Biomass oxidation to formic acid in aqueous media usir boosting FA selectivity by in-situ extraction

Energy and Environmental Science 8, 2985-2990

DOI: 10.1039/c5ee01706h

Citation Report

#	Article	IF	CITATIONS
1	Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst. Chinese Journal of Chemical Physics, 2016, 29, 742-748.	0.6	10
2	In Situ Carbonic Acid from CO ₂ : A Green Acid for Highly Effective Conversion of Cellulose in the Presence of Lewis acid. ACS Sustainable Chemistry and Engineering, 2016, 4, 4146-4155.	3.2	35
3	Production of organic acids from biomass resources. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 54-58.	3.2	49
4	Catalytic oxidation of cellulose to formic acid in H ₅ PV ₂ Mo ₁₀ O ₄₀ + H ₂ SO ₄ aqueous solution with molecular oxygen. Green Chemistry, 2016, 18, 4725-4732.	4.6	69
5	Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design. Dalton Transactions, 2016, 45, 16716-16726.	1.6	75
6	Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catalysis, 2016, 6, 7475-7484.	5.5	75
7	Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 2016, 18, 5701-5735.	4.6	142
8	Formic Acid-Based Fischer–Tropsch Synthesis for Green Fuel Production from Wet Waste Biomass and Renewable Excess Energy. ACS Sustainable Chemistry and Engineering, 2016, 4, 5078-5086.	3.2	51
9	Oneâ€Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5â€Hydroxylmethylfurfural as Intermediates. ChemSusChem, 2016, 9, 2015-2036.	3.6	146
10	One-step Synthesizable Lindqvistâ^'isopolyoxometalates as Promising New Catalysts for Selective Conversion of Glucose as a Model Substrate for Lignocellulosic Biomass to Formic Acid. ChemistrySelect, 2016, 1, 2889-2894.	0.7	18
11	Selective Production of Formic Acid by Wet Oxidation of Aqueous-Phase Bio-oil. Energy & Fuels, 2016, 30, 10417-10424.	2.5	24
12	Aqueous phase homogeneous formic acid disproportionation into methanol. Green Chemistry, 2017, 19, 2371-2378.	4.6	39
13	Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts. Faraday Discussions, 2017, 202, 99-109.	1.6	40
14	Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technology, 2017, 238, 684-689.	4.8	258
15	Oneâ€pot Reductive Amination of carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation over Co–N _{<i>x</i>} as catalyst. ChemSusChem, 2017, 10, 1892-1897.	3.6	68
16	Hetero-metallic, functionalizable polyoxomolybdate clusters via a "top-down―synthetic method. Chemical Communications, 2017, 53, 10660-10663.	2.2	5
17	Theoretical Investigation on Nickel-Catalyzed Hydrocarboxylation of Alkynes Employing Formic Acid. Organometallics, 2017, 36, 2818-2825.	1.1	24
18	Detailed Kinetic Investigations on the Selective Oxidation of Biomass to Formic Acid (OxFA Process) Using Model Substrates and Real Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 7383-7392	3.2	41

#	Article	IF	CITATIONS
19	Efficient and Bioâ€inspired Conversion of Cellulose to Formic Acid Catalyzed by Metalloporphyrins in Alkaline Solution. Chinese Journal of Chemistry, 2017, 35, 1063-1068.	2.6	10
20	Hydrogen Storage in Formic Acid: A Comparison of Process Options. Energy & Fuels, 2017, 31, 12603-12611.	2.5	94
21	Measuring and Predicting the Extraction Behavior of Biogenic Formic Acid in Biphasic Aqueous/Organic Reaction Mixtures. ACS Omega, 2017, 2, 8982-8989.	1.6	12
22	Iridium Catalysts with Diazole-containing Ligands for Hydrogen Generation by Formic Acid Dehydrogenation. Journal of the Japan Petroleum Institute, 2017, 60, 53-62.	0.4	5
23	Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis, 2018, 8, 2129-2165.	5.5	188
24	Strategies to Explore and Develop Reversible Redox Reactions of Li–S in Electrode Architectures Using Silver-Polyoxometalate Clusters. Journal of the American Chemical Society, 2018, 140, 3134-3138.	6.6	117
25	Aerobic Oxidation Catalysis by a Molecular Barium Vanadium Oxide. Chemistry - A European Journal, 2018, 24, 4952-4956.	1.7	19
26	Fabrication of mesoporous POMs/SiO ₂ nanofibers through electrospinning for oxidative conversion of biomass by H ₂ O ₂ and oxygen. RSC Advances, 2018, 8, 3499-3511.	1.7	19
27	Catalytic oxidation of biomass to oxygenated chemicals with exceptionally high yields using H5PV2Mo10O40. Fuel, 2018, 216, 572-578.	3.4	25
28	Thermo-chemical conversion for production of levulinic and formic acids from glucosamine. Fuel Processing Technology, 2018, 172, 115-124.	3.7	31
29	Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47, 1351-1390.	18.7	440
30	Towards Sustainable Production of Formic Acid. ChemSusChem, 2018, 11, 821-836.	3.6	257
31	Catalytic Transformation of Cellulose and Its Derivatives into Functionalized Organic Acids. ChemSusChem, 2018, 11, 1995-2028.	3.6	71
32	Streamlined hydrogen production from biomass. Nature Catalysis, 2018, 1, 332-338.	16.1	105
33	Catalytic oxidation of cellulose to formic acid in V(V)-Fe(III)-H2SO4 aqueous solution with O2. Fuel Processing Technology, 2018, 173, 197-204.	3.7	19
34	Improvement of product selectivity in bicarbonate reduction into formic acid on a tin-based catalyst by integrating nano-diamond particles. Chemical Engineering Research and Design, 2018, 116, 494-505.	2.7	5
35	Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using palladium catalyst supported on mesoporous graphitic carbon nitride. Journal of Energy Chemistry, 2018, 27, 283-289.	7.1	27
36	Biogenic Formic Acid as a Green Hydrogen Carrier. Energy Technology, 2018, 6, 501-509.	1.8	57

#	Article	IF	CITATIONS
37	Dioxygen in Polyoxometalate Mediated Reactions. Chemical Reviews, 2018, 118, 2680-2717.	23.0	272
38	Effect of Tetrahydrofuran on the Solubilization and Depolymerization of Cellulose in a Biphasic System. ChemSusChem, 2018, 11, 397-405.	3.6	36
40	Continuous <i>in Situ</i> Extraction toward Multiphase Complex Systems Based on Superwettable Membrane with Micro-/Nanostructures. ACS Nano, 2018, 12, 10000-10007.	7.3	33
41	Photoreforming of Lignocellulose into H ₂ Using Nanoengineered Carbon Nitride under Benign Conditions. Journal of the American Chemical Society, 2018, 140, 11604-11607.	6.6	148
42	Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catalysis, 2018, 8, 6301-6333.	5.5	305
43	Heterogeneous catalysts for hydrogenation of CO ₂ and bicarbonates to formic acid and formates. Catalysis Reviews - Science and Engineering, 2018, 60, 566-593.	5.7	113
44	Successive C1–C2 bond cleavage: the mechanism of vanadium(<scp>v</scp>)-catalyzed aerobic oxidation of <scp>d</scp> -glucose to formic acid in aqueous solution. Physical Chemistry Chemical Physics, 2018, 20, 17942-17951.	1.3	23
45	Proton-Enhanced Dielectric Properties of Polyoxometalates in Water under Radio-Frequency Electromagnetic Waves. Materials, 2018, 11, 1202.	1.3	9
46	Reaction pathways and selectivity in chemo-catalytic conversion of biomass-derived carbohydrates to high-value chemicals: A review. Fuel Processing Technology, 2019, 196, 106162.	3.7	64
47	Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy and Environmental Science, 2019, 12, 2646-2664.	15.6	193
48	Selective formation of formic acid from biomass-derived glycolaldehyde with supported ruthenium hydroxide catalysts. Catalysis Science and Technology, 2019, 9, 4384-4392.	2.1	10
49	Solvent-Dependent, Formic Acid-Mediated, Selective Reduction and Reductive N-Formylation of N-Heterocyclic Arenes with Sustainable Cobalt-Embedded N-Doped Porous Carbon Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 13136-13147.	3.2	35
50	Kinetic Isolation between Turnovers on Au ₁₈ Nanoclusters: Formic Acid Decomposition One Molecule at a Time. ACS Catalysis, 2019, 9, 9446-9457.	5.5	20
51	Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green Chemistry, 2019, 21, 5753-5780.	4.6	86
52	Room temperature, near-quantitative conversion of glucose into formic acid. Green Chemistry, 2019, 21, 6089-6096.	4.6	68
53	Fractionation of Wheat Straw Catalyzed by Recyclable Terephthalic Acid. ChemistrySelect, 2019, 4, 6060-6065.	0.7	3
54	Selective aerobic oxidation of glycerol over zirconium phosphate-supported vanadium catalyst. Molecular Catalysis, 2019, 474, 110404.	1.0	14
55	Pyridine‣tabilized Rhodium Nanoparticles in Ionic Liquids as Selective Hydrogenation and Transfer Hydrogenation Catalysts. European Journal of Inorganic Chemistry, 2019, 2019, 2863-2870.	1.0	10

#	Article	IF	CITATIONS
56	Aluminum(III) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide. Chinese Journal of Catalysis, 2019, 40, 534-542.	6.9	20
57	Utilization of a Hydrogen Source from Renewable Lignocellulosic Biomass for Hydrogenation of Nitroarenes. ChemCatChem, 2019, 11, 4189-4195.	1.8	6
58	Boosting Hydrogen Production from Formic Acid over Pd Catalysts by Deposition of N-Containing Precursors on the Carbon Support. Energies, 2019, 12, 3885.	1.6	26
59	Explaining the role of vanadium in homogeneous glucose transformation reactions using NMR and EPR spectroscopy. Applied Catalysis A: General, 2019, 570, 262-270.	2.2	25
60	Sustainable production of formic acid from biomass and carbon dioxide. Molecular Catalysis, 2020, 483, 110716.	1.0	62
61	Formic Acid as a Hydrogen Donor for Catalytic Transformations of Tar. Energies, 2020, 13, 4515.	1.6	10
62	Switchable Catalytic Polyoxometalate-Based Systems for Biomass Conversion to Carboxylic Acids. ACS Omega, 2020, 5, 19082-19091.	1.6	7
63	Formic Acid: A Hydrogen-Bonding Cocatalyst for Formate Decomposition. ACS Catalysis, 2020, 10, 10812-10825.	5.5	36
64	Direct Conversion of Microalgae Biomass to Formic Acid under an Air Atmosphere with Soluble and Solid Mo–V–P Heteropoly Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 18947-18956.	3.2	20
65	Glucose oxidation to formic acid and methyl formate in perfect selectivity. Green Chemistry, 2020, 22, 4311-4320.	4.6	38
66	Continuous Production of Formic Acid from Biomass in a Three-Phase Liquid–Liquid–Gas Reaction Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 10444-10453.	3.2	16
67	The Potassium-Induced Decomposition Pathway of HCOOH on Rh(111). Catalysts, 2020, 10, 675.	1.6	9
68	Formic acid–aided biomass valorization. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 67-71.	3.2	5
69	Selective Oxidation by H ₅ [PV ₂ Mo ₁₀ O ₄₀] in a Highly Acidic Medium. Inorganic Chemistry, 2020, 59, 11945-11952.	1.9	11
70	Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling. ACS Catalysis, 2020, 10, 4112-4126.	5.5	51
71	Review: cascade reactions for conversion of carbohydrates using heteropolyacids as the solid catalysts. Biomass Conversion and Biorefinery, 2022, 12, 2313-2331.	2.9	7
72	Catalytic transfer hydrogenation of maleic acid with stoichiometric amounts of formic acid in aqueous phase: paving the way for more sustainable succinic acid production. Green Chemistry, 2020, 22, 1859-1872.	4.6	32
73	Combining Costâ€Efficient Cellulose and Shortâ€Chain Carboxylic Acid Production: The Polyoxometalate (POM)â€Ionosolv Concept. ChemPlusChem, 2020, 85, 373-386	1.3	9

#	Article	IF	CITATIONS
74	Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. Journal of Flow Chemistry, 2020, 10, 103-121.	1.2	39
75	Metal-organic interface engineering for boosting the electroactivity of Pt nanodendrites for hydrogen production. Journal of Energy Chemistry, 2020, 51, 105-112.	7.1	49
76	Photoreforming of food waste into value-added products over visible-light-absorbing catalysts. Green Chemistry, 2020, 22, 3262-3271.	4.6	30
77	Catalytic Oxidation of Biomass to Formic Acid Using O ₂ as an Oxidant. Industrial & Engineering Chemistry Research, 2020, 59, 16899-16910.	1.8	39
78	Full Spectrum Decomposition of Formic Acid over γ-Mo ₂ N-Based Catalysts: From Dehydrogenation. ACS Catalysis, 2020, 10, 5353-5361.	5.5	28
79	Biomass valorisation over polyoxometalate-based catalysts. Green Chemistry, 2021, 23, 18-36.	4.6	101
80	Secondary Agriculture Residues Pretreatment Using Deep Eutectic Solvents. Waste and Biomass Valorization, 2021, 12, 2259-2269.	1.8	17
81	Towards real-time kinetic monitoring of wastewater treatment: A case study of sunlight and ozone treatment of unconcentrated wastewater using flow NMR. Chemical Engineering Journal, 2021, 405, 126696.	6.6	10
82	Formic acid disproportionation into formaldehyde triggered by vanadium complexes with iridium catalysis under mild conditions in <i>N</i> -methylation. Green Chemistry, 2021, 23, 2918-2924.	4.6	10
83	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
84	Formic Acid as an Inexpensive and Convenient Reagent. Current Organic Chemistry, 2021, 25, 223-247.	0.9	7
85	Catalysts with single metal atoms for the hydrogen production from formic acid. Catalysis Reviews - Science and Engineering, 2022, 64, 835-874.	5.7	33
86	Role of Hydrogen-bonded Bimolecular Formic Acid–Formate Complexes for Formic Acid Decomposition on Copper: A Combined First-Principles and Microkinetic Modeling Study. ACS Catalysis, 2021, 11, 4349-4361.	5.5	19
87	The Intrinsic Charge Carrier Behaviors and Applications of Polyoxometalate Clusters Based Materials. Advanced Materials, 2021, 33, e2005019.	11.1	58
88	Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst. ChemistryOpen, 2021, 10, 954-959.	0.9	7
89	Glycolic acid and formic acid production from pyrolysis oil water-soluble fraction by catalytic oxidation. Chemical Engineering Science, 2021, 239, 116644.	1.9	7
90	Valorization of secondary feedstocks from the agroindustry by selective catalytic oxidation to formic and acetic acid using the OxFA process. Biomass Conversion and Biorefinery, 2023, 13, 7199-7206.	2.9	6
91	Amphiphilic peroxo polyoxometalate as reaction control phase transfer catalyst for efficient epoxidation of olefins. Micro and Nano Letters, 2021, 16, 615-620.	0.6	2

#	Article	IF	CITATIONS
92	HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chemical Science, 2021, 12, 13101-13119.	3.7	11
93	Practical DMSO-promoted selective hydrolysis–oxidation of lignocellulosic biomass to formic acid attributed to hydrogen bonds. Green Chemistry, 2021, 23, 7041-7052.	4.6	16
94	Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid. Green Chemistry, 2021, 23, 1536-1561.	4.6	42
95	Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 2021, 11, 1071-1095.	5.5	146
96	LCA in Process Development: Case Study of the OxFA-Process. Sustainable Production, Life Cycle Engineering and Management, 2019, , 105-113.	0.2	4
97	Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. Catalysis Reviews - Science and Engineering, 2023, 65, 239-425.	5.7	26
98	Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts. Renewable Energy, 2022, 185, 139-146.	4.3	10
99	Strategy for Efficient H ₂ Production from a Mixture of Formic Acid and Formate using <i>Operando</i> pH Measurements. ACS Sustainable Chemistry and Engineering, 2022, 10, 888-898.	3.2	10
100	Applications of heteropoly acids as homogeneous catalysts. , 2022, , 205-264.		0
101	Spectroscopic, Crystallographic, and Electrochemical Study of Different Manganese(II)â€ S ubstituted Kegginâ€Type Phosphomolybdates. Chemistry - A European Journal, 2022, 28, .	1.7	10
102	Cooperative catalytic effects between aqueous acidic ionic liquid solutions and polyoxometalate-ionic liquid in the oxidative depolymerization of alkali lignin. Journal of Environmental Chemical Engineering, 2022, 10, 108260.	3.3	4
103	Comparative analysis of the effects of hydrogen and formic acid on the vacuum residue hydrocracking. Chemical Engineering Journal, 2022, 449, 137839.	6.6	8
104	Catalytic conversion of glucose and its biopolymers into renewable compounds by inducing C–C bond scission and formation. Biomass Conversion and Biorefinery, 0, , .	2.9	2
105	Highly dispersed palladium nanoparticles anchored on polyethylenimine-modified carbon nanotubes for dehydrogenation of formic acid. International Journal of Hydrogen Energy, 2022, 47, 32050-32059.	3.8	7
106	Effect of Platinum Precursor on the Properties of Pt/N-Graphene Catalysts in Formic Acid Decomposition. Catalysts, 2022, 12, 1022.	1.6	6
107	Elucidating activating and deactivating effects of carboxylic acids on polyoxometalate-catalysed three-phase liquid–liquid-gas reactions. Chemical Engineering Science, 2022, 264, 118143.	1.9	11
108	Aqueous phase hydrogenation of maleic acid to succinic acid mediated by formic acid: the robustness of the Pd/C catalytic system. Sustainable Energy and Fuels, 2022, 6, 5160-5176.	2.5	3
109	Formic Acid Production via One-Pot Hydrolysis-Oxidation of Starch over Quaternary Ammonium Salts of Vanadium-Containing Keggin-Type Heteropoly Acids. Catalysts, 2022, 12, 1252.	1.6	7

#	Article	IF	CITATIONS
110	Highly Efficient Conversion of Carbohydrates into Formic Acid with a Heterogeneous MgO Catalyst at Near-Ambient Temperatures. ACS Sustainable Chemistry and Engineering, 2022, 10, 15423-15436.	3.2	6
111	State of Formic Acid Dissolved in Tar According to Infrared Spectroscopy. Applied Spectroscopy, 0, , 000370282211341.	1.2	0
112	Highly Efficient Oxidation of Biomass Xylose to Formic Acid with CeO _{<i>x</i>} -Promoted MnO _{<i>x</i>} Catalyst in Water. ACS Sustainable Chemistry and Engineering, 2023, 11, 921-930.	3.2	5
113	Novel chemical looping oxidation of biomass-derived carbohydrates to super-high-yield formic acid using heteropolyacids as oxygen carrier. Renewable Energy, 2023, 207, 461-470.	4.3	10
114	Hydrolysis-oxidation of cellulose to formic acid in the presence of micellar vanadium-containing molybdophosphoric heteropoly acids. Results in Engineering, 2023, 17, 100913.	2.2	4
115	Comparative Spectroscopic and Electrochemical Study of V(V)-Substituted Keggin-Type Phosphomolybdates and -Tungstates. Inorganics, 2023, 11, 138.	1.2	7
116	Investigation of the Formation, Characterization, and Oxidative Catalytic Valorization of Humins. Materials, 2023, 16, 2864.	1.3	3
123	Chemical Modifications of Biomass. , 2023, , 1-29.		0
129	Biomass Oxidation in Direct Biomass Redox Flow Fuel Cell: The Roles of Catalysts, Redox Couples, Mediators and Oxidants. Korean Journal of Chemical Engineering, 2024, 41, 1257-1272.	1.2	0