Silica Microspheres with Fibrous Shells: Synthesis and A

Analytical Chemistry 87, 9631-9638 DOI: 10.1021/acs.analchem.5b02511

Citation Report

#	Article	IF	CITATIONS
1	Effect of Zeta Potential and Particle Size on the Stability of SiO Nanospheres as Carrier for Ultrasound Imaging Contrast Agents. International Journal of Electrochemical Science, 2016, 11, 8520-8529.	1.3	98
2	A magnetically recoverable photocatalyst prepared by supporting TiO ₂ nanoparticles on a superparamagnetic iron oxide nanocluster core@fibrous silica shell nanocomposite. RSC Advances, 2017, 7, 9587-9595.	3.6	11
3	Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. Journal of Chromatography A, 2017, 1505, 63-68.	3.7	47
4	Recent advances in capillary ultrahigh pressure liquid chromatography. Journal of Chromatography A, 2017, 1523, 17-39.	3.7	57
5	Poly (styrene-divinyl benzene-glycidylmethacrylate) stationary phase grafted with poly amidoamine (PAMAM) dendrimers for rapid determination of phenylene diamine isomers in HPLC. Talanta, 2017, 168, 188-195.	5.5	23
6	Rods-on-sphere silica particles for high performance liquid chromatography. Journal of Chromatography A, 2017, 1497, 87-91.	3.7	9
7	Dendritic Fibrous Nanosilica for Catalysis, Energy Harvesting, Carbon Dioxide Mitigation, Drug Delivery, and Sensing. ChemSusChem, 2017, 10, 3866-3913.	6.8	197
8	Monodispersed Mesoporous Silica Spheres Supported Co ₃ O ₄ as Robust Catalyst for Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 4238-4243.	3.7	15
9	Core-shell silica microsphere-based trypsin nanoreactor for low molecular-weight proteome analysis. Analytica Chimica Acta, 2017, 985, 194-201.	5.4	12
10	A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Mikrochimica Acta, 2017, 184, 4099-4106.	5.0	25
11	Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous and Mesoporous Materials, 2018, 268, 268-275.	4.4	21
12	Dendritic core-shell silica spheres with large pore size for separation of biomolecules. Journal of Chromatography A, 2018, 1540, 31-37.	3.7	29
13	Uniform formation of mesoporous silica shell on micron-sized cores in the presence of hydrocarbon used as a swelling agent. Journal of Sol-Gel Science and Technology, 2018, 85, 539-545.	2.4	5
14	Highly uniform porous silica layer open-tubular capillary columns produced via in-situ biphasic sol–Gel processing for open-tubular capillary electrochromatography. Journal of Chromatography A, 2018, 1538, 86-93.	3.7	31
15	Synthesis of core-shell silica spheres with tunable pore diameters for HPLC. Materials Letters, 2018, 211, 40-42.	2.6	18
16	Core–shell microspheres with porous nanostructured shells for liquid chromatography. Journal of Separation Science, 2018, 41, 99-124.	2.5	34
17	Preparation and Chromatographic Features of Fibrous Core–Shell HPLC Packing Material. Chromatographia, 2018, 81, 1249-1256.	1.3	3
18	Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach. RSC Advances, 2019, 9, 24783-24790.	3.6	28

#	Article	IF	CITATIONS
19	InÂVitro and InÂVivo Evaluation of Core–Shell Mesoporous Silica as a Promising Water-Insoluble Drug Delivery System: Improving the Dissolution Rate and Bioavailability of Celecoxib With Needle-Like Crystallinity. Journal of Pharmaceutical Sciences, 2019, 108, 3225-3232.	3.3	8
20	A developed, eco-friendly, and flexible thermoplastic elastomeric foam from SEBS for footwear application. EXPRESS Polymer Letters, 2019, 13, 948-958.	2.1	27
21	Synthesis, characterization, and luminescence properties of BiVO4:Eu3+ embedded Fe3O4@mSiO2 nanoparticles. Journal of Luminescence, 2019, 215, 116677.	3.1	20
22	Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials. Journal of Materials Chemistry A, 2019, 7, 5111-5152.	10.3	103
23	Formation Mechanism of Silica Particles with Dendritic Structure. ChemistrySelect, 2019, 4, 6656-6661.	1.5	7
24	Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nature Protocols, 2019, 14, 2177-2204.	12.0	96
25	Fabrication of hollow cubic silica nanoframes with a fibrous morphology. Materials Letters, 2019, 252, 31-34.	2.6	2
26	Synthesis and adsorption behavior study of magnetic fibrous mesoporous silica. Microporous and Mesoporous Materials, 2019, 282, 15-21.	4.4	13
27	Well-Defined Materials for High-Performance Chromatographic Separation. Annual Review of Analytical Chemistry, 2019, 12, 451-473.	5.4	14
28	Facile synthesis of a 3D flower-like SiO2-MOF architecture with copper oxide as a copper source for enantioselective capture. New Journal of Chemistry, 2019, 43, 16123-16126.	2.8	5
29	Fundamental Properties of Packing Materials for Liquid Chromatography. Separations, 2019, 6, 2.	2.4	9
30	Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property. Applied Surface Science, 2020, 499, 143933.	6.1	23
31	A One-Step Ultrasonic Spray Pyrolysis Approach to Large-Scale Synthesis of Silica Microspheres. Silicon, 2020, 12, 1667-1672.	3.3	7
32	High-Throughput and Ultrafast Liquid Chromatography. Analytical Chemistry, 2020, 92, 67-84.	6.5	40
33	Ultrasonic-Assisted Sol–Gel Synthesis of Core–Shell Silica Particles for High-Performance Liquid Chromatography. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 859-868.	3.7	8
34	Preparation and application of novel MIL-101(Cr) composite in liquid chromatographic separation of aromatic compounds: experimental and computational insights. Mikrochimica Acta, 2020, 187, 471.	5.0	9
35	A Syringe-Filter-based Portable Microreactor for Size-selective Proteolysis of Low Molecular-weight Proteins. Chinese Journal of Analytical Chemistry, 2020, 48, e20139-e20148.	1.7	2
36	Monodisperse core–shell silica particles as a high-performance liquid chromatography packing material: Facile in situ silica sol-gel synthesis. Journal of Chromatography A, 2020, 1625, 461282.	3.7	7

#	Article	IF	CITATIONS
37	Controlled manipulation of TiO2 nanoclusters inside mesochannels of core-shell silica particles as stationary phase for HPLC separation. Mikrochimica Acta, 2020, 187, 328.	5.0	2
38	Pore expanding effect of hydrophobic agent on 100 nm-sized mesoporous silica particles estimated based on Hansen solubility parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125647.	4.7	7
39	Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Analytical Chemistry, 2021, 93, 257-272.	6.5	49
40	A Versatile Interfacial Coassembly Method for Fabrication of Tunable Silica Shells with Radially Aligned Dual Mesopores on Diverse Magnetic Core Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 1883-1894.	8.0	19
41	Facile synthesis of spherical covalent organic frameworks as stationary phases for short-column liquid chromatography. Chemical Communications, 2021, 57, 7501-7504.	4.1	23
42	A novel column modification approach for capillary gas chromatography: combination with a triptycene-based stationary phase achieves high separation performance and inertness. New Journal of Chemistry, 2021, 45, 7594-7601.	2.8	4
43	Preparation of Silica-Based Superficially Porous Silica and its Application in Enantiomer Separations: a Review. Journal of Analysis and Testing, 2021, 5, 242-257.	5.1	18
44	Constructing Hybrids Consisting of Porous Silica Particles and Carbon Nanotubes and their Polymer Composites. Applied Composite Materials, 2021, 28, 705-715.	2.5	1
45	Polyaniline-coated core-shell silica microspheres-based dispersive-solid phase extraction for detection of benzophenone-typeÂUV filters in environmental water samples. Environmental Advances, 2021, 3, 100037.	4.8	13
46	Correlation of Secondary Particle Number with the Debye–Hückel Parameter for Thickening Mesoporous Silica Shells Formed on Spherical Cores. ACS Omega, 2021, 6, 17734-17740.	3.5	2
47	TiO2-x nanoparticles dispersed in center-radial channels of dendritic mesoporous silica nanospheres (DMSNs) as novelly structured photocatalysts. Journal of Materials Science, 2021, 56, 14659-14671.	3.7	9
48	Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications. Nano Today, 2021, 39, 101231.	11.9	37
49	Titanium dioxide-coated core-shell silica microspheres-based solid-phase extraction combined with sheathless capillary electrophoresis-mass spectrometry for analysis of glyphosate, glufosinate and their metabolites in baby foods. Journal of Chromatography A, 2021, 1659, 462519.	3.7	12
50	TiO2-modified fibrous core-shell mesoporous material to selectively enrich endogenous phosphopeptides with proteins exclusion prior to CE-MS analysis. Talanta, 2021, 235, 122737.	5.5	12
51	Preparation of silica microspheres with a broad pore size distribution and their use as the support for a coated cellulose derivative chiral stationary phase. Journal of Separation Science, 2018, 41, 1232-1239.	2.5	9
52	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie, 2022, 134, .	2.0	30
53	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie - International Edition, 2022, 61, .	13.8	52
54	Pore size control of monodisperse mesoporous silica particles with alkyl imidazole ionic liquid templates for high performance liquid chromatography applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128200.	4.7	5

CITATION REPORT

	CITATION RE	CITATION REPORT	
# 55	ARTICLE Nano-channel confined biomimetic nanozyme/bioenzyme cascade reaction for long-lasting and intensive chemiluminescence. Biosensors and Bioelectronics, 2022, 202, 114020.	IF 10.1	CITATIONS
56	One-Step Solvothermal Synthesis of Sub-2-µm Sea Urchin-Like TiO2 Microspheres for High-Performance Liquid Chromatography Stationary Phase. Chromatographia, 2022, 85, 365-371.	1.3	1
57	功è∫½åŒ−二氧åŒ−硅纳米ææ−™åœ¨è,¿ç˜æ²»ç−−领域的应甔. Chinese Science Bulletin, 2022, , .	0.7	1
58	Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 2022, 1675, 463155.	3.7	11
59	Fabrication of dendritic fibrous silica nanolayer on optimized water-glass-based synthetic nanosilica from rice husk ash. Ceramics International, 2022, 48, 32409-32417.	4.8	1
60	Fabrication of dimethyl methylphosphonate-loaded mesoporous silica nano fire extinguisher and flame retarding unsaturated polyester. Composites Communications, 2022, 35, 101282.	6.3	6
61	Unveiling the mechanism of methylcellulose-templated synthesis of Al2O3 microspheres with organic solvents as swelling agents in microchannel. Journal of Colloid and Interface Science, 2022, 628, 31-42.	9.4	3
62	Novel core–shell SiO2@dSiO2@NH2-MIL-53(Al) packed into solid phase extraction column for enrichment of non-steroidal anti-inflammatory drugs prior to UPLC-MS/MS. Microchemical Journal, 2022, 183, 107970.	4.5	1
63	Sio2@Dsio2@Tio2 Core-Shell Stationary Phase with Uniform and Tunable Tio2 Thickness for Hplc Separation. SSRN Electronic Journal, 0, , .	0.4	0
64	Confined growth of TiO2 nanoclusters inside mesopores of core–shell silica spheres with high loading as efficient photocatalysts. Journal of Materials Science, 2022, 57, 17277-17290.	3.7	0
65	Chromatographic separation of peptides and proteins for characterization of proteomes. Chemical Communications, 2023, 59, 270-281.	4.1	2
66	Process Intensification of Dendritic Fibrous Nanospheres of Silica (KCC-1) via continuous flow: A Scalable, and Sustainable Route to a Conventional Batch Synthesis. Reaction Chemistry and Engineering, 0, , .	3.7	0
67	Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications. TrAC - Trends in Analytical Chemistry, 2023, 158, 116895.	11.4	6
68	Fluoro-Functionalized Spherical Covalent Organic Frameworks as a Liquid Chromatographic Stationary Phase for the High-Resolution Separation of Organic Halides. Analytical Chemistry, 2022, 94, 18067-18073.	6.5	9
69	Size-preset Synthesis of Highly Monodisperse Silica Spheres for Self-Assembly of Photonic Crystals with Narrow Band Width. Silicon, 0, , .	3.3	0
70	Applicability of core-shell SiO2 microspheres with a high TiO2 loading as stationary phase for HPLC. Analytica Chimica Acta, 2023, 1272, 341527.	5.4	1
71	Core-shell metal-organic framework/silica hybrid with tunable shell structure as stationary phase for high performance liquid chromatography. Journal of Chromatography A, 2023, 1705, 464164.	3.7	2
73	Clickable periodic mesoporous organosilicas core-shell particles with radially-oriented mesopores for high-performance liquid chromatography. Microporous and Mesoporous Materials, 2023, 362, 112785.	4.4	2

#	Article	IF	CITATIONS
74	Preparation of core–shell silica particles with tunable pore size by phenylethanol as swelling agent for chromatographic separation. Materials Letters, 2024, 364, 136343.	2.6	0

CITATION REPORT