stable Colorectal Cancer. Cancers, 2021, 13, 4906.	1.7	18
564	A mathematical model for oncolytic virus spread using the telegraph equation. Communications in Nonlinear Science and Numerical Simulation, 2021, 102, 105944.	1.7	2
565	Development of oncolytic viruses for cancer therapy. Translational Research, 2021, 237, 98-123.	2.2	29
566	Oncolytic herpes simplex virus type-1 expressing IL-12 efficiently replicates and kills human colorectal cancer cells. Microbial Pathogenesis, 2021, 160, 105164.	1.3	14

#	Article	IF	CITATIONS
567	The intratumoural microbiota in cancer: new insights from inside. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188626.	3.3	13
568	Targeted and immuno-based therapies in sarcoma: mechanisms and advances in clinical trials. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188606.	3.3	18
569	Intratumoral and Oncoviral Immunotherapy. Digestive Disease Interventions, 2021, 05, 050-054.	0.3	3
570	The efficacy and safety of oncolytic viruses in the treatment of intermediate to advanced solid tumors: a systematic review and meta-analysis. Translational Cancer Research, 2021, 10, 0-0.	0.4	4
571	Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: a mathematical approach. Mathematical Biosciences and Engineering, 2021, 18, 764-799.	1.0	10
572	Surface engineering of oncolytic adenovirus for a combination of immune checkpoint blockade and virotherapy. Biomaterials Science, 2021, 9, 7392-7401.	2.6	7
573	Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent antitumor effects on multiple tumor models via tumor microenvironment modulation. Theranostics, 2021, 11, 6668-6681.	4.6	22
574	Gene therapy in PIDs, hemoglobin, ocular, neurodegenerative, and hemophilia B disorders. Open Life Sciences, 2021, 16, 431-441.	0.6	2
575	Delivery of Oncolytic Reovirus by Cell Carriers. Methods in Molecular Biology, 2020, 2058, 229-236.	0.4	4
576	Cancer Nanomedicine: Special Focus on Cancer Immunotherapy. , 2021, , 465-508.		2
577	New Emerging Molecules in Cancer Research Which Hold Promise in Current Era. , 2019, , 539-583.		1
580	ONCR-177, an Oncolytic HSV-1 Designed to Potently Activate Systemic Antitumor Immunity. Cancer Immunology Research, 2021, 9, 291-308.	1.6	42
581	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, .	2.3	24
581 582	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, . Unleashing the therapeutic potential of oncolytic viruses. Journal of Clinical Investigation, 2018, 128, 1258-1260.	2.3 3.9	24 22
581 582 583	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, . Unleashing the therapeutic potential of oncolytic viruses. Journal of Clinical Investigation, 2018, 128, 1258-1260. Cytokine-induced killer cell delivery enhances the antitumor activity of oncolytic reovirus. PLoS ONE, 2017, 12, e0184816.	2.3 3.9 1.1	24 22 7
581 582 583 584	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, . Unleashing the therapeutic potential of oncolytic viruses. Journal of Clinical Investigation, 2018, 128, 1258-1260. Cytokine-induced killer cell delivery enhances the antitumor activity of oncolytic reovirus. PLoS ONE, 2017, 12, e0184816. Beyond Alkylating Agents for Cliomas: Quo Vadimus?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 175-186.	2.3 3.9 1.1 1.8	24 22 7 7
581 582 583 584 585	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, .Unleashing the therapeutic potential of oncolytic viruses. Journal of Clinical Investigation, 2018, 128, 1258-1260.Cytokine-induced killer cell delivery enhances the antitumor activity of oncolytic reovirus. PLoS ONE, 2017, 12, e0184816.Beyond Alkylating Agents for Gliomas: Quo Vadimus?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 175-186.Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget, 2017, 8, 3495-3508.	2.3 3.9 1.1 1.8 0.8	24 22 7 7 22

#	Article	IF	CITATIONS
587	Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget, 2016, 7, 22174-22185.	0.8	37
588	The emerging role of oncolytic virus therapy against cancer. Chinese Clinical Oncology, 2018, 7, 16-16.	0.4	105
589	Antitumor Memory T-Cells Become Functionally Mature from 30 to 100 days in a Mouse Model of Neoplasia. Anticancer Research, 2018, 38, 147-157.	0.5	4
590	Gene Therapy: A New Approach in Modern Medicine. International Journal of Medical Reviews, 2018, 5, 106-117.	0.4	4
591	Oncolytic virotherapy: new weapon for breast cancer treatment. Ecancermedicalscience, 2020, 14, 1149.	0.6	12
592	Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. Current Oncology, 2021, 28, 159-183.	0.9	11
593	Immune therapies in pancreatic ductal adenocarcinoma: Where are we now?. World Journal of Gastroenterology, 2018, 24, 2137-2151.	1.4	99
594	Nanomaterials for cancer medication: from individual nanoparticles toward nanomachines and nanorobots. Pharmacia, 2019, 66, 147-156.	0.4	16
595	Immunotherapy a New Hope for Cancer Treatment: A Review. Pakistan Journal of Biological Sciences, 2018, 21, 135-150.	0.2	21
596	Effect of NaCl on the Stability of Oncolytic Vaccinia Virus. Journal of Life Science, 2016, 26, 23-33.	0.2	1
597	Intratumoral cancer immunotherapy exploiting anti-viral immunity. Journal of Clinical and Experimental Hematopathology: JCEH, 2022, 62, 1-8.	0.3	4
598	β-Adrenergic Receptor Inhibitor and Oncolytic Herpesvirus Combination Therapy Shows Enhanced Antitumoral and Antiangiogenic Effects on Colorectal Cancer. Frontiers in Pharmacology, 2021, 12, 735278.	1.6	3
599	Resistance Mechanisms Influencing Oncolytic Virotherapy, a Systematic Analysis. Vaccines, 2021, 9, 1166.	2.1	13
600	An Agent-Based Model of Combination Oncolytic Viral Therapy and Anti-PD-1 Immunotherapy Reveals the Importance of Spatial Location When Treating Glioblastoma. Cancers, 2021, 13, 5314.	1.7	13
601	Targeted Antiâ€Tumor Immunotherapy Using Tumor Infiltrating Cells. Advanced Science, 2021, 8, e2101672.	5.6	36
602	Novel classes of immunotherapy for breast cancer. Breast Cancer Research and Treatment, 2022, 191, 15-29.	1.1	8
603	Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Frontiers in Immunology, 2021, 12, 721830.	2.2	50
604	Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Frontiers in Immunology, 2021, 12, 754436.	2.2	21

		CITATION REI	PORT	
#	Article		IF	CITATIONS
605	Multi-Omics Analysis of Glioblastoma Cells' Sensitivity to Oncolytic Viruses. Cancers	, 2021, 13, 5268.	1.7	16
606	Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-t by triggering tumor cell necroptosis and DAMPs. Cancer Letters, 2021, 523, 149-161.	umor effect	3.2	22
607	Talimogene Laherparepvec. , 2016, , 333-347.			0
608	Oncolytic Viruses and Its Commercialization A mini review. The Korean Journal of Oral Ar 37, 43-54.	natomy, 2016,	0.0	0
609	Generation and Comparative Genomics of Synthetic Dengue Viruses. Lecture Notes in C Science, 2017, , 31-52.	omputer	1.0	0
610	Synergizing genome editing and cancer immunotherapy. Translational Cancer Research, S969-S972.	2017, 6,	0.4	0
611	Pre-Existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. SS Journal, 0, , .	RN Electronic	0.4	0
612	Oncolytic Virus Immunotherapy in Sarcoma. , 2019, , 69-116.			1
613	Targeted therapy of human glioblastoma combining the oncolytic properties of parvovir attenuated strains of the vaccinia virus. Molekuliarnaia Genetika, Mikrobiologiia I Virusol 37, 83.	us H-1 and Iogiia, 2019,	0.1	2
614	Anticancer Immunotherapy: Prospects and Challenges. , 2019, , 189-228.			0
615	SELECTED ASPECTS OF ALLO- AND XENOGRAFT MODEL APPLICATIONS FOR DEVELOPIN VACCINES AND ONCOLYTIC VIRUSES. Medical Immunology (Russia), 2019, 21, 221-230	NG NOVEL ANTI-CANCER).	0.1	2
616	Regional Gene Therapy for Cancer. , 2020, , 55-71.			0
617	Novel Biological Therapies with Direct Application to the Peritoneal Cavity. , 2020, , 17-2	6.		0
618	Novel Techniques and the Future of HIPEC (Immunotherapy, Viral Therapy). , 2020, , 221	234.		1
620	Hepatobiliary Tumors: Immunopathology and Immunotherapy. , 2020, , 241-259.			0
621	Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic o Chinese Chemical Letters, 2022, 33, 1718-1728.	cell death.	4.8	42
622	Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers, 2021, 13, 5452		1.7	58
623	Discovery, Screening Methods, Design Considerations, and Scale-up Aspects of Immuno Drugs. , 2021, , 173-194.	therapeutic		0

#	Article	IF	CITATIONS
624	Identification of in vitro and in vivo oncolytic effect in colorectal cancer cells by Orf virus strain NA1/11. Oncology Reports, 2020, 45, 535-546.	1.2	13
625	Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs, 2021, 13, 1982447.	2.6	8
627	Recombinant vaccinia virus perspective for the treatment of melanoma. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2020, 38, 90.	0.1	0
629	MECHANISMS AND CLINICAL EFFECTS OF DRUGS BASED ON ONCOLYTIC ADENOVIRUSES, HERPES VIRUSES, REOVIRUSES AND MEASLES VIRUS. Juvenis Scientia, 2020, 6, 6-17.	0.1	0
630	IL-24-Armed Oncolytic Vaccinia Virus Exerts Potent Antitumor Effects via Multiple Pathways in Colorectal Cancer. Oncology Research, 2020, 28, 579-590.	0.6	12
632	Glioblastoma: a molecular genetic portrait and modern therapeutic strategies for drug treatment. Uspehi Molekularnoj Onkologii, 2021, 8, 60-76.	0.1	1
633	Oncolytic reovirus-mediated killing of mouse cancer-associated fibroblasts. International Journal of Pharmaceutics, 2021, 610, 121269.	2.6	2
634	An Inter‣upplementary Biohybrid System Based on Natural Killer Cells for the Combinational Immunotherapy and Virotherapy of Cancer. Advanced Science, 2022, 9, e2103470.	5.6	9
635	Advances in plant-derived natural products for antitumor immunotherapy. Archives of Pharmacal Research, 2021, 44, 987-1011.	2.7	12
636	Современный поÐĨодв иммуноÑ,ерапиŊ€Ð°Đ®Đ°. Ekspei	im e øtalÊ ¹	naoì Klì n/
637	Upstream and Downstream Processes for Viral Nanoplexes as Vaccines. Methods in Molecular Biology, 2021, 2183, 217-248.	0.4	3
638	Immunotherapy in anaplastic thyroid cancer. American Journal of Translational Research (discontinued), 2020, 12, 974-988.	0.0	10
639	Recombinant Chinese Hu191 measles virus exhibits a significant antitumor activity against nephroblastoma mediated by immunogenic form of apoptosis. American Journal of Translational Research (discontinued), 2021, 13, 2077-2093.	0.0	1
640	Bispecific T cell engagers and their synergistic tumor immunotherapy with oncolytic viruses. American Journal of Cancer Research, 2021, 11, 2430-2455.	1.4	1
641	Evaluation of Apoptosis Induction by Newcastle Disease Virus LaSota Strain in Human Breast Carcinoma Cells. Archives of Razi Institute, 2020, 75, 367-376.	0.4	1
642	Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. , 2021, 9, .		2
643	BiTEs Expressed by an Oncolytic Herpes Simplex Virus Type 2 Can Transform Heterologous T Cells Into Uniform Tumor Killer Cells. SSRN Electronic Journal, 0, , .	0.4	0
644	ADME of Biologicals and New Therapeutic Modalities. , 2021, , .		0

#	Article	IF	Citations
645	Lentiviral-Induced Spinal Cord Gliomas in Rat Model. International Journal of Molecular Sciences, 2021, 22, 12943.	1.8	3
646	Bioreductive prodrug PR-104 improves the tumour distribution and titre of the nitroreductase-armed oncolytic adenovirus ONYX-411NTR leading to therapeutic benefit. Cancer Gene Therapy, 2022, 29, 1021-1032.	2.2	4
647	The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. Nanomaterials, 2021, 11, 3018.	1.9	8
648	Translational Development and Testing of Theranostics in Combination with Immunotherapies. , 2022, , 267-280.		0
649	Oncolytic Virotherapy: From Bench to Bedside. Frontiers in Cell and Developmental Biology, 2021, 9, 790150.	1.8	29
651	Evaluation of immunologic parameters in canine glioma patients treated with an oncolytic herpes virus. , 2021, 5, 423-442.		9
652	Inactivated Cowpea Mosaic Virus in Combination with OX40 Agonist Primes Potent Antitumor Immunity in a Bilateral Melanoma Mouse Model. Molecular Pharmaceutics, 2022, 19, 592-601.	2.3	9
653	Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomedicine and Pharmacotherapy, 2022, 146, 112512.	2.5	56
654	Preclinical efficacy and involvement of mTOR signaling in the mechanism of Orf virus against nasopharyngeal carcinoma cells. Life Sciences, 2022, 291, 120297.	2.0	2
655	The role of immunogenic clinical death in the virotherapy of malignant neoplasms. Eksperimentalʹna ì KlìnìÄna Medicina, 2021, 90, .	0.0	0
656	Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 424.	7.1	115
657	Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World Journal of Surgical Oncology, 2022, 20, 16.	0.8	12
658	CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. , 2022, 10, e003809.		17
659	Systemic Injection of Oncolytic Vaccinia Virus Suppresses Primary Tumor Growth and Lung Metastasis in Metastatic Renal Cell Carcinoma by Remodeling Tumor Microenvironment. Biomedicines, 2022, 10, 173.	1.4	6
660	Antiviral T-Cell Frequencies in a Healthy Population: Reference Values for Evaluating Antiviral Immune Cell Profiles in Immunocompromised Patients. Journal of Clinical Immunology, 2022, 42, 546-558.	2.0	6
661	Protocols to Manufacture an Oncolytic Measles Virus–Sensitive Immunocompetent Mouse Model of Medulloblastoma. Methods in Molecular Biology, 2022, 2423, 165-177.	0.4	0
662	Oncolytic Zika virus promotes intratumoral T cell infiltration and improves immunotherapy efficacy in glioblastoma. Molecular Therapy - Oncolytics, 2022, 24, 522-534.	2.0	17
663	Immune Checkpoint Blockade Augments Changes Within Oncolytic Virus-induced Cancer MHC-I Peptidome, Creating Novel Antitumor CD8 T Cell Reactivities. Molecular and Cellular Proteomics, 2022, 21, 100182.	2.5	3

#	Article	IF	Citations
664	Promising effects of parasite-derived compounds on tumor regression: a systematic review of in vitro and in vivo studies. Environmental Science and Pollution Research, 2022, 29, 32383-32396.	2.7	4
665	Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines, 2022, 10, 240.	2.1	12
666	AXL receptor is required for Zika virus strain MR-766 infection in human glioblastoma cell lines. Molecular Therapy - Oncolytics, 2021, 23, 447-457.	2.0	15
667	Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. , 2021, 9, e002755.		17
668	Oncolytic Viruses and Cancer, Do You Know the Main Mechanism?. Frontiers in Oncology, 2021, 11, 761015.	1.3	15
669	A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mathematical Biosciences and Engineering, 2022, 19, 4429-4457.	1.0	8
670	Molecular Mechanisms of Anti-Neoplastic and Immune Stimulatory Properties of Oncolytic Newcastle Disease Virus. Biomedicines, 2022, 10, 562.	1.4	14
671	Talimogene Laherparepvec: Moving From First-In-Class to Best-In-Class. Frontiers in Molecular Biosciences, 2022, 9, 834841.	1.6	23
672	Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy. Nano Research, 2022, 15, 4137-4153.	5.8	34
673	CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. Frontiers in Immunology, 2022, 13, 817296.	2.2	35
674	Oncolytic viruses in melanoma. Frontiers in Bioscience, 2022, 27, 063.	0.8	12
675	Oncolytic Virotherapy in Peritoneal Metastasis Gastric Cancer: The Challenges and Achievements. Frontiers in Molecular Biosciences, 2022, 9, 835300.	1.6	8
676	Fatty Acid Metabolism and Cancer Immunotherapy. Current Oncology Reports, 2022, 24, 659-670.	1.8	23
677	A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines. ELife, 2022, 11, .	2.8	21
678	Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. Journal of Hematology and Oncology, 2022, 15, 24.	6.9	136
679	A pH- and Bioreducible Cationic Copolymer with Amino Acids and Piperazines for Adenovirus Delivery. Pharmaceutics, 2022, 14, 597.	2.0	3
680	Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS Nano, 2022, 16, 6064-6079.	7.3	11
681	The Combined Use of Orf Virus and PAK4 Inhibitor Exerts Anti-tumor Effect in Breast Cancer. Frontiers in Microbiology, 2022, 13, 845259.	1.5	2

#	Article	IF	CITATIONS
682	Interaction Analysis of Adenovirus L5 Protein With Pancreatic Cancer Cell Surface Receptor to Analyze Its Affinity for Oncolytic Virus Therapy. Frontiers in Oncology, 2022, 12, 832277.	1.3	2
683	Oncolytic Vaccinia Virus Augments T Cell Factor 1-Positive Stem-like CD8+ T Cells, Which Underlies the Efficacy of Anti-PD-1 Combination Immunotherapy. Biomedicines, 2022, 10, 805.	1.4	6
684	Cancer vaccines as promising immuno-therapeutics: platforms and current progress. Journal of Hematology and Oncology, 2022, 15, 28.	6.9	216
685	Equid Alphaherpesvirus 1 Modulates Actin Cytoskeleton and Inhibits Migration of Glioblastoma Multiforme Cell Line A172. Pathogens, 2022, 11, 400.	1.2	2
686	Immunotherapy of glioblastoma: Recent advances and future prospects. Human Vaccines and Immunotherapeutics, 2022, 18, 1-16.	1.4	29
687	Bispecific Antibody Expressed by an Oncolytic Herpes Simplex Virus Type 2 Can Transform Heterologous T Cells Into Uniform Tumor Killer Cells. Human Gene Therapy, 2022, 33, 649-663.	1.4	5
688	Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions. Frontiers in Oncology, 2022, 12, 839536.	1.3	9
689	Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. Journal of Translational Medicine, 2022, 20, 135.	1.8	26
690	Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduction and Targeted Therapy, 2022, 7, 117.	7.1	72
691	Oncolytic viruses: A new immunotherapeutic approach for breast cancer treatment?. Cancer Treatment Reviews, 2022, 106, 102392.	3.4	11
692	Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathology, 2022, 39, 57-64.	1.1	9
693	Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13, 1898.	5.8	16
694	OrienX010, an oncolytic virus, in patients with unresectable stage IIIC–IV melanoma: a phase Ib study. , 2022, 10, e004307.		13
695	Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Letters, 2022, 535, 215661.	3.2	12
696	The Metabolic Relationship Between Viral Infection and Cancer. Annual Review of Cancer Biology, 2022, 6, 1-15.	2.3	6
697	Bacteriophages as Solid Tumor Theragnostic Agents. International Journal of Molecular Sciences, 2022, 23, 402.	1.8	17
698	Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers, 2022, 14, 126.	1.7	12
700	An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade. , 2021, 9, e002843.		29

#	Article	IF	CITATIONS
701	Giving Oncolytic Viruses a Free Ride: Carrier Cells for Oncolytic Virotherapy. Pharmaceutics, 2021, 13, 2192.	2.0	17
702	Clinical Trials of Oncolytic Viruses in Breast Cancer. Frontiers in Oncology, 2021, 11, 803050.	1.3	13
703	Immunotherapy for anaplastic thyroid carcinoma: the present and future. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2021, 50, 675-684.	0.1	2
704	Successful treatment of a 19-year-old patient with locally advanced clear cell adenocarcinoma of the uterine cervix using recombinant human adenovirus type 5 (Oncorine) combined with chemoradiotherapy: a case report. Annals of Translational Medicine, 2021, 9, 1747-1747.	0.7	4
706	Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering, 2022, 19, 6157-6185.	1.0	2
707	RNA delivery for cancer gene therapy. , 2022, , 375-424.		Ο
708	Oncolytic viruses and pancreatic cancer. Cancer Treatment and Research Communications, 2022, 31, 100563.	0.7	5
709	Gastric Cancer and Viruses: A Fine Line between Friend or Foe. Vaccines, 2022, 10, 600.	2.1	3
710	Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Frontiers in Immunology, 2022, 13, 826164.	2.2	8
711	Alphaviruses in Cancer Therapy. Frontiers in Molecular Biosciences, 2022, 9, 864781.	1.6	9
712	Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Frontiers in Molecular Biosciences, 2022, 9, 777775.	1.6	3
713	Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Therapy, 2022, 29, 1321-1331.	2.2	4
714	Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Frontiers in Immunology, 2022, 13, 866892.	2.2	5
715	Next-Generation CAR T-cell Therapies. Cancer Discovery, 2022, 12, 1625-1633.	7.7	53
716	The roles of epidermal growth factor receptor in viral infections. Growth Factors, 2022, 40, 46-72.	0.5	6
726	Resistance to an Oncolytic Virus Is Mediated by Broad But Reproducible Gene Expression Changes in Mouse Melanoma Cells. SSRN Electronic Journal, 0, , .	0.4	0
727	Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treatment and Research, 2022, 183, 91-129.	0.2	1
728	Oncolytic Herpes Simplex Virus Type 1 Induces Immunogenic Cell Death Resulting in Maturation of BDCA-1+ Myeloid Dendritic Cells. International Journal of Molecular Sciences, 2022, 23, 4865.	1.8	10

#	ARTICLE	IF	CITATIONS
729	Utilizing chemokines in cancer immunotherapy. Trends in Cancer, 2022, 8, 670-682.	3.8	50
730	Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell International, 2022, 22, 168.	1.8	36
731	Overcoming resistance to oncolytic virus M1 by targeting PI3K-Î ³ in tumor associated myeloid cells. Molecular Therapy, 2022, , .	3.7	1
732	A novel oncolytic virus induces a regional cytokine storm and safely eliminates malignant ascites of colon cancer. Cancer Medicine, 2022, 11, 4297-4309.	1.3	5
733	Emerging New Therapeutics for Retinoblastoma. Ocular Oncology and Pathology, 2022, 8, 149-155.	0.5	2
734	Checkpoints and immunity in cancers: Role of GNG12. Pharmacological Research, 2022, 180, 106242.	3.1	7
735	Boarding Oncolytic Viruses onto Tumor-Homing Bacterium-Vessels for Augmented Cancer Immunotherapy. Nano Letters, 2022, 22, 5055-5064.	4.5	30
736	An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Frontiers in Oncology, 2022, 12, .	1.3	6
737	Discovery Proteomics Analysis Determines That Driver Oncogenes Suppress Antiviral Defense Pathways Through Reduction in Interferon-β Autocrine Stimulation. Molecular and Cellular Proteomics, 2022, 21, 100247.	2.5	3
738	Oncolytic virus delivery modulated immune responses toward cancer therapy: Challenges and perspectives. International Immunopharmacology, 2022, 108, 108882.	1.7	12
739	Hydrogel-based co-delivery of CIK cells and oncolytic adenovirus armed with IL12 and IL15 for cancer immunotherapy. Biomedicine and Pharmacotherapy, 2022, 151, 113110.	2.5	18
740	An Oncolytic Vaccinia Virus Expressing EpCAM Bispecific T-Cell Engager Enhances Immune Response in Solid Tumors. SSRN Electronic Journal, 0, , .	0.4	Ο
741	Double Trouble: Immunotherapy Doublets in Melanoma—Approved and Novel Combinations to Optimize Treatment in Advanced Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, , 745-766.	1.8	6
742	The Role of Chemokine IL-7 in Tumor and Its Potential Antitumor Immunity. Journal of Interferon and Cytokine Research, 2022, 42, 243-250.	0.5	3
743	Neoadjuvant immunotherapy in gastrointestinal cancers – The new standard of care?. Seminars in Cancer Biology, 2022, 86, 834-850.	4.3	12
744	Efficacy of Oncolytic Herpes Simplex Virus T-VEC Combined with BET Inhibitors as an Innovative Therapy Approach for NUT Carcinoma. Cancers, 2022, 14, 2761.	1.7	3
745	Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, , 673-686.	1.8	3
746	Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. , 2022, 10, e004762.		19

#	Article	IF	CITATIONS
747	A dopamine antagonist, domperidone enhances the replication of an oncolytic adenovirus in human tumour cells. Journal of General Virology, 2022, 103, .	1.3	2
748	Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. Frontiers in Nanotechnology, 0, 4, .	2.4	3
749	Tumor-Homing of Mesenchymal Stem Cells Infected with Oncolytic Virus in a Canine Patient. Veterinary Sciences, 2022, 9, 285.	0.6	1
750	Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Seminars in Cancer Biology, 2022, 86, 477-490.	4.3	10
751	Phase I study of VSV-GP (BI 1831169) as monotherapy or combined with ezabenlimab in advanced and refractory solid tumors. Future Oncology, 2022, 18, 2627-2638.	1.1	8
752	The complex relationship between integrins and oncolytic herpes Simplex Virus 1 in high-grade glioma therapeutics. Molecular Therapy - Oncolytics, 2022, 26, 63-75.	2.0	6
753	Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cellular Oncology (Dordrecht), 2022, 45, 527-541.	2.1	8
754	Current Advances in PD-1/PD-L1 Blockade in Recurrent Epithelial Ovarian Cancer. Frontiers in Immunology, 0, 13, .	2.2	9
755	HP-NAP of Helicobacter pylori: The Power of the Immunomodulation. Frontiers in Immunology, 0, 13, .	2.2	11
756	Glioblastoma Treatment: State-of-the-Art and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 7207.	1.8	38
757	NDV as an Oncolytic Agent - Study in Cancer Cell Lines. Biosciences, Biotechnology Research Asia, 2022, 19, 413-421.	0.2	1
758	In Situ Tumor Vaccine Expressing Anti-CD47 Antibody Enhances Antitumor Immunity. Frontiers in Oncology, 0, 12, .	1.3	4
759	Research progress on immunotherapy in triple‑negative breast cancer (Review). International Journal of Oncology, 2022, 61, .	1.4	9
760	Potential of Black Phosphorus in Immune-Based Therapeutic Strategies. Bioinorganic Chemistry and Applications, 2022, 2022, 1-18.	1.8	5
761	Oncolytic adenovirus with MUC16-BiTE shows enhanced antitumor immune response by reversing the tumor microenvironment in PDX model of ovarian cancer. OncoImmunology, 2022, 11, .	2.1	16
762	Harnessing cGAS‧TING Pathway for Cancer Immunotherapy: From Bench to Clinic. Advanced Therapeutics, 2022, 5, .	1.6	2
763	Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncology, 2022, 18, 2713-2732.	1.1	28
764	Gastrointestinal cancer-associated fibroblasts expressing Junctional Adhesion Molecule-A are amenable to infection by oncolytic reovirus. Cancer Gene Therapy, 0, , .	2.2	4

#	Article	IF	CITATIONS
765	Therapeutic Efficacy of Oncolytic Viruses in Fighting Cancer: Recent Advances and Perspective. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	1.9	8
766	ORFV infection enhances CXCL16 secretion and causes oncolysis of lung cancer cells through immunogenic apoptosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
767	Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
768	Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Frontiers in Oncology, 0, 12, .	1.3	5
769	Immuno-PET Monitoring of Lymphocytes Using the CD8-Specific Antibody REGN5054. Cancer Immunology Research, 2022, 10, 1190-1209.	1.6	2
770	A new miRNA-Modified coxsackievirus B3 inhibits triple negative breast cancer growth with improved safety profile in immunocompetent mice. Cancer Letters, 2022, 548, 215849.	3.2	6
771	Antitumor efficacy of CRISPR/Cas9–engineered ICP6 mutant herpes simplex viruses in a mouse xenograft model for lung adenocarcinoma. Journal of Medical Virology, 2022, 94, 6000-6015.	2.5	4
772	An Ionâ€Enhanced Oncolytic Virusâ€Like Nanoparticle for Tumor Immunotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
773	Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer. Molecular Therapy - Oncolytics, 2022, 27, 3-13.	2.0	14
774	Local anesthetics and immunotherapy: a novel combination to fight cancer. Seminars in Immunopathology, 0, , .	2.8	4
775	Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules, 2022, 27, 5607.	1.7	12
776	CXCL10-armed oncolytic adenovirus promotes tumor-infiltrating T-cell chemotaxis to enhance anti-PD-1 therapy. Oncolmmunology, 2022, 11, .	2.1	22
777	Recombinant Oncolytic Adenovirus Combined with Cyclophosphamide Induces Synergy in the Treatment of Breast Cancer in vitro and in vivo. Cancer Management and Research, 0, Volume 14, 2749-2761.	0.9	4
778	miR-aculous new avenues for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	0
779	The Oncolytic Adenovirus XVir-N-31, in Combination with the Blockade of the PD-1/PD-L1 Axis, Conveys Abscopal Effects in a Humanized Glioblastoma Mouse Model. International Journal of Molecular Sciences, 2022, 23, 9965.	1.8	12
780	Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Vaccines, 2022, 10, 1552.	2.1	2
781	Oncolytic Newcastle Disease Virus Co-Delivered with Modified PLGA Nanoparticles Encapsulating Temozolomide against Glioblastoma Cells: Developing an Effective Treatment Strategy. Molecules, 2022, 27, 5757.	1.7	12
782	Glioblastoma microenvironment and its reprogramming by oncolytic virotherapy. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
783	The Role of Neutrophils in Oncolytic Orf Virus-Mediated Cancer Immunotherapy. Cells, 2022, 11, 2858.	1.8	1
784	Nanosized drug delivery systems modulate the immunosuppressive microenvironment to improve cancer immunotherapy. Acta Pharmacologica Sinica, 2022, 43, 3045-3054.	2.8	9
785	Immunotherapy approaches for the treatment of diffuse midline gliomas. OncoImmunology, 2022, 11, .	2.1	18
786	Multi-functional extracellular vesicles: Potentials in cancer immunotherapy. Cancer Letters, 2022, 551, 215934.	3.2	2
788	An Ionâ€Enhanced Oncolytic Virusâ€Like Nanoparticle for Tumor Immunotherapy. Angewandte Chemie, 0, , .	1.6	0
789	CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Molecular Therapy, 2023, 31, 134-153.	3.7	50
790	Emerging Trends in Immunotherapy for Cancer. Diseases (Basel, Switzerland), 2022, 10, 60.	1.0	17
791	Combined anti-tumor efficacy of somatostatin fusion protein and vaccinia virus on tumor cells with high expression of somatostatin receptors. Scientific Reports, 2022, 12, .	1.6	1
792	Single-cell transcriptomics of peripheral blood reveals anti-tumor systemic immunity induced by oncolytic virotherapy. Theranostics, 2022, 12, 7371-7389.	4.6	4
793	Immunotherapy for liposarcoma: emerging opportunities and challenges. Future Oncology, 2022, 18, 3449-3461.	1.1	5
795	Combining of Oncolytic Virotherapy and Other Immunotherapeutic Approaches in Cancer: A Powerful Functionalization Tactic. Global Challenges, 2023, 7, .	1.8	3
796	Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Frontiers in Immunology, 0, 13, .	2.2	7
797	Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. Journal of Hematology and Oncology, 2022, 15, .	6.9	59
798	Oncolytic virus preclinical toxicology studies. Journal of Applied Toxicology, 2023, 43, 620-648.	1.4	2
799	DNA Origami Disguises Herpes Simplex Virus 1 Particles and Controls Their Virulence. Molecules, 2022, 27, 7162.	1.7	0
800	Oncolyic Virotherapy for Prostate Cancer: Lighting a Fire in Winter. International Journal of Molecular Sciences, 2022, 23, 12647.	1.8	2
801	In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS Nano, 2022, 16, 18315-18328.	7.3	6
803	Single-step rapid chromatographic purification and characterization of clinical stage oncolytic VSV-CP. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2

#	Article	IF	Citations
804	Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. Journal of the National Cancer Center, 2022, 2, 243-262.	3.0	5
805	Clinical cancer immunotherapy: Current progress and prospects. Frontiers in Immunology, 0, 13, .	2.2	39
806	Pathology of Immunotherapy-induced Responses in Cutaneous Melanoma: Current Evidences and Future Perspectives. Advances in Anatomic Pathology, 2023, 30, 218-229.	2.4	2
807	SIRPÎ \pm antibody combined with oncolytic virus OH2 protects against tumours by activating innate immunity and reprogramming the tumour immune microenvironment. BMC Medicine, 2022, 20, .	2.3	1
808	Recent advances in gene therapy: genetic bullets to the root of the problem. Clinical and Experimental Medicine, 2023, 23, 1107-1121.	1.9	7
809	A Genome-Wide CRISPR-Cas9 Loss-of-Function Screening to Identify Host Restriction Factors Modulating Oncolytic Virotherapy. Methods in Molecular Biology, 2023, , 379-399.	0.4	1
811	Virotherapy. , 2023, , 143-168.		0
813	The emerging field of oncolytic virus-based cancer immunotherapy. Trends in Cancer, 2023, 9, 122-139.	3.8	43
814	Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells, 2022, 11, 3626.	1.8	5
815	Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA and Cell Biology, 2023, 42, 267-273.	0.9	7
816	Progress of oncolytic virotherapy for neuroblastoma. Frontiers in Pediatrics, 0, 10, .	0.9	2
817	Cellular resistance to an oncolytic virus is driven by chronic activation of innate immunity. IScience, 2023, 26, 105749.	1.9	2
818	Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Seminars in Cancer Biology, 2023, 88, 81-95.	4.3	11
819	Polycytidine tract deletion from microRNA-detargeted oncolytic Mengovirus optimizes the therapeutic index in a murine multiple myeloma model. Molecular Therapy - Oncolytics, 2023, 28, 15-30.	2.0	0
820	Oncolytic virus: A catalyst for the treatment of gastric cancer. Frontiers in Oncology, 0, 12, .	1.3	2
821	Oncolytic Viruses and Cancer Immunotherapy. Current Oncology Reports, 2023, 25, 19-28.	1.8	7
822	A phase 1b single-arm trial of intratumoral oncolytic virus V937 in combination with pembrolizumab in patients with advanced melanoma: results from the CAPRA study. Cancer Immunology, Immunotherapy, 2023, 72, 1405-1415.	2.0	4
823	Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Frontiers in Immunology, 0, 13, .	2.2	6

#	Article	IF	CITATIONS
824	Immunotherapy approaches for rare pediatric solid tumors: advances and future directions. Current Opinion in Pediatrics, 2023, 35, 63-74.	1.0	0
825	Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines, 2022, 10, 2011.	2.1	20
826	<scp>RIGâ€i</scp> â€mediated innate immune signaling in tumors reduces the therapeutic effect of oncolytic vesicular stomatitis virus. Thoracic Cancer, 2023, 14, 246-253.	0.8	2
827	From immune equilibrium to immunodynamics. Frontiers in Microbiology, 0, 13, .	1.5	0
828	Intratumoral oncolytic virus V937 plus ipilimumab in patients with advanced melanoma: the phase 1b MITCI study. , 2022, 10, e005224.		3
829	Encouraging probiotics for the prevention and treatment of immune-related adverse events in novel immunotherapies against malignant glioma. Exploration of Targeted Anti-tumor Therapy, 0, , 817-827.	0.5	2
830	Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV—Based Vectors and for a Cure for HIV-1 Infection. Viruses, 2023, 15, 32.	1.5	0
831	Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. British Journal of Cancer, 2023, 128, 715-725.	2.9	14
832	Adenovirus vector system: construction, history and therapeutic applications. BioTechniques, 2022, 73, 297-305.	0.8	23
833	A Dualâ€Responsive STAT3 Inhibitor Nanoprodrug Combined with Oncolytic Virus Elicits Synergistic Antitumor Immune Responses by Igniting Pyroptosis. Advanced Materials, 2023, 35, .	11.1	28
834	Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. International Journal of Molecular Sciences, 2022, 23, 15622.	1.8	7
836	Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Scientific Reports, 2022, 12, .	1.6	3
837	Coxsackievirus Group B3 Has Oncolytic Activity against Colon Cancer through Gasdermin E-Mediated Pyroptosis. Cancers, 2022, 14, 6206.	1.7	7
838	A Calcium Alginate Hydrogel Microsphereâ€Based Transcatheter Arterial Viroembolization Strategy for Hepatocellular Carcinoma. Advanced Therapeutics, 2023, 6, .	1.6	2
839	Oncolytic Adenovirus, a New Treatment Strategy for Prostate Cancer. Biomedicines, 2022, 10, 3262.	1.4	2
840	Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics, 2023, 15, 231.	2.0	6
841	Computational Modeling of Cancer Response to Oncolytic Virotherapy: Improving the Effectiveness of Viral Spread and Anti Tumor Efficacy. , 2022, , 287-309.		0
842	Design and Characterization of Mutated Variants of the Oncotoxic Parvoviral Protein NS1. Viruses, 2023, 15, 209.	1.5	0

#	Article	IF	CITATIONS
843	Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Delivery, 2023, 30, .	2.5	5
844	CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy, 2023, 25, 277-285.	0.3	4
845	Combination therapy with oncolytic viruses and immune checkpoint inhibitors in head and neck squamous cell carcinomas: an approach of complementary advantages. Cancer Cell International, 2023, 23, .	1.8	5
846	Advanced T and Natural Killer Cell Therapy for Glioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381.	0.5	0
847	Therapy with oncolytic viruses: progress and challenges. Nature Reviews Clinical Oncology, 2023, 20, 160-177.	12.5	86
848	Thermal immuno-nanomedicine in cancer. Nature Reviews Clinical Oncology, 2023, 20, 116-134.	12.5	60
849	Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity. Nature Communications, 2023, 14, .	5.8	20
850	Phase 1b study of intravenous coxsackievirus A21 (V937) and ipilimumab for patients with metastatic uveal melanoma. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6059-6066.	1.2	2
851	Pre-treatment of oncolytic reovirus improves tumor accumulation and intratumoral distribution of PEC-liposomes. Journal of Controlled Release, 2023, 354, 35-44.	4.8	6
852	Surface characterization of alkane viral anchoring films prepared by titanate-assisted organosilanization. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113136.	2.5	0
853	Nonclinical pharmacokinetics and biodistribution of VSV-GP using methods to decouple input drug disposition and viral replication. Molecular Therapy - Methods and Clinical Development, 2023, 28, 190-207.	1.8	2
854	Zika virus cleaves CSDMD to disseminate prognosticable and controllable oncolysis in a human glioblastoma cell model. Molecular Therapy - Oncolytics, 2023, 28, 104-117.	2.0	6
855	Aptamers Enhance Oncolytic Viruses' Antitumor Efficacy. Pharmaceutics, 2023, 15, 151.	2.0	2
856	Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. , 2023, 40, .		0
857	Combining CAR T Cell Therapy and Oncolytic Virotherapy for Pediatric Solid Tumors: A Promising Option. Immuno, 2023, 3, 37-56.	0.6	2
858	Multifaceted nature of natural killer cells: Potential mode of interaction and shaping of stem cells. , 2023, , 3-25.		1
859	SARS-CoV-2 RBD protein enhances the oncolytic activity of the vesicular stomatitis virus. Frontiers in Immunology, 0, 14, .	2.2	1
861	Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Molecular Therapy, 2023, 31, 951-969.	3.7	8

#	Article	IF	CITATIONS
862	Establishing a New Platform to Investigate the Efficacy of Oncolytic Virotherapy in a Human Ex Vivo Peritoneal Carcinomatosis Model. Viruses, 2023, 15, 363.	1.5	1
863	Generation of novel oncolytic vaccinia virus with improved intravenous efficacy through protection against complement-mediated lysis and evasion of neutralization by vaccinia virus-specific antibodies. , 2023, 11, e006024.		4
864	Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. Research, 2023, 6, .	2.8	12
865	Tumor Immunology and Immunotherapy. , 2023, , 47-62.		0
866	Rational selection of an ideal oncolytic virus to address current limitations in clinical translation. International Review of Cell and Molecular Biology, 2023, , 241-261.	1.6	0
867	New Therapies on the Horizon. Hematology/Oncology Clinics of North America, 2023, , .	0.9	1
868	Virusâ€Like Particleâ€Induced cGASâ€STING Activation and AIM2 Inflammasomeâ€Mediated Pyroptosis for Robust Cancer Immunotherapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
869	Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	30
870	Nano based-oncolytic viruses for cancer therapy. Critical Reviews in Oncology/Hematology, 2023, 185, 103980.	2.0	8
871	Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade. Nature Communications, 2023, 14, .	5.8	5
873	Apoptotic and autophagic cell death induced in cervical cancer cells by a dual specific oncolytic adenovirus. Anti-Cancer Drugs, 2023, 34, 361-372.	0.7	2
874	Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-9.	1.9	5
875	Construction of CAR-T cells targeting TM4SF1 and its anti-tumor capacity in ovarian cancer. Immunology Letters, 2023, 255, 1-9.	1.1	1
876	Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Frontiers in Medicine, 0, 10, .	1.2	1
877	Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial. Nature Medicine, 2023, 29, 450-457.	15.2	21
878	The Dilemma of HSV-1 Oncolytic Virus Delivery: The Method Choice and Hurdles. International Journal of Molecular Sciences, 2023, 24, 3681.	1.8	5
879	Effects of Oncolytic Vaccinia Viruses Harboring Different Marine Lectins on Hepatocellular Carcinoma Cells. International Journal of Molecular Sciences, 2023, 24, 3823.	1.8	1
880	Immune surveillance of brain metastatic cancer cells is mediated by IFITM1. EMBO Journal, 2023, 42, .	3.5	2

#	Article	IF	CITATIONS
881	Research advances of clinical application of oncolytic viruses in treatment of gynecologic cancers. Current Cancer Drug Targets, 2023, 23, .	0.8	0
882	Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Communication and Signaling, 2023, 21, .	2.7	8
883	Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	3
884	HSV: The scout and assault for digestive system tumors. Frontiers in Molecular Biosciences, 0, 10, .	1.6	0
885	Photon-Controlled Pyroptosis Activation (PhotoPyro): An Emerging Trigger for Antitumor Immune Response. Journal of the American Chemical Society, 2023, 145, 6007-6023.	6.6	35
886	Oncolytic Virusâ€Ðriven Biotherapies from Bench to Bedside. Small, 2023, 19, .	5.2	3
887	Immunogenic cell death in cancer immunotherapy. BMB Reports, 2023, 56, 275-286.	1.1	7
888	Application of DNA Replicons in Gene Therapy and Vaccine Development. Pharmaceutics, 2023, 15, 947.	2.0	2
889	Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2. Virologica Sinica, 2023, 38, 373-379.	1.2	1
890	Immunotherapy: A new target for cancer cure (Review). Oncology Reports, 2023, 49, .	1.2	0
891	Inhibition of Tumor Metastasis by Liquidâ€Nitrogenâ€Shocked Tumor Cells with Oncolytic Viruses Infection. Advanced Materials, 2023, 35, .	11.1	7
892	Evolution-Informed Strategies for Combating Drug Resistance in Cancer. International Journal of Molecular Sciences, 2023, 24, 6738.	1.8	5
893	Comparison of Regulations for the Development of Oncolytic Virus Therapy in the United States, the European Union, and Japan , 2016, 4, 1-9.		1
894	Virusâ€Like Particleâ€Induced cGASâ€STING Activation and AIM2 Inflammasomeâ€Mediated Pyroptosis for Robust Cancer Immunotherapy. Angewandte Chemie, 2023, 135, .	1.6	2
895	Engineering Oncolytic Coxsackievirus A21 with Small Transgenes and Enabling Cell-Mediated Virus Delivery by Integrating Viral cDNA into the Genome. Journal of Virology, 0, , .	1.5	3
896	Application of oncolytic virus in tumor therapy. Journal of Medical Virology, 2023, 95, .	2.5	9
899	Oncolytic viruses as treatment for adult and pediatric high-grade gliomas: On the way to clinical success. International Review of Cell and Molecular Biology, 2023, , 169-188.	1.6	1
907	Mathematical model analysis of breast cancer using oncolytic virus therapy. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	Citations
913	Oncolytic virotherapy in lung cancer. International Review of Cell and Molecular Biology, 2023, , .	1.6	0
916	Amelioration of Clioblastoma Multiforme via the Combination of Simulated Microgravity and Oncolytic Viral Therapy. , 0, , .		0
919	Oncolytic viruses in hematological malignancies: hijacking disease biology and fostering new promises for immune and cell-based therapies. International Review of Cell and Molecular Biology, 2023, , 189-219.	1.6	0
920	Alphaviruses in cancer immunotherapy. International Review of Cell and Molecular Biology, 2023, , .	1.6	2
931	Case report: Regression of Glioblastoma after flavivirus infection. Frontiers in Medicine, 0, 10, .	1.2	2
932	Editorial: The immunosuppressive tumor microenvironment and strategies to revert its immune regulatory milieu for cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	0
934	Current Clinical Landscape of Immunotherapeutic Approaches in Pancreatic Cancer Treatment. , 2023, , 327-380.		0
936	Glioblastoma research on zebrafish xenograft models: a systematic review. Clinical and Translational Oncology, 2024, 26, 311-325.	1.2	1
939	Oncolytic viruses against cancer, promising or delusion?. , 2023, 40, .		1
943	CAR T therapy beyond cancer: the evolution of a living drug. Nature, 2023, 619, 707-715.	13.7	40
947	Therapeutic Cancer Vaccines; Past, Present, and Future Aspects. , 2023, , 1-21.		0
953	Oncolytic intralesional therapy for metastatic melanoma. Clinical and Experimental Metastasis, 0, , .	1.7	0
954	Improved Production Strategies for Oncolytic Measles Viruses as a Therapeutic Cancer Treatment. , 2023, , 375-405.		0
970	Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397, 1311-1326.	1.4	Ο
975	Bioprocessing and Analytical Development for Virus-Based Therapeutics. , 2023, , 1-17.		0
997	Oncolytic Virotherapy Against Breast Cancer. , 2023, , .		0
999	Pharmacogenomics in Oncology: Current Challenges and Future Strategies. , 2023, , 1-12.		0
1005	The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles. Cell Death and Disease, 2023, 14, .	2.7	1

#	Article	IF	CITATIONS
1014	Neuroimmune Interactions. , 2024, , 59-71.		0
1028	Roles of exosomes in immunotherapy for solid cancers. Cell Death and Disease, 2024, 15, .	2.7	0
1035	è,¢ç«⁻黑色ç´ç ~ç š"è⁻Šæ−和治ç−—进展. Journal of Zhejiang University: Science B, 2024, 25, 106-122.	1.3	0
1047	Vaccines and Oncolytic Virus for the Treatment of Lung Cancer. , 2024, , 215-245.		0
1048	Future Perspectives of Cancer Immunotherapy for the Treatment of Lung Cancer. , 2024, , 373-389.		0