Liquid demixing of intrinsically disordered proteins is a

Nature Communications 6, 8088 DOI: 10.1038/ncomms9088

Citation Report

#	Article	IF	Citations
1	A lnc <scp>RNA</scp> to repair <scp>DNA</scp> . EMBO Reports, 2015, 16, 1413-1414.	2.0	18
2	Liquids, Fibers, and Gels: The Many Phases of Neurodegeneration. Developmental Cell, 2015, 35, 531-532.	3.1	47
3	Polymer physics of intracellular phase transitions. Nature Physics, 2015, 11, 899-904.	6.5	1,145
4	The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei. Cell, 2015, 163, 829-839.	13.5	262
5	Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress. Frontiers in Genetics, 2016, 7, 63.	1.1	40
6	Roles of RNA-Binding Proteins in DNA Damage Response. International Journal of Molecular Sciences, 2016, 17, 310.	1.8	93
7	New directions in poly(ADPâ€ribose) polymerase biology. FEBS Journal, 2016, 283, 4017-4031.	2.2	75
8	p53 induces formation of NEAT1 IncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine, 2016, 22, 861-868.	15.2	372
9	Spatiotemporal regulation of posttranslational modifications in the <scp>DNA</scp> damage response. EMBO Journal, 2016, 35, 6-23.	3.5	174
10	Higherâ€order oligomerization promotes localization of <scp>SPOP</scp> to liquid nuclear speckles. EMBO Journal, 2016, 35, 1254-1275.	3.5	172
11	Superresolution light microscopy shows nanostructure of carbon ion radiationâ€induced DNA doubleâ€strand break repair foci. FASEB Journal, 2016, 30, 2767-2776.	0.2	39
12	The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Cell, 2016, 165, 1055-1066.	13.5	311
13	Mechanisms and Consequences of Macromolecular Phase Separation. Cell, 2016, 165, 1067-1079.	13.5	272
14	Phase Separation: Linking Cellular Compartmentalization to Disease. Trends in Cell Biology, 2016, 26, 547-558.	3.6	291
15	Y-box-binding protein 1 as a non-canonical factor of base excision repair. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1631-1640.	1.1	36
16	Droplet organelles?. EMBO Journal, 2016, 35, 1603-1612.	3.5	272
17	RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Langmuir, 2016, 32, 10042-10053.	1.6	238
18	A glass menagerie of low complexity sequences. Current Opinion in Structural Biology, 2016, 38, 18-25.	2.6	29

TION RE

#	Article	IF	CITATIONS
19	Signaling from Mus81-Eme2-Dependent DNA Damage Elicited by Chk1 Deficiency Modulates Replication Fork Speed and Origin Usage. Cell Reports, 2016, 14, 1114-1127.	2.9	71
20	Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa <i>PARP1</i> knock-out cells. Nucleic Acids Research, 2016, 44, gkw859.	6.5	23
21	Chromatin, Nuclear Organization, and Genome Stability in Mammals. , 2016, , 391-407.		0
22	ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. Structure, 2016, 24, 1537-1549.	1.6	617
23	Liquid–liquid phase separation in cellular signaling systems. Current Opinion in Structural Biology, 2016, 41, 180-186.	2.6	172
24	Are aberrant phase transitions a driver of cellular aging?. BioEssays, 2016, 38, 959-968.	1.2	234
25	Insight into the machinery that oils chromatin dynamics. Nucleus, 2016, 7, 532-539.	0.6	8
26	Determinants of affinity and specificity in RNA-binding proteins. Current Opinion in Structural Biology, 2016, 38, 83-91.	2.6	51
27	ADP-ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science, 2016, 352, 1221-1225.	6.0	141
28	The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Research, 2016, 44, 3989-4004.	6.5	204
29	Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Research, 2016, 44, 993-1006.	6.5	198
30	Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Research, 2016, 1647, 9-18.	1.1	195
31	Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation. Journal of Biological Chemistry, 2016, 291, 1789-1802.	1.6	80
32	Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites. Nucleic Acids Research, 2016, 44, e27-e27.	6.5	25
33	Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: Reversible formation and partitioning in aqueous biphasic systems. Advances in Colloid and Interface Science, 2017, 239, 75-87.	7.0	89
34	Organizing DNA repair in the nucleus: DSBs hit the road. Current Opinion in Cell Biology, 2017, 46, 1-8.	2.6	57
35	Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biology, 2017, 14, 726-738.	1.5	104
36	Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18, 285-298.	16.1	3,771

#	Article	IF	CITATIONS
37	Express or repress? The transcriptional dilemma of damaged chromatin. FEBS Journal, 2017, 284, 2133-2147.	2.2	28
38	The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nature Reviews Molecular Cell Biology, 2017, 18, 263-273.	16.1	370
39	PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes and Development, 2017, 31, 101-126.	2.7	524
40	RNA-binding protein RBM14 regulates dissociation and association of non-homologous end joining proteins. Cell Cycle, 2017, 16, 1175-1180.	1.3	35
41	Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chemical Science, 2017, 8, 5030-5040.	3.7	37
42	Architectural plasticity of human BRCA2–RAD51 complexes in DNA break repair. Nucleic Acids Research, 2017, 45, 4507-4518.	6.5	48
43	ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Molecular Cell, 2017, 66, 801-817.	4.5	1,319
44	Cross-β polymerization and hydrogel formation by low-complexity sequence proteins. Methods, 2017, 126, 3-11.	1.9	19
45	Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin. Cell Reports, 2017, 19, 1819-1831.	2.9	93
46	Taming Tricky DSBs: ATM on duty. DNA Repair, 2017, 56, 84-91.	1.3	30
46 47	Taming Tricky DSBs: ATM on duty. DNA Repair, 2017, 56, 84-91. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current Opinion in Cell Biology, 2017, 46, 62-71.	1.3 2.6	30 71
	Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current		
47	Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current Opinion in Cell Biology, 2017, 46, 62-71. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017,	2.6	71
47 48	Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current Opinion in Cell Biology, 2017, 46, 62-71. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5. There Is an Inclusion for That: Material Properties of Protein Granules Provide a Platform for	2.6 4.5	71 437
47 48 49	Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current Opinion in Cell Biology, 2017, 46, 62-71. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5. There Is an Inclusion for That: Material Properties of Protein Granules Provide a Platform for Building Diverse Cellular Functions. Trends in Biochemical Sciences, 2017, 42, 765-776.	2.6 4.5 3.7	71 437 43
47 48 49 50	Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current Opinion in Cell Biology, 2017, 46, 62-71. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5. There Is an Inclusion for That: Material Properties of Protein Granules Provide a Platform for Building Diverse Cellular Functions. Trends in Biochemical Sciences, 2017, 42, 765-776. Liquid phase condensation in cell physiology and disease. Science, 2017, 357, . A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone	2.6 4.5 3.7 6.0	71 437 43 2,699
47 48 49 50 51	Sequence-encoded material properties dictate the structure and function of nuclear bodies. Current Opinion in Cell Biology, 2017, 46, 62-71. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5. There Is an Inclusion for That: Material Properties of Protein Granules Provide a Platform for Building Diverse Cellular Functions. Trends in Biochemical Sciences, 2017, 42, 765-776. Liquid phase condensation in cell physiology and disease. Science, 2017, 357, . A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding. Journal of Biological Chemistry, 2017, 292, 17643-17657. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature	2.6 4.5 3.7 6.0 1.6	71 437 43 2,699 15

#	Article	IF	CITATIONS
55	A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene. Molecular Cell, 2017, 68, 860-871.e7.	4.5	70
56	Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nature Chemistry, 2017, 9, 1118-1125.	6.6	447
57	Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry. Methods in Molecular Biology, 2017, 1608, 57-68.	0.4	6
58	Cross-β Polymerization of Low Complexity Sequence Domains. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023598.	2.3	51
59	Transcription and DNA Damage: Holding Hands or Crossing Swords?. Journal of Molecular Biology, 2017, 429, 3215-3229.	2.0	52
60	ADPriboDB: The database of ADP-ribosylated proteins. Nucleic Acids Research, 2017, 45, D204-D209.	6.5	54
61	Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Seminars in Cell and Developmental Biology, 2017, 63, 92-101.	2.3	69
62	Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Nucleic Acids Research, 2017, 45, 10649-10671.	6.5	50
63	It Pays To Be in Phase. Biochemistry, 2018, 57, 2520-2529.	1.2	32
64	Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. Biochemistry, 2018, 57, 2478-2487.	1.2	273
65	Protein–Protein Interactions in DNA Base Excision Repair. Biochemistry (Moscow), 2018, 83, 411-422.	0.7	31
66	PARP-1–dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1759-E1768.	3.3	35
67	Function and Regulation of Phase-Separated Biological Condensates. Biochemistry, 2018, 57, 2452-2461.	1.2	41
68	Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. Journal of Neural Transmission, 2018, 125, 591-613.	1.4	16
69	Self-assembly of FUS through its low-complexity domain contributes to neurodegeneration. Human Molecular Genetics, 2018, 27, 1353-1365.	1.4	19
70	Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nature Communications, 2018, 9, 335.	5.8	217
71	The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Research, 2018, 46, 804-822.	6.5	79
72	Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Scientific Reports, 2018, 8, 6748.	1.6	32

#	Article	IF	CITATIONS
73	From "Cellular―RNA to "Smart―RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chemical Reviews, 2018, 118, 4365-4403.	23.0	63
74	Specificity of reversible ADP-ribosylation and regulation of cellular processes. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 64-82.	2.3	82
75	ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chemical Reviews, 2018, 118, 1092-1136.	23.0	186
76	A Solid-State Conceptualization of Information Transfer from Gene to Message to Protein. Annual Review of Biochemistry, 2018, 87, 351-390.	5.0	113
78	Biphasic recruitment of TRF2 to DNA damage sites promotes non-sister chromatid homologous recombination repair. Journal of Cell Science, 2018, 131, .	1.2	12
79	Proteome-scale relationships between local amino acid composition and protein fates and functions. PLoS Computational Biology, 2018, 14, e1006256.	1.5	26
80	RNAs, Phase Separation, and Membraneâ€Less Organelles: Are Postâ€Transcriptional Modifications Modulating Organelle Dynamics?. BioEssays, 2018, 40, e1800085.	1.2	48
81	Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science, 2018, 362, .	6.0	317
82	Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nature Communications, 2018, 9, 3683.	5.8	141
83	Stress granule formation via ATP depletion-triggered phase separation. New Journal of Physics, 2018, 20, 045008.	1.2	29
84	Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science, 2018, 361, .	6.0	750
85	The comings and goings of PARP-1 in response to DNA damage. DNA Repair, 2018, 71, 177-182.	1.3	236
86	Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2018, 6, 84.	2.4	79
87	Quality Control of Membraneless Organelles. Journal of Molecular Biology, 2018, 430, 4711-4729.	2.0	75
88	A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell, 2018, 174, 688-699.e16.	13.5	1,372
89	Signaling by Steroid Hormones in the 3D Nuclear Space. International Journal of Molecular Sciences, 2018, 19, 306.	1.8	49
90	The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. International Journal of Molecular Sciences, 2018, 19, 886.	1.8	92
91	PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. ELife, 2018, 7, .	2.8	37

#	Article	IF	Citations
92	MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.	4.5	76
93	The Role of RNA in Biological Phase Separations. Journal of Molecular Biology, 2018, 430, 4685-4701.	2.0	94
94	Microtubules as platforms for probing liquid-liquid phase separation in cells: application to RNA-binding proteins. Journal of Cell Science, 2018, 131, .	1.2	15
95	Phasing in on the cell cycle. Cell Division, 2018, 13, 1.	1.1	33
96	Stress-Induced Low Complexity RNA Activates Physiological Amyloidogenesis. Cell Reports, 2018, 24, 1713-1721.e4.	2.9	63
97	RGC/RG Motif Regions in RNA Binding and Phase Separation. Journal of Molecular Biology, 2018, 430, 4650-4665.	2.0	297
98	The molecular language of membraneless organelles. Journal of Biological Chemistry, 2019, 294, 7115-7127.	1.6	515
99	Phase separation of 53 <scp>BP</scp> 1 determines liquidâ€like behavior of <scp>DNA</scp> repair compartments. EMBO Journal, 2019, 38, e101379.	3.5	294
100	53BP1—DNA repair enters a new liquid phase. EMBO Journal, 2019, 38, e102871.	3.5	13
101	NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Molecular Biology of the Cell, 2019, 30, 2584-2597.	0.9	91
102	Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. Molecular Cell, 2019, 76, 177-190.e5.	4.5	165
103	Assembling nuclear domains: Lessons from DNA repair. Journal of Cell Biology, 2019, 218, 2444-2455.	2.3	38
104	Liquid–Liquid Phase Separation in Disease. Annual Review of Genetics, 2019, 53, 171-194.	3.2	553
105	Actin' between phase separated domains for heterochromatin repair. DNA Repair, 2019, 81, 102646.	1.3	23
106	PARP1 regulates DNA damage-induced nucleolar-nucleoplasmic shuttling of WRN and XRCC1 in a toxicant and protein-specific manner. Scientific Reports, 2019, 9, 10075.	1.6	24
107	The Cajal Body Protein WRAP53Î ² Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Frontiers in Molecular Biosciences, 2019, 6, 51.	1.6	8
108	Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nature Communications, 2019, 10, 2954.	5.8	122
109	Properties of Stress Granule and P-Body Proteomes. Molecular Cell, 2019, 76, 286-294.	4.5	258

#	Article	IF	CITATIONS
110	Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes and Development, 2019, 33, 1619-1634.	2.7	424
111	The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2019, 20, 5501.	1.8	155
112	Evidence for and against Liquid-Liquid Phase Separation in the Nucleus. Non-coding RNA, 2019, 5, 50.	1.3	114
113	Modes of phase separation affecting chromatin regulation. Open Biology, 2019, 9, 190167.	1.5	30
114	Biomolecular condensates in neurodegeneration and cancer. Traffic, 2019, 20, 890-911.	1.3	72
115	Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Molecular Cell, 2019, 76, 473-484.e7.	4.5	223
116	Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends in Neurosciences, 2019, 42, 693-708.	4.2	83
117	Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Nucleic Acids Research, 2019, 47, 11250-11267.	6.5	44
118	Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2019, 12, 25.	1.4	459
119	USP19 deubiquitinates EWS-FLI1 to regulate Ewing sarcoma growth. Scientific Reports, 2019, 9, 951.	1.6	28
120	A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. MSphere, 2019, 4, .	1.3	1
121	Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends in Genetics, 2019, 35, 601-613.	2.9	22
122	Poly(ADP-Ribose) Links the DNA Damage Response and Biomineralization. Cell Reports, 2019, 27, 3124-3138.e13.	2.9	58
123	PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Reports, 2019, 27, 1809-1821.e5.	2.9	144
124	PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochemical Pharmacology, 2019, 167, 64-75.	2.0	23
125	ATP, Mg2+, Nuclear Phase Separation, and Genome Accessibility. Trends in Biochemical Sciences, 2019, 44, 565-574.	3.7	37
126	Poly(ADP-ribose)-dependent ubiquitination and its clinical implications. Biochemical Pharmacology, 2019, 167, 3-12.	2.0	27
127	New insights of poly(ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Biochemical Pharmacology, 2019, 167, 58-63.	2.0	32

#	Article	IF	CITATIONS
128	A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends in Genetics, 2019, 35, 330-345.	2.9	83
129	Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nature Reviews Neurology, 2019, 15, 272-286.	4.9	150
130	How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annual Review of Biophysics, 2019, 48, 231-253.	4.5	52
131	Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science, 2019, 363, .	6.0	129
132	Physical principles and functional consequences of nuclear compartmentalization in budding yeast. Current Opinion in Cell Biology, 2019, 58, 105-113.	2.6	22
133	Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Research, 2019, 47, 4843-4858.	6.5	20
134	Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. Journal of Cell Biology, 2019, 218, 820-838.	2.3	21
135	The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads. Molecular Cell, 2019, 73, 1232-1242.e4.	4.5	46
136	Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Research, 2019, 47, 3811-3827.	6.5	275
137	Chromatin control in double strand break repair. Advances in Protein Chemistry and Structural Biology, 2019, 115, 69-94.	1.0	4
138	The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Cells, 2019, 8, 1625.	1.8	80
139	Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Frontiers in Genetics, 2019, 10, 1179.	1.1	25
140	The liquid nucleome $\hat{a} \in \hat{~}$ phase transitions in the nucleus at a glance. Journal of Cell Science, 2019, 132, .	1.2	181
141	Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 2019, 21, 1286-1299.	4.6	233
142	<scp>TIAR</scp> marks nuclear G2/M transition granules and restricts <scp>CDK</scp> 1 activity under replication stress. EMBO Reports, 2019, 20, .	2.0	18
143	The Cell-Death-Associated Polymer PAR Feeds Forward α-Synuclein Toxicity in Parkinson's Disease. Molecular Cell, 2019, 73, 5-6.	4.5	15
144	Multiple Roles for Mono- and Poly(ADP-Ribose) in Regulating Stress Responses. Trends in Genetics, 2019, 35, 159-172.	2.9	26
145	Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	31

#	Article	IF	CITATIONS
146	Arginine Citrullination at the C-Terminal Domain Controls RNA Polymerase II Transcription. Molecular Cell, 2019, 73, 84-96.e7.	4.5	50
147	Protein Phase Separation as a Stress Survival Strategy. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034058.	2.3	112
148	Dynamic light scattering study of base excision DNA repair proteins and their complexes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 297-305.	1.1	24
149	Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. Journal of Biological Chemistry, 2019, 294, 1451-1463.	1.6	261
150	CHK2-mediated regulation of PARP1 in oxidative DNA damage response. Oncogene, 2019, 38, 1166-1182.	2.6	18
151	The Secret Life of Chromosome Loops upon DNA Double-Strand Break. Journal of Molecular Biology, 2020, 432, 724-736.	2.0	28
152	Phase Separation in Regulation of Aggrephagy. Journal of Molecular Biology, 2020, 432, 160-169.	2.0	37
153	ALS and FTD: Where RNA metabolism meets protein quality control. Seminars in Cell and Developmental Biology, 2020, 99, 183-192.	2.3	39
154	Interplay between intrinsically disordered proteins inside membraneless protein liquid droplets. Chemical Science, 2020, 11, 1269-1275.	3.7	22
155	Mechanisms for Active Regulation of Biomolecular Condensates. Trends in Cell Biology, 2020, 30, 4-14.	3.6	127
156	Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation. Journal of Molecular Biology, 2020, 432, 467-483.	2.0	38
157	The molecular basis and disease relevance of non-homologous DNA end joining. Nature Reviews Molecular Cell Biology, 2020, 21, 765-781.	16.1	217
158	Regulation of ALT-associated homology-directed repair by polyADP-ribosylation. Nature Structural and Molecular Biology, 2020, 27, 1152-1164.	3.6	27
159	Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. International Journal of Molecular Sciences, 2020, 21, 7020.	1.8	27
160	Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose. International Journal of Molecular Sciences, 2020, 21, 5004.	1.8	6
161	Biomolecular Condensates in the Nucleus. Trends in Biochemical Sciences, 2020, 45, 961-977.	3.7	259
162	RNA in DNA repair. DNA Repair, 2020, 95, 102927.	1.3	8
163	Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells, 2020, 9, 2480.	1.8	15

#	Article	IF	Citations
164	The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Cell Reports, 2020, 32, 107985.	2.9	68
165	RNA: a double-edged sword in genome maintenance. Nature Reviews Genetics, 2020, 21, 651-670.	7.7	37
166	MRNIP is a replication fork protection factor. Science Advances, 2020, 6, eaba5974.	4.7	16
167	Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	27
168	Protein phase separation: A novel therapy for cancer?. British Journal of Pharmacology, 2020, 177, 5008-5030.	2.7	13
169	Molecular Basis of DNA Repair Defects in FUS-Associated ALS: Implications of a New Paradigm and Its Potential as Therapeutic Target. , 2020, , .		0
170	Complex Chromatin Motions for DNA Repair. Frontiers in Genetics, 2020, 11, 800.	1.1	24
171	Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics and Chromatin, 2020, 13, 49.	1.8	23
172	Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocrine Reviews, 2020, 41, 707-732.	8.9	66
173	Polymer perspective of genome mobilization. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821, 111706.	0.4	4
174	The taming of PARP1 and its impact on NAD+ metabolism. Molecular Metabolism, 2020, 38, 100950.	3.0	37
175	pH-Controlled Coacervate–Membrane Interactions within Liposomes. ACS Nano, 2020, 14, 4487-4498.	7.3	94
176	<i>Drosophila</i> histone locus body assembly and function involves multiple interactions. Molecular Biology of the Cell, 2020, 31, 1525-1537.	0.9	11
177	The Nucleolus and PARP1 in Cancer Biology. Cancers, 2020, 12, 1813.	1.7	36
178	Nuclear body phase separation drives telomere clustering in ALT cancer cells. Molecular Biology of the Cell, 2020, 31, 2048-2056.	0.9	79
179	Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases. Nature Communications, 2020, 11, 3181.	5.8	18
180	DNA repair by Rad52 liquid droplets. Nature Communications, 2020, 11, 695.	5.8	103
181	Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5329-5338.	3.3	24

ARTICLE IF CITATIONS # Chromatin Dynamics upon DNA Damage., 0,,. 182 2 Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation. Trends in Cell Biology, 3.6 93 2020, 30, 370-383. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annual Review 184 4.5 544 of Biophysics, 2020, 49, 107-133. Nuclear PARPs and genome integrity. Genes and Development, 2020, 34, 285-301. 185 79 Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase 186 2.0 53 Separation. Journal of Molecular Biology, 2020, 432, 4270-4286. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties. Annual 4.8 368 Review of Physical Chemistry, 2020, 71, 53-75. 188 How to maintain the genome in nuclear space. Current Opinion in Cell Biology, 2020, 64, 58-66. 2.6 30 A framework for understanding the functions of biomolecular condensates across scales. Nature 16.1 450 Reviews Molecular Cell Biology, 2021, 22, 215-235. 190 DNA Damage Triggers a New Phase in Neurodegeneration. Trends in Genetics, 2021, 37, 337-354. 2.9 37 Natural Selection on the Phase-Separation Properties of FUS during 160 My of Mammalian Evolution. 3.5 24 Molecular Biology and Evolution, 2021, 38, 940-951. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered 192 29 2.0 Protein Regions. Journal of Molecular Biology, 2021, 433, 166724. Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA 1.3 Repair, 2021, 97, 103018. Protein phase separation: physical models and phase-separation- mediated cancer signaling. Advances 194 1.5 2 in Physics: X, 2021, 6, 1936638. Novel tankyrase inhibitors suppress TDP-43 aggregate formation. Biochemical and Biophysical Research Communications, 2021, 537, 85-92. 1.0 Application of Laser Microirradiation in the Investigations of Cellular Responses to DNA Damage. 197 1.0 6 Frontiers in Physics, 2021, 8, . Fused in sarcoma-amyotrophic lateral sclerosis as a novel member of DNA single strand break diseases with pure neurological phenotypes. Neural Regeneration Research, 2021, 16, 110. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. Advances in Protein Chemistry and 199 1.0 9 Structural Biology, 2021, 126, 151-193. Concepts | No Membrane, No Problem: Cellular Organization by Biomolecular Condensates., 2021, 113-133.

#	Article	IF	CITATIONS
201	Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
202	Fundamental Challenges and Outlook in Simulating Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2021, 12, 1644-1656.	2.1	20
203	Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics. Journal of the American Chemical Society, 2021, 143, 3037-3042.	6.6	44
204	Biomolecular Condensates and Cancer. Cancer Cell, 2021, 39, 174-192.	7.7	157
205	Single molecule microscopy reveals key physical features of repair foci in living cells. ELife, 2021, 10, .	2.8	55
207	TopBP1 assembles nuclear condensates to switch on ATR signaling. Molecular Cell, 2021, 81, 1231-1245.e8.	4.5	61
209	Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD. Frontiers in Cellular Neuroscience, 2021, 15, 633668.	1.8	8
210	Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly(ADP-ribose). Nature Communications, 2021, 12, 1353.	5.8	62
211	Avoid the trap: Targeting PARP1 beyond human malignancy. Cell Chemical Biology, 2021, 28, 456-462.	2.5	12
212	A triskelion of nucleic acids drives protein aggregation in A-T. Molecular Cell, 2021, 81, 1367-1369.	4.5	0
213	Functional Roles of PARP2 in Assembling Protein–Protein Complexes Involved in Base Excision DNA Repair. International Journal of Molecular Sciences, 2021, 22, 4679.	1.8	9
214	Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Molecular Cell, 2021, 81, 1515-1533.e5.	4.5	33
215	Studying phase separation in confinement. Current Opinion in Colloid and Interface Science, 2021, 52, 101419.	3.4	18
216	R-loops as Janus-faced modulators of DNA repair. Nature Cell Biology, 2021, 23, 305-313.	4.6	94
217	Functional Roles of Poly(ADP-Ribose) in Stress Granule Formation and Dynamics. Frontiers in Cell and Developmental Biology, 2021, 9, 671780.	1.8	9
218	Mechanisms and regulation underlying membraneless organelle plasticity control. Journal of Molecular Cell Biology, 2021, 13, 239-258.	1.5	14
219	LCD-Composer: an intuitive, composition-centric method enabling the identification and detailed functional mapping of low-complexity domains. NAR Genomics and Bioinformatics, 2021, 3, lqab048.	1.5	12
221	Mitochondrial cytochrome <i>c</i> shot towards histone chaperone condensates in the nucleus. FEBS Open Bio, 2021, 11, 2418-2440.	1.0	13

#	Article	IF	CITATIONS
222	MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. IScience, 2021, 24, 102432.	1.9	2
223	New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Frontiers in Molecular Biosciences, 2021, 8, 668821.	1.6	27
226	Low complexity domains, condensates, and stem cell pluripotency. World Journal of Stem Cells, 2021, 13, 416-438.	1.3	6
227	Poly (ADP-ribose) Interacts With Phosphorylated α-Synuclein in Post Mortem PD Samples. Frontiers in Aging Neuroscience, 2021, 13, 704041.	1.7	14
228	Biochemical Timekeeping Via Reentrant Phase Transitions. Journal of Molecular Biology, 2021, 433, 166794.	2.0	22
229	Designer Condensates: A Toolkit for the Biomolecular Architect. Journal of Molecular Biology, 2021, 433, 166837.	2.0	39
230	Emerging Roles of Liquid–Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 631486.	1.8	48
231	<i>O</i> -Linked- <i>N</i> -Acetylglucosaminylation of the RNA-Binding Protein EWS N-Terminal Low Complexity Region Reduces Phase Separation and Enhances Condensate Dynamics. Journal of the American Chemical Society, 2021, 143, 11520-11534.	6.6	26
232	Role of Liquid–Liquid Separation in Endocrine and Living Cells. Journal of the Endocrine Society, 2021, 5, bvab126.	0.1	4
233	A Tale of Two States: Pluripotency Regulation of Telomeres. Frontiers in Cell and Developmental Biology, 2021, 9, 703466.	1.8	4
234	FUS and TDP-43 Phases in Health and Disease. Trends in Biochemical Sciences, 2021, 46, 550-563.	3.7	154
235	RNA helicase, DDX3X, is actively recruited to sites of DNA damage in live cells. DNA Repair, 2021, 103, 103137.	1.3	12
236	G-Quadruplex-Induced Liquid–Liquid Phase Separation in Biomimetic Protocells. Journal of the American Chemical Society, 2021, 143, 11036-11043.	6.6	27
237	Androgen signaling connects short isoform production to breakpoint formation at Ewing sarcoma breakpoint region 1. NAR Cancer, 2021, 3, zcab033.	1.6	3
238	Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Research, 2021, 49, 8432-8448.	6.5	30
239	Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules, 2021, 11, 1014.	1.8	26
240	RNA impacts formation of biomolecular condensates in the nucleus. Biomedical Research, 2021, 42, 153-160.	0.3	5
241	Cellular functions of the protein kinase ATM and their relevance to human disease. Nature Reviews Molecular Cell Biology, 2021, 22, 796-814.	16.1	105

#	Article	IF	CITATIONS
242	PARkinson's: From cellular mechanisms to potential therapeutics. , 2021, , 107968.		4
244	Phase separation in genome organization across evolution. Trends in Cell Biology, 2021, 31, 671-685.	3.6	62
245	Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nature Reviews Molecular Cell Biology, 2021, 22, 653-670.	16.1	131
246	DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy. Progress in Biophysics and Molecular Biology, 2021, 163, 160-170.	1.4	12
247	Oligomerization of Selective Autophagy Receptors for the Targeting and Degradation of Protein Aggregates. Cells, 2021, 10, 1989.	1.8	8
248	Phase separation in plants: New insights into cellular compartmentalization. Journal of Integrative Plant Biology, 2021, 63, 1835-1855.	4.1	24
249	Impacts of chromatin dynamics and compartmentalization on DNA repair. DNA Repair, 2021, 105, 103162.	1.3	11
250	Integration of DNA damage responses with dynamic spatial genome organization. Trends in Genetics, 2022, 38, 290-304.	2.9	11
251	Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation. Cell, 2021, 184, 4886-4903.e21.	13.5	28
252	RNA modulates physiological and neuropathological protein phase transitions. Neuron, 2021, 109, 2663-2681.	3.8	39
253	Fused in sarcoma regulates DNA replication timing and kinetics. Journal of Biological Chemistry, 2021, 297, 101049.	1.6	7
254	The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair, 2021, 105, 103170.	1.3	25
255	Evidence That the Adenovirus Single-Stranded DNA Binding Protein Mediates the Assembly of Biomolecular Condensates to Form Viral Replication Compartments. Viruses, 2021, 13, 1778.	1.5	14
256	DNA damage and regulation of protein homeostasis. DNA Repair, 2021, 105, 103155.	1.3	6
257	Rapid Detection and Signaling of DNA Damage by PARP-1. Trends in Biochemical Sciences, 2021, 46, 744-757.	3.7	49
258	Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119102.	1.9	55
259	Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair, 2021, 106, 103179.	1.3	51
260	Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair, 2021, 107, 103210.	1.3	4

#	Article	IF	CITATIONS
261	Phasing the intranuclear organization of steroid hormone receptors. Biochemical Journal, 2021, 478, 443-461.	1.7	20
262	Chromatin, nuclear organization and genome stability in mammals. , 2021, , 415-434.		0
263	USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Research, 2021, 49, 11083-11102.	6.5	12
264	Impact of PARP1, PARP2 & PARP3 on the Base Excision Repair of Nucleosomal DNA. Advances in Experimental Medicine and Biology, 2020, 1241, 47-57.	0.8	10
265	Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Communications Biology, 2020, 3, 773.	2.0	59
266	Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerging Topics in Life Sciences, 2020, 4, 307-329.	1.1	159
267	Therapeutics—how to treat phase separation-associated diseases. Emerging Topics in Life Sciences, 2020, 4, 331-342.	1.1	65
268	Membraneless organelles: phasing out of equilibrium. Emerging Topics in Life Sciences, 2020, 4, 343-354.	1.1	48
269	Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. Journal of Cell Biology, 2020, 219, .	2.3	33
279	Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Computational Biology, 2018, 14, e1005941.	1.5	427
280	HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation. PLoS Genetics, 2020, 16, e1009162.	1.5	23
281	Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathogens, 2016, 12, e1005711.	2.1	135
282	Ewing sarcoma protein promotes dissociation of poly(<scp>ADP</scp> â€ribose) polymerase 1 from chromatin. EMBO Reports, 2020, 21, e48676.	2.0	16
283	90 YEARS OF PROGESTERONE: Molecular mechanisms of progesterone receptor action on the breast cancer genome. Journal of Molecular Endocrinology, 2020, 65, T65-T79.	1.1	9
284	ADP-ribosylation: from molecular mechanisms to human disease. Genetics and Molecular Biology, 2020, 43, e20190075.	0.6	32
285	The role of FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, in Ewing sarcoma. Genes and Cancer, 2015, 6, 452-461.	0.6	28
286	Efficacy of ATR inhibitors as single agents in Ewing sarcoma. Oncotarget, 2016, 7, 58759-58767.	0.8	59
287	The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget, 2018, 9, 23349-23365.	0.8	29

# 288	ARTICLE Recruitment of ubiquitin-activating enzyme UBA1 to DNA by poly(ADP-ribose) promotes ATR signalling. Life Science Alliance, 2018, 1, e201800096.	lF 1.3	Citations
289	At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae, 2017, 9, 4-16.	1.7	12
290	Coordination of DNA Base Excision Repair by Protein-Protein Interactions. , 0, , .		5
291	Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. ELife, 2018, 7, .	2.8	149
292	Protein phase separation and its role in tumorigenesis. ELife, 2020, 9, .	2.8	63
294	Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Frontiers in Genetics, 2021, 12, 746380.	1.1	4
295	CDKL5 kinase controls transcription oupled responses to DNA damage. EMBO Journal, 2021, 40, e108271.	3.5	16
297	Physical observables to determine the nature of membrane-less cellular sub-compartments. ELife, 2021, 10, .	2.8	14
298	Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. International Journal of Biological Macromolecules, 2021, 192, 55-63.	3.6	9
307	Karyopherin-β2 Inhibits and Reverses Aggregation and Liquid-liquid Phase Separation of the ALS/FTD-Associated Protein FUS. Bio-protocol, 2020, 10, e3725.	0.2	3
311	The solid and liquid states of chromatin. Epigenetics and Chromatin, 2021, 14, 50.	1.8	55
312	Multi-scale dynamics of heterochromatin repair. Current Opinion in Genetics and Development, 2021, 71, 206-215.	1.5	14
313	Protein phase separation in cell death and survival. , 2022, , 175-195.		0
314	Regulation of liquid–liquid phase separation with focus on post-translational modifications. Chemical Communications, 2021, 57, 13275-13287.	2.2	49
318	How do protein domains of low sequence complexity work?. Rna, 2022, 28, 3-15.	1.6	27
319	Metabolic Fuel for Epigenetic: Nuclear Production Meets Local Consumption. Frontiers in Genetics, 2021, 12, 768996.	1.1	18
321	Catching mono- and poly-ADP-ribose readers with synthetic ADP-ribose baits. Molecular Cell, 2021, 81, 4351-4353.	4.5	3
324	At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae, 2017, 9, 4-16.	1.7	6

#	Article	IF	Citations
325	Poly(ADP-Ribosyl) Code Functions. Acta Naturae, 2021, 13, 58-69.	1.7	0
326	Poly(ADP-Ribosyl) Code Functions. Acta Naturae, 2021, 13, 58-69.	1.7	4
327	Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. International Journal of Molecular Sciences, 2021, 22, 12271.	1.8	5
328	HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Nature Communications, 2021, 12, 6675.	5.8	34
329	Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates. Chemical Science, 2022, 13, 522-530.	3.7	14
330	NAD+ bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer, 2021, 3, zcab044.	1.6	8
331	Compartmentalization of telomeres through DNA-scaffolded phase separation. Developmental Cell, 2022, 57, 277-290.e9.	3.1	38
332	An integrative multi-omics analysis based on liquid–liquid phase separation delineates distinct subtypes of lower-grade glioma and identifies a prognostic signature. Journal of Translational Medicine, 2022, 20, 55.	1.8	7
333	Role of YB-1 in Regulation of Poly(ADP-Ribosylation) Catalyzed by Poly(ADP-Ribose) Polymerases. Biochemistry (Moscow), 2022, 87, S32-S47.	0.7	0
334	Condensed, Microtubule-coating Thin Organelles for Orthogonal Translation in Mammalian Cells. Journal of Molecular Biology, 2022, 434, 167454.	2.0	6
335	Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2022, 9, 826719.	1.6	50
336	Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene, 2022, 41, 1527-1535.	2.6	3
337	14-3-3 Proteins are Potential Regulators of Liquid–Liquid Phase Separation. Cell Biochemistry and Biophysics, 2022, 80, 277-293.	0.9	16
338	NAD+ in COVID-19 and viral infections. Trends in Immunology, 2022, 43, 283-295.	2.9	28
339	Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nature Reviews Cancer, 2022, 22, 239-252.	12.8	115
340	3D Genome Organization: Causes and Consequences for DNA Damage and Repair. Genes, 2022, 13, 7.	1.0	8
341	Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. Nature Chemistry, 2022, 14, 407-416.	6.6	41
342	Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chemical Reviews, 2022, 122, 6719-6748.	23.0	55

#	Article	IF	CITATIONS
343	Therapeutic modulation of GSTO activity rescues FUS-associated neurotoxicity via deglutathionylation in ALS disease models. Developmental Cell, 2022, 57, 783-798.e8.	3.1	9
344	Sindbis Macrodomain Poly-ADP-Ribose Hydrolase Activity Is Important for Viral RNA Synthesis. Journal of Virology, 2022, 96, e0151621.	1.5	4
345	Co-condensation of proteins with single- and double-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2107871119.	3.3	28
346	Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. Journal of Biological Chemistry, 2022, 298, 101845.	1.6	16
347	Poly(ADP-ribose) drives condensation of FUS via a transient interaction. Molecular Cell, 2022, 82, 969-985.e11.	4.5	41
348	The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Molecular Cell, 2022, 82, 2315-2334.	4.5	80
349	Poly(ADP-ribosylation) of P-TEFb by PARP1 disrupts phase separation to inhibit global transcription after DNA damage. Nature Cell Biology, 2022, 24, 513-525.	4.6	32
350	Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cellular and Molecular Life Sciences, 2022, 79, 18.	2.4	21
351	Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer's Disease. Cells, 2022, 11, 1284.	1.8	9
357	DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Frontiers in Aging Neuroscience, 2022, 14, 786420.	1.7	15
359	MRNIP condensates promote DNA double-strand break sensing and end resection. Nature Communications, 2022, 13, 2638.	5.8	17
360	New twists to the ALTernative endings at telomeres. DNA Repair, 2022, 115, 103342.	1.3	12
361	Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). BioEssays, 2022, 44, e2200015.	1.2	0
362	Phase Separation: "The Master Key―to Deciphering the Physiological and Pathological Functions of Cells. Advanced Biology, 2022, , 2200006.	1.4	6
363	Phase-Separated Subcellular Compartmentation and Related Human Diseases. International Journal of Molecular Sciences, 2022, 23, 5491.	1.8	4
364	DNA single-strand break repair and human genetic disease. Trends in Cell Biology, 2022, 32, 733-745.	3.6	59
365	Effects of pH alterations on stress- and aging-induced protein phase separation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	20
367	The C-Terminal Domain of Y-Box Binding Protein 1 Exhibits Structure-Specific Binding to Poly(ADP-Ribose), Which Regulates PARP1 Activity. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5

		CITATION REPORT		
#	Article		IF	Citations
368	Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. Jacs Au, 2022	2, 2, 1506-1521.	3.6	19
369	Quantitative Analysis of the Protein Methylome Reveals PARP1 Methylation is involved Response. Frontiers in Molecular Biosciences, 0, 9, .	in DNA Damage	1.6	1
370	DNA damage reduces heterogeneity and coherence of chromatin motions. Proceeding Academy of Sciences of the United States of America, 2022, 119, .	s of the National	3.3	6
371	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted T	herapy, 2022, 7, .	7.1	52
373	Heterogeneity of Organization of Subcompartments in DSB Repair Foci. Frontiers in G	enetics, 0, 13, .	1.1	2
374	Phase Separation-Mediated Chromatin Organization and Dynamics: From Imaging-Bas Characterizations to Functional Implications. International Journal of Molecular Scienc 8039.	ed Quantitative es, 2022, 23,	1.8	7
375	Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discovery, 2022	, 12, 2031-2043.	7.7	3
376	Modulating biomolecular condensates: a novel approach to drug discovery. Nature Re Discovery, 2022, 21, 841-862.	views Drug	21.5	88
377	LncRNAs divide and rule: The master regulators of phase separation. Frontiers in Gener	tics, 0, 13, .	1.1	10
379	Phase separation in epigenetics and cancer stem cells. Frontiers in Oncology, 0, 12, .		1.3	3
380	Developing Bonded Potentials for a Coarse-Grained Model of Intrinsically Disordered P Journal of Chemical Information and Modeling, 2022, 62, 4474-4485.	roteins.	2.5	9
381	Poly(ADP-ribose) promotes toxicity of <i>C9ORF72</i> arginine-rich dipeptide repeat Translational Medicine, 2022, 14, .	proteins. Science	5.8	9
382	A mechanism for oxidative damage repair at gene regulatory elements. Nature, 2022,	609, 1038-1047.	13.7	12
383	Emerging Implications of Phase Separation in Cancer. Advanced Science, 2022, 9, .		5.6	9
384	Landscape of biomolecular condensates in heat stress responses. Frontiers in Plant Sc	ience, 0, 13, .	1.7	5
385	Targeting phase separation on enhancers induced by transcription factor complex form new strategy for treating drug-resistant cancers. Frontiers in Oncology, 0, 12, .	nations as a	1.3	2
386	Modulating liquid–liquid phase separation of FUS: mechanisms and strategies. Jourr Chemistry B, 2022, 10, 8616-8628.	al of Materials	2.9	10
387	FUS Microphase Separation: Regulation by Nucleic Acid Polymers and DNA Repair Prot International Journal of Molecular Sciences, 2022, 23, 13200.	eins.	1.8	0

#	Article	IF	CITATIONS
388	An Optogenetic Toolkit for the Control of Phase Separation in Living Cells. Methods in Molecular Biology, 2023, , 383-394.	0.4	3
389	Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes, 2022, 13, 1846.	1.0	9
390	Phase Separation of Purified Human LSM4 Protein. Molecular Biology, 0, , .	0.4	0
391	Synthetic Organelles for Multiple mRNA Selective Genetic Code Expansions in Eukaryotes. Methods in Molecular Biology, 2023, , 341-369.	0.4	0
392	Active human full-length CDKL5 produced in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microbial Cell Factories, 2022, 21, .	1.9	2
393	A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Research, 2022, 50, 10817-10838.	6.5	6
394	RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA. Molecular Cell, 2022, 82, 4001-4017.e7.	4.5	20
395	Intrinsically disordered regions: a platform for regulated assembly of biomolecular condensates. , 2023, , 397-430.		2
396	Interactions and interplay of MLOs with classical membrane-bound organelles. , 2023, , 375-395.		1
397	Active regulation mechanisms of LLPS and MLOs biogenesis. , 2023, , 337-373.		1
398	Liquid–liquid phase separation in neurodegenerative diseases. , 2023, , 619-650.		1
399	Phase separation in chromatin-based intranuclear processes. , 2023, , 461-483.		0
400	Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. International Journal of Molecular Sciences, 2022, 23, 14075.	1.8	2
401	Double-strand break repair and mis-repair in 3D. DNA Repair, 2023, 121, 103430.	1.3	3
402	The roles of prion-like domains in amyloid formation, phase separation, and solubility. , 2023, , 397-426.		0
403	Fixation can change the appearance of phase separation in living cells. ELife, 0, 11, .	2.8	37
404	How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases?. BioScience Trends, 2022, 16, 389-404.	1.1	3
405	Protein Phase Separation: New Insights into Carcinogenesis. Cancers, 2022, 14, 5971.	1.7	0

#	Article	IF	CITATIONS
406	PARP1 Activation Controls Stress Granule Assembly after Oxidative Stress and DNA Damage. Cells, 2022, 11, 3932.	1.8	1
407	Reprogramming transcription after DNA damage: recognition, response, repair, and restart. Trends in Cell Biology, 2023, 33, 682-694.	3.6	5
408	Influence of chain length and branching on poly(ADP-ribose)–protein interactions. Nucleic Acids Research, 2023, 51, 536-552.	6.5	4
409	Sequence Tendency for the Interaction between Low-Complexity Intrinsically Disordered Proteins. Jacs Au, 2023, 3, 93-104.	3.6	5
410	A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chemical Reviews, 2023, 123, 9036-9064.	23.0	22
412	When fixation creates fiction. ELife, 0, 12, .	2.8	3
413	PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Research, 2023, 51, 2215-2237.	6.5	22
414	LncRNA <i>HOTAIRM1</i> functions in DNA double-strand break repair via its association with DNA repair and mRNA surveillance factors. Nucleic Acids Research, 0, , .	6.5	1
415	HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Reports, 2023, 42, 112284.	2.9	9
416	DNA Damage-Mediated Neurotoxicity in Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 6313.	1.8	8
417	Glutathionylation on RNA-binding proteins: a regulator of liquid‒liquid phase separation in the pathogenesis of amyotrophic lateral sclerosis. Experimental and Molecular Medicine, 0, , .	3.2	1
418	Phase separation in cancer at a glance. Journal of Translational Medicine, 2023, 21, .	1.8	4
423	(Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophysical Reviews, 0, , .	1.5	1
428	Regulation of Biomolecular Condensates by Poly(ADP-ribose). Chemical Reviews, 2023, 123, 9065-9093.	23.0	3
445	Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	1
446	The molecular basis for cellular function of intrinsically disordered protein regions. Nature Reviews Molecular Cell Biology, 2024, 25, 187-211.	16.1	25
447	Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death and Disease, 2023, 14, .	2.7	0
458	Molecular Mechanism of Activation-Induced Cytidine Deaminase. , 2024, , 257-308.		0

ARTICLE

IF CITATIONS