Highly narrowband perovskite single-crystal photodeter recombination

Nature Photonics 9, 679-686 DOI: 10.1038/nphoton.2015.156

Citation Report

#	Article	IF	CITATIONS
3	Comparison of Recombination Dynamics in CH ₃ NH ₃ PbBr ₃ CH ₃ NH ₃ PbI ₃ Perovskite Films: Influence of Exciton Binding Energy. Journal of Physical Chemistry Letters, 2015, 6, 4688-4692.	4.6	350
4	Colour-selective photodiodes. Nature Photonics, 2015, 9, 634-636.	31.4	37
5	Healing Allâ€Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	14.9	296
6	Fast and Sensitive Solutionâ€Processed Visibleâ€Blind Perovskite UV Photodetectors. Advanced Materials, 2016, 28, 7264-7268.	21.0	234
7	Mechanochemical synthesis of methylammonium lead iodide perovskite. Journal of Materials Science, 2016, 51, 9123-9130.	3.7	35
8	Perovskite Photodetectors based on CH ₃ NH ₃ PbI ₃ Single Crystals. Chemistry - an Asian Journal, 2016, 11, 2675-2679.	3.3	30
9	The Inâ€Gap Electronic State Spectrum of Methylammonium Lead Iodide Singleâ€Crystal Perovskites. Advanced Materials, 2016, 28, 3406-3410.	21.0	187
10	Role of Intrinsic Ion Accumulation in the Photocurrent and Photocapacitive Responses of MAPbBr ₃ Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 35447-35453.	8.0	15
11	Photoinduced surface voltage mapping study for large perovskite single crystals. Applied Physics Letters, 2016, 108, 181604.	3.3	13
12	Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3â^'yXy) single crystals and photodetector applications. AIP Advances, 2016, 6, .	1.3	64
13	Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites. EPJ Applied Physics, 2016, 75, 30001.	0.7	19
14	Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Applied Physics Letters, 2016, 109, .	3.3	90
15	A self-powered photodetector based on a CH ₃ NH ₃ PbI ₃ single crystal with asymmetric electrodes. CrystEngComm, 2016, 18, 4405-4411.	2.6	95
16	Controllable growth of bulk cubic-phase CH ₃ NH ₃ PbI ₃ single crystal with exciting room-temperature stability. CrystEngComm, 2016, 18, 5257-5261.	2.6	51
17	Boosting Responsivity of Organic–Metal Oxynitride Hybrid Heterointerface Phototransistor. ACS Applied Materials & Interfaces, 2016, 8, 14665-14670.	8.0	25
18	Visible blind ultraviolet photodetector based on CH_3NH_3PbCl_3 thin film. Optics Express, 2016, 24, 8411.	3.4	60
19	Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. Nano Letters, 2016, 16, 3335-3340.	9.1	94
20	Hybridizing CH ₃ NH ₃ PbBr ₃ microwires and tapered fibers for	10.3	18

#	Article	IF	CITATIONS
21	Tunable Band‣elective UVâ€Photodetectors by 3D Selfâ€Assembly of Heterogeneous Nanoparticle Networks. Advanced Functional Materials, 2016, 26, 7359-7366.	14.9	50
22	Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH ₃) ₃ SnX ₃ (X = Cl, Br). Chemistry of Materials, 2016, 28, 6968-6974.	6.7	92
23	Effect of the modulating of organic content on optical properties of single-crystal perovskite. Optical Materials, 2016, 62, 273-278.	3.6	16
24	Optoelectronic properties and photo-physics of large grain hybrid perovskites. , 2016, , .		0
25	Layered and Pb-Free Organic–Inorganic Perovskite Materials for Ultraviolet Photoresponse: (010)-Oriented (CH ₃ NH ₃) ₂ MnCl ₄ Thin Film. ACS Applied Materials & Interfaces, 2016, 8, 28187-28193.	8.0	54
26	Synthesis, properties, and optical applications of low-dimensional perovskites. Chemical Communications, 2016, 52, 13637-13655.	4.1	252
27	Radiative Monomolecular Recombination Boosts Amplified Spontaneous Emission in HC(NH ₂) ₂ SnI ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2016, 7, 4178-4184.	4.6	110
28	Cross-Linkable Hole-Transport Materials Improve the Device Performance of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 27006-27011.	8.0	41
29	Size of the Organic Cation Tunes the Band Gap of Colloidal Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 3270-3277.	4.6	118
30	20â€mmâ€Large Singleâ€Crystalline Formamidiniumâ€Perovskite Wafer for Mass Production of Integrated Photodetectors. Advanced Optical Materials, 2016, 4, 1829-1837.	7.3	316
31	Thinness―and Shape ontrolled Growth for Ultrathin Singleâ€Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices. Advanced Materials, 2016, 28, 9204-9209.	21.0	296
32	Solvent-Assisted Gel Printing for Micropatterning Thin Organic–Inorganic Hybrid Perovskite Films. ACS Nano, 2016, 10, 9026-9035.	14.6	95
33	Multinuclear NMR as a tool for studying local order and dynamics in CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) hybrid perovskites. Physical Chemistry Chemical Physics, 2016, 18, 27133-27142.	2.8	78
34	Improving Allâ€Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect. Small, 2016, 12, 5622-5632.	10.0	314
35	Highly Flexible Self-Powered Organolead Trihalide Perovskite Photodetectors with Gold Nanowire Networks as Transparent Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 23868-23875.	8.0	95
36	Cross-Linkable Fullerene Derivatives for Solution-Processed n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 648-653.	17.4	67
37	Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. Journal of Materials Chemistry C, 2016, 4, 8304-8312.	5.5	134
38	General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films. Journal of the American Chemical Society, 2016, 138, 16196-16199.	13.7	205

#	Article	IF	CITATIONS
39	Solution-Grown CsPbBr ₃ Perovskite Single Crystals for Photon Detection. Chemistry of Materials, 2016, 28, 8470-8474.	6.7	294
40	Near infrared photodetectors based on subâ€gap absorption in organohalide perovskite single crystals. Laser and Photonics Reviews, 2016, 10, 1047-1053.	8.7	64
41	Postsynthetic and Selective Control of Lead Halide Perovskite Microlasers. Journal of Physical Chemistry Letters, 2016, 7, 3886-3891.	4.6	37
42	Highly ordered bimolecular crystalline blends for low-noise and high-detectivity polymeric photodiodes. Journal of Materials Chemistry C, 2016, 4, 9197-9202.	5.5	3
43	Preferential Facet Growth of Methylammonium Lead Halide Single Crystals Promoted by Halide Coordination. Chemistry Letters, 2016, 45, 1030-1032.	1.3	37
44	Perovskite CH ₃ NH ₃ Pb(Br _x I _{1â^`x}) ₃ single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 9172-9178.	5.5	120
45	Low Threshold Two-Photon-Pumped Amplified Spontaneous Emission in CH ₃ NH ₃ PbBr ₃ Microdisks. ACS Applied Materials & Interfaces, 2016, 8, 19587-19592.	8.0	54
46	Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX ₃ , X = Cl, Br, I). ACS Nano, 2016, 10, 7963-7972.	14.6	507
47	Pseudomorphic Transformation of Organometal Halide Perovskite Using the Gaseous Hydrogen Halide Reaction. Chemistry of Materials, 2016, 28, 5530-5537.	6.7	39
48	Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10, 585-589.	31.4	437
49	A study on utilizing different metals as the back contact of CH ₃ NH ₃ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 13488-13498.	10.3	205
50	An Ultrahighâ€Performance Photodetector based on a Perovskite–Transitionâ€Metalâ€Dichalcogenide Hybrid Structure . Advanced Materials, 2016, 28, 7799-7806.	21.0	242
51	Perovskite Photodetectors Operating in Both Narrowband and Broadband Regimes. Advanced Materials, 2016, 28, 8144-8149.	21.0	260
52	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. Journal of Physical Chemistry C, 2016, 120, 24682-24687.	3.1	41
53	Metal halide perovskites for energy applications. Nature Energy, 2016, 1, .	39.5	726
54	Formation of Perovskite Heterostructures by Ion Exchange. ACS Applied Materials & Interfaces, 2016, 8, 33273-33279.	8.0	56
55	Photocurrent Mapping in Single-Crystal Methylammonium Lead Iodide Perovskite Nanostructures. Nano Letters, 2016, 16, 7710-7717.	9.1	56
56	Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2016, 2, e1600534.	10.3	304

#	Article	IF	CITATIONS
57	Benignâ€byâ€Design Solventless Mechanochemical Synthesis of Threeâ€, Twoâ€, and Oneâ€Dimensional Hybrid Perovskites. Angewandte Chemie - International Edition, 2016, 55, 14972-14977.	13.8	142
58	The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots. Scientific Reports, 2016, 6, 27286.	3.3	85
59	Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4602-4610.	4.6	288
60	<i>N</i> -Methylformamide as a Source of Methylammonium Ions in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals. ACS Energy Letters, 2016, 1, 1042-1048.	17.4	59
61	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	14.9	344
62	Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials. ACS Photonics, 2016, 3, 2197-2210.	6.6	217
63	Passivated Single-Crystalline CH ₃ NH ₃ PbI ₃ Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Letters, 2016, 16, 7446-7454.	9.1	324
64	Benignâ€byâ€Design Solventless Mechanochemical Synthesis of Threeâ€, Twoâ€, and Oneâ€Dimensional Hybrid Perovskites. Angewandte Chemie, 2016, 128, 15196-15201.	2.0	18
65	Microwave Induced Crystallization of the Hybrid Perovskite CH ₃ NH ₃ PbI ₃ from a Supramolecular Single-Source Precursor. Chemistry of Materials, 2016, 28, 4134-4138.	6.7	11
66	Organic–inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 18112-18118.	2.8	93
67	Optical, electrical and photoelectric properties of layered-perovskite ferroelectric Bi ₂ WO ₆ crystals. Journal of Materials Chemistry C, 2016, 4, 7563-7570.	5.5	48
68	Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates. ACS Nano, 2016, 10, 6897-6904.	14.6	378
69	Hydrogen-like Wannier–Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite. ACS Nano, 2016, 10, 6363-6371.	14.6	151
70	Tailoring the lasing modes in CH ₃ NH ₃ PbBr ₃ perovskite microplates via micro-manipulation. RSC Advances, 2016, 6, 50553-50558.	3.6	11
71	Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids. Chemistry of Materials, 2016, 28, 4554-4562.	6.7	263
72	How photon pump fluence changes the charge carrier relaxation mechanism in an organic–inorganic hybrid lead triiodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 27090-27101.	2.8	32
73	Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Advanced Materials, 2016, 28, 4766-4802.	21.0	599
74	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 4352-4356.	2.0	71

#	Article	IF	CITATIONS
75	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 4280-4284.	13.8	257
76	A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. Journal of Materials Chemistry C, 2016, 4, 630-636.	5.5	87
77	Crystal organometal halide perovskites with promising optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 11-27.	5.5	185
78	Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10, 333-339.	31.4	1,271
79	Deciphering Halogen Competition in Organometallic Halide Perovskite Growth. Journal of the American Chemical Society, 2016, 138, 5028-5035.	13.7	92
80	Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals. Advanced Science, 2016, 3, 1500392.	11.2	193
81	Charge Carrier Lifetimes Exceeding 15 μs in Methylammonium Lead Iodide Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 923-928.	4.6	226
82	Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response. Nanoscale, 2016, 8, 5578-5586.	5.6	77
83	Nonlinear Optical Response of Organic–Inorganic Halide Perovskites. ACS Photonics, 2016, 3, 371-377.	6.6	154
84	Congestion Control for Vehicular Networks With Safety-Awareness. IEEE/ACM Transactions on Networking, 2016, 24, 3290-3299.	3.8	43
85	Organohalide Perovskites for Solar Energy Conversion. Accounts of Chemical Research, 2016, 49, 545-553.	15.6	135
86	Spectra-selective PbS quantum dot infrared photodetectors. Nanoscale, 2016, 8, 7137-7143.	5.6	68
87	Measuring <i>n</i> and <i>k</i> at the Microscale in Single Crystals of CH ₃ NH ₃ PbBr ₃ Perovskite. Journal of Physical Chemistry C, 2016, 120, 616-620.	3.1	88
88	Interfacial Depletion Regions: Beyond the Space Charge Limit in Thick Bulk Heterojunctions. ACS Applied Materials & Interfaces, 2016, 8, 2211-2219.	8.0	23
89	Single-crystalline lead halide perovskite arrays for solar cells. Journal of Materials Chemistry A, 2016, 4, 1214-1217.	10.3	49
90	Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale, 2016, 8, 6278-6283.	5.6	233
91	Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10, 53-59.	31.4	760
92	Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Research, 2017, 10, 2117-2129.	10.4	109

#	Article	IF	CITATIONS
93	Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 424-430.	17.4	117
94	Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite. Advanced Materials, 2017, 29, 1604510.	21.0	182
95	Enhanced Optoelectronic Performance on the (110) Lattice Plane of an MAPbBr ₃ Single Crystal. Journal of Physical Chemistry Letters, 2017, 8, 684-689.	4.6	82
96	Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2, .	48.7	992
97	Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy, 2017, 2, .	39.5	376
98	Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. Chemistry of Materials, 2017, 29, 1964-1988.	6.7	116
99	CsPb _{<i>x</i>} Mn _{1–<i>x</i>} Cl ₃ Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano, 2017, 11, 2239-2247.	14.6	496
100	High performance photodetector based on 2D CH ₃ NH ₃ Pbl ₃ perovskite nanosheets. Journal Physics D: Applied Physics, 2017, 50, 094002.	2.8	60
101	Fabrication and Characterization of High-Quality Perovskite Films with Large Crystal Grains. Journal of Physical Chemistry Letters, 2017, 8, 720-726.	4.6	16
102	In Situ Growth of 120 cm ² CH ₃ NH ₃ PbBr ₃ Perovskite Crystal Film on FTO Glass for Narrowbandâ€Photodetectors. Advanced Materials, 2017, 29, 1602639.	21.0	252
103	Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nature Communications, 2017, 8, 14417.	12.8	189
104	Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Letters, 2017, 17, 2482-2489.	9.1	242
105	Dismantling the "Red Wall―of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals. ACS Nano, 2017, 11, 3119-3134.	14.6	414
106	Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals. Journal of the American Chemical Society, 2017, 139, 3320-3323.	13.7	195
107	Temperature-dependent optical spectra of single-crystal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:n cleaved in ultrahigh vacuum. Physical Review B, 2017, 95, .</mml:n </mml:msub></mml:mrow></mml:math 	ni> £ ₽ <td>nl:#noi><mml:r< td=""></mml:r<></td>	nl:#noi> <mml:r< td=""></mml:r<>
108	Highly Narrowband Photomultiplication Type Organic Photodetectors. Nano Letters, 2017, 17, 1995-2002.	9.1	278
109	Twoâ€Dimensional Materials for Halide Perovskiteâ€Based Optoelectronic Devices. Advanced Materials, 2017, 29, 1605448.	21.0	284
110	The Surface of Hybrid Perovskite Crystals: A Boon or Bane. ACS Energy Letters, 2017, 2, 846-856.	17.4	91

#	Article	IF	CITATIONS
111	Screened Charge Carrier Transport in Methylammonium Lead Iodide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2017, 8, 948-953.	4.6	49
112	Crystallographically Aligned Perovskite Structures for Highâ€Performance Polarization‧ensitive Photodetectors. Advanced Materials, 2017, 29, 1605993.	21.0	198
113	Ultra-broadband optical amplification at telecommunication wavelengths achieved by bismuth-activated lead iodide perovskites. Journal of Materials Chemistry C, 2017, 5, 2591-2596.	5.5	19
114	Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 1851-1855.	4.6	152
115	Thermoresponsive Emission Switching via Lower Critical Solution Temperature Behavior of Organic–Inorganic Perovskite Nanoparticles. Advanced Materials, 2017, 29, 1700047.	21.0	11
116	Ultrafast pulse generation from erbium-doped fiber laser modulated by hybrid organic–inorganic halide perovskites. Applied Physics Letters, 2017, 110, .	3.3	35
117	Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials, 2017, 9, e373-e373.	7.9	145
118	Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11, 315-321.	31.4	580
119	Helical Nanoribbons for Ultra-Narrowband Photodetectors. Journal of the American Chemical Society, 2017, 139, 5644-5647.	13.7	97
120	Nanoionicsâ€Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications. Advanced Electronic Materials, 2017, 3, 1600510.	5.1	167
121	Transient absorption imaging of carrier dynamics in disordered semiconductors. Proceedings of SPIE, 2017, , .	0.8	0
122	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} I ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	14.9	103
123	Ultralarge Allâ€Inorganic Perovskite Bulk Single Crystal for Highâ€Performance Visible–Infrared Dualâ€Modal Photodetectors. Advanced Optical Materials, 2017, 5, 1700157.	7.3	244
124	Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials, 2017, 29, 5019-5030.	6.7	237
125	Photomultiplication type narrowband organic photodetectors working at forward and reverse bias. Physical Chemistry Chemical Physics, 2017, 19, 14424-14430.	2.8	41
126	Matching Charge Extraction Contact for Wideâ€Bandgap Perovskite Solar Cells. Advanced Materials, 2017, 29, 1700607.	21.0	178
127	Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A ₃ M ₂ I ₉ (A = Cs, Rb; M = Bi, Sb). Chemistry of Materials, 2017, 29, 4129-4145.	6.7	509
128	Considerations for Upscaling of Organohalide Perovskite Solar Cells. Advanced Optical Materials, 2017, 5, 1600819.	7.3	18

#	Article	IF	CITATIONS
129	Correlating Photoluminescence Heterogeneity with Local Electronic Properties in Methylammonium Lead Tribromide Perovskite Thin Films. Chemistry of Materials, 2017, 29, 5484-5492.	6.7	42
130	Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs ₂ AgInCl ₆ . Journal of Materials Chemistry A, 2017, 5, 15031-15037.	10.3	319
131	Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nature Communications, 2017, 8, 15421.	12.8	203
132	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	19.5	120
133	Dimensionality and Interface Engineering of 2D Homologous Perovskites for Boosted Charge-Carrier Transport and Photodetection Performances. Journal of Physical Chemistry Letters, 2017, 8, 2565-2572.	4.6	77
134	Crystallization Kinetics and Morphology Control of Formamidinium–Cesium Mixedâ€Cation Lead Mixedâ€Halide Perovskite via Tunability of the Colloidal Precursor Solution. Advanced Materials, 2017, 29, 1607039.	21.0	263
135	Impact of the Halide Cage on the Electronic Properties of Fully Inorganic Cesium Lead Halide Perovskites. ACS Energy Letters, 2017, 2, 1621-1627.	17.4	215
136	Impact of Reabsorption on the Emission Spectra and Recombination Dynamics of Hybrid Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2017, 8, 2977-2983.	4.6	79
137	Field-emission from quantum-dot-in-perovskite solids. Nature Communications, 2017, 8, 14757.	12.8	83
138	FAPb _{1â^²x} Sn _x I ₃ mixed metal halide perovskites with improved light harvesting and stability for efficient planar heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 9097-9106.	10.3	56
139	Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 2017, 5, 4098-4110.	5.5	14
140	High-performance nanotube-enhanced perovskite photodetectors. Scientific Reports, 2017, 7, 45543.	3.3	41
142	Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH ₃ NH ₃ PbI ₃ Microwires. ACS Applied Materials & Interfaces, 2017, 9, 11662-11668.	8.0	81
143	Solution-processed visible-blind UV-A photodetectors based on CH ₃ NH ₃ PbCl ₃ perovskite thin films. Journal of Materials Chemistry C, 2017, 5, 3796-3806.	5.5	90
144	π onjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	21.0	543
145	Inorganic Lead Halide Perovskite Single Crystals: Phaseâ€Selective Lowâ€Temperature Growth, Carrier Transport Properties, and Selfâ€Powered Photodetection. Advanced Optical Materials, 2017, 5, 1600704.	7.3	362
146	CH3NH3PbI3/C60 heterojunction photodetectors with low dark current and high detectivity. Organic Electronics, 2017, 42, 203-208.	2.6	20
147	Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. Journal of Materials Chemistry C. 2017. 5. 399-407.	5.5	23

#	Article	IF	CITATIONS
148	Kinetic Control of Perovskite Thin-Film Morphology and Application in Printable Light-Emitting Diodes. ACS Energy Letters, 2017, 2, 81-87.	17.4	16
149	Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials. ACS Applied Materials & Interfaces, 2017, 9, 1077-1085.	8.0	19
150	Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small, 2017, 13, 1603217.	10.0	117
151	Size-dependent one-photon- and two-photon-pumped amplified spontaneous emission from organometal halide CH ₃ NH ₃ PbBr ₃ perovskite cubic microcrystals. Physical Chemistry Chemical Physics, 2017, 19, 2217-2224.	2.8	31
152	Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region. ACS Applied Materials & Interfaces, 2017, 9, 1569-1576.	8.0	110
153	Detection of charged particles with a methylammonium lead tribromide perovskite single crystal. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 848, 106-108.	1.6	61
154	Twoâ€Dimensional Single‣ayer Organic–Inorganic Hybrid Perovskite Semiconductors. Advanced Energy Materials, 2017, 7, 1601731.	19.5	93
155	Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Materials Horizons, 2017, 4, 242-248.	12.2	127
156	Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11, 726-732.	31.4	984
157	Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM. Journal Physics D: Applied Physics, 2017, 50, 475101.	2.8	4
158	Light Soaking Phenomena in Organic–Inorganic Mixed Halide Perovskite Single Crystals. ACS Photonics, 2017, 4, 2813-2820.	6.6	31
159	Highâ€Performance Flexible Photodetectors based on Highâ€Quality Perovskite Thin Films by a Vapor–Solution Method. Advanced Materials, 2017, 29, 1703256.	21.0	121
160	Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies. ACS Energy Letters, 2017, 2, 2463-2469.	17.4	47
161	Ultrasensitive flexible broadband photodetectors achieving pA scale dark current. Npj Flexible Electronics, 2017, 1, .	10.7	41
162	Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C, 2017, 5, 11369-11394.	5.5	138
163	Caesium â [~] 'Methyl Ammonium Mixed-Cation Lead Iodide Perovskite Crystals: Analysis and Application for Perovskite Solar Cells. Electrochimica Acta, 2017, 257, 267-280.	5.2	25
164	Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals. Scientific Reports, 2017, 7, 13643.	3.3	163
165	Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4258-4263.	4.6	46

#	Article	IF	CITATIONS
166	In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. Journal of Materials Chemistry C, 2017, 5, 9398-9404.	5.5	115
167	Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale, 2017, 9, 13983-13989.	5.6	40
168	Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires. ACS Applied Materials & Interfaces, 2017, 9, 31042-31053.	8.0	15
169	Lowâ€Noise and Largeâ€Linearâ€Dynamicâ€Range Photodetectors Based on Hybridâ€Perovskite Thinâ€6ingleâ€Crystals. Advanced Materials, 2017, 29, 1703209.	21.0	281
170	A review on low dimensional metal halides: Vapor phase epitaxy and physical properties. Journal of Materials Research, 2017, 32, 3992-4024.	2.6	18
171	Optical study on intrinsic exciton states in high-quality <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CH</mml:mi><mml:r single crystals. Physical Review B, 2017, 96, .</mml:r </mml:msub></mml:mrow></mml:math 	mn 3.2 <td>nl:ຂາຄາ></td>	nl :ຂາ ຄາ>
172	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 1700086.	5.8	167
173	Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging. NPG Asia Materials, 2017, 9, e431-e431.	7.9	44
174	Ultrasensitive and Fast Allâ€Inorganic Perovskiteâ€Based Photodetector via Fast Carrier Diffusion. Advanced Materials, 2017, 29, 1703758.	21.0	255
175	Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nature Communications, 2017, 8, 590.	12.8	207
176	Controlling Crystallization of All-Inorganic Perovskite Films for Ultralow-Threshold Amplification Spontaneous Emission. ACS Applied Materials & amp; Interfaces, 2017, 9, 32920-32929.	8.0	23
177	Hybrid Organic–Inorganic Perovskite Photodetectors. Small, 2017, 13, 1702107.	10.0	334
178	Unlocking the Singleâ€Domain Epitaxy of Halide Perovskites. Advanced Materials Interfaces, 2017, 4, 1701003.	3.7	29
179	A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials, 2017, 29, 1605242.	21.0	590
180	Selfâ€Filtered Narrowband Perovskite Photodetectors with Ultrafast and Tuned Spectral Response. Advanced Optical Materials, 2017, 5, 1700672.	7.3	78
181	Time-Resolved Photoconductivity Measurements on Organometal Halide Perovskites. Series on Chemistry, Energy and the Environment, 2017, , 179-232.	0.3	1
182	Polarized emission in II–VI and perovskite colloidal quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 214001.	1.5	4
183	Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO ₃). Journal of the American Chemical Society, 2017, 139, 13525-13532.	13.7	209

~			~
CIT	ATI	ON.	REPORT
U		U	

#	Article	IF	CITATIONS
184	Large Band-Edge Photocurrent Peak in Thick Methylammonium Lead Iodide Photosensors with Symmetric Metal Electrodes. ACS Photonics, 2017, 4, 2171-2178.	6.6	0
185	Asymmetrical Photodetection Response of Methylammonium Lead Bromide Perovskite Single Crystal. Crystal Research and Technology, 2017, 52, 1700115.	1.3	15
186	Multiphoton Absorption Coefficients of Organic–Inorganic Lead Halide Perovskites CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) Single Crystals. Chemistry of Materials, 2017, 29, 6876-6882.	6.7	86
187	Extra long electron–hole diffusion lengths in CH ₃ NH ₃ PbI _{3â°x} Cl _x perovskite single crystals. Journal of Materials Chemistry C, 2017, 5, 8431-8435.	5.5	91
188	Bandgap Narrowing in Bi-Doped CH ₃ NH ₃ PbCl ₃ Perovskite Single Crystals and Thin Films. Journal of Physical Chemistry C, 2017, 121, 17436-17441.	3.1	78
189	Highly stable and flexible photodetector arrays based on low dimensional CsPbBr ₃ microcrystals and on-paper pencil-drawn electrodes. Journal of Materials Chemistry C, 2017, 5, 7441-7445.	5.5	51
190	Photostriction of CH ₃ NH ₃ PbBr ₃ Perovskite Crystals. Advanced Materials, 2017, 29, 1701789.	21.0	86
191	Highâ€Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics. Advanced Materials, 2017, 29, 1702643.	21.0	83
192	Flexible Filterâ€Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. Advanced Functional Materials, 2017, 27, 1702360.	14.9	57
193	Polymer:Fullerene Bimolecular Crystals for Nearâ€Infrared Spectroscopic Photodetectors. Advanced Materials, 2017, 29, 1702184.	21.0	150
194	Ultrahigh Detectivity and Wide Dynamic Range Ultraviolet Photodetectors Based on Bi _{<i>x</i>} Sn _{1–<i>x</i>} O ₂ Intermediate Band Semiconductor. ACS Applied Materials & Interfaces, 2017, 9, 28737-28742.	8.0	31
195	Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal Physics D: Applied Physics, 2017, 50, 375101.	2.8	25
196	Local temperature reduction induced crystallization of MASnI ₃ and achieving a direct wafer production. RSC Advances, 2017, 7, 38155-38159.	3.6	17
197	Nearâ€Infrared and Shortâ€Wavelength Infrared Photodiodes Based on Dye–Perovskite Composites. Advanced Functional Materials, 2017, 27, 1702485.	14.9	59
198	An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic–inorganic perovskite nanoflake. Nanoscale, 2017, 9, 12718-12726.	5.6	83
199	Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46, 5204-5236.	38.1	709
200	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Science and Applications, 2017, 6, e17023-e17023.	16.6	272
201	Reaction between Pyridine and CH3NH3PbI3: Surface-Confined Reaction or Bulk Transformation?. Journal of Physical Chemistry A, 2017, 121, 6755-6765.	2.5	7

#	Article	IF	CITATIONS
202	Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. Journal of the American Chemical Society, 2017, 139, 12267-12273.	13.7	213
203	A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. Journal of Materials Chemistry A, 2017, 5, 19431-19438.	10.3	126
204	Ultrafast Exciton Dynamics in Shape-Controlled Methylammonium Lead Bromide Perovskite Nanostructures: Effect of Quantum Confinement on Charge Carrier Recombination. Journal of Physical Chemistry C, 2017, 121, 28556-28565.	3.1	19
205	Temperature-dependent electronic properties of inorganic-organic hybrid halide perovskite (CH3NH3PbBr3) single crystal. Applied Physics Letters, 2017, 111, .	3.3	10
206	Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 43910-43919.	8.0	90
207	Halide Perovskite Heteroepitaxy: Bond Formation and Carrier Confinement at the PbS–CsPbBr ₃ Interface. Journal of Physical Chemistry C, 2017, 121, 27351-27356.	3.1	40
208	Metal/Ion Interactions Induced p–i–n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. Journal of the American Chemical Society, 2017, 139, 17285-17288.	13.7	32
209	Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nature Communications, 2017, 8, 15882.	12.8	157
210	Dual-Gate Phototransistor With Perovskite Quantum Dots-PMMA Photosensing Nanocomposite Insulator. IEEE Electron Device Letters, 2017, 38, 1270-1273.	3.9	20
211	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	48.7	927
212	The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds. Inorganic Chemistry, 2017, 56, 8408-8414.	4.0	83
213	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces, 2017, 9, 30197-30246.	8.0	453
214	The Role of Surface Tension in the Crystallization of Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1782-1788.	17.4	155
215	Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Science China Materials, 2017, 60, 1063-1078.	6.3	60
216	A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. Journal of Materials Chemistry C, 2017, 5, 6115-6122.	5.5	107
217	Dopant compensation in alloyed CH3NH3PbBr3â^xClx perovskite single crystals for gamma-ray spectroscopy. Nature Materials, 2017, 16, 826-833.	27.5	475
218	Dynamic Electronic Junctions in Organic–Inorganic Hybrid Perovskites. Nano Letters, 2017, 17, 4831-4839.	9.1	26
219	Carbon Photodetectors: The Versatility of Carbon Allotropes. Advanced Energy Materials, 2017, 7, 1601574.	19.5	44

#	Article	IF	CITATIONS
220	Highâ€resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600302.	1.8	40
221	Deterministic Nucleation for Halide Perovskite Thin Films with Large and Uniform Grains. Advanced Functional Materials, 2017, 27, 1702180.	14.9	27
222	Highâ€Resolution Spinâ€onâ€Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array. Advanced Materials, 2017, 29, 1702902.	21.0	148
223	Third-order nonlinear optical response of CH_3NH_3PbI_3 perovskite in the mid-infrared regime. Optical Materials Express, 2017, 7, 3894.	3.0	62
224	High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr_3–graphene hybrid structure. Optica, 2017, 4, 835.	9.3	48
225	Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth and Design, 2018, 18, 2645-2664.	3.0	75
226	Photomultiplication Type Organic Photodetectors with Broadband and Narrowband Response Ability. Advanced Optical Materials, 2018, 6, 1800001.	7.3	98
227	Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment. RSC Advances, 2018, 8, 14848-14853.	3.6	9
228	Quasiâ€2D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	14.9	108
229	In Situ Investigation of the Growth of Methylammonium Lead Halide (MAPbI _{3–<i>x</i>} Br _{<i>x</i>}) Perovskite from Microdroplets. Crystal Growth and Design, 2018, 18, 3458-3464.	3.0	8
230	Cs ₄ PbBr ₆ /CsPbBr ₃ Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application. ACS Applied Materials & Interfaces, 2018, 10, 15905-15912.	8.0	135
231	High Speed and Stable Solutionâ€Processed Triple Cation Perovskite Photodetectors. Advanced Optical Materials, 2018, 6, 1701341.	7.3	69
232	Wavelength Selective Photodetectors Integrated on a Single Compositionâ€Graded Semiconductor Nanowire. Advanced Optical Materials, 2018, 6, 1800293.	7.3	21
233	Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors with High Detectivity. Journal of Physical Chemistry Letters, 2018, 9, 2043-2048.	4.6	123
234	Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nature Communications, 2018, 9, 1336.	12.8	323
235	Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy, 2018, 48, 543-550.	16.0	19
236	Ultrahighâ€Performance Selfâ€Powered Flexible Doubleâ€Twisted Fibrous Broadband Perovskite Photodetector. Advanced Materials, 2018, 30, e1706986.	21.0	177
237	Unravelling Lightâ€Induced Degradation of Layered Perovskite Crystals and Design of Efficient Encapsulation for Improved Photostability. Advanced Functional Materials, 2018, 28, 1800305.	14.9	95

#	Article	IF	CITATIONS
238	Recent Advances in Halide Perovskite Photodetectors Based on Different Dimensional Materials. Advanced Optical Materials, 2018, 6, 1701302.	7.3	107
239	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	21.0	28
240	Mn-Doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED. Dyes and Pigments, 2018, 152, 146-154.	3.7	37
241	Electric-Field-Induced Dynamic Electronic Junctions in Hybrid Organic–Inorganic Perovskites for Optoelectronic Applications. ACS Omega, 2018, 3, 1445-1450.	3.5	21
242	Growth of mixed-halide perovskite single crystals. CrystEngComm, 2018, 20, 1635-1643.	2.6	35
243	Interface Engineering of High-Performance Perovskite Photodetectors Based on PVP/SnO ₂ Electron Transport Layer. ACS Applied Materials & Interfaces, 2018, 10, 6505-6512.	8.0	37
244	Filter-Free Narrowband Photodetectors Employing Colloidal Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	9
245	Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, 2018, 6, 2189-2209.	5.5	165
246	In Situ Observation of Light Illumination-Induced Degradation in Organometal Mixed-Halide Perovskite Films. ACS Applied Materials & Interfaces, 2018, 10, 6737-6746.	8.0	69
247	Synthesis of active absorber layer by dip-coating method for perovskite solar cell. Journal of Molecular Structure, 2018, 1158, 229-233.	3.6	12
248	Allâ€Inorganic CsPbI ₃ Perovskite Phaseâ€Stabilized by Poly(ethylene oxide) for Redâ€Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1706401.	14.9	156
249	Lead Halide Perovskite Based Microdisk Lasers for Onâ€Chip Integrated Photonic Circuits. Advanced Optical Materials, 2018, 6, 1701266.	7.3	48
250	Rare Earth Ionâ€Ðoped CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2018, 6, 1700864.	7.3	130
251	Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702073.	19.5	74
252	Correlational study of halogen tuning effect in hybrid perovskite single crystals with Raman scattering, X-ray diffraction, and absorption spectroscopy. Journal of Alloys and Compounds, 2018, 738, 239-245.	5.5	22
253	Photocurrent Spectroscopy of Perovskite Solar Cells Over a Wide Temperature Range from 15 to 350 K. Journal of Physical Chemistry Letters, 2018, 9, 263-268.	4.6	23
254	Regular Aligned 1D Singleâ€Crystalline Supramolecular Arrays for Photodetectors. Small, 2018, 14, 1701861.	10.0	18
255	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	5.8	31

#	ARTICLE	IF	CITATIONS
256	Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr ₃ single crystal. Journal Physics D: Applied Physics, 2018, 51, 045105.	2.8	54
257	Highâ€Performance Singleâ€Crystalline Perovskite Thinâ€Film Photodetector. Advanced Materials, 2018, 30, 1704333.	21.0	225
258	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	21.0	81
259	Recent advances in organic near-infrared photodiodes. Journal of Materials Chemistry C, 2018, 6, 3499-3513.	5.5	168
260	High-Performance Photodetectors Based on Solution-Processed Epitaxial Grown Hybrid Halide Perovskites. Nano Letters, 2018, 18, 994-1000.	9.1	105
261	Controllable Vapor-Phase Growth of Inorganic Perovskite Microwire Networks for High-Efficiency and Temperature-Stable Photodetectors. ACS Photonics, 2018, 5, 2524-2532.	6.6	100
262	Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging. Nano Letters, 2018, 18, 3024-3031.	9.1	38
263	Imaging Carrier Diffusion in Perovskites with a Diffractive Optic-Based Transient Absorption Microscope. Journal of Physical Chemistry C, 2018, 122, 10650-10656.	3.1	31
264	Excitonic Effects in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2595-2603.	4.6	107
265	Exploring the role of spin-triplets and trap states in photovoltaic processes of perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 5055-5062.	5.5	10
266	Highly Efficient Spectrally Stable Red Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1707093.	21.0	184
267	Integrated Optical Amplifier–Photodetector on a Wearable Nanocellulose Substrate. Advanced Optical Materials, 2018, 6, 1800201.	7.3	24
268	Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes. ACS Applied Materials & Interfaces, 2018, 10, 12878-12885.	8.0	38
269	Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy and Environmental Science, 2018, 11, 1460-1469.	30.8	61
270	Top-Down Approaches Towards Single Crystal Perovskite Solar Cells. Scientific Reports, 2018, 8, 4906.	3.3	34
271	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	38.1	339
272	Excellent microwave absorption of lead halide perovskites with high stability. Journal of Materials Chemistry C, 2018, 6, 4201-4207.	5.5	28
273	Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science	6.7	110

#	Article	IF	CITATIONS
274	Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule, 2018, 2, 788-798.	24.0	187
275	Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund Leistungsfäigkeit der Zellen. Angewandte Chemie, 2018, 130, 2582-2598.	2.0	37
276	Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie - International Edition, 2018, 57, 2554-2569.	13.8	413
277	Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52, 172-183.	2.6	83
278	Solution-grown large-area C60 single-crystal arrays as organic photodetectors. Carbon, 2018, 126, 299-304.	10.3	40
279	The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Advanced Materials, 2018, 30, 1700764.	21.0	141
280	Lightâ€Responsive Ionâ€Redistributionâ€Induced Resistive Switching in Hybrid Perovskite Schottky Junctions. Advanced Functional Materials, 2018, 28, 1704665.	14.9	169
281	Toward High Uniformity of Photoresponse Broadband Hybrid Organic–Inorganic Photodiode Based on PVPâ€Modified Perovskite. Advanced Optical Materials, 2018, 6, 1700509.	7.3	19
282	Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Advanced Materials, 2018, 30, 1703879.	21.0	198
283	Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. Advanced Functional Materials, 2018, 28, 1705589.	14.9	42
284	Solution Processed CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 2018, 3, 135-142.	7.8	96
285	Photophysical Model for Non-Exponential Relaxation Dynamics in Hybrid Perovskite Semiconductors. Journal of Physical Chemistry C, 2018, 122, 1119-1124.	3.1	15
286	Multicolor Spectral-Specific Silicon Nanodetectors based on Molecularly Embedded Nanowires. Nano Letters, 2018, 18, 190-201.	9.1	22
287	Nanocrystals of halide perovskite: Synthesis, properties, and applications. Journal of Energy Chemistry, 2018, 27, 622-636.	12.9	43
288	Photoconductive noise microscopy revealing quantitative effect of localized electronic traps on the perovskite-based solar cell performance. Nano Energy, 2018, 43, 29-36.	16.0	16
289	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	21.0	162
290	Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. Nanoscale, 2018, 10, 359-365.	5.6	32
291	Recent Progress in Singleâ€Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science, 2018, 5, 1700471.	11.2	223

#	Article	IF	CITATIONS
292	Solution Processed Trilayer Structure for High-Performance Perovskite Photodetector. Nanoscale Research Letters, 2018, 13, 399.	5.7	42
293	Inkjet-Printing of Methylammonium Lead Trihalide Perovskite-Based Flexible Optoelectronic Devices. , 2018, , .		2
294	First-principles characterization of two-dimensional (CH ₃ (CH ₂) ₃ NH ₃) ₂ (CH ₃ NH ₃) perovskite. Journal of Materials Chemistry A, 2018, 6, 24389-24396.	3⊲/ o ub>)<	su da ≥nâ^'1 </td
295	Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10, 20963-20989.	5.6	44
296	Ultrasensitive photodetectors based on a high-quality LiInSe ₂ single crystal. Journal of Materials Chemistry C, 2018, 6, 12615-12622.	5.5	8
297	Excess charge-carrier induced instability of hybrid perovskites. Nature Communications, 2018, 9, 4981.	12.8	159
298	Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial Vision. Nano Letters, 2018, 18, 7628-7634.	9.1	180
299	Communicating Two States in Perovskite Revealed by Time-Resolved Photoluminescence Spectroscopy. Scientific Reports, 2018, 8, 16482.	3.3	18
300	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	31.4	715
301	Exploring the Carrier Dynamics in Zinc Oxide–Metal Halide-Based Perovskite Nanostructures: Toward Reduced Dielectric Loss and Improved Photocurrent. Journal of Physical Chemistry C, 2018, 122, 27273-27283.	3.1	19
302	Towards a Spectrally Customized Photoresponse from an Organic–Inorganic Hybrid Ferroelectric. Angewandte Chemie, 2018, 130, 17006-17009.	2.0	3
303	Recent research process on perovskite photodetectors: A review for photodetector—materials, physics, and applications. Chinese Physics B, 2018, 27, 127806.	1.4	27
304	Single crystal hybrid perovskite field-effect transistors. Nature Communications, 2018, 9, 5354.	12.8	255
305	Recent Progress on Photomultiplication Type Organic Photodetectors. Laser and Photonics Reviews, 2019, 13, 1800204.	8.7	190
306	Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nature Communications, 2018, 9, 5302.	12.8	212
308	A Sensitive Broadband (UV–vis–NIR) Perovskite Photodetector Using Topological Insulator as Electrodes. Advanced Optical Materials, 2019, 7, 1801392.	7.3	28
309	Metal contact and carrier transport in single crystalline CH3NH3PbBr3 perovskite. Nano Energy, 2018, 53, 817-827.	16.0	26
310	Large and Ultrastable Allâ€Inorganic CsPbBr ₃ Monocrystalline Films: Lowâ€Temperature Growth and Application for Highâ€Performance Photodetectors. Advanced Materials, 2018, 30, e1802110.	21.0	94

#	Article	IF	CITATIONS
311	Understanding the Passivation Mechanisms and Opto-Electronic Spectral Response in Methylammonium Lead Halide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2018, 10, 35580-35588.	8.0	19
312	Large electrostrictive response in lead halide perovskites. Nature Materials, 2018, 17, 1020-1026.	27.5	137
313	Bandgap Engineering of Singleâ€Crystalline Perovskite Arrays for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1804349.	14.9	66
314	Synthetic Approach To Achieve a Thin-Film Red-Selective Polymer Photodiode: Difluorobenzothiadiazole-Based Donor–Acceptor Polymer with Enhanced Space Charge Carriers. Macromolecules, 2018, 51, 8241-8247.	4.8	13
315	Steady-state microwave conductivity reveals mobility-lifetime product in methylammonium lead iodide. Applied Physics Letters, 2018, 113, 153902.	3.3	9
316	Exploring Anisotropy on Oriented Wafers of MAPbBr ₃ Crystals Grown by Controlled Antisolvent Diffusion. Crystal Growth and Design, 2018, 18, 6652-6660.	3.0	62
317	Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512.	6.6	17
318	Towards a Spectrally Customized Photoresponse from an Organic–Inorganic Hybrid Ferroelectric. Angewandte Chemie - International Edition, 2018, 57, 16764-16767.	13.8	18
319	Highly Efficient Perovskite Solar Cells via Nickel Passivation. Advanced Functional Materials, 2018, 28, 1804286.	14.9	100
320	Face-shared structures of one-dimensional organic–inorganic lead iodide perovskites. Applied Physics Express, 2018, 11, 115502.	2.4	3
321	High-sensitive and fast response to 255 nm deep-UV light of CH 3 NH 3 PbX 3 (X = Cl, Br, I) bulk crystals. Royal Society Open Science, 2018, 5, 180905.	2.4	25
322	Millimeter-Scale Nonlocal Photo-Sensing Based on Single-Crystal Perovskite Photodetector. IScience, 2018, 7, 110-119.	4.1	14
323	Investigation of Interface Effect on the Performance of CH ₃ NH ₃ PbCl ₃ /ZnO UV Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 34744-34750.	8.0	40
324	Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates. Molecular Systems Design and Engineering, 2018, 3, 723-728.	3.4	7
325	Highly Efficient and Stable Selfâ€Powered Ultraviolet and Deepâ€Blue Photodetector Based on Cs ₂ AgBiBr ₆ /SnO ₂ Heterojunction. Advanced Optical Materials, 2018, 6, 1800811.	7.3	130
326	Variations in the Composition of the Phases Lead to the Differences in the Optoelectronic Properties of MAPbBr3 Thin Films and Crystals. Journal of Physical Chemistry C, 2018, 122, 21817-21823.	3.1	15
327	PIN Diodes Array Made of Perovskite Single Crystal for Xâ€Ray Imaging. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800380.	2.4	63
328	Structural fluctuations cause spin-split states in tetragonal (CH ₃ NH ₃)PbI ₃ as evidenced by the circular photogalvanic effect. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9509-9514.	7.1	106

#	Article	IF	CITATIONS
329	Improved Charge Carrier Dynamics of CH ₃ NH ₃ PbI ₃ Perovskite Films Synthesized by Means of Laser-Assisted Crystallization. ACS Applied Energy Materials, 2018, 1, 5101-5111.	5.1	31
330	Optoelectronic Dichotomy of Mixed Halide CH ₃ NH ₃ Pb(Br _{1–<i>x</i>} Cl _{<i>x</i>}) ₃ Single Crystals: Surface versus Bulk Photoluminescence. Journal of the American Chemical Society, 2018. 140. 11811-11819.	13.7	22
331	Seeded Spaceâ€Limited Crystallization of CH ₃ NH ₃ PbI ₃ Singleâ€Crystal Plates for Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700655.	5.1	43
332	Picosecond Random Lasing Based on Three-Photon Absorption in Organometallic Halide CH3NH3PbBr3 Perovskite Thin Films. ACS Photonics, 2018, 5, 2951-2959.	6.6	45
333	Molecular engineering of perovskite photodetectors: recent advances in materials and devices. Molecular Systems Design and Engineering, 2018, 3, 702-716.	3.4	33
334	Constructing Sensitive and Fast Lead-Free Single-Crystalline Perovskite Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 3087-3092.	4.6	92
335	Efficient and stable green-emitting CsPbBr3 perovskite nanocrystals in a microcapsule for light emitting diodes. Chemical Engineering Journal, 2018, 352, 957-963.	12.7	36
336	A non-volatile "programmable―transparent multilevel ultra-violet perovskite photodetector. Nanoscale, 2018, 10, 11392-11396.	5.6	14
337	Darkâ€Field Sensors based on Organometallic Halide Perovskite Microlasers. Advanced Materials, 2018, 30, e1801481.	21.0	36
338	Recent Advances in Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2018, 6, 1800278.	7.3	149
339	In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Advanced Optical Materials, 2018, 6, 1800380.	7.3	176
340	Flexible Narrowband Ultraviolet Photodetectors with Photomultiplication Based on Wide Band Gap Conjugated Polymer and Inorganic Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 24064-24074.	8.0	40
341	Giant current amplification induced by ion migration in perovskite single crystal photodetectors. Journal of Materials Chemistry C, 2018, 6, 8042-8050.	5.5	31
342	High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 2018, 51, 324-332.	16.0	53
343	High Performance and Stable Allâ€Inorganic Metal Halide Perovskiteâ€Based Photodetectors for Optical Communication Applications. Advanced Materials, 2018, 30, e1803422.	21.0	342
344	Pressure-Assisted Annealing Strategy for High-Performance Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 4714-4719.	4.6	50
345	Low dark-current and high-photodetectivity transparent organic ultraviolet photodetector by using polymer-modified ZnO as the electron transfer layer. Optics Letters, 2018, 43, 3212.	3.3	21
346	Metal Halide Perovskite Single Crystals: From Growth Process to Application. Crystals, 2018, 8, 220.	2.2	31

#	Article	IF	CITATIONS
347	Atomic Characterization of Byproduct Nanoparticles on Cesium Lead Halide Nanocrystals Using High-Resolution Scanning Transmission Electron Microscopy. Crystals, 2018, 8, 2.	2.2	27
348	Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal. Crystals, 2018, 8, 232.	2.2	8
349	Electronic structure, elastic and phonon properties of perovskite-type hydrides MgXH 3 (X = Fe, Co) for hydrogen storage. Solid State Communications, 2018, 281, 38-43.	1.9	36
350	Understanding the Effects of NaCl, NaBr and Their Mixtures on Silver Nanowire Nucleation and Growth in Terms of the Distribution of Electron Traps in Silver Halide Crystals. Nanomaterials, 2018, 8, 161.	4.1	24
351	Perovskite Single-Crystal Microarrays for Efficient Photovoltaic Devices. Chemistry of Materials, 2018, 30, 4590-4596.	6.7	33
352	The Role of Surface Defects in Photoluminescence and Decay Dynamics of High-Quality Perovskite MAPbl ₃ Single Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4221-4226.	4.6	54
353	Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nature Electronics, 2018, 1, 404-410.	26.0	351
354	Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustainable Energy and Fuels, 2018, 2, 2237-2243.	4.9	18
355	Temperature Dependent Photoinduced Reversible Phase Separation in Mixed-Halide Perovskite. ACS Applied Energy Materials, 2018, 1, 3807-3814.	5.1	36
356	A Highly Sensitive UV–vis–NIR Allâ€Inorganic Perovskite Quantum Dot Phototransistor Based on a Layered Heterojunction. Advanced Optical Materials, 2018, 6, 1800324.	7.3	51
357	Anisotropic Optoelectronic Properties of Melt-Grown Bulk CsPbBr ₃ Single Crystal. Journal of Physical Chemistry Letters, 2018, 9, 5040-5046.	4.6	84
358	Structural effects on optoelectronic properties of halide perovskites. Chemical Society Reviews, 2018, 47, 7045-7077.	38.1	108
359	Methylammonium, formamidinium and ethylenediamine mixed triple-cation perovskite solar cells with high efficiency and remarkable stability. Journal of Materials Chemistry A, 2018, 6, 17625-17632.	10.3	37
360	Observation of the growth of MAPbBr3 single-crystalline thin film based on space-limited method. Journal of Crystal Growth, 2018, 501, 27-33.	1.5	20
361	Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High-Performance Solar Cells. Scientific Reports, 2018, 8, 12885.	3.3	109
362	Methylammonium iodide and its effect as an intrinsic defect in perovskite structure and device performance. Organic Electronics, 2018, 62, 304-310.	2.6	2
363	Out-of-plane polarization in a layered manganese chloride hybrid. APL Materials, 2018, 6, .	5.1	13
364	Zero-dimensional Cs ₄ EuX ₆ (X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6, 6647-6655.	5.5	66

#	Article	IF	CITATIONS
365	Photoelectric Detectors Based on Inorganic pâ€Type Semiconductor Materials. Advanced Materials, 2018, 30, e1706262.	21.0	344
366	Roomâ€Temperature Tripleâ€Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQEâ€11.6% Perovskite QLEDs. Advanced Materials, 2018, 30, e1800764.	21.0	431
367	Organic Photodetectors with Gain and Broadband/Narrowband Response under Top/Bottom Illumination Conditions. Advanced Optical Materials, 2018, 6, 1800249.	7.3	108
368	Regulated Dewetting for Patterning Organic Single Crystals with Pure Crystallographic Orientation toward High Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1800470.	14.9	47
369	Perovskite-based lasers. , 2019, , 41-74.		5
370	Multilayered PdSe ₂ /Perovskite Schottky Junction for Fast, Selfâ€Powered, Polarizationâ€Sensitive, Broadband Photodetectors, and Image Sensor Application. Advanced Science, 2019, 6, 1901134.	11.2	308
371	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	4.6	60
372	Surface-Emitting Perovskite Random Lasers for Speckle-Free Imaging. ACS Nano, 2019, 13, 10653-10661.	14.6	87
373	A Transparent Photonic Artificial Visual Cortex. Advanced Materials, 2019, 31, e1903095.	21.0	53
374	Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications. Science China Chemistry, 2019, 62, 1257-1262.	8.2	39
375	Perturbation-Induced Seeding and Crystallization of Hybrid Perovskites over Surface-Modified Substrates for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 27727-27734.	8.0	12
376	Intermediate phase-assisted solution preparation of two dimensional CsPbCl3 perovskite for efficient ultraviolet photodetection. Journal of Colloid and Interface Science, 2019, 554, 619-626.	9.4	21
377	Recent Advances in the Hardware of Visible Light Communication. IEEE Access, 2019, 7, 91093-91104.	4.2	27
378	Benefit from Photon Recycling at the Maximum-Power Point of State-of-the-Art Perovskite Solar Cells. Physical Review Applied, 2019, 12, .	3.8	50
379	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	32.8	95
380	Probing reversible photoluminescence alteration in CH3NH3PbBr3 colloidal quantum dots for luminescence-based gas sensing application. Journal of Colloid and Interface Science, 2019, 554, 668-673.	9.4	10
381	Carbon Nanotube-Perovskite Composites for Ultrasensitive Broadband Photodiodes. ACS Applied Nano Materials, 2019, 2, 4974-4982.	5.0	18
382	Recent Progress on Cesium Lead Halide Perovskites for Photodetection Applications. ACS Applied Electronic Materials, 2019, 1, 1348-1366.	4.3	42

#	Article	IF	CITATIONS
383	Mixed-halide perovskite synthesis by chemical reaction and crystal nucleation under an optical potential. NPG Asia Materials, 2019, 11, .	7.9	17
384	Efficiency and spectral performance of narrowband organic and perovskite photodetectors: a cross-sectional review. JPhys Materials, 2019, 2, 042001.	4.2	57
385	Interfacialâ€Tunnelingâ€Effectâ€Enhanced CsPbBr ₃ Photodetectors Featuring High Detectivity and Stability. Advanced Functional Materials, 2019, 29, 1904461.	14.9	70
386	Defect states of organic lead halide single crystals grown by inverse-temperature crystallization. Applied Physics Letters, 2019, 115, .	3.3	9
387	Ternary diagrams of the phase, optical bandgap energy and photoluminescence of mixed-halide perovskites. Acta Materialia, 2019, 181, 460-469.	7.9	14
388	Solution-Processed Inorganic Perovskite Flexible Photodetectors with High Performance. Nanoscale Research Letters, 2019, 14, 284.	5.7	21
389	Perovskite light-emitting diodes for uniform eight-segment displays. Applied Physics Letters, 2019, 115, .	3.3	4
390	Effects of Material Dimensionality on the Optical Properties of CsPbBr ₃ Nanomaterials. Journal of Physical Chemistry C, 2019, 123, 28893-28897.	3.1	8
391	High-Energy Optical Transitions and Optical Constants of CH3NH3PbI3 Measured by Spectroscopic Ellipsometry and Spectrophotometry. Journal of Physical Chemistry C, 2019, 123, 28795-28801.	3.1	9
392	Equalization scheme with misalignment estimation based on multi-layer perceptrons for holographic data storage systems. Japanese Journal of Applied Physics, 2019, 58, SKKD02.	1.5	1
393	Selfâ€Powered UV–Vis–NIR Photodetector Based on Conjugatedâ€Polymer/CsPbBr ₃ Nanowire Array. Advanced Functional Materials, 2019, 29, 1906756.	14.9	63
394	Halogenatedâ€Methylammonium Based 3D Halide Perovskites. Advanced Materials, 2019, 31, e1903830.	21.0	40
395	Filterless Polarization‣ensitive 2D Perovskite Narrowband Photodetectors. Advanced Optical Materials, 2019, 7, 1900988.	7.3	83
396	Tunable selfâ€powered n‣rTiO ₃ photodetectors based on varying CuSâ€ZnS nanocomposite film (pâ€CuZnS, pâ€CuS, and nâ€ZnS). InformaĂnÃ-Materiály, 2019, 1, 542-551.	17.3	44
397	Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System. Small, 2019, 15, e1903599.	10.0	101
398	High-Performance Planar-Type Ultraviolet Photodetector Based on High-Quality CH ₃ NH ₃ PbCl ₃ Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 34144-34150.	8.0	71
399	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & amp; Interfaces, 2019, 11, 35914-35923.	8.0	65
400	Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 2019, 10, 4145.	12.8	93

#	Article	IF	CITATIONS
401	<i>In situ</i> monitoring of the charge carrier dynamics of CH ₃ NH ₃ PbI ₃ perovskite crystallization process. Journal of Materials Chemistry C, 2019, 7, 12170-12179.	5.5	10
402	Structural, Photophysical, and Electronic Properties of CH3NH3PbCl3 Single Crystals. Scientific Reports, 2019, 9, 13311.	3.3	32
403	Solution-Processed Ultrahigh Detectivity Photodetectors by Hybrid Perovskite Incorporated with Heterovalent Neodymium Cations. ACS Omega, 2019, 4, 15873-15878.	3.5	13
404	Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Research, 2019, 12, 2858-2865.	10.4	11
405	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	12.8	49
406	Electrical-Field-Driven Tunable Spectral Responses in a Broadband-Absorbing Perovskite Photodiode. ACS Applied Materials & Interfaces, 2019, 11, 39018-39025.	8.0	8
407	MAPbl ₃ Single Crystals Free from Hole-Trapping Centers for Enhanced Photodetectivity. ACS Energy Letters, 2019, 4, 2579-2584.	17.4	40
408	Thermochromic Leadâ€Free Halide Double Perovskites. Advanced Functional Materials, 2019, 29, 1807375.	14.9	120
409	Air-stable formamidinium/methylammonium mixed lead iodide perovskite integral microcrystals with low trap density and high photo-responsivity. Physical Chemistry Chemical Physics, 2019, 21, 3106-3113.	2.8	16
410	Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer. Journal of Materials Chemistry C, 2019, 7, 1544-1550.	5.5	36
411	Thick junction photodiodes based on crushed perovskite crystal/polymer composite films. Journal of Materials Chemistry C, 2019, 7, 1859-1863.	5.5	16
412	Magneto-open-circuit voltage in organic-inorganic halide perovskite solar cells. Applied Physics Letters, 2019, 114, .	3.3	2
413	Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crystals, 2019, 9, 59.	2.2	51
414	Excitonic Properties of Low-Band-Gap Lead–Tin Halide Perovskites. ACS Energy Letters, 2019, 4, 615-621.	17.4	51
415	High-Performance Photodetectors Based on Lead-Free 2D Ruddlesden–Popper Perovskite/MoS ₂ Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 8419-8427.	8.0	114
416	Bifunctional Etalon-Electrode To Realize High-Performance Color Filter Free Image Sensor. ACS Nano, 2019, 13, 2127-2135.	14.6	20
417	Understanding the Formation of Vertical Orientation in Two-dimensional Metal Halide Perovskite Thin Films. Chemistry of Materials, 2019, 31, 1336-1343.	6.7	93
418	Highly Narrow-Band Polarization-Sensitive Solar-Blind Photodetectors Based on β-Ga ₂ O ₃ Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 7131-7137	8.0	55

#	Article	IF	CITATIONS
419	Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale, 2019, 11, 2871-2877.	5.6	74
420	Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019, 7, 1413-1446.	5.5	182
421	Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7, 1741-1791.	5.5	353
422	Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability. Journal of Materials Science, 2019, 54, 12000-12011.	3.7	27
423	Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711.	5.5	6
424	3D-printed continuous flow reactor for high yield synthesis of CH ₃ NH ₃ PbX ₃ (X = Br, I) nanocrystals. Journal of Materials Chemistry C, 2019, 7, 9167-9174.	5.5	22
425	Decreasing Exciton Binding Energy in Two-Dimensional Halide Perovskites by Lead Vacancies. Journal of Physical Chemistry Letters, 2019, 10, 3820-3827.	4.6	27
426	Morphology of X-ray detector Cs ₂ Tel ₆ perovskite thick films grown by electrospray method. Journal of Materials Chemistry C, 2019, 7, 8712-8719.	5.5	29
427	Epitaxial Stabilization of Tetragonal Cesium Tin Iodide. ACS Applied Materials & Interfaces, 2019, 11, 32076-32083.	8.0	28
428	Multiple-engineering controlled growth of tunable-bandgap perovskite nanowires for high performance photodetectors. RSC Advances, 2019, 9, 19772-19779.	3.6	5
429	Unusual Stability and Temperature-Dependent Properties of Highly Emissive CsPbBr ₃ Perovskite Nanocrystals Obtained from in Situ Crystallization in Poly(vinylidene difluoride). ACS Applied Materials & Interfaces, 2019, 11, 22786-22793.	8.0	55
430	Differential Spaceâ€Limited Crystallization of Mixedâ€Cation Lead Iodide Singleâ€Crystal Microâ€Plates Enhances the Performance of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900130.	5.8	12
431	Lead Halide Perovskiteâ€Based Dynamic Metasurfaces. Laser and Photonics Reviews, 2019, 13, 1900079.	8.7	42
432	A Leap towards High-Performance 2D Perovskite Photodetectors. Trends in Chemistry, 2019, 1, 365-367.	8.5	12
433	Optimizing optoelectronic performances by controlling halide compositions of MAPb(Cl _x I _{1a^'x}) ₃ single crystals. CrystEngComm, 2019, 21, 4169-4174.	2.6	9
434	Could Nanocomposites Continue the Success of Halide Perovskites?. ACS Energy Letters, 2019, 4, 1446-1454.	17.4	9
435	Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Frontiers of Physics, 2019, 14, 1.	5.0	42
436	Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019, 48, 3842-3867.	38.1	1,257

ARTICLE IF CITATIONS MA₂CoBr₄: lead-free cobalt-based perovskite for electrochemical conversion 437 4.1 13 of water to oxygen. Chemical Communications, 2019, 55, 6779-6782. One step method of ions regulation and defect passivation of perovskite film for high performance 2.6 photodetector. Organic Electronics, 2019, 71, 169-174. Edge Effect on the Population of Free Carriers and Excitons in Singleâ€Crystal CH₃NH₃PbBr₃Perovskite Nanomaterials. Advanced Electronic 439 5.133 Materials, 2019, 5, 1900216. Surface-Tension-Controlled Crystallization for High-Quality 2D Perovskite Single Crystals for 440 Ultrahigh Photodetection. Matter, 2019, 1, 465-480. Organic Cavity Photodetectors Based on Nanometer-Thick Active Layers for Tunable Monochromatic 441 6.6 27 Spectral Response. ACS Photonics, 2019, 6, 1393-1399. Phase formation and local charge transport of lead-free CH3NH3Sn(I1â[^]xBrx)3 (0â€â‰**≇**€⁻xâ€â‰**≇**€⁻1) perovskite solar 23 cells fabricated by solvent optimization. Solar Energy, 2019, 186, 136-144. Role of Quantum Confinement in 10 nm Scale Perovskite Optoelectronics. Journal of Physical 443 4.6 8 Chemistry Letters, 2019, 10, 2745-2752. Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095. 21.0 444 94 Millimeter-Sized Single-Crystal CsPbrB₃/Cul Heterojunction for High-Performance 445 4.6 99 Self-Powered Photodetector. Journal of Physical Chemistry Letters, 2019, 10, 2400-2407. Band Tunable Microcavity Perovskite Artificial Human Photoreceptors. Advanced Materials, 2019, 31, 446 21.0 e1900231. Controllable Growth of Centimeter-Sized 2D Perovskite Heterostructures for Highly Narrow 447 14.6 110 Dual-Band Photodetectors. ACS Nano, 2019, 13, 5473-5484. Reaction Temperature and Partial Pressure Induced Etching of Methylammonium Lead Iodide Perovskite 448 3.5 by Trimethylaluminum. Langmuir, 2019, 35, 6522-6531. Bulk- and Nanocrystalline-Halide Perovskite Light-Emitting Diodes., 2019, , 305-341. 449 3 All-optical control of lead halide perovskite microlasers. Nature Communications, 2019, 10, 1770. 12.8 104 A laminar MAPbBr3/MAPbBr3â[^]xlx graded heterojunction single crystal for enhancing charge 451 20 5.5extraction and optoelectronic performance. Journal of Materials Chemistry C, 2019, 7, 5670-5676. Hydration of mixed halide perovskites investigated by Fourier transform infrared spectroscopy. APL 5.1 Materials, 2019, 7, 031107. Rational design of a junction structure to realize an NIR-selective narrowband organic thin-film 453 5.5 13 photodiode. Journal of Materials Chemistry C, 2019, 7, 4770-4777. Doping-Enhanced Visible-Light Absorption of CH₃NH₃PbBr₃ by the 454 Bi³⁺-Induced Impurity Band without Sacrificing a Band gap. Journal of Physical Chemistry 3.1 C, 2019, 123, 8578-8587.

#	Article	IF	CITATIONS
455	Performance enhancement of perovskite solar cells <i>via</i> material quality improvement assisted by MAI/IPA solution post-treatment. Dalton Transactions, 2019, 48, 5292-5298.	3.3	8
456	Leadâ€Free Perovskite Derivative Cs ₂ SnCl _{6â^²} <i>_x</i> Br <i>_x</i> Single Crystals for Narrowband Photodetectors. Advanced Optical Materials, 2019, 7, 1900139.	7.3	123
457	Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells. Organic Electronics, 2019, 69, 13-19.	2.6	9
458	Short-chain ligand assisted synthesis of CH3NH3PbX3 (X = Cl, Br, l) perovskite quantum dots and improved morphology of CH3NH3PbBr3 thin films. Journal of Luminescence, 2019, 211, 26-31.	3.1	12
459	Bidentate chelating ligands as effective passivating materials for perovskite light-emitting diodes. Physical Chemistry Chemical Physics, 2019, 21, 7867-7873.	2.8	17
460	Dimensional Control in Contorted Aromatic Materials. Chemical Record, 2019, 19, 1050-1061.	5.8	24
461	Organolead halide perovskite-based metal-oxide-semiconductor structure photodetectors achieving ultrahigh detectivity. Solar Energy, 2019, 183, 226-233.	6.1	14
462	Rapid Growth of Halide Perovskite Single Crystals: From Methods to Optimization Control. Chinese Journal of Chemistry, 2019, 37, 616-629.	4.9	24
463	QTAIM method for accelerated prediction of band gaps in perovskites. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	5
464	Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. Journal of Semiconductors, 2019, 40, 041901.	3.7	17
465	Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state. APL Materials, 2019, 7, .	5.1	42
466	Design Growth of Triangular Pyramid MAPbBr ₃ Single Crystal and Its Photoelectric Anisotropy between (100) and (111) Facets. Journal of Physical Chemistry C, 2019, 123, 10826-10830.	3.1	39
467	Processing Halide Perovskite Materials with Semiconductor Technology. Advanced Materials Technologies, 2019, 4, 1800729.	5.8	27
468	The Dominant Energy Transport Pathway in Halide Perovskites: Photon Recycling or Carrier Diffusion?. Advanced Energy Materials, 2019, 9, 1900185.	19.5	85
469	A high performance perovskite CH ₃ NH ₃ PbCl ₃ single crystal photodetector: benefiting from an evolutionary preparation process. Journal of Materials Chemistry C, 2019, 7, 5442-5450.	5.5	39
470	Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI3 perovskite thin films. APL Materials, 2019, 7, .	5.1	18
471	Corrections to the Hecht collection efficiency in photoconductive detectors under large signals: non-uniform electric field due to drifting and trapped unipolar carriers. Journal Physics D: Applied Physics, 2019, 52, 135104.	2.8	12
472	Metal halide perovskite photodetectors: Material features and device engineering. Chinese Physics B, 2019, 28, 018502.	1.4	18

#	Article	IF	CITATIONS
473	Low-temperature photoluminescence spectroscopy of CH3NH3PbBrxCl3-x perovskite single crystals. Journal of Alloys and Compounds, 2019, 792, 185-190.	5.5	11
474	Recent Advances in Halide Perovskite Singleâ€Crystal Thin Films: Fabrication Methods and Optoelectronic Applications. Solar Rrl, 2019, 3, 1800294.	5.8	94
475	Charge Transport in Halide Perovskite Single Crystals: Experimental and Theoretical Perspectives. ChemNanoMat, 2019, 5, 290-299.	2.8	4
476	Cavity Enhanced Organic Photodiodes with Charge Collection Narrowing. Advanced Optical Materials, 2019, 7, 1801543.	7.3	38
477	Two-Dimensional CH ₃ NH ₃ PbI ₃ with High Efficiency and Superior Carrier Mobility: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 5231-5239.	3.1	41
478	Vertical Ge–Si Nanowires with Suspended Graphene Top Contacts as Dynamically Tunable Multispectral Photodetectors. ACS Photonics, 2019, 6, 735-742.	6.6	15
479	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	25.6	303
480	Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nature Communications, 2019, 10, 695.	12.8	156
481	Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nature Communications, 2019, 10, 806.	12.8	207
482	A study of structural phase transitions and optoelectronic properties of perovskite-type hydride MgFeH ₃ : <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2019, 31, 305401.	1.8	11
483	Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light: Science and Applications, 2019, 8, 106.	16.6	172
484	Photo detector based on graded band gap perovskite crystal. Solar Energy, 2019, 194, 563-568.	6.1	12
485	Synthesis of a silica coated fully-inorganic perovskite with enhanced moisture stability. New Journal of Chemistry, 2019, 43, 16685-16690.	2.8	13
486	Crystal and Band-Gap Engineering of One-Dimensional Antimony/Bismuth-Based Organic–Inorganic Hybrids. Inorganic Chemistry, 2019, 58, 16346-16353.	4.0	20
487	Effects of C ₈ H ₁₇ NH ₃ Br additive on properties of CH ₃ NH ₃ PbBr ₃ perovskite thin films. Materials Research Express, 2019, 6, 126425.	1.6	3
488	Exploiting supramolecular assemblies for filterless ultra-narrowband organic photodetectors with inkjet fabrication capability. Journal of Materials Chemistry C, 2019, 7, 14639-14650.	5.5	24
489	Direct imaging of carrier diffusion length in organic-inorganic perovskites. Applied Physics Letters, 2019, 115, .	3.3	4
490	Highly Flexible CsPbI 3 Perovskite Nanocrystal Lightâ€Emitting Diodes. ChemNanoMat, 2019, 5, 313-317.	2.8	32

	Charlot		
# 491	ARTICLE Rational chemical doping of metal halide perovskites. Chemical Society Reviews, 2019, 48, 517-539.	IF 38.1	Citations
492	Enhanced Seebeck Effect of a MAPbBr ₃ Single Crystal by an Organic and a Metal Modified Layer. Advanced Electronic Materials, 2019, 5, 1800759.	5.1	16
493	Electronic mobility and crystal structures of 2,5-dimethylanilinium triiodide and tin-based organic-inorganic hybrid compounds. Journal of Solid State Chemistry, 2019, 270, 593-600.	2.9	9
494	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	13.7	61
495	Highâ€Quality Cuboid CH ₃ NH ₃ PbI ₃ Single Crystals for High Performance Xâ€Ray and Photon Detectors. Advanced Functional Materials, 2019, 29, 1806984.	14.9	115
496	Synthesis, Characterization, and Photodetector Application of Alkali Metal Bismuth Chalcogenide Nanocrystals. ACS Applied Energy Materials, 2019, 2, 182-186.	5.1	21
497	Optical properties of CH3NH3PbI3 crystal grown using inverse temperature crystallization. Current Applied Physics, 2019, 19, 60-65.	2.4	6
498	Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule, 2019, 3, 387-401.	24.0	177
499	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3193-3295.	47.7	454
500	Light Emitting Diodes Based on Inorganic Composite Halide Perovskites. Advanced Functional Materials, 2019, 29, 1807345.	14.9	65
501	Fabrication of Photodiodes Based on Solution-Processed Perovskite Single Crystals. IEEE Transactions on Electron Devices, 2019, 66, 485-490.	3.0	7
502	Balance lead in solution-processed CH3NH3PbBrxCl(3â°'x) single crystals for high performance X-ray detection. Materials Letters, 2019, 236, 26-29.	2.6	22
503	Employing tetraethyl orthosilicate additive to enhance trap passivation of planar perovskite solar cells. Electrochimica Acta, 2019, 293, 174-183.	5.2	18
504	Ultranarrow Bandwidth Organic Photodiodes by Exchange Narrowing in Merocyanine H―and Jâ€Aggregate Excitonic Systems. Advanced Functional Materials, 2019, 29, 1805058.	14.9	58
505	High stability of silica-wrapped CsPbBr3 perovskite quantum dots for light emitting application. Ceramics International, 2020, 46, 3882-3888.	4.8	54
506	Self-driven visible-near infrared photodetector with vertical CsPbBr ₃ /PbS quantum dots heterojunction structure. Nanotechnology, 2020, 31, 035202.	2.6	25
507	Filterless narrowband photodetectors employing perovskite/polymer synergetic layers with tunable spectral response. Organic Electronics, 2020, 76, 105417.	2.6	29
508	Organometallic perovskite single crystals grown on lattice-matched substrate for photodetection. Nano Materials Science, 2020, 2, 292-296.	8.8	5

#	Article	IF	CITATIONS
509	Stability Issue of Perovskite Solar Cells under Realâ€World Operating Conditions. Energy Technology, 2020, 8, 1900744.	3.8	25
510	Modulation of Electronic States of Hybrid Lead Halide Perovskite Embedded in Organic Matrix. Energy Technology, 2020, 8, 1900894.	3.8	4
511	Zn doped MAPbBr ₃ single crystal with advanced structural and optical stability achieved by strain compensation. Nanoscale, 2020, 12, 3692-3700.	5.6	22
512	Strain engineering and epitaxial stabilization of halide perovskites. Nature, 2020, 577, 209-215.	27.8	417
513	Importance of Bi–O Bonds at the Cs ₂ AgBiBr ₆ Double-Perovskite/Substrate Interface for Crystal Quality and Photoelectric Performance. ACS Applied Materials & Interfaces, 2020, 12, 6064-6073.	8.0	37
514	Synthesis of bismuth sulfide nanobelts for high performance broadband photodetectors. Journal of Materials Chemistry C, 2020, 8, 2102-2108.	5.5	43
515	Achieving a high-performance, self-powered, broadband perovskite photodetector employing MAPbI ₃ microcrystal films. Journal of Materials Chemistry C, 2020, 8, 2028-2035.	5.5	24
516	A high performance UV–visible dual-band photodetector based on an inorganic Cs ₂ SnI ₆ perovskite/ZnO heterojunction structure. Journal of Materials Chemistry C, 2020, 8, 1819-1825.	5.5	29
517	Ethanol induced structure reorganization of 2D layered perovskites (OA)2(MA)n-1PbnI3n+1. Journal of Luminescence, 2020, 220, 116981.	3.1	6
518	Photomultiplication Type Broad Response Organic Photodetectors with One Absorber Layer and One Multiplication Layer. Journal of Physical Chemistry Letters, 2020, 11, 366-373.	4.6	121
519	Ultrafast Dopant-Induced Exciton Auger-like Recombination in Mn-Doped Perovskite Nanocrystals. ACS Energy Letters, 2020, 5, 328-334.	17.4	33
520	Single Crystals: The Next Big Wave of Perovskite Optoelectronics. , 2020, 2, 184-214.		89
521	Self-powered, flexible and room temperature operated solution processed hybrid metal halide p-type sensing element for efficient hydrogen detection. JPhys Materials, 2020, 3, 014010.	4.2	17
522	Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite from Solution. Chemistry of Materials, 2020, 32, 529-536.	6.7	45
523	Bionic Detectors Based on Lowâ€Bandgap Inorganic Perovskite for Selective NIRâ€I Photon Detection and Imaging. Advanced Materials, 2020, 32, e1905362.	21.0	83
524	Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7, 530-540.	12.2	164
525	Substantially Improving Device Performance of Allâ€Inorganic Perovskiteâ€Based Phototransistors via Indium Tin Oxide Nanowire Incorporation. Small, 2020, 16, e1905609.	10.0	33
526	Fabrication of CH 3 NH 3 PbBr 3 â€Based Perovskite Singleâ€Crystal Arrays by Spinâ€Coating Method Using Hydrophobic Patterned Substrate. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900511.	1.8	5

#	Article	IF	CITATIONS
527	Charge Injection from Excited Cs ₂ AgBiBr ₆ Quantum Dots into Semiconductor Oxides. Chemistry of Materials, 2020, 32, 510-517.	6.7	21
528	Emerging New-Generation Photodetectors Based on Low-Dimensional Halide Perovskites. ACS Photonics, 2020, 7, 10-28.	6.6	104
529	CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65, 343-349.	9.0	72
530	Bandgap tuning and compositional exchange for lead halide perovskite materials. , 2020, , 1-22.		9
531	Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31, 152002.	2.6	31
532	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	19.5	50
533	Enhanced Thermal Stability of Halide Perovskite CsPbX ₃ Nanocrystals by a Facile TPU Encapsulation. Advanced Optical Materials, 2020, 8, 1901516.	7.3	53
534	Inhomogeneous Doping of Perovskite Materials by Dopants from Hole-Transport Layer. Matter, 2020, 2, 261-272.	10.0	38
535	Crystallographic orientation and layer impurities in two-dimensional metal halide perovskite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 010801.	2.1	19
536	Biasâ€Modulated Multicolor Discrimination Enabled by an Organic–Inorganic Hybrid Perovskite Photodetector with a pâ€iâ€nâ€iâ€p Configuration. Laser and Photonics Reviews, 2020, 14, 2000305.	8.7	21
537	Crystallization of Ionically Bonded Organic Metal Halide Hybrids. ACS Symposium Series, 2020, , 331-346.	0.5	3
538	Epitaxial and quasiepitaxial growth of halide perovskites: New routes to high end optoelectronics. APL Materials, 2020, 8, .	5.1	21
539	Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. Journal of the American Chemical Society, 2020, 142, 19413-19437.	13.7	76
540	Effect of acetic acid concentration on optical properties of lead acetate based methylammonium lead iodide perovskite thin film. Optical Materials, 2020, 109, 110456.	3.6	17
541	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	26.0	143
542	A novel and stable ultraviolet and infrared intensity sensor in impedance/capacitance modes fabricated from degraded CH3NH3PbI3-xClx perovskite materials. Journal of Materials Research and Technology, 2020, 9, 12795-12803.	5.8	16
543	Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors. Nano Energy, 2020, 78, 105335.	16.0	22
544	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	5.8	14

		CITATION REPORT		
#	Article		IF	CITATIONS
545	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 1	.2, 22425-22451.	5.6	26
546	Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Mangane Journal of the American Chemical Society, 2020, 142, 13582-13589.	ese Bromides.	13.7	173
547	Ultrathin Perovskite Monocrystals Boost the Solar Cell Performance. Advanced Energy 2020, 10, 2000453.	Materials,	19.5	42
548	Probing photoelectrical transport in lead halide perovskites with van der Waals contac Nanotechnology, 2020, 15, 768-775.	ts. Nature	31.5	63
549	A carrier density dependent diffusion coefficient, recombination rate and diffusion leng MAPbI ₃ and MAPbBr ₃ crystals measured under one- and two excitations. Journal of Materials Chemistry C, 2020, 8, 10290-10301.	şth in ⊃-photon	5.5	25
550	A monolithic artificial iconic memory based on highly stable perovskite-metal multilaye Physics Reviews, 2020, 7, .	rs. Applied	11.3	46
551	Advances in perovskite photodetectors. InformaÄnÃ-Materiály, 2020, 2, 1247-1256.		17.3	107
552	Static Rashba Effect by Surface Reconstruction and Photon Recycling in the Dynamic I APbBr ₃ (A = Cs, CH ₃ NH ₃) Single Crystals. Jour Chemical Society, 2020, 142, 21059-21067.	ndirect Gap of hal of the American	13.7	33
553	Detecting alcohol vapors using two-dimensional copper-based Ruddlesden–Popper p Applied Physics Letters, 2020, 117, .	perovskites.	3.3	7
554	Precise Phase Control of Large‣cale Inorganic Perovskites via Vaporâ€Phase Anionâ Small, 2020, 16, e2005226.	€Exchange Strategy.	10.0	17
555	Optical-field driven charge-transfer modulations near composite nanostructures. Natu Communications, 2020, 11, 6150.	re	12.8	2
556	Controllable deposition of organic metal halide perovskite films with wafer-scale unifor single source flash evaporation. Scientific Reports, 2020, 10, 18781.	mity by	3.3	6
557	A comprehensive review on synthesis and applications of single crystal perovskite halid Solid State Chemistry, 2020, 60, 100286.	les. Progress in	7.2	77
558	Shape Control of Metal Halide Perovskite Single Crystals: From Bulk to Nanoscale. Che Materials, 2020, 32, 7602-7617.	mistry of	6.7	46
559	Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a M Lead Iodide Perovskite Matrix. ACS Applied Materials & Interfaces, 2020, 12, 3520	ethylammonium)1-35210.	8.0	21
560	Perovskite Nanoâ€Heterojunctions: Synthesis, Structures, Properties, Challenges, and Structures, 2020, 1, 2000009.	Prospects. Small	12.0	52
561	Novel Organic Semiconductors Based on 1,5â€Naphthyridineâ€2,6â€Đione Unit for Bl Phototransistor. Advanced Optical Materials, 2020, 8, 2000695.	ueâ€5elective Organic	7.3	8
562	Two-Dimensional Cs ₂ Pb(SCN) ₂ Br ₂ -Based Phot Showing a Photoinduced Recovery Behavior and an Unusual Fully Optically Driven Mer ACS Applied Materials & Interfaces, 2020, 12, 36398-36408.	omemory Devices nory Behavior.	8.0	39

#	Article	IF	CITATIONS
563	Single-crystal perovskite detectors: development and perspectives. Journal of Materials Chemistry C, 2020, 8, 11664-11674.	5.5	35
564	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	3.7	25
565	Perovskite MAPb(Br1â^'Cl)3 single crystals: Solution growth and electrical properties. Journal of Crystal Growth, 2020, 549, 125869.	1.5	7
566	Manipulating Photon Propagation via a Perovskite Microwire Array. Journal of Physical Chemistry C, 2020, 124, 24315-24321.	3.1	4
567	Crystal Engineering in Organic Photovoltaic Acceptors: A 3D Network Approach. Advanced Energy Materials, 2020, 10, 2002678.	19.5	86
568	Organicâ€Inorganic Hybrid Perovskite Nanomaterials: Synthesis and Application. ChemistrySelect, 2020, 5, 12641-12659.	1.5	9
569	High-Performance Perovskite Dual-Band Photodetectors for Potential Applications in Visible Light Communication. ACS Applied Materials & Interfaces, 2020, 12, 48765-48772.	8.0	39
570	Visible light driven perovskite-based photocatalysts: A new candidate for green organic synthesis by photochemical protocol. Current Research in Green and Sustainable Chemistry, 2020, 3, 100031.	5.6	33
571	Filterâ€Free Bandâ€Selective Organic Photodetectors. Advanced Optical Materials, 2020, 8, 2001388.	7.3	63
572	Solution-Phase Halide Exchange and Targeted Annealing Kinetics in Lead Chloride Derived Hybrid Perovskites. Inorganic Chemistry, 2020, 59, 13364-13370.	4.0	5
573	Interface engineering for gain perovskite photodetectors with extremely high external quantum efficiency. RSC Advances, 2020, 10, 32976-32983.	3.6	9
574	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66
575	Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission. Science Advances, 2020, 6, .	10.3	51
576	Pressure-Induced Selective Amorphization of CsPbBr ₃ for the Purification of Cs ₄ PbBr ₆ . Journal of Physical Chemistry C, 2020, 124, 22291-22297.	3.1	9
577	Perovskite Photodetectors Based on p-i-n Junction With Epitaxial Electron-Blocking Layers. Frontiers in Chemistry, 2020, 8, 811.	3.6	10
578	Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters, 2020, 20, 7144-7151.	9.1	117
579	Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light: Science and Applications, 2020, 9, 162.	16.6	32
580	Growth and optimization of hybrid perovskite single crystals for optoelectronics/electronics and sensing. Journal of Materials Chemistry C, 2020, 8, 13918-13952.	5.5	17

#	Article	IF	CITATIONS
581	Phenethylammonium Functionalization Enhances Near-Surface Carrier Diffusion in Hybrid Perovskites. Journal of the American Chemical Society, 2020, 142, 16254-16264.	13.7	42
582	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.6	4
583	Gamma Radiation Detection Response of Pt/PZT/SRO Based Capacitor for Dosimetry Application. IEEE Electron Device Letters, 2020, 41, 1564-1567.	3.9	2
584	Ultrasensitive UV Photodetector Based on Interfacial Charge-Controlled Inorganic Perovskite–Polymer Hybrid Structure. ACS Applied Materials & Interfaces, 2020, 12, 43106-43114.	8.0	23
585	Role of the Metal–Semiconductor Interface in Halide Perovskite Devices for Radiation Photon Counting. ACS Applied Materials & Interfaces, 2020, 12, 45533-45540.	8.0	21
586	Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches. Energies, 2020, 13, 4250.	3.1	17
587	A solution-processed ternary copper halide thin films for air-stable and deep-ultraviolet-sensitive photodetector. Nanoscale, 2020, 12, 17213-17221.	5.6	55
588	All inkjet-printed perovskite-based bolometers. Npj Flexible Electronics, 2020, 4, .	10.7	12
589	Optical Tunneling to Improve Light Extraction in Quantum Dot and Perovskite Light-Emitting Diodes. IEEE Photonics Journal, 2020, 12, 1-14.	2.0	5
590	Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn–Pb Binary Incorporation with a Selective Photonic Deactivation. ACS Applied Materials & Interfaces, 2020, 12, 58038-58048.	8.0	9
591	Nonlinear optical properties of halide perovskites and their applications. Applied Physics Reviews, 2020, 7, .	11.3	114
592	Memory Devices via Unipolar Resistive Switching in Symmetric Organic–Inorganic Perovskite Nanoscale Heterolayers. ACS Applied Nano Materials, 2020, 3, 11889-11896.	5.0	11
593	Anisotropic Performance of High-Quality MAPbBr ₃ Single-Crystal Wafers. ACS Applied Materials & Interfaces, 2020, 12, 51616-51627.	8.0	20
594	Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite into a 2D perovskite structure. CrystEngComm, 2020, 22, 8063-8071.	2.6	4
595	Polar CsPbBr ₃ -based Dion–Jacobson hybrid for promising UV photodetection. Chemical Communications, 2020, 56, 14381-14384.	4.1	16
596	Transparent, flexible MAPbI ₃ perovskite microwire arrays passivated with ultra-hydrophobic supramolecular self-assembly for stable and high-performance photodetectors. Nanoscale, 2020, 12, 11986-11996.	5.6	14
597	Photophysical properties of micron-sized CH3NH3PbBr3 single crystals. Chemical Physics, 2020, 537, 110852.	1.9	1
598	Single-Crystal Growth and Thermal Stability of (CH ₃ NH ₃) _{1–<i>x</i>} Cs _{<i>x</i>} PbBr ₃ . Crystal Growth and Design, 2020, 20, 4366-4374.	3.0	8

#	Article	IF	CITATIONS
599	Advancing Tin Halide Perovskites: Strategies toward the ASnX ₃ Paradigm for Efficient and Durable Optoelectronics. ACS Energy Letters, 2020, 5, 2052-2086.	17.4	54
600	Distinguishing Energy- and Charge-Transfer Processes in Layered Perovskite Quantum Wells with Two-Dimensional Action Spectroscopies. Journal of Physical Chemistry Letters, 2020, 11, 4570-4577.	4.6	19
601	Recent Advancements and Challenges for Low-Toxicity Perovskite Materials. ACS Applied Materials & Interfaces, 2020, 12, 26776-26811.	8.0	89
602	The application of halide perovskites in memristors. Journal of Semiconductors, 2020, 41, 051205.	3.7	22
603	Potassiumâ€Induced Phase Stability Enables Stable and Efficient Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000098.	5.8	37
604	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & Interfaces, 2020, 12, 24498-24504.	8.0	14
605	Solution-Processed Halide Perovskite Single Crystals with Intrinsic Compositional Gradients for X-ray Detection. Chemistry of Materials, 2020, 32, 4973-4983.	6.7	59
606	Highly luminescent and ultrastable cesium lead bromide perovskite patterns generated in phosphate glass matrices. Nanoscale, 2020, 12, 13697-13707.	5.6	26
607	Facile synthesis of a dual-phase CsPbBr3–CsPb2Br5 single crystal and its photoelectric performance. RSC Advances, 2020, 10, 20745-20752.	3.6	13
608	Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels*. Chinese Physics B, 2020, 29, 078503.	1.4	8
609	Encapsulation of CsPbBr3 perovskite quantum dots into PPy conducting polymer: Exceptional water stability and enhanced charge transport property. Applied Surface Science, 2020, 526, 146735.	6.1	41
610	Samarium-Doped Metal Halide Perovskite Nanocrystals for Single-Component Electroluminescent White Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2131-2139.	17.4	124
611	Planar visible–near infrared photodetectors based on organic–inorganic hybrid perovskite single crystal bulks. Journal Physics D: Applied Physics, 2020, 53, 414003.	2.8	6
612	Perovskite–Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip. ACS Nano, 2020, 14, 8126-8134.	14.6	39
613	Tunable perovskite-based photodetectors in optical sensing. Sensors and Actuators B: Chemical, 2020, 321, 128462.	7.8	11
614	Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite. Journal of Luminescence, 2020, 226, 117471.	3.1	20
615	Perspective on the imaging device based on perovskite materials. Journal of Semiconductors, 2020, 41, 050401.	3.7	5
616	Perovskite Singleâ€Crystal Microwireâ€Array Photodetectors with Performance Stability beyond 1 Year. Advanced Materials, 2020, 32, e2001998.	21.0	130

#	Article	IF	CITATIONS
617	Understanding the Essential Role of PbI ₂ Films in a High-Performance Lead Halide Perovskite Photodetector. Journal of Physical Chemistry C, 2020, 124, 15107-15114.	3.1	17
618	Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nature Communications, 2020, 11, 2871.	12.8	131
619	Micro―and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. Advanced Materials, 2020, 32, e2000597.	21.0	62
620	Three-Dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse. Journal of the American Chemical Society, 2020, 142, 6625-6637.	13.7	82
621	Exciton Character and Highâ€Performance Stimulated Emission of Hybrid Lead Bromide Perovskite Polycrystalline Film. Advanced Optical Materials, 2020, 8, 1902026.	7.3	22
622	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	13.7	116
623	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	48.7	445
624	Large Optical Anisotropy in Two-Dimensional Perovskite [CH(NH ₂) ₂][C(NH ₂) ₃]PbI ₄ with Corrugated Inorganic Layers. Nano Letters, 2020, 20, 2339-2347.	9.1	40
625	Room temperature synthesis of perovskite (MAPbI3) single crystal by anti-solvent assisted inverse temperature crystallization method. Journal of Crystal Growth, 2020, 537, 125598.	1.5	18
626	Ligand assisted swelling–deswelling microencapsulation (LASDM) for stable, color tunable perovskite–polymer composites. Nanoscale Advances, 2020, 2, 2034-2043.	4.6	21
627	Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Applied Physics Reviews, 2020, 7, .	11.3	118
628	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	4.6	110
629	Ultralow Thermal Conductivity of Two-Dimensional Metal Halide Perovskites. Nano Letters, 2020, 20, 3331-3337.	9.1	64
630	Optically Stimulated Synaptic Devices Based on the Hybrid Structure of Silicon Nanomembrane and Perovskite. Nano Letters, 2020, 20, 3378-3387.	9.1	121
631	In Situ Growth of MAPbBr ₃ Nanocrystals on Few‣ayer MXene Nanosheets with Efficient Energy Transfer. Small, 2020, 16, e1905896.	10.0	38
632	From bulk to molecularly thin hybrid perovskites. Nature Reviews Materials, 2020, 5, 482-500.	48.7	164
633	Methylammonium Lead Tribromide Single Crystal Detectors towards Robust Gammaâ€Ray Photon Sensing. Advanced Optical Materials, 2020, 8, 2000233.	7.3	18
634	Strongly Enhanced Photoluminescence and Photoconductivity in Erbium-Doped MAPbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2020, 124, 8992-8998.	3.1	26

#	Article	IF	CITATIONS
635	Exploring Bi3+ distribution characteristics of MAPbxBi1-xBr3 thin films by space-limited method. Journal of Crystal Growth, 2020, 537, 125604.	1.5	0
636	A Microchannelâ€Confined Crystallization Strategy Enables Blade Coating of Perovskite Single Crystal Arrays for Device Integration. Advanced Materials, 2020, 32, e1908340.	21.0	75
637	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	16.6	372
638	Secondary Phase Particles in Cesium Lead Bromide Perovskite Crystals: An Insight into the Formation of Matrix-Controlled Inclusion. Journal of Physical Chemistry Letters, 2020, 11, 5625-5631.	4.6	11
639	Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals. Nano Energy, 2020, 76, 105103.	16.0	40
640	Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light: Science and Applications, 2020, 9, 111.	16.6	51
641	Fabrication of MAPbBr ₃ Single Crystal pâ€n Photodiode and nâ€pâ€n Phototriode for Sensitive Light Detection Application. Advanced Functional Materials, 2020, 30, 2001033.	14.9	40
642	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. Advanced Theory and Simulations, 2020, 3, 2000022.	2.8	10
643	Selection of contact materials to p-type halide perovskite by electronegativity matching. AIP Advances, 2020, 10, 065224.	1.3	4
644	Solutionâ€Grown Largeâ€5ized Singleâ€Crystalline 2D/3D Perovskite Heterostructure for Selfâ€Powered Photodetection. Advanced Optical Materials, 2020, 8, 2000311.	7.3	35
645	Principle of whole-cell patch-clamp and its applications in neural interface studies. , 2020, , 25-63.		0
646	Melt-grown large-sized Cs ₂ Tel ₆ crystals for X-ray detection. CrystEngComm, 2020, 22, 5130-5136.	2.6	27
647	Influence of Functional Diamino Organic Cations on the Stability, Electronic Structure, and Carrier Transport Properties of Three-Dimensional Hybrid Halide Perovskite. Journal of Physical Chemistry C, 2020, 124, 6796-6810.	3.1	12
648	A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 2020, 12, 7641-7650.	5.6	40
649	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	30.8	420
650	Binary synergetic ions reduce defect density in ambient air processed perovskite solar cells. Solar Energy, 2020, 198, 335-342.	6.1	9
651	Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. JPhys Materials, 2020, 3, 025003.	4.2	20
652	In Situ Formed Gradient Bandgapâ€Tunable Perovskite for Ultrahighâ€Speed Color/Spectrumâ€Sensitive Photodetectors via Electronâ€Donor Control. Advanced Materials, 2020, 32, e1908108.	21.0	55

#	Article	IF	CITATIONS
653	Performance Analysis of p-LPZO/n-GZO and p-SZO/n-GZO Homojunction UV Photodetectors. Superlattices and Microstructures, 2020, 140, 106451.	3.1	6
654	Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials, 2020, 32, 1854-1863.	6.7	46
655	Piezo-phototronic effect enhanced photodetectors based on MAPbI ₃ perovskite. Journal of Materials Chemistry C, 2020, 8, 2709-2718.	5.5	23
656	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	17.4	52
657	Single crystals of mixed Br/Cl and Sn-doped formamidinium lead halide perovskites <i>via</i> inverse temperature crystallization. RSC Advances, 2020, 10, 3832-3836.	3.6	18
658	Layeredâ€Perovskite Nanowires with Longâ€Range Orientational Order for Ultrasensitive Photodetectors. Advanced Materials, 2020, 32, e1905298.	21.0	49
659	Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals [*] . Chinese Physics Letters, 2020, 37, 018101.	3.3	12
660	Structurally Stable and Highly Enhanced Luminescent Perovskite Based on Quasi-Two-Dimensional Structures upon Addition of Guanidinium Cations. Journal of Physical Chemistry C, 2020, 124, 4414-4420.	3.1	12
661	Structural and spectroscopic studies of a nanostructured silicon–perovskite interface. Nanoscale, 2020, 12, 4498-4505.	5.6	4
662	Grain Boundary Enhanced Photoluminescence Anisotropy in Twoâ€Đimensional Hybrid Perovskite Films. Advanced Optical Materials, 2020, 8, 1901780.	7.3	14
663	Ultrafast Photodetector by Integrating Perovskite Directly on Silicon Wafer. ACS Nano, 2020, 14, 2860-2868.	14.6	86
664	A two-dimensional bilayered Dion–Jacobson-type perovskite hybrid with a narrow bandgap for broadband photodetection. Inorganic Chemistry Frontiers, 2020, 7, 1394-1399.	6.0	25
665	Looking beyond the Surface: The Band Gap of Bulk Methylammonium Lead Iodide. Nano Letters, 2020, 20, 3090-3097.	9.1	16
666	In Situ Growth of Allâ€Inorganic Perovskite Single Crystal Arrays on Electron Transport Layer. Advanced Science, 2020, 7, 1902767.	11.2	21
667	Reducing current fluctuation of Cs3Bi2Br9 perovskite photodetectors for diffuse reflection imaging with wide dynamic range. Science Bulletin, 2020, 65, 1371-1379.	9.0	53
668	Self-Powered Filterless Narrow-Band p–n Heterojunction Photodetector for Low Background Limited Near-Infrared Image Sensor Application. ACS Applied Materials & Interfaces, 2020, 12, 21845-21853. 	8.0	37
669	Light trapping enhancement via structure design. International Journal of Modern Physics B, 2020, 34, 2050040.	2.0	6
670	Twoâ€Dimensional Metalâ€Halide Perovskiteâ€based Optoelectronics: Synthesis, Structure, Properties and Applications. Energy and Environmental Materials, 2021, 4, 46-64.	12.8	34

#	Article	IF	CITATIONS
671	Micro―and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. Advanced Materials, 2021, 33, e2000306.	21.0	75
672	Pseudohalide Additives Enhanced Perovskite Photodetectors. Advanced Optical Materials, 2021, 9, 2001587.	7.3	15
673	Selfâ€Powered Red/UV Narrowband Photodetector by Unbalanced Charge Carrier Transport Strategy. Advanced Functional Materials, 2021, 31, 2007016.	14.9	44
674	Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021, 57, 69-82.	12.9	20
675	Charge Transport Properties of Methylammonium Lead Trihalide Hybrid Perovskite Bulk Single Crystals. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000410.	2.4	1
676	Distinctive Bulk- and Surface-Specific Photoluminescence and Photocarrier Dynamics in CH ₃ NH ₃ Pbl ₃ Perovskite. Crystal Growth and Design, 2021, 21, 45-51.	3.0	9
677	Selfâ€Driven Perovskite Narrowband Photodetectors with Tunable Spectral Responses. Advanced Materials, 2021, 33, e2005557.	21.0	109
678	Selfâ€Driven WSe ₂ /Bi ₂ O ₂ Se Van der Waals Heterostructure Photodetectors with High Light On/Off Ratio and Fast Response. Advanced Functional Materials, 2021, 31, 2008351.	14.9	129
679	Improving photovoltaic effect of inorganic perovskite by resistive switching using various electrode materials. Journal of Alloys and Compounds, 2021, 859, 157767.	5.5	0
680	Lowâ€Dimensional Metal Halide Perovskite Photodetectors. Advanced Materials, 2021, 33, e2003309.	21.0	319
681	Chiral Leadâ€Free Hybrid Perovskites for Selfâ€Powered Circularly Polarized Light Detection. Angewandte Chemie, 2021, 133, 8496-8499.	2.0	23
682	Chiral Leadâ€Free Hybrid Perovskites for Selfâ€Powered Circularly Polarized Light Detection. Angewandte Chemie - International Edition, 2021, 60, 8415-8418.	13.8	144
683	Drying stability enhancement of red-perovskite colloidal ink via ligand-derived coating for inkjet printing. Ceramics International, 2021, 47, 6041-6048.	4.8	7
684	Improved Radiation Sensing with Methylammonium Lead Tribromide Perovskite Semiconductors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986, 164710.	1.6	10
685	Origins of pressure-induced enhancement in thermal conductivity of hybrid inorganic–organic perovskites. Nanoscale, 2021, 13, 685-691.	5.6	3
686	A reduced-dimensional polar hybrid perovskite for self-powered broad-spectrum photodetection. Chemical Science, 2021, 12, 3050-3054.	7.4	20
687	Potential development of all-inorganic perovskites. Frontiers of Physics, 2021, 16, 1.	5.0	1
688	A perovskite single crystal with one-dimensional structure enables photodetection with negligible hysteresis. Journal of Materials Chemistry C, 2021, 9, 3470-3476.	5.5	6

	CHAHON R	PORT	
#	Article	IF	Citations
689	Study on the Interfacial Improvement of Hole-Transport Layer in Perovskite Solar Cells via Acetonitrile Additive. Hans Journal of Nanotechnology, 2021, 11, 27-35.	0.0	0
690	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291.	47.7	506
691	Room-temperature synthesis, growth mechanisms and opto-electronic properties of organic–inorganic halide perovskite CH ₃ NH ₃ PbX ₃ (X = I, Br, and) Tj ET	Q ሳ ደ ው 0 r չ	gBD/Overlock
692	High speed growth of MAPbBr ₃ single crystals <i>via</i> low-temperature inverting solubility: enhancement of mobility and trap density for photodetector applications. Nanoscale, 2021, 13, 8275-8282.	5.6	30
693	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
694	Unconventional Image‧ensing and Lightâ€Emitting Devices for Extended Reality. Advanced Functional Materials, 2021, 31, 2009281.	14.9	23
695	Promising Halide Perovskite: The Application in Field-Effect Transistors. Lecture Notes in Electrical Engineering, 2021, , 211-219.	0.4	0
696	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	1.0	1
697	Nucleation management for the ambient fabrication of high-performance perovskite photodetectors with the eco-friendly <i>tert</i> -butanol anti-solvent. Journal of Materials Chemistry C, 2021, 9, 8650-8658.	5.5	4
698	Atomic-scale insight into the enhanced surface stability of methylammonium lead iodide perovskite by controlled deposition of lead chloride. Energy and Environmental Science, 2021, 14, 4541-4554.	30.8	31
699	Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection. Science China Materials, 2021, 64, 1427-1436.	6.3	38
700	2D perovskite narrowband photodetector arrays. Journal of Materials Chemistry C, 2021, 9, 11085-11090.	5.5	18
701	A review on solution-processed perovskite/organic hybrid photodetectors. Journal of Materials Chemistry C, 2021, 9, 5302-5322.	5.5	44
702	Metallic surface doping of metal halide perovskites. Nature Communications, 2021, 12, 7.	12.8	66
703	A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity. Nanoscale, 2021, 13, 12306-12313.	5.6	19
704	Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. Journal of Materials Chemistry A, 2021, 9, 13209-13219.	10.3	34
705	Photocurrent in Metal-Halide Perovskite/Organic Semiconductor Heterostructures: Impact of Microstructure on Charge Generation Efficiency. ACS Applied Materials & Interfaces, 2021, 13, 10231-10238.	8.0	14
706	The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Applied Sciences (Switzerland), 2021, 11, 1453.	2.5	11

#	Article	IF	CITATIONS
707	Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. Journal of the American Chemical Society, 2021, 143, 2523-2536.	13.7	79
708	Precise Ligand Tuning Emission of Mn-Doped CsPbCl ₃ Nanocrystals by the Amount of Sulfonates. Journal of Physical Chemistry Letters, 2021, 12, 1838-1846.	4.6	17
709	Recent progress in two-dimensional Ruddlesden–Popper perovskite based heterostructures. 2D Materials, 2021, 8, 022006.	4.4	19
710	Spectral Discrimination Sensors Based on Nanomaterials and Nanostructures: A Review. IEEE Sensors Journal, 2021, 21, 4044-4060.	4.7	8
711	Recent Advances in Perovskite Photodetectors for Image Sensing. Small, 2021, 17, e2005606.	10.0	111
712	Tailored Designâ€ofâ€Experiments Approach for Device Performance Prediction and Optimization of Flashâ€Evaporated Organic–Inorganic Halide Perovskiteâ€Based Photodetectors. Advanced Materials Technologies, 2021, 6, 2001131.	5.8	5
713	Low operating voltage monolithic stacked perovskite photodetectors for imaging applications. Optical Materials Express, 2021, 11, 1004.	3.0	3
714	Ultra-Narrow-Band NIR Photomultiplication Organic Photodetectors Based on Charge Injection Narrowing. Journal of Physical Chemistry Letters, 2021, 12, 2937-2943.	4.6	90
715	Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection. Science China Materials, 2021, 64, 2261-2271.	6.3	13
716	Liquidâ€Exfoliated 2D Materials for Optoelectronic Applications. Advanced Science, 2021, 8, e2003864.	11.2	77
717	Ligand assisted growth of perovskite single crystals with low defect density. Nature Communications, 2021, 12, 1686.	12.8	110
718	Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today, 2021, 22, 100946.	4.3	11
719	Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr ₃) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 15383-15390.	8.0	41
720	Controlling the Microstructure and Porosity of Perovskite Films by Additive Engineering. ACS Applied Energy Materials, 2021, 4, 2990-2998.	5.1	13
721	Solution and <scp>Solidâ€Phase</scp> Growth of Bulk Halide Perovskite Single Crystals. Chinese Journal of Chemistry, 2021, 39, 1353-1363.	4.9	9
722	Solution-Processed Epitaxial Growth of MAPbI3 Single-Crystal Films for Highly Stable Photodetectors. Frontiers in Materials, 2021, 8, .	2.4	11
723	Narrowband Photodetector by Integrating PTCDI-C13 J-aggregates with Graphene. , 2021, , .		0
724	Facile Fabrication of Hybrid Perovskite Singleâ€Crystalline Photocathode for Photoelectrochemical Water Splitting. Energy Technology, 2021, 9, 2000965.	3.8	6

#	Article	IF	CITATIONS
725	A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nature Communications, 2021, 12, 2023.	12.8	69
726	<i>A</i> - or <i>X</i> -site mixture on mechanical properties of <i>A</i> Pb <i>X</i> ₃ perovskite single crystals. APL Materials, 2021, 9, 041112.	5.1	23
727	Electrohydrodynamically Printed Multicolor Perovskite Image Sensor Array. , 2021, , .		1
728	Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Frontiers of Optoelectronics, 2021, 14, 252-259.	3.7	66
729	Broadband Ultraviolet Photodetectors Based on Cerium Doped Lead-Free Cs ₃ MnBr ₅ Metal Halide Nanocrystals. ACS Sustainable Chemistry and Engineering, 2021, 9, 4980-4987.	6.7	29
730	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	2.6	26
731	High-Performance Photodetectors Based on Nanostructured Perovskites. Nanomaterials, 2021, 11, 1038.	4.1	27
732	High-Temperature Stable FAPbBr ₃ Single Crystals for Sensitive X-ray and Visible Light Detection toward Space. Nano Letters, 2021, 21, 3947-3955.	9.1	80
733	Emerging Biomedical Applications of Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100269.	7.3	49
734	In Situ and Quantitative Vapor/Solid Anion Exchange for Composition Regulation and Optical Properties of Perovskites. Advanced Optical Materials, 2021, 9, 2002186.	7.3	7
735	Manipulation of perovskite film by biasâ€induced reversible lattice deformation toward tunable photoelectric performances. Nano Select, 0, , .	3.7	0
736	Stable and ultraviolet-enhanced broadband photodetectors based on Si nanowire arrays-Cs3Cu2I5 nanocrystals hybrid structures. Materials Today Physics, 2021, 18, 100398.	6.0	13
737	Narrowband Nearâ€Infrared Photodetector Enabled by Dual Functional Internalâ€Filterâ€Induced Selective Charge Collection. Advanced Optical Materials, 2021, 9, 2100288.	7.3	26
738	Understanding the Transformation of 2D Layered Perovskites to 3D Perovskites in the Sonochemical Synthesis. Journal of Physical Chemistry C, 2021, 125, 12131-12139.	3.1	6
739	Improved CsPbBr 3 visible light photodetectors via decoration of sputtered au nanoparticles with synergistic benefits. Nano Select, 0, , .	3.7	8
740	Semitransparent Layers of Social Selfâ€Sorting Merocyanine Dyes for Ultranarrow Bandwidth Organic Photodiodes. Advanced Optical Materials, 2021, 9, 2100213.	7.3	9
741	<scp>Twoâ€dimensional</scp> halide perovskite <scp>quantumâ€well</scp> emitters: A critical review. EcoMat, 2021, 3, e12104.	11.9	45
742	Broadband Detection of Xâ€ray, Ultraviolet, and Nearâ€Infrared Photons using Solutionâ€Processed Perovskite–Lanthanide Nanotransducers. Advanced Materials, 2021, 33, e2101852.	21.0	51

#	Article	IF	CITATIONS
743	Opportunities and challenges of inorganic perovskites in high-performance photodetectors. Journal Physics D: Applied Physics, 2021, 54, 293002.	2.8	35
744	Flexible and Filterâ€Free Colorâ€Imaging Sensors with Multicomponent Perovskites Deposited Using Enhanced Vapor Technology. Small, 2021, 17, e2007543.	10.0	15
745	3D Heterogeneous Device Arrays for Multiplexed Sensing Platforms Using Transfer of Perovskites. Advanced Materials, 2021, 33, e2101093.	21.0	33
746	Perovskite single crystals: Synthesis, properties, and applications. Journal of Electronic Science and Technology, 2021, 19, 100081.	3.6	41
747	Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nature Communications, 2021, 12, 3348.	12.8	85
748	Observation of large Rashba spin–orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors. Materials Today, 2021, 46, 18-27.	14.2	20
749	Selfâ€Driven Perovskite Dualâ€Band Photodetectors Enabled by a Charge Separation Reversion Mechanism. Advanced Optical Materials, 2021, 9, 2100517.	7.3	21
750	Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Science China Materials, 2021, 64, 2976-2986.	6.3	25
751	Ultraâ€Narrowband Photodetector with High Responsivity Enabled by Integrating Monolayer Jâ€Aggregate Organic Crystal with Graphene. Advanced Optical Materials, 2021, 9, 2100158.	7.3	15
752	Cavity-Enhanced Near-Infrared Organic Photodetectors Based on a Conjugated Polymer Containing [1,2,5]Selenadiazolo[3,4- <i>c</i>]Pyridine. Chemistry of Materials, 2021, 33, 5147-5155.	6.7	29
753	Advances in Lead-Free Perovskite Single Crystals: Fundamentals and Applications. , 2021, 3, 1025-1080.		70
754	Multifunctional Optoelectronic Random Access Memory Device Based on Surfaceâ€Plasmaâ€Treated Inorganic Halide Perovskite. Advanced Electronic Materials, 2021, 7, 2100366.	5.1	15
755	Achieving 256 × 256â€Pixel Color Images by Perovskiteâ€Based Photodetectors Coupled with Algorithms. Advanced Functional Materials, 2021, 31, 2104320.	14.9	27
756	B-Site Columnar-Ordered Halide Double Perovskites: Theoretical Design and Experimental Verification. Journal of the American Chemical Society, 2021, 143, 10275-10281.	13.7	43
757	A Stable Photoluminescence of Waste Derived Acrylic Plastics (PMMA) and MAPbBr 3 Composite Film. Journal of Physics: Conference Series, 2021, 1949, 012026.	0.4	0
758	Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2021, 143, 9048-9059.	13.7	33
759	Annealing effects on interdiffusion in layered FA-rich perovskite solar cells. AIP Advances, 2021, 11, .	1.3	12
760	Synthesis and properties of lead-free formamidinium bismuth bromide perovskites. Materials Today Chemistry, 2021, 20, 100449.	3.5	4

#	Article	IF	CITATIONS
761	Photoinduced Self-healing of Halide Segregation in Mixed-halide Perovskites. ACS Energy Letters, 2021, 6, 2502-2511.	17.4	34
762	Single-crystal halide perovskites: Opportunities and challenges. Matter, 2021, 4, 2266-2308.	10.0	35
763	A liquid phase anion-exchange approach to high-quality all-inorganic halide perovskite micro- and nanowires. Journal of Materials Science, 2021, 56, 16059-16067.	3.7	2
764	Ultrafast, Self-Powered, and Charge-Transport-Layer-Free Ultraviolet Photodetectors Based on Sequentially Vacuum-Evaporated Lead-Free Cs ₂ AgBiBr ₆ Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 35949-35960.	8.0	34
765	Perovskite (PEA)2Pb(I1-xBrx)4 single crystal thin films for improving optoelectronic performances. Optical Materials, 2021, 117, 111074.	3.6	6
766	High-Performance Perovskite Betavoltaics Employing High-Crystallinity MAPbBr ₃ Films. ACS Omega, 2021, 6, 20015-20025.	3.5	7
767	Highly Sensitive Narrowband Photomultiplicationâ€Type Organic Photodetectors Prepared by Transferâ€Printed Technology. Advanced Functional Materials, 2021, 31, 2106009.	14.9	108
768	High-Responsivity, Fast, and Self-Powered Narrowband Perovskite Heterojunction Photodetectors with a Tunable Response Range in the Visible and Near-Infrared Region. ACS Applied Materials & Interfaces, 2021, 13, 34625-34636.	8.0	27
769	Highly sensitive X-ray detector based on a β-Ga ₂ O ₃ :Fe single crystal. Optics Express, 2021, 29, 23292.	3.4	13
770	Construction of Single-Atom Platinum Catalysts Enabled by CsPbBr ₃ Nanocrystals. ACS Nano, 2021, 15, 13129-13139.	14.6	44
771	Photon Recycling in Semiconductor Thin Films and Devices. Advanced Science, 2021, 8, e2004076.	11.2	16
772	Rare earth doping in perovskite luminescent nanocrystals and photoelectric devices. Nano Select, 2022, 3, 531-554.	3.7	29
773	37.3: Invited Paper: Quantum dot LEDâ€based display technology. Digest of Technical Papers SID International Symposium, 2021, 52, 479-479.	0.3	0
774	Achieving high-performance in situ fabricated FAPbBr ₃ and electroluminescence. Optics Letters, 2021, 46, 4378.	3.3	5
775	First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). Journal of Physics and Chemistry of Solids, 2022, 160, 110302.	4.0	64
776	Spectrum-shaped Si-perovskite hybrid photodetectors for hyperspectral bioimaging. Photonics Research, 2021, 9, 1734.	7.0	15
777	Bandgap engineering and thermodynamic stability of oxyhalide and chalcohalide antiperovskites. Ceramics International, 2021, 47, 32634-32640.	4.8	9
778	Local Structure of Multinary Hybrid Lead Halide Perovskites Investigated by Nuclear Quadrupole Resonance Spectroscopy. Chemistry of Materials, 2021, 33, 6965-6973.	6.7	13

ARTICLE IF CITATIONS Filterâ€free selfâ€power <scp>CdSe</scp>/Sb₂(S_{1â°'x},Se_x)₃ 779 17.3 33 nearinfrared narrowband detection and imaging. InformaÄnÄ-MateriÄily, 2021, 3, 1145-1153. Radiation Detection Technologies Enabled by Halide Perovskite Single Crystals., 2022, , 97-118. Fabrications of Halide Perovskite Single-Crystal Slices and Their Applications in Solar Cells, 781 3.0 9 Photodetectors, and LEDs. Crystal Growth and Design, 2021, 21, 5983-5997. Miniaturized VISâ€NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 10¹⁴ Jones. Advanced Materials, 2021, 33, e2102967. Uniquely anisotropic mechanical and thermal responses of hybrid organic–inorganic perovskites 783 3.0 6 under uniaxial strain. Journal of Chemical Physics, 2021, 155, 124703. Defects in CsPbX₃ Perovskite: From Understanding to Effective Manipulation for Highâ€Performance Solar Cells. Small Methods, 2021, 5, e2100725. 784 8.6 37 Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited 785 1.4 2 CH₃NH₃PbBr₃ single crystal. Chinese Physics B, 2022, 31, 047104. MOFs based on the application and challenges of perovskite solar cells. IScience, 2021, 24, 103069. 4.1 786 Deactivating grain boundary defect by bifunctional polymer additive for humid air-synthesized stable 787 5 6.1 halide perovskite solar cells. Solar Energy, 2021, 225, 211-220. Sensitive, Highâ€Speed, and Broadband Perovskite Photodetectors with Builtâ€In TiO₂ 10.0 Metalenses. Small, 2021, 17, e2102694. Stable Perovskite Solar Cells with Bulk-Mixed Electron Transport Layer by Multifunctional Defect 789 8.0 11 Passivation. ACS Applied Materials & amp; Interfaces, 2021, 13, 44401-44408. Heterojunction structures for reduced noise in large-area and sensitive perovskite x-ray detectors. 790 Science Advances, 2021, 7, eabg6716. Lattice relaxation effect in CsxMA(1-x)PbBr3 single crystal to enhance optoelectronic performance of 791 4.8 5 perovskite photodetectors. Ceramics International, 2022, 48, 436-445. Electrically or chemically tunable photodetector with ultra high responsivity using graphene/InN 792 2.6 nanowire based mixed dimensional barristors. Nanotechnology, 2021, 32, 475203 Self-powered narrowband visible-light photodetection enabled by organolead halide perovskite 793 3.3 17 CH3NH3PbBr3/<i>p</i>-Si heterojunction. Applied Physics Letters, 2021, 119, . Reversible photochromic and photoluminescence in iodide perovskites. Thin Solid Films, 2021, 737, 794 1.8 138950. Blending isomers of fluorine-substituted sulfonyldibenzene as hole transport materials to achieve 795 12.7 23 high efficiency beyond 21% in perovskite solar cells. Chemical Engineering Journal, 2021, 424, 130396. Rapid large-scale synthesis of highly emissive solid-state metal halide perovskite quantum dots across the full visible spectrum. Optics and Laser Technology, 2021, 143, 107369.

#	Article	IF	CITATIONS
797	High-Detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array. Applied Surface Science, 2022, 571, 151291.	6.1	16
798	Chiral organic–inorganic lead halide perovskites based on α-alanine. New Journal of Chemistry, 2021, 45, 12606-12612.	2.8	16
799	Ni ²⁺ and Pr ³⁺ Co-doped CsPbCl ₃ perovskite quantum dots with efficient infrared emission at 1300 nm. Nanoscale, 2021, 13, 16598-16607.	5.6	13
800	Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy and Environmental Science, 2021, 14, 2009-2035.	30.8	46
801	Oneâ€Dimensional Molecular Metal Halide Materials: Structures, Properties, and Applications. Small Structures, 2021, 2, 2000062.	12.0	40
802	Filter-free color image sensor based on CsPbBr _{3â^3n} X _{3n} (X = Cl, I) single crystals. Journal of Materials Chemistry C, 2021, 9, 2840-2847.	5.5	27
803	Active area dependence of optoelectronic characteristics of perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 12661-12670.	5.5	8
804	Allâ€Inorganic Bismuthâ€Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Advanced Functional Materials, 2018, 28, 1704446.	14.9	375
805	Stable α sPbI ₃ Perovskite Nanowire Arrays with Preferential Crystallographic Orientation for Highly Sensitive Photodetectors. Advanced Functional Materials, 2019, 29, 1808741.	14.9	78
806	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	14.9	70
807	Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammoniumâ€Based Additives. Advanced Materials, 2018, 30, 1703670.	21.0	132
808	Effect of the Device Architecture on the Performance of FA _{0.85} MA _{0.15} PbBr _{0.45} I _{2.55} Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801667.	3.7	15
809	Stacked Dualâ€Wavelength Nearâ€Infrared Organic Photodetectors. Advanced Optical Materials, 2021, 9, 2001784.	7.3	40
810	Photophysics of Methylammonium Lead Tribromide Perovskite: Free Carriers, Excitons, and Subâ€Bandgap States. Advanced Energy Materials, 2020, 10, 1903258.	19.5	20
811	First evidence of macroscale single crystal ion exchange found in lead halide perovskites. EcoMat, 2020, 2, e12016.	11.9	12
812	Kinetically Controlled Growth of Subâ€Millimeter 2D Cs ₂ SnI ₆ Nanosheets at the Liquid–Liquid Interface. Small, 2021, 17, e2006279.	10.0	14
813	Perovskiteâ€Based Nanocrystals: Synthesis and Applications beyond Solar Cells. Small Methods, 2018, 2, 1700380.	8.6	140
814	Large-scale Roll-to-Roll Micro-gravure Printed Flexible PBDB-T/IT-M Bulk Heterojunction Photodetectors. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	7

ARTICLE IF CITATIONS Seed crystal free growth of high-quality double cation – double halide perovskite single crystals for 815 5.5 7 optoelectronic applications. Journal of Materials Chemistry C, 2020, 8, 8275-8283. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, . 5.1 High-bandwidth light inputting multilevel photoelectric memory based on thin-film transistor with a 817 2.6 5 floating gate of CsPbBr3/CsPbI3 blend quantum dots. Nanotechnology, 2021, 32, 095204. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr₃/MoSe₂. Journal of Semiconductors, 2020, 41, 052206. MAPbBr₃ single crystal based metal-semiconductor-metal photodetector enhanced by 819 1.6 5 localized surface plasmon. Materials Research Express, 2020, 7, 125902. Alloy engineered germanium monochalcogenide with tunable bandgap for broadband optoelectrical 2.4 applications. Physical Review Materials, 2020, 4, . 821 Oxide hole blocking selective contacts in perovskite solar cells., 2018,,. 2 Near-infrared and visible light dual-mode organic photodetectors. Science Advances, 2020, 6, 10.3 156 eaaw8065. Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers. Nanoscale Research Letters, 823 5.7 8 2020, 15, 66. Investigation on binding energy and reduced effective mass of exciton in organic–inorganic hybrid 824 3.3 lead perovskite films by a pure optical method. Optics Letters, 2019, 44, 3474. Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped 825 7.0 94 phosphor-converted light-emitting diodes. Photonics Research, 2020, 8, 768. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photonics Research, 2020, 8, 1862. Vacuum ultraviolet photovoltaic arrays. Photonics Research, 2019, 7, 98. 827 7.0 57 Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped 39 silicon. Photonics Research, 2019, 7, 351. Lead-free halide perovskite photodetectors spanning from near-infrared to X-ray range: a review. 829 6.0 30 Nanophotonics, 2021, 10, 2221-2247. Back-Contact Perovskite Solar Cells., 2019, 1, 1-10. 831 Recent Advancements in Crystalline Pb-Free Halide Double Perovskites. Crystals, 2020, 10, 62. 2.241 Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar 2.2 Cells to Other Applications. Crystals, 2021, 11, 39.

#	Article	IF	CITATIONS
833	Giant room temperature electrocaloric effect in a layered hybrid perovskite ferroelectric: [(CH3)2CHCH2NH3]2PbCl4. Nature Communications, 2021, 12, 5502.	12.8	44
834	Interband and Surfaceâ€Influenced Photophysical Processes in CH 3 NH 3 PbBr 3 Perovskites. Advanced Photonics Research, 2022, 3, 2100198.	3.6	3
835	Two-/Three-Dimensional Perovskite Bilayer Thin Films Post-Treated with Solvent Vapor for High-Performance Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 49104-49113.	8.0	12
836	Structureâ€Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Israel Journal of Chemistry, 0, , .	2.3	9
837	Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
838	Atomic level insights intoÂmetal halide perovskiteÂmaterials by scanning tunneling microscopy and spectroscopy. Angewandte Chemie, 2022, 134, e202112352.	2.0	0
839	The roles of surface defects in MAPbBr3 and multi-structures in MAPbI3. Optical Materials, 2021, 122, 111600.	3.6	6
840	Spin-singlet formation in the spin-tetramer layered organic-inorganic hybridCH3NH3Cu2Cl5. Physical Review Materials, 2018, 2, .	2.4	0
841	Hybrid Perovskite Based Photodetectors. Materials and Energy, 2018, , 1-29.	0.1	0
842	Organic-inorganic hybrid perovskite photodetectors achieved via brush-coating process. , 2019, , .		0
843	Microring lasers based on Si3N4 optical waveguides cladded with perovskite quantum-dot film. , 2019, ,		0
844	Impact of trap filling on carrier diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>MAPb </mml:mi> <mml:msub> <mn single crystals. Physical Review Materials, 2020, 4, .</mn </mml:msub></mml:mrow></mml:math 	nl:⊠ni⇔Br </td <td>៣ឆាl:mi><rnn< td=""></rnn<></td>	៣ឆាl:mi> <rnn< td=""></rnn<>
845	Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays. Science China Chemistry, 2021, 64, 629-635.	8.2	5
846	Single Crystal Hybrid Perovskite Optoelectronics: Progress and Perspectives. , 0, , .		0
847	Ion Migration in Metal Halide Perovskites Solar Cells. , 2020, , 1-32.		2
848	Perovskite Quantum Dot Photodetectors. Springer Series in Materials Science, 2020, , 181-218.	0.6	1
849	Printable Organic PIN Phototransistor and Its Application for Low Power and Noise Imaging Detection. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	5
850	All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Science Advances, 2021, 7, eabj6627.	10.3	47

#	Article	IF	CITATIONS
851	Selfâ€Powered FA _{0.55} MA _{0.45} PbI ₃ Singleâ€Crystal Perovskite Xâ€Ray Detectors with High Sensitivity. Advanced Functional Materials, 2022, 32, 2109149.	14.9	62
852	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	14.9	77
854	Hybrid Perovskite/Polymer Materials: Preparation and Physicochemical Properties. Journal of Composites Science, 2021, 5, 304.	3.0	3
855	Recent Advances in Solutionâ€Processable Organic Photodetectors and Applications in Flexible Electronics. Advanced Intelligent Systems, 2022, 4, 2100167.	6.1	35
856	Epitaxial Growth of Quasi-intrinsic CsPbBr ₃ Film on a SrTiO ₃ Substrate by Pulsed Laser Deposition. ACS Applied Electronic Materials, 2021, 3, 5592-5600.	4.3	7
857	Unlocking Voltage Potentials of Mixedâ€Halide Perovskite Solar Cells via Phase Segregation Suppression. Advanced Functional Materials, 2022, 32, 2110698.	14.9	30
858	Chirality enhancement of TDBCs by inorganic perovskite–metal hybridized grating. Results in Physics, 2022, 32, 105007.	4.1	0
859	Asymmetrically Contact-Induced Self-Powered MAPbBr ₃ Photodetector. Applied Physics, 2021, 11, 461-468.	0.0	0
860	Hybrid organic-inorganic perovskites: a spin-off of oxidic perovskites. , 2021, 5, .		0
861	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56.		1
861 862	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>>n </i> > butylammonium cation-capped Pb–Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550.	10.3	1
861 862 863	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>>n</i> >butylammonium cation-capped Pb–Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550. Thin MAPb0.5Sn0.513 Perovskite Single Crystals for Sensitive Infrared Light Detection. Frontiers in Chemistry, 2021, 9, 821699.	10.3 3.6	1 5 4
861 862 863 864	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>> n </i> > butylammonium cation-capped Pb–Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550. Thin MAPb0.5Sn0.5I3 Perovskite Single Crystals for Sensitive Infrared Light Detection. Frontiers in Chemistry, 2021, 9, 821699. Ultraviolet Photodetectors Based on Dimetallofullerene Lu ₂ @ <i>C_s</i> (6)-C ₈₂ Nanorods. ACS Applied Nano Materials, 2022, 5, 1683-1689.	10.3 3.6 5.0	1 5 4 8
861 862 863 864	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>>n</i> >butylammonium cation-capped Pbâ€"Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550. Thin MAPb0.5Sn0.5I3 Perovskite Single Crystals for Sensitive Infrared Light Detection. Frontiers in Chemistry, 2021, 9, 821699. Ultraviolet Photodetectors Based on Dimetallofullerene Lu ₂ @ <i>C_s</i> (i>C _s (i) Voltasionality Preparation of CsPbBr₃ Perovskite Single Crystal and Research on Its Photodetector. Applied Physics, 2021, 11, 445-452.	10.3 3.6 5.0 0.0	1 5 4 8
861 862 863 864 866	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>>n</i> >hotylammonium cation-capped Pba€"Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550. Thin MAPb0.5Sn0.5l3 Perovskite Single Crystals for Sensitive Infrared Light Detection. Frontiers in Chemistry, 2021, 9, 821699. Ultraviolet Photodetectors Based on Dimetallofullerene Lu ₂ @ <i>>C_s</i> >(6)-C ₈₂ Nanorods. ACS Applied Nano Materials, 2022, 5, 1683-1689. Preparation of CsPbBr ₃ Perovskite Single Crystal and Research on Its Photodetector. Applied Physics, 2021, 11, 445-452. An Excess Polymer-Assisted Crystal Growth Method for High Performance Perovskite Photodetector. SSRN Electronic Journal, 0,	10.3 3.6 5.0 0.0 0.4	1 5 4 8 0
861 862 863 864 866 867	Electronic Doping Strategy in Perovskite Solar Cells., 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in in in A self-assembled hierarchical structure to keep the 3D crystal dimensionality in in in A self-assembled hierarchical structure to keep the 3D crystal dimensionality in in in A self-assembled hierarchical structure to keep the 3D crystal dimensionality in in A self-assembled hierarchical structure to keep the 3D crystal dimensionality in In MAPb0.5Sn0.513 Perovskite Single Crystals for Sensitive Infrared Light Detection. Frontiers in Chemistry, 2021, 9, 821699. Ultraviolet Photodetectors Based on Dimetallofullerene Lu ₂ Ux sub>2 Sub>2 Nanorods. ACS Applied Nano Materials, 2022, 5, 1683-1689. Preparation of CsPbBr ₃ Perovskite Single Crystal and Research on Its Photodetector. Applied Physics, 2021, 11, 445-452. An Excess Polymer-Assisted Crystal Growth Method for High Performance Perovskite Photodetector. SSRN Electronic Journal, 0, Homologous Bromides Passivation of CH ₃ Homologous Bromides Passivation of CH ₃ Keysals for Photodetectors with Improved Properties. SSRN Electronic Journal, 0,	10.3 3.6 5.0 0.0 0.4	1 5 4 8 0 0
 861 862 863 864 866 867 868 869 	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56. A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>>n</i> > butylammonium cation-capped Pbà€"Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550. Thin MAPb0.5Sn0.513 Perovskite Single Crystals for Sensitive Infrared Light Detection. Frontiers in Chemistry, 2021, 9, 821699. Ultraviolet Photodetectors Based on Dimetallofullerene Lu ₂ Ultraviolet Photodetectors Based on Dimetallofullerene Lu ₂ Preparation of CsPbBr₃ Perovskite Single Crystal and Research on Its Photodetector. Applied Physics, 2021, 11, 445-452. An Excess Polymer-Assisted Crystal Growth Method for High Performance Perovskite Photodetector. SSRN Electronic Journal, 0, , . Homologous Bromides Passivation of CH ₃ MH ₃ 3 Controlled Localized Phase Transition of Selenium for Color-Selective Photodetectors. ACS Applied Materials & amp; Interfaces, 2022, 14, 5623.	10.3 3.6 5.0 0.0 0.4 0.4 8.0	1 5 4 8 0 0 0 7

#	Article	IF	Citations
871	Advanced composite glasses with metallic, perovskite, and two-dimensional nanocrystals for optoelectronic and photonic applications. Nanoscale, 2022, 14, 2966-2989.	5.6	27
872	Solvent strategies toward high-performance perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 3276-3286.	5.5	9
873	Longâ€Rangeâ€Ordered Assembly of Micro″Nanostructures at Superwetting Interfaces. Advanced Materials, 2022, 34, e2106857.	21.0	21
874	Temperature-dependent performance metrics of tin-doped perovskite photodetectors. Journal of Materials Chemistry C, 2022, 10, 1625-1631.	5.5	4
875	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1601-1608.	8.0	8
876	An enantiomeric pair of 2D organic–inorganic hybrid perovskites with circularly polarized luminescence and photoelectric effects. Journal of Materials Chemistry C, 2022, 10, 3440-3446.	5.5	16
877	Photoelectric Logic and <i>In Situ</i> Memory Transistors with Stepped Floating Gates of Perovskite Quantum Dots. ACS Nano, 2022, 16, 2442-2451.	14.6	15
878	Nonâ€Traditional Positivelyâ€Biased Narrowâ€Band Perovskite Singleâ€Crystal Photodetectors Enabled by Interfacial Engineering. Advanced Optical Materials, 0, , 2102225.	7.3	6
879	Further Advancement of Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2022, 13, 274-290.	4.6	9
880	Emerging doping strategies in two-dimensional hybrid perovskite semiconductors for cutting edge optoelectronics applications. Nanoscale Advances, 2022, 4, 995-1025.	4.6	14
881	An ultrahigh 84.3% fill factor for efficient CH3NH3PbI3 P-i-N perovskite film solar cell. Solar Energy, 2022, 233, 271-277.	6.1	5
882	Dual interfacial engineering to improve ultraviolet and near-infrared light harvesting for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 435, 134792.	12.7	7
883	An ion migration induced self-powered photoelectrical detector based on FAPbBr ₃ single crystals. CrystEngComm, 2022, 24, 2100-2106.	2.6	5
884	Emerging Newâ€Generation Detecting and Sensing of Metal Halide Perovskites. Advanced Electronic Materials, 2022, 8, .	5.1	17
885	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	11.0	26
886	Synergistic effect of surface active agent in defect passivation by for ambient air-synthesized halide perovskite solar cells. Journal of Power Sources, 2022, 524, 231038.	7.8	5
887	Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Letters, 2022, 7, 1066-1085.	17.4	47
888	Recent Progress on Perovskite Photodetectors for Narrowband Detection. Advanced Photonics Research, 2022, 3, .	3.6	21

#	Article	IF	CITATIONS
889	Hybrid Halide Perovskiteâ€Based Nearâ€Infrared Photodetectors and Imaging Arrays. Advanced Optical Materials, 2022, 10, .	7.3	35
890	Van der Waals Epitaxial Deposition of CsPbBr ₃ Films for Flexible Optoelectronic Applications. ACS Applied Electronic Materials, 2022, 4, 1351-1358.	4.3	4
891	Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Singleâ€Junction and Tandem Solar Cells. Advanced Materials, 2022, 34, e2110351.	21.0	62
892	Ambipolar Photoresponse of CsPbX ₃ -ZnO (X = Cl, Br, and I) Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 1525-1532.	4.3	9
893	The Intrinsic Photoluminescence Spectrum of Perovskite Films. Advanced Optical Materials, 2022, 10, .	7.3	14
894	A general method for growth of perovskite single-crystal arrays for high performance photodetectors. Nano Research, 2022, 15, 6568-6573.	10.4	18
895	In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixedâ€Halide Perovskite Quantum Dot Solids. Advanced Materials, 2022, 34, e2200854.	21.0	82
896	High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Research, 2022, 15, 5476-5482.	10.4	13
897	Highâ€Performance Humidity Sensor Based on CsPdBr ₃ Nanocrystals for Noncontact Sensing of Hydromechanical Characteristics of Unsaturated Soil. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	20
898	Vertical Heterogeneous Integration of Metal Halide Perovskite Quantum-Wires/Nanowires for Flexible Narrowband Photodetectors. Nano Letters, 2022, 22, 3062-3070.	9.1	18
899	Fullerene-free, MoTe2 atomic layer blended bulk heterojunctions for improved organic solar cell and photodetector performance. Journal of Materials Research and Technology, 2022, 17, 2875-2887.	5.8	5
900	Efficient pâ€īype Doping of Tin Halide Perovskite via Sequential Diffusion for Thermoelectrics. Small Science, 2022, 2, .	9.9	5
901	Dualâ€Band Organic Photodetectors for Dualâ€Channel Optical Communications. Laser and Photonics Reviews, 2022, 16, .	8.7	25
902	Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission. Journal of the American Chemical Society, 2022, 144, 6390-6409.	13.7	13
903	Highly luminescent lead bromine perovskite via fast and eco-friendly water-assisted mechanochemical method. Optical Materials, 2022, 127, 112289.	3.6	2
904	Halide perovskite based synaptic devices for neuromorphic systems. Materials Today Physics, 2022, 24, 100667.	6.0	7
905	Two-dimensional perovskite Sr2Nb3O10 nanosheets meet CuZnS film: Facile fabrications and applications for high-performance self-powered UV photodetectors. Journal of Alloys and Compounds, 2022, 908, 164594.	5.5	8
906	Surfaceâ€Ðependent Properties and Tunable Photodetection of CsPbBr ₃ Microcrystals Grown on Functional Substrates. Advanced Optical Materials, 2022, 10, 2101807.	7.3	1

#	Article	IF	CITATIONS
907	High-Performance Near-Infrared Photodetectors Based on the Synergy Effect of Short Wavelength Light Filter and Long Wavelength Response of a Perovskite/Polymer Hybrid Structure. ACS Applied Materials & Interfaces, 2021, 13, 61818-61826.	8.0	7
908	Performance Evaluation of AgBi ₂ I ₇ Based Direct Conversion X-ray Detector. , 2021, , .		1
909	Ga ₂ O ₃ /GaN Heterostructural Ultraviolet Photodetectors with Exciton-Dominated Ultranarrow Response. ACS Applied Electronic Materials, 2022, 4, 188-196.	4.3	19
910	Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV–visible to near-infrared. Nanotechnology, 2022, 33, 085204.	2.6	3
911	Leadâ€Free Halide CsAg ₂ I ₃ with 1D Electronic Structure and High Stability for Ultraviolet Photodetector. Advanced Functional Materials, 2022, 32, .	14.9	18
912	Correlated Dynamics of Free and Selfâ€Trapped Excitons and Broadband Photodetection in BEA ₂ PbBr ₄ Layered Crystals. Advanced Optical Materials, 2022, 10, .	7.3	5
913	Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nature Communications, 2022, 13, 1946.	12.8	18
914	Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2022, 14, 20159-20167.	8.0	19
915	A Quasiâ€Twoâ€Dimensional Trilayered CsPbBr ₃ â€based Dionâ€Jacobson Hybrid Perovskite toward Highâ€Performance Photodetection. Chemistry - A European Journal, 2022, 28, .	3.3	11
916	Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer for High-Performance Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 7400-7409.	3.1	1
918	Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots. Nano Letters, 2022, 22, 3751-3760.	9.1	34
919	Hetero-perovskite engineering for stable and efficient perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3304-3323.	4.9	3
920	Wavelength-Tunable Multispectral Photodetector With Both Ultraviolet and Near-Infrared Narrowband Detection Capability. IEEE Transactions on Electron Devices, 2022, 69, 3258-3261.	3.0	5
921	Airâ€Stable, Ecoâ€Friendly <scp>RRAMs</scp> Based on Leadâ€Free <scp>Cs₃Bi₂Br₉</scp> Perovskite Quantum Dots for Highâ€Performance Information Storage. Energy and Environmental Materials, 2023, 6, .	12.8	11
922	A First-Principles Study on the Structural and Carrier Transport Properties of Inorganic Perovskite CsPbI3 under Pressure. Crystals, 2022, 12, 648.	2.2	7
923	Study of Resistive Switching and Biodegradability in Ultralow Power Memory Device Based on Allâ€Inorganic Ag/AgBi ₂ 1 ₇ /ITO Structure. Advanced Materials Interfaces, 2022, 9,	3.7	5
924	Unique Photoelectric Properties and Defect Tolerance of Lead-Free Perovskite Cs ₃ Cu ₂ I ₅ with Highly Efficient Blue Emission. Journal of Physical Chemistry Letters, 2022, 13, 4177-4183.	4.6	12
925	A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Scientific Reports, 2022, 12, 7411.	3.3	13

#	Δρτιςι ε	IE	CITATIONS
π 926	Engineering the Morphology and Component via Multistep Deposition of CsPbBr ₃ Films toward High Detectivity and Stable Selfâ€Powered Photodetectors. Advanced Materials Interfaces, 2022,	3.7	7
927	Evolutions of the optical properties in green-emitting MAPbBr3 perovskite nanoplatelets/polymethyl methacrylate (PMMA) composite films for light-emitting diode applications. Journal of Luminescence, 2022, 248, 118954.	3.1	5
928	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
929	Unravelling Alkaliâ€Metalâ€Assisted Domain Distribution of Quasiâ€2D Perovskites for Cascade Energy Transfer toward Efficient Blue Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200393.	11.2	26
930	Thermochromic Cs ₂ AgBiBr ₆ Single Crystal with Decreased Band Gap through Orderâ€Disorder Transition. Small, 2022, 18, e2201943.	10.0	15
931	Spray-Coating Thick Films of All-Inorganic Halide Perovskites for Filterless Narrowband Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 24583-24591.	8.0	14
932	Investigation on the Facet-Dependent Anisotropy in Halide Perovskite Single Crystals. Journal of Physical Chemistry C, 2022, 126, 8906-8912.	3.1	7
933	Reconfigurable self-powered imaging photodetectors by reassembling and disassembling ZnO/perovskite heterojunctions. Journal of Materials Chemistry C, 2022, 10, 8922-8930.	5.5	15
934	Ultrafast charge transfer enhanced nonlinear optical properties of CH ₃ NH ₃ PbBr ₃ perovskite quantum dots grown from graphene. Nanophotonics, 2022, 11, 3177-3188.	6.0	6
935	Flexible Perovskite and Organic Semiconductor Heterojunction Devices for Tunable Band-Selective Photodetection. ACS Applied Electronic Materials, 2022, 4, 2805-2814.	4.3	8
936	Achieving dual-color imaging by dual-band perovskite photodetectors coupled with algorithms. Journal of Colloid and Interface Science, 2022, 625, 297-304.	9.4	10
938	Selfâ€Assembly of 2D Hybrid Double Perovskites on 3D Cs ₂ AgBiBr ₆ Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angewandte Chemie, 2022, 134, .	2.0	1
939	Solution-processed perovskite crystals for electronics: Moving forward. Matter, 2022, 5, 1700-1733.	10.0	3
940	Selfâ€Assembly of 2D Hybrid Double Perovskites on 3D Cs ₂ AgBiBr ₆ Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
941	Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications. Nanoscale, 2022, 14, 9248-9277.	5.6	28
942	High Spectralâ€Rejectionâ€Ratio Narrowband Photodetectors Based on Perovskite Heterojunctions. Advanced Electronic Materials, 2022, 8, .	5.1	9
944	Stable 24.29%â€Efficiency FA _{0.85} MA _{0.15} PbI ₃ Perovskite Solar Cells Enabled by Methyl Haloacetateâ€Lead Dimer Complex. Advanced Energy Materials, 2022, 12, .	19.5	54
945	Emerging Intelligent Manufacturing of Metal Halide Perovskites. Advanced Materials Technologies, 2023, 8, .	5.8	3

#	Article		CITATIONS
946	2D Material and Perovskite Heterostructure for Optoelectronic Applications. Nanomaterials, 2022, 12, 2100.	4.1	13
947	Nonheteroepitaxial CsPbBr ₃ /Cs ₄ PbBr ₆ Interfaces Result in Nonpassivated Bright Bromide Vacancies. Chemistry of Materials, 2022, 34, 5377-5385.	6.7	4
948	Thermal Stability of K-Doped Organometal Halide Perovskite for Photovoltaic Materials. ACS Applied Energy Materials, 2022, 5, 10409-10414.	5.1	1
949	A Singleâ€Dot Perovskite Spectrometer. Advanced Materials, 2022, 34, .	21.0	26
950	Highly sensitive photodetector of Zn/Bi doped MAPbBr3 single crystals formed homojunction. Materials Science in Semiconductor Processing, 2022, 149, 106824.	4.0	4
951	Absorption Modulation, Enhancement, and Narrowing Using Sub-Wavelength Gratings. , 2022, , .		0
952	Bulk Defect Suppression of Micrometer-Thick Perovskite Single Crystals Enables Stable Photovoltaics. , 2022, 4, 1332-1340.		17
953	Narrowband Near-Infrared Photodetectors Based on Perovskite Waveguide Devices. Journal of Physical Chemistry Letters, 2022, 13, 6057-6063.	4.6	7
954	<scp>Selfâ€powered</scp> bifunctional perovskite photodetectors with both broadband and narrowband photoresponse. InformaÄnÃ-Materiály, 2022, 4, .	17.3	31
955	Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. Nanomaterials, 2022, 12, 2260.	4.1	16
956	Ultralow-voltage operation of light-emitting diodes. Nature Communications, 2022, 13, .	12.8	23
957	Directly integrated mixedâ€dimensional van der Waals graphene/perovskite heterojunction for fast photodetection. InformaÄnÃ-Materiály, 2022, 4, .	17.3	18
958	Perovskite-perovskite junctions for optoelectronics: Fundamentals, processing, and applications. Matter, 2022, 5, 2086-2118.	10.0	8
959	Dualâ€Band Perovskite Bulk Heterojunction Selfâ€Powered Photodetector for Encrypted Communication and Imaging. Advanced Optical Materials, 2022, 10, .	7.3	33
960	Analysis of ultrafast carrier dynamics and steady-state reflectivity on lattice expansion in metal halide perovskite during continuous illumination. Journal of Applied Physics, 2022, 132, .	2.5	3
961	A novel self-powered filterless narrow-band near-infrared photodiode of Cu2S/Si p+-p isotype heterojunction device with very low visible light noise. Applied Surface Science, 2022, 601, 154217.	6.1	10
962	Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. European Physical Journal B, 2022, 95, .	1.5	34
963	Filterless ultra-narrow-band perovskite photodetectors with high external quantum efficiency based on the charge collection narrowing mechanism enabled by electron blocking/hole transport layer. Semiconductor Science and Technology, 0, , .	2.0	1

#	Article	IF	CITATIONS
964	Extended linear detection range of a Bi _{0.5} Na _{0.5} TiO ₃ thin film-based self-powered UV photodetector <i>via</i> current and voltage dual indicators. Nanoscale Horizons, 2022, 7, 1240-1249.	8.0	5
965	Redâ€Emitting Perovskite Variant Cs ₂ PtCl ₆ Phosphor: Material Design, Luminous Mechanism, and Application in Highâ€Colorâ€Rendering White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	15
966	Lowâ€Dimensional Metalâ€Halide Perovskites as Highâ€Performance Materials for Memory Applications. Small, 2022, 18, .	10.0	38
967	Two-Photon Lasing from Two-Dimensional Homologous Ruddlesden–Popper Perovskite with Giant Nonlinear Absorption and Natural Microcavities. ACS Nano, 2022, 16, 13082-13091.	14.6	7
968	Recent Advances in CsPb <i>X</i> ₃ Perovskite Solar Cells: Focus on Crystallization Characteristics and Controlling Strategies. Advanced Energy Materials, 2023, 13, .	19.5	27
969	Unraveling the Effect of Halogen Ion Substitution on the Noise of Perovskite Single-Crystal Photodetectors. Journal of Physical Chemistry Letters, 2022, 13, 7831-7837.	4.6	7
970	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	48.7	96
971	Allâ€Inorganic Perovskite Singleâ€Crystal Photoelectric Anisotropy. Advanced Materials, 2022, 34, .	21.0	38
972	Direct Detection of Near-Infrared Circularly Polarized Light via Precisely Designed Chiral Perovskite Heterostructures. ACS Applied Materials & Interfaces, 2022, 14, 36781-36788.	8.0	13
973	Narrowband Monolithic Perovskite–Perovskite Tandem Photodetectors. Advanced Optical Materials, 2022, 10, .	7.3	7
974	Didodecylamine for the synthesis of highly ultrapure green-emitting hybrid perovskite FAPbBr3 nanocrystals. Optical Materials, 2022, 132, 112881.	3.6	0
975	Prevention of Noise Current Generation in Tinâ€Based Leadâ€Free Perovskites for Highly Sensitive Photodetection. Advanced Functional Materials, 2022, 32, .	14.9	14
976	High performance inorganic filterless narrowband photodetectors. Materials Letters, 2022, 328, 133138.	2.6	0
977	Graphene induced structure and doping level tuning of evaporated CsPbBr3 on different substrates. Chemical Engineering Journal, 2023, 452, 139243.	12.7	1
978	Synthesis and characterization of all-inorganic (CsPbBr ₃) perovskite single crystals. Materials Advances, 2022, 3, 7865-7871.	5.4	7
979	Enhancing two-dimensional perovskite photodetector performance through balancing carrier density and directional transport. Journal of Materials Chemistry A, 2022, 10, 21044-21052.	10.3	8
980	A high-performance self-powered photodetector based on a concentric annular α-FAPbI ₃ /MAPbI ₃ single crystal lateral heterojunction with broadband detectivity. Journal of Materials Chemistry C, 2022, 10, 11903-11913.	5.5	6
981	Broadband-tunable spectral response of perovskite-on-paper photodetectors using halide mixing. Nanoscale, 2022, 14, 14057-14063.	5.6	1

#	Article	IF	CITATIONS
982	Achieving highly efficient narrowband sky-blue electroluminescence with alleviated efficiency roll-off by molecular-structure regulation and device-configuration optimization. Journal of Materials Chemistry C, 2022, 10, 15408-15415.	5.5	14
983	Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 12560-12568.	5.5	6
984	Structural and compositional properties of 2D CH ₃ NH ₃ PbI ₃ hybrid halide perovskite: a DFT study. RSC Advances, 2022, 12, 25924-25931.	3.6	11
985	Stable and large-scale organic–inorganic halide perovskite nanocrystal/polymer nanofiber films prepared <i>via</i> a green <i>in situ</i> fiber spinning chemistry method. Nanoscale, 2022, 14, 11998-12006.	5.6	5
986	Electrospun Tri ation Perovskite Nanofibers for Infrared Photodetection. Advanced Functional Materials, 2022, 32, .	14.9	4
987	High grain boundary recombination velocity in polycrystalline metal halide perovskites. Science Advances, 2022, 8, .	10.3	21
988	Synthesis, Ambient storage stability and optoelectronic properties of Mn-doped CsPbBr3 perovskite crystals. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	1
989	Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection. Nature Communications, 2022, 13, .	12.8	20
990	Ultraviolet-to-infrared broadband photodetector and imaging application based on a perovskite single crystal. Optics Express, 2022, 30, 40611.	3.4	3
991	Jahnâ~'Teller Distortion-Stabilized Halide Double Perovskites with Unusual Rock-Salt-type Ordering of Divalent B-Site Cations. Chemistry of Materials, 2022, 34, 8207-8212.	6.7	5
992	Self-powered photodetectors based on CsPbBr3 quantum dots/organic semiconductors/SnO2 heterojunction for weak light detection. Science China Materials, 2023, 66, 716-723.	6.3	11
993	Thermal, Physical, and Optical Properties of the Solution and Melt Synthesized Single Crystal CsPbBr3 Halide Perovskite. Chemosensors, 2022, 10, 369.	3.6	3
994	A Polyanionic Strategy to Modify the Perovskite Grain Boundary for a Larger Switching Ratio in Flexible Woven Resistive Random-Access Memories. ACS Applied Materials & Interfaces, 2022, 14, 44652-44664.	8.0	7
995	Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Science Advances, 2022, 8, .	10.3	34
996	Singleâ€Crystal Perovskite Solar Cells Exhibit Close to Half A Millimeter Electronâ€Diffusion Length. Advanced Materials, 2022, 34, .	21.0	24
997	Highâ€Performance Perovskite Photovoltaics by Heterovalent Substituted Mixed Perovskites. Advanced Functional Materials, 2022, 32, .	14.9	8
998	Solutionâ€Processed Ternary Tin (II) Alloy as Holeâ€Transport Layer of Sn–Pb Perovskite Solar Cells for Enhanced Efficiency and Stability. Advanced Materials, 2022, 34, .	21.0	32
999	Dielectric effects, crystal field, and shape anisotropy tuning of the exciton fine structure of halide perovskite nanocrystals. Physical Review Materials, 2022, 6, .	2.4	2

#	Article		CITATIONS
1000	Ion-exchange controlled precipitation of CsPbX3 nanocrystals in glasses. Journal of the European Ceramic Society, 2022, 42, 7587-7595.	5.7	6
1001	Impact of loss mechanisms on performances of perovskite solar cells. Physica B: Condensed Matter, 2022, 647, 414363.	2.7	6
1002	Combining two-photon photoemission and transient absorption spectroscopy to resolve hot carrier cooling in 2D perovskite single crystals: the effect of surface layer. Journal of Materials Chemistry C, 2022, 10, 16751-16760.	5.5	2
1003	Tailoring the thermal conductivity of two-dimensional metal halide perovskites. Materials Horizons, 2022, 9, 3087-3094.	12.2	2
1004	Self-trapped excitons in soft semiconductors. Nanoscale, 2022, 14, 16394-16414.	5.6	14
1005	Plasmonic Au@Ag-upconversion nanoparticle hybrids for NIR photodetection <i>via</i> an alternating self-assembly method. Journal of Materials Chemistry C, 2022, 10, 16430-16438.	5.5	3
1006	Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging. Nature Communications, 2022, 13, .	12.8	31
1007	Rock-Salt-Ordered Nitrohalide Double Antiperovskites: Theoretical Design and Experimental Verification. Chemistry of Materials, 2022, 34, 9098-9103.	6.7	2
1008	Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector. Light: Science and Applications, 2022, 11, .	16.6	12
1009	Self-filtering narrowband perovskite photodetector with ultra-narrowband and high spectral rejection ratio. APL Materials, 2022, 10, .	5.1	1
1010	Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Science China Materials, 2023, 66, 1-21.	6.3	15
1011	Molecular Rotor–Rotor Heat Diffusion at the Origin of the Enhanced Thermal Conductivity of Hybrid Perovskites at High Temperatures. Chemistry of Materials, 2022, 34, 9569-9576.	6.7	5
1012	Structure and Piezoelectricity Due to B Site Cation Variation in AB ^{<i>n</i>+} Cl _{<i>n</i>+2} Hybrid Histammonium Chlorometallate Materials. Inorganic Chemistry, 0, , .	4.0	0
1013	Epitaxial Perovskite Single-Crystalline Heterojunctions for Filter-Free Ultra-Narrowband Detection with Tunable Spectral Responses. ACS Applied Materials & amp; Interfaces, 2022, 14, 50331-50342.	8.0	4
1014	Negative Photoconductivity: Bizarre Physics in Semiconductors. , 2022, 4, 2298-2320.		19
1015	Dynamics of photo-excited carriers in CsPbBr ₃ perovskite. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2019, 36, 557-563.	0.2	0
1016	Strain-Manipulated Photovoltaic and Photoelectric Effects of the MAPbBr ₃ Single Crystal. ACS Applied Materials & Interfaces, 2022, 14, 52134-52139.	8.0	4
1017	Vapor-Deposited Amino Coupling of Hybrid Perovskite Single Crystals and Silicon Wafers toward Highly Efficient Multiwavelength Photodetection. ACS Applied Materials & Interfaces, 2022, 14, 52476-52485.	8.0	5

ARTICLE IF CITATIONS # Molecular Configuration Engineering in Holeâ€Transporting Materials toward Efficient and Stable 1018 14.9 10 Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, . Tunable Multiband Halide Perovskite Tandem Photodetectors with Switchable Response. ACS 6.6 Photonics, 2022, 9, 3958-3966. Homologous bromides passivation of CH3NH3PbBr3 single crystals for photodetectors with improved 1020 2 5.5properties. Journal of Alloys and Compounds, 2023, 935, 168132. Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials 31.8 Science and Engineering Reports, 2023, 152, 100710. Lead-free Dion†"Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of 1022 4.0 8 Solids, 2023, 174, 111157. Perovskite light-emitting diodes with solution-processed MoO3 films as the hole-transport layers. Journal of Luminescence, 2023, 256, 119621. 1023 3.1 Bifacial all-perovskite tandem solar cells. Science Advances, 2022, 8, . 1024 10.3 26 High Performance 0D ZnO Quantum Dot/2D (PEA)2PbI4 Nanosheet Hybrid Photodetectors Fabricated 4.1 via a Facile Antisolvent Method. Nanomaterials, 2022, 12, 4217. Role of Heterocyclic Organic Compounds on the Optoelectronic Properties of Halide Perovskite 1026 5.1 4 Single Crystals. ACS Applied Energy Materials, 2022, 5, 14732-14738. Ultraâ€High Nonlinear Saturable Absorption Responses and Ultraâ€Fast Carrier Dynamics of Organic 7.3 DAST. Advanced Optical Materials, 2023, 11, . Filterâ€Free Narrowband Photomultiplicationâ€Type Planar Heterojunction Organic Photodetectors. 1028 14.9 31 Advanced Functional Materials, 2023, 33, . Machine learning assisted synthetic acceleration of Ruddlesden-Popper and Dion-Jacobson 2D lead halide perovskites. Acta Materialia, 2023, 245, 118638. An Organic–Inorganic Tin Halide Perovskite with Over 2000â€Hour Emission Stability. Advanced Optical 1030 7.3 1 Materials, 2023, 11, . Flexible Miniaturized Multispectral Detector Derived from Blade-Coated Organic Narrowband 14.6 Response Unit Array. ACS Nano, 2022, 16, 21036-21046. Manyâ€Body Correlations and Exciton Complexes in CsPbBr₃ Quantum Dots. Advanced 1032 21.0 15 Matérials, 2023, 35, . Composition Engineering of Perovskite Single Crystals for Highâ€Performance Optoelectronics. 14.9 Advanced Functional Materials, 2023, 33, . Infrared Light Detection Technology Based on Organics. ACS Applied Electronic Materials, 2023, 5, 1034 4.3 5 21-33. Size-dependent chiro-optical properties of CsPbBr₃nanoparticles. Nanoscale, 2023, 15, 5.6 2143-2151.

#	Article	IF	CITATIONS
103	A Simple-Structured Perovskite Wavelength Sensor for Full-Color Imaging Application. Nano Letters, 2023, 23, 533-540.	9.1	6
103	Effective Inhibition of Phase Segregation in Wideâ€Bandgap Perovskites with Alkali Halides Additives to Improve the Stability of Solar Cells. Solar Rrl, 2023, 7, .	5.8	10
103	Three-Dimensional Perovskite Phase Transition Materials with Switchable Second Harmonic Generation Properties Introduced by Homochiral (1 <i>S</i> ,4 <i>S</i>)-2,5-Diazabicyclo[2.2.1]-heptane. Inorganic Chemistry, 2023, 62, 942-949.	4.0	7
103	Plasmonic Resonance Enabling 2D Perovskite Single Crystal to Detect Telecommunication Light. Advanced Optical Materials, 2023, 11, .	7.3	2
104	للمفعدة SAjt tAnh cháعلا cá»sa tinh thá»f perovskite (C6H5C2H4NH3)2PbCl4 cháعز táعio báعtng phæ ُلَا رَبُّ 2022, , 303-308.	ip bay hÆ	¦i sjêu bão
104:	Chalcogenideâ€Based Narrowband Photodetectors for Imaging and Light Communication. Advanced Functional Materials, 2023, 33, .	14.9	15
	Malagular apgingering for consistive fact and stable questioned dimensional percushite		

1042	Molecular engineering for sensitive, fast and stable quasi-two-dimensional perovskite photodetectors. Journal of Materials Chemistry C, 2023, 11, 3314-3324.		6
1043	Enhancing Photodetectivity of Si/Perovskite Heterojunction-Based Broad Spectral Photodiodes by Introducing C ₆₀ Hole Blocking Layer. IEEE Transactions on Electron Devices, 2023, 70, 1143-1148.	3.0	0
1044	Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. Advanced Devices & Instrumentation, 2023, 4, .	6.5	9
1045	ZnTe-Based Photodetectors for Visible-UV Spectral Region. , 2023, , 281-300.		0
1046	Passivation of Surface Defects by X-type Short-Chain Ligands for High Quantum Yield and Stable CsPbX ₃ Quantum Dots Synthesis and Application in WLEDs. , 2023, 1, 513-522.		2
1047	Lead-free 2D MASnBr ₃ and Ruddlesden–Popper BA ₂ MASn ₂ Br ₇ as light harvesting materials. RSC Advances, 2023, 13, 7939-7951.	3.6	1
1048	A multiscale ion diffusion framework sheds light on the diffusion–stability–hysteresis nexus in metal halide perovskites. Nature Materials, 2023, 22, 329-337.	27.5	23
1049	Lateral Perovskite Singleâ€Crystal Capacitors for Selfâ€Powered Photodetection. Advanced Electronic Materials, 2023, 9, .	5.1	0
1050	Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications. Materials Today Physics, 2023, 34, 101079.	6.0	8
1051	Insight into structure defects in high-performance perovskite solar cells. Journal of Power Sources, 2023, 570, 233011.	7.8	4
1052	Photoactive materials and devices for energy-efficient soft wearable optoelectronic systems. Nano Energy, 2023, 110, 108379.	16.0	7
1053	Retina-inspired narrowband perovskite sensor array for panchromatic imaging. Science Advances, 2023, 9, .	10.3	3

#	Article		CITATIONS
1054	Insights into structural, elastic, mechanical, opto-electronic, and thermoelectric properties of rubidium-based fluoroperovskites RbXF3 (X = Zn, Cd, Hg). Journal of Physics and Chemistry of Solids, 2023, 178, 111357.		1
1055	Phonon modes and exciton-phonon interactions in CsPbCl3 single nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 151, 115713.		2
1056	Grating – Resonance InGaAs Narrowband Photodetector for Multispectral Detection in NIR – SWIR Region. , 2022, , .		0
1057	Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chemical Reviews, 2023, 123, 1207-1261.	47.7	41
1058	Modulating the Quantum Efficiency of Sb ₂ S ₃ â€Based Photodiodes Based on Conventional and Inverted Structures. Laser and Photonics Reviews, 2023, 17, .	8.7	6
1059	Highly Thermally Sensitive Cascaded Wannier–Mott Exciton Ionization/Carrier Localization in Manganese-Doped Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2023, 14, 1684-1692.	4.6	2
1060	UV-VIS-NIR broadband flexible photodetector based on layered lead-free organic-inorganic hybrid perovskite. Optics Express, 2023, 31, 8428.	3.4	5
1061	Perovskite-based color camera inspired by human visual cells. Light: Science and Applications, 2023, 12, .	16.6	23
1062	Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance. Nature Photonics, 2023, 17, 236-243.	31.4	13
1063	Polycrystalline formamidinium lead bromide (FAPbBr3) perovskite as a self-powered and fast visible-light photodetector. Microelectronic Engineering, 2023, 273, 111960.	2.4	1
1064	Narrowband Near-Infrared Photodetectors Based on Dye-Doped Perovskites. ACS Applied Electronic Materials, 2023, 5, 1628-1635.	4.3	1
1065	Recent Progress on Wavelength‣elective Perovskite Photodetectors for Image Sensing. Small Methods, 2023, 7, .	8.6	22
1066	Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications. NPG Asia Materials, 2023, 15, .	7.9	14
1067	Organic polystyrene and inorganic silica double shell protected lead halide perovskite nanocrystals with high emission efficiency and superior stability. Nano Research, 2023, 16, 10507-10514.	10.4	6
1068	Flexible Self-Powered Vertical Photodetectors Based on the [001]-Oriented CsPbBr ₃ Film. Journal of Physical Chemistry C, 2023, 127, 4846-4852.	3.1	1
1069	Preparation and Performance Testing of InAs/GaAs Photodetector. Mechanisms and Machine Science, 2023, , 610-614.	0.5	0
1070	Narrowband HgCdTe infrared photodetector with integrated plasmonic structure. Optics Letters, 2023, 48, 1882.	3.3	0
1071_	Ultrafast One-Step Deposition Route to Fabricate Single-Crystal CsPbX ₃ (X = Cl, Cl/Br, Br,) Tj ETQq1	107843	14 ₄ rgBT /Ov

#	Article		CITATIONS
1072	<i>De Novo</i> Studies of Working Mechanisms for Self-Driven Narrowband Perovskite Photodetectors. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1073	Highâ€Performance and Selfâ€Powered Xâ€Ray Detectors Made of Smooth Perovskite Microcrystalline Films with 100â€Î¼m Grains. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1074	Highâ€Performance and Selfâ€Powered Xâ€Ray Detectors Made of Smooth Perovskite Microcrystalline Films with 100 μm Grains. Angewandte Chemie, 2023, 135, .	2.0	0
1075	Modulation of photoluminescence intensity by surface defects of MAPbBr3 crystals. Optical Materials, 2023, 138, 113561.	3.6	0
1076	Preparation and promising optoelectronic applications of lead halide perovskite patterned structures: A review. , 2023, 5, .		6
1077	Perovskite photodetector-based single pixel color camera for artificial vision. Light: Science and Applications, 2023, 12, .	16.6	5
1078	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	14.9	12
1079	Discovering New Type of Leadâ€Free Clusterâ€Based Hybrid Double Perovskite Derivatives with Chiral Optical Activities and Low Xâ€Ray Detection Limit. Advanced Functional Materials, 2023, 33, .	14.9	11
1080	Advances in the Synthesis of Halide Perovskite Single Crystals for Optoelectronic Applications. Chemistry of Materials, 2023, 35, 2683-2712.	6.7	13
1081	Effects of ion-exchange and post-thermal annealing on the precipitation of cesium lead halide nanocrystals in glasses. Ceramics International, 2023, 49, 21363-21369.	4.8	0
1082	Compositional gradient engineering and applications in halide perovskites. Chemical Communications, 2023, 59, 5156-5173.	4.1	2
1083	High Responsivity of Narrowband Photomultiplication Organic Photodetector via Interfacial Modification. Advanced Optical Materials, 2023, 11, .	7.3	6
1084	CH3I sensing using yttrium single atom-doped perovskite nanocrystals. Nano Research, 2023, 16, 10429-10435.	10.4	2
1085	Advances of metal halide perovskite large-size single crystals in photodetectors: from crystal materials to growth techniques. Journal of Materials Chemistry C, 2023, 11, 5908-5967.	5.5	3
1086	Some Aspects of Novel Materials from Optical to THz Engineering. Progress in Optical Science and Photonics, 2023, , 59-80.	0.5	1
1087	Double-Band Metasurface Infrared Optics for Integrated Multichannel Spectral Sensors. IEEE Sensors Journal, 2023, 23, 10149-10158.	4.7	1
1088	In situ growth of perovskite single-crystal thin films with low trap density. Cell Reports Physical Science, 2023, 4, 101363.	5.6	4
1089	Self-powered perovskite photon-counting detectors. Nature, 2023, 616, 712-718.	27.8	28

#	Article	IF	Citations
1090	Lead-free Metal Halide Perovskites for Solar Energy. , 2023, , 189-222.		0
1091	A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nature Communications, 2023, 14, .	12.8	26
1092	Ammonium Salt Assisted Crystallization for High Performance Two-Dimensional Lead-Free Perovskite Photodetector. ACS Applied Electronic Materials, 2023, 5, 2169-2177.	4.3	1
1093	Low Dimensional, Metalâ€Free, Hydrazinium Halide Perovskiteâ€Related Single Crystals and Their Use as Xâ€Ray Detectors. Small, 2023, 19, .	10.0	5
1094	Haynes-Shockley experiment analogs in surface and optoelectronics: Tunable surface electric field extracting nearly all photocarriers. Science Advances, 2023, 9, .	10.3	0
1095	Origin of the bias instability in CsPbI3 light-emitting diodes. Applied Surface Science, 2023, 626, 157289.	6.1	3
1096	Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	21.0	8
1097	Identification and Mitigation of Transient Phenomena That Complicate the Characterization of Halide Perovskite Photodetectors. ACS Applied Energy Materials, 2023, 6, 10233-10242.	5.1	3
1098	Ultravioletâ€Visibleâ€Shortâ€Wavelength Infrared Broadband and Fastâ€Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate. Small, 2023, 19, .	10.0	8
1099	Probing carrier trapping and hysteresis at perovskite grain boundaries via in situ characterization. Optical Materials, 2023, 139, 113817.	3.6	1
1100	Ga2O3-based X-ray detector and scintillators: A review. Materials Today Physics, 2023, 35, 101095.	6.0	6
1101	Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Research, 2023, 16, 10256-10262.	10.4	7
1102	Self-powered photodetector based on copper-doped methyl ammonium lead bromide. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
1103	Bulk Incorporation of Molecular Dopants into Ruddlesden–Popper Organic Metal–Halide Perovskites for Charge Transfer Doping. Advanced Functional Materials, 2023, 33, .	14.9	3
1104	Efficient Narrowband Photoconductivity of the Excitonic Resonance in Two-Dimensional Ruddlesden–Popper Perovskites Due to Exciton Polarons. Journal of Physical Chemistry Letters, 2023, 14, 4850-4857.	4.6	0
1105	Perovskite single-crystal thin films: preparation, surface engineering, and application. Nano Convergence, 2023, 10, .	12.1	2
1106	Negligible Bowing Effect of Bandgap and Lattice Constant in a Variety of Compositions using Large Tilt Distortion in a Cesium–Lead Mixedâ€Halide System. Advanced Optical Materials, 0, , .	7.3	0
1107	Comparison of Hybrid Functionals HSE and PBEO in Calculating the Defect Properties of CsPbI ₃ . Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 1110.	1.3	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1108	Synthetic approaches for perovskite thin films and single-crystals. Energy Advances, 202	23, 2, 1075-1115.	3.3	3
1109	Narrowband and Broadband Dualâ \in Mode Perovskite Photodetector for RGB Detection A Advanced Optical Materials, 2023, 11, .	Application.	7.3	2
1110	Tuning Photodetection Band of MAPbX3(X=Cl/Br/l) Perovskite Single Crystals by Sub-na Doping. Chemical Research in Chinese Universities, 0, , .	no Carbon Dot	2.6	0
1111	MAPbBr _{3â^'<i>n</i>} X _{<i>n</i>} (X = Cl, I) single-crystal narrowl photodetectors for potential application in traffic light recognition. Journal of Materials C, 2023, 11, 10198-10204.	band Chemistry	5.5	2
1112	Waterproof, Self-Adhesive, and Large-Area Luminescent Perovskite–Polymer Fiber Mer Advanced Fiber Materials, 2023, 5, 1737-1748.	mbranes.	16.1	2
1113	Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solutic Reviews, 2023, 123, 7890-7952.	on. Chemical	47.7	12
1114	A potential dilute magnetic semiconductor: Lead-free Cs2AgBi1-xFexBr6 double perovsk Science in Semiconductor Processing, 2023, 165, 107652.	ite. Materials	4.0	0
1115	Spectrally Selective Polarization-Sensitive Photodetection Based on a 1D Lead-Free Hybr Ferroelectric. , 2023, 5, 1974-1981.	rid Perovskite		9
1116	Femtosecond Laser-Processed Perovskite Thin Films with Reduced Nonradiative Recomb Improved Photodetecting Performance. ACS Applied Electronic Materials, 2023, 5, 3316	vination and 5-3323.	4.3	3
1117	Understanding the influence of Cu ions implantation towards highly efficient MAPbBr3 solar cells. Optical Materials, 2023, 140, 113806.	perovskite	3.6	7
1118	lon Migration as a New Paradigm to Boost Selfâ€Driven Perovskite Narrowband Photode Advanced Optical Materials, 2023, 11, .	etectors.	7.3	3
1119	Ultranarrow-band filterless photodetectors based on CH ₃ NH ₃ _x Br _{3–x} mixed-halide perovskite single crystals. Nanotechn 345705.	• PbCl ology, 2023, 34,	2.6	0
1120	Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites. ACS Applied Materi Interfaces, 2023, 15, 26755-26765.	ials &	8.0	2
1121	Photoimaging with Color-Sensing Abilities by Tuning the Band Gap of a Single-Crystal Le Perovskite. ACS Applied Materials & Interfaces, 2023, 15, 28158-28165.	ad-Free	8.0	8
1122	Recent development in metal halide perovskites synthesis to improve their charge-carrie photocatalytic efficiency. Science China Materials, 2023, 66, 2545-2572.	r mobility and	6.3	4
1123	Exciton Fine Structure of CsPbCl ₃ Nanocrystals: An Interplay of Electronâ€ Interaction, Crystal Structure, Shape Anisotropy, and Dielectric Mismatch. ACS Nano, 20 12266-12277.	"Hole Exchange 023, 17,	14.6	3
1125	3Dâ€Heterojunction based on Embedded Perovskite Microâ€sized Single Crystals for Fa Photodetectors with Broad/narrowband Dualâ€mode. Advanced Materials, 0, , .	ıst Photomultiplier	21.0	0
1126	Bandgap engineering and photodetector applications in Bi(l1- <i>x</i> Br <i>x</i>)3 single Applied Physics Letters, 2023, 123, .	e crystals.	3.3	1

#	Article	IF	CITATIONS
1127	Novel 3D Cubic Topology in Hybrid Lead Halides with a Symmetric Aromatic Triammonium Exhibiting Water Stability. Chemistry of Materials, 2023, 35, 5267-5280.	6.7	0
1128	Indium-Tin-Oxide-Induced Tunability of Nonlinear Optical Absorption from CH ₃ NH ₃ PbBr ₃ Nanostructure-Based Films: Implications for Nonlinear Optical Devices. ACS Applied Nano Materials, 2023, 6, 13421-13430.	5.0	0
1129	Advances in the Application of Perovskite Materials. Nano-Micro Letters, 2023, 15, .	27.0	40
1130	Si/Organic Integrated Narrowband Nearâ€Infrared Photodetector. Small, 2023, 19, .	10.0	2
1131	Electronic structure and optical spectra of halide perovskites A ₂ BCl ₆ (A= Cs;) Tj ETQqQ Status Solidi (B): Basic Research, 0, , .) 0 0 rgBT 1.5	/Overlock 10 1
1133	Water Erosion Highly Recoverable and Flexible Photodetectors Based on Electrospun, Waterproof Perovskite–Polymer Fiber Membranes. ACS Applied Polymer Materials, 0, , .	4.4	0
1134	Anisotropic Collective Variables with Machine Learning Potential for <i>Ab Initio</i> Crystallization of Complex Ceramics. ACS Nano, 2023, 17, 14099-14113.	14.6	1
1135	Organic-inorganic hybrid perovskite material and its application for transistor. Materials Chemistry Frontiers, 0, , .	5.9	0
1136	Perovskite Single Crystals: Physical Properties and Optoelectronic Applications. Materials Futures, 0, ,	8.4	2
1137	Charge carrier transport properties of twin domains in halide perovskites. Journal of Materials Chemistry A, 0, , .	10.3	0
1138	Direct hard X-ray photodetector with superior sensitivity based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition. Materials Today Advances, 2023, 19, 100411.	5.2	0
1139	Diameter-dependent photoelectric performances of semiconducting carbon nanotubes/perovskite heterojunctions. Nano Research, O, , .	10.4	1
1140	Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. Nano-Micro Letters, 2023, 15, .	27.0	4
1141	Handwriting of perovskite optoelectronic devices on diverse substrates. Nature Photonics, 2023, 17, 964-971.	31.4	10
1142	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	10.3	7
1143	Mixedâ€Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges. Advanced Optical Materials, 2023, 11, .	7.3	11
1144	Revealing Charge-Transfer Dynamics at Buried Charge-Selective Heterointerface in Highly Effective Perovskite Solar Cells. Journal of Physical Chemistry Letters, 0, , 7953-7959.	4.6	0
1145	Insight into Controlled Surface Passivation of PEDOT:PSS for Defect Density Modulation and Efficient Charge Transport for Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 8695-8706.	5.1	2

#	Article	IF	CITATIONS
1146	Epitaxy growth of MAPbBr _{<i>x</i>} Cl _{3â^'<i>x</i>} single-crystalline perovskite films toward spectral selective detection in both broadband and narrowband ranges. Journal of Materials Chemistry C, 2023, 11, 13763-13773.	5.5	1
1147	Zero-bias Bi-based perovskite image sensor arrays with direct laser-scribing process. Journal of Materials Chemistry C, 2023, 11, 13539-13547.	5.5	1
1148	A 3D lead chloride hybrid exhibits self-trapped emission and exceptional stability. Inorganic Chemistry Frontiers, 2023, 10, 6392-6400.	6.0	1
1149	Chemical Vapor Deposition Growth of Highly Stable Cs ₂ AgBiBr ₆ Double Perovskite Thin Films and Their Ultralow Thermal Conductivity and Fast Photoresponse. ACS Applied Energy Materials, 2023, 6, 8794-8807.	5.1	Ο
1150	Preferably Oriented Growth of Methylammonium-Based Perovskite Single Crystals with Ionic Liquid Solvent. Crystal Growth and Design, 2023, 23, 7424-7431.	3.0	1
1151	Room-temperature growth of perovskite single crystals via antisolvent-assisted confinement for high-performance electroluminescent devices. Nano Energy, 2023, 118, 108951.	16.0	1
1152	Self-Powered Wavelength-Dependent Dual-Polarity Response Photodetector Based on CdS@PEDOT:PSS@Au Sandwich-Structured Core–Shell Nanorod Arrays. ACS Applied Materials & Interfaces, 2023, 15, 45970-45980.	8.0	0
1153	Fabrication of a Red-Sensitive Heterojunction Photodetector by Using a Narrowband Organic Dye. Journal of Physical Chemistry C, 2023, 127, 19182-19188.	3.1	0
1154	Recent advances in microfluidic fiberâ€spinning chemistry. Journal of Polymer Science, 2024, 62, 447-462.	3.8	0
1155	Laminated Polymerâ€Encapsulated Halide Perovskite Photoconductors. Advanced Functional Materials, 2024, 34, .	14.9	Ο
1156	Iodotrimethylsilane as a Reactive Ligand for Surface Etching and Passivation of Perovskite Nanocrystals toward Efficient Pureâ€red to Deepâ€red LEDs. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
1157	lodotrimethylsilane as a Reactive Ligand for Surface Etching and Passivation of Perovskite Nanocrystals toward Efficient Pureâ€red to Deepâ€red LEDs. Angewandte Chemie, 2023, 135, .	2.0	0
1158	Studying the effect of Sn doping on the optoelectronic properties of PbI2 nanosheets/Si heterojunction photodetector prepared by chemical bath deposition. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	0
1159	Photoinduced Polymorphism of Fluorescent Organic Molecules in Solid State. Advanced Optical Materials, 2023, 11, .	7.3	3
1160	Cascade perovskite single crystal for gamma-ray spectroscopy. IScience, 2023, 26, 107935.	4.1	0
1161	Engineering and Controlling Perovskite Emissions via Optical Quasiâ€Boundâ€5tatesâ€inâ€theâ€Continuum. Advanced Functional Materials, 2024, 34, .	14.9	1
1162	8-nm narrowband photodetection in diamonds. , 2023, 2, 230010-230010.		2
1163	The synergistic effect of trap deactivation and hysteresis suppression at grain boundaries in perovskite interfaces <i>via</i> multifunctional groups. Physical Chemistry Chemical Physics, 0, , .	2.8	0

#	Article	IF	CITATIONS
1164	Structural and Optical Characterization of Spin-Coated Perovskite MAPbI3 – xBrx Nano-Needles. Surface Engineering and Applied Electrochemistry, 2023, 59, 595-600.	0.8	0
1165	Visible-Blind Narrowband Near-Infrared Photodetector for Precise Real-Time Photoplethysmography Measurement. ACS Applied Materials & Interfaces, 2023, 15, 50312-50320.	8.0	1
1166	Crystallization Regulation and Defect Passivation of Highâ€Performance Flexible Perovskite Lightâ€Emitting Diodes Based on Novel Dielectric/Metal/Dielectric Transparent Electrodes. Advanced Optical Materials, 2024, 12, .	7.3	0
1167	The Scale Effects of Organometal Halide Perovskites. Nanomaterials, 2023, 13, 2935.	4.1	1
1168	Solution-Processed UV Photodiodes Based on Cs ₂ Ag _{0.35} Na _{0.65} InCl ₆ Perovskite Nanocrystals. ACS Applied Nano Materials, 2023, 6, 20389-20397.	5.0	2
1169	Chiralâ€Achiral Cations Intercalation Induced Leadâ€Free Chiralâ€Polar Hybrid Perovskites Enable Selfâ€Powered Xâ€Ray and Ultraviolet–Visible–Nearâ€Infrared Photo Detection. Small, 0, , .	10.0	1
1170	Polar Bilayered Dion–Jacobson Hybrid Perovskite Single Crystal with Bulk Photovoltaic Effect for Self-Driven X-ray–Ultraviolet–Visible Photodetection. Chemistry of Materials, 2023, 35, 9806-9816.	6.7	0
1171	Polarization and Spectrum Multiâ€Dimensional Sensitive Perovskite Photodetectors. Advanced Optical Materials, 0, , .	7.3	0
1172	Sensitive Thermography via Sensing Visible Photons Detected from the Manipulation of the Trap State in MAPbX ₃ . ACS Applied Materials & Interfaces, 2023, 15, 56526-56536.	8.0	0
1173	Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Science Bulletin, 2024, 69, 382-418.	9.0	0
1174	Fast Response, High Spectral Rejection Ratio, Self-Filtered Ultranarrowband Photodetectors Based on Perovskite Single-Crystal Heterojunctions. ACS Applied Materials & Interfaces, 2023, 15, 54050-54059.	8.0	0
1175	Integration of Large-Area Halide Perovskite Single Crystals and Substrates via Chemical Welding Using an Ionic Liquid for Applications in X-ray Detection. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1176	Pathways of Water-Induced Lead-Halide Perovskite Surface Degradation: Insights from <i>In Situ</i> Atomic-Scale Analysis. ACS Nano, 2023, 17, 25679-25688.	14.6	1
1177	Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites. InformaÄnÃ-Materiály, 0, , .	17.3	0
1178	Bismuth-doping induced red-shifted spectral response of homo-epitaxial MAPbBr3 photodiodes. APL Materials, 2023, 11, .	5.1	0
1180	In Situ Glass Crystallization Enables Narrowband Blue Luminescence for Fullâ€Spectrum Lighting and Transparent Display. Advanced Optical Materials, 0, , .	7.3	0
1181	Ultra-narrowband light absorption with dual metamaterial ring resonator patches. Optical Materials, 2024, 148, 114826.	3.6	0
1182	Light-enhanced oxygen degradation of MAPbBr ₃ single crystal. Physical Chemistry Chemical Physics, 2024, 26, 5027-5037.	2.8	0

#	Article	IF	CITATIONS
1183	Anisotropy of Anion Diffusion in Allâ€Inorganic Perovskite Single Crystals. Small, 0, , .	10.0	0
1184	Quantifying the Sizeâ€Dependent Excitonâ€Phonon Coupling Strength in Single Leadâ€Halide Perovskite Quantum Dots. Advanced Optical Materials, 2024, 12, .	7.3	1
1185	Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nature Communications, 2024, 15, .	12.8	0
1186	High performance photodetector based on WSe2 p-n homojunction induced by the electron doping from Bi2O2Se. Physica E: Low-Dimensional Systems and Nanostructures, 2024, 158, 115907.	2.7	Ο
1187	Single-photon superradiance in individual caesium lead halide quantum dots. Nature, 2024, 626, 535-541.	27.8	1
1188	Dense Stacking of Millimeterâ€5ized Perovskite Single Crystals for Sensitive and Lowâ€Bias Hard Xâ€Ray Detection. Advanced Functional Materials, 0, , .	14.9	0
1189	A highly sensitive self-powered photodetector based on pinhole-free PEA _{0.2} FA _{0.8} SnI ₃ films with aminopyrimidine. Journal of Materials Chemistry A, 2024, 12, 6446-6454.	10.3	0
1190	Wavelength – Tunable Grating – Resonance InGaAs Narrowband Photodetector with Infrared Optical PCM, Antimony Triselenide (Sb ₂ Se ₃). , 2023, , .		0
1191	Dramatically Enhanced Lightâ€Emitting/Detecting Bifunction of CH ₃ NH ₃ PbBr ₃ Singleâ€Crystal Thinâ€Film via Electrical Dopingâ€Induced Defects Passivation. Advanced Optical Materials, 0, , .	7.3	0
1192	Single crystal perovskite an emerging photocatalytic and storage material: Synthesis to applications via theoretical insight. Physics Reports, 2024, 1061, 1-53.	25.6	0
1193	Perovskite materials in X-ray detection and imaging: recent progress, challenges, and future prospects. RSC Advances, 2024, 14, 6656-6698.	3.6	0
1194	Visible Elimination, Ultraviolet and Near-Infrared Dual-Band Photodetector Based on Single-Crystal Perovskite Heterojunctions Toward Secure Optical Communication. ACS Photonics, 2024, 11, 1252-1263.	6.6	Ο
1195	Chemical Vapor Deposition Growth of Atomically Thin SnSb ₂ Te ₄ Single Crystals Toward Fast Photodetection. Advanced Functional Materials, 0, , .	14.9	0
1196	A Comprehensive Review of Organic Holeâ€Transporting Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Functional Materials, 0, , .	14.9	Ο
1197	Unveiling heavy heterovalent doping-modulated microstructure and thermoelectric performance in bulk hybrid perovskite single crystals. Chemical Engineering Journal, 2024, 487, 150477.	12.7	0
1198	Perovskite Bulk Ceramics Prepared by Solid-State Sintering for Narrow-Band Photodetectors. , 2024, 2, 501-507.		0
1199	Molecular Electronics: From Nanostructure Assembly to Device Integration. Journal of the American Chemical Society, 2024, 146, 7885-7904.	13.7	0
1200	Electro-Optically Tunable Passivated Double-Cation Perovskite-Based ReRAM for Low-Power Memory Applications. ACS Applied Electronic Materials, 2024, 6, 2709-2719.	4.3	0

#	Article	IF	CITATIONS
1201	The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2024, , 109800.	9.0	0