Reduced carbon emission estimates from fossil fuel con China

Nature 524, 335-338 DOI: 10.1038/nature14677

Citation Report

#	Article	IF	CITATIONS
4	The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, 12065-12078.	1.9	65
5	China to launch cap-and-trade system. Nature, 2015, 526, 13-14.	13.7	4
6	Measuring a fair and ambitious climate agreement using cumulative emissions. Environmental Research Letters, 2015, 10, 105004.	2.2	103
7	Resolve ambiguities in China's emissions. Nature, 2015, 525, 455-455.	13.7	5
8	Make raw emissions data public in China. Nature, 2015, 526, 640-640.	13.7	6
9	Is the price elasticity of demand for coal in China increasing?. China Economic Review, 2015, 36, 309-322.	2.1	38
11	The Haze Nightmare Following the Economic Boom in China: Dilemma and Tradeoffs. International Journal of Environmental Research and Public Health, 2016, 13, 402.	1.2	21
13	Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China. Energies, 2016, 9, 295.	1.6	28
16	Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China's mitigation targets. Applied Energy, 2016, 184, 1016-1025.	5.1	43
17	Comparing GOSAT observations of localized CO ₂ enhancements by large emitters with inventoryâ€based estimates. Geophysical Research Letters, 2016, 43, 3486-3493.	1.5	74
18	Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. Journal of Chinese Geography, 2016, 26, 803-826.	1.5	33
19	Regional climate change and national responsibilities. Environmental Research Letters, 2016, 11, 034009.	2.2	96
20	A spaceâ€based, highâ€resolution view of notable changes in urban NO _x pollution around the world (2005–2014). Journal of Geophysical Research D: Atmospheres, 2016, 121, 976-996.	1.2	322
21	Carbon Emissions in China. Springer Theses, 2016, , .	0.0	13
23	A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Scientific Reports, 2016, 6, 22130.	1.6	55
24	Performance Assessment and Outlook of China's Emission-Trading Scheme. Engineering, 2016, 2, 398-401.	3.2	21
25	Spectrum analysis of national greenhouse gas emission: a case study of Germany. Energy, Ecology and Environment, 2016, 1, 267-282.	1.9	1
26	Information-based Ecological Network Analysis for Embodied Carbon Network in China. Energy Procedia, 2016, 104, 574-579.	1.8	6

#	Article	IF	CITATIONS
27	China's regional CH4 emissions: Characteristics, interregional transfer and mitigation policies. Applied Energy, 2016, 184, 1184-1195.	5.1	54
28	Feedstocks study on CO2 mineralization technology. Environmental Earth Sciences, 2016, 75, 1.	1.3	16
29	When will China achieve its carbon emission peak?. National Science Review, 2016, 3, 8-12.	4.6	27
30	Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000–2014. Atmospheric Environment, 2016, 136, 43-53.	1.9	109
31	A review of global gas flaring and venting and impact on the environment: Case study of Iran. International Journal of Greenhouse Gas Control, 2016, 49, 488-509.	2.3	90
32	New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Applied Energy, 2016, 184, 742-750.	5.1	394
33	CO 2 , economic growth, and energy consumption in China's provinces: Investigating the spatiotemporal and econometric characteristics of China's CO 2 emissions. Ecological Indicators, 2016, 69, 184-195.	2.6	104
34	Clobal climate forcing of aerosols embodied in international trade. Nature Geoscience, 2016, 9, 790-794.	5.4	79
35	Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China. Journal of Cleaner Production, 2016, 139, 527-539.	4.6	68
36	Improving the Energy Efficiency of Stoves To Reduce Pollutant Emissions from Household Solid Fuel Combustion in China. Environmental Science and Technology Letters, 2016, 3, 369-374.	3.9	63
37	â€~Made in China': A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information. Applied Energy, 2016, 184, 1106-1113.	5.1	62
38	Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison. Applied Energy, 2016, 184, 790-799.	5.1	89
39	Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases. Energy, 2016, 114, 165-176.	4.5	17
40	Microwave-assisted hydrothermal synthesis of amorphous MoS ₂ catalysts and their activities in the hydrodeoxygenation of p-cresol. RSC Advances, 2016, 6, 80641-80648.	1.7	10
41	Carbon emissions embodied in international trade: The post-China era. Applied Energy, 2016, 184, 1063-1072.	5.1	110
42	China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012. Energy Economics, 2016, 59, 414-422.	5.6	149
43	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	2.2	31
44	Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, 2016, 179, 660-668.	5.1	225

ARTICLE IF CITATIONS # Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize 5.3 31 45 low-carbon cement. Resources, Conservation and Recycling, 2016, 113, 116-126. China's post-coal growth. Nature Geoscience, 2016, 9, 564-566. 5.4 148 A Preliminary Study of the Carbon Emissions Reduction Effects of Land Use Control. Scientific 47 1.6 22 Reports, 2016, 6, 36901. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource 49 utilization. Scientific Reports, 2016, 6, 22323. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. 50 3.3 39 Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmospheric Chemistry and Physics, 2016, 16, 14545-14562. Separation of biospheric and fossil fuel fluxes of CO<sub&gt;2&lt;/sub&gt; by atmospheric inversion of CO<sub&gt;2&lt;/sub&gt; and 52 1.9 51 <sup&gt;14&lt;/sup&gt;CO&lt;sub&gt;2&lt;/sub&gt; measurements: Observation System Simulations. Atmospheric Chemistry and Physics, 2016, 16, 5665-5683. Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002-2012). Journal of the Meteorological Society of Japan, 2016, 94, 91-113. Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 2016, 7, 54 5.8 93 10724. On the accumulative contribution of CO2 emission from China to global climate change. Science 2.3 China Earth Sciences, 2016, 59, 2202-2212. The hardening behavior of Î³-C2S binder using accelerated carbonation. Construction and Building 79 56 3.2 Materials, 2016, 114, 204-207. Developed and developing world contributions to climate system change based on carbon dioxide, 34 methane and nitrous oxide emissions. Advances in Atmospheric Sciences, 2016, 33, 632-643. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling. 58 0.5 3 Metallurgical and Materials Transactions E, 2016, 3, 114-122. Carbon implications of China's urbanization. Energy, Ecology and Environment, 2016, 1, 39-44. 59 Estimating carbon emissions from the pulp and paper industry: A case study. Applied Energy, 2016, 184, 60 5.178 779-789. Estimating nitrogen oxides emissions at city scale in China with a nightlight remote sensing model. 3.9 Science of the Total Environment, 2016, 544, 1119-1127. Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on 62 5.6 81 the Luenberger productivity indicator. Energy Economics, 2016, 54, 50-59. Reaching peak emissions. Nature Climate Change, 2016, 6, 7-10. 8.1 194

	CITATION	CITATION REPORT	
#	Article	IF	Citations
64	Concluding Remarks: The Organic Anthropocene. Eighteenth-Century Studies, 2016, 49, 281-302.	0.0	25
65	Uncertainties around reductions in China's coal use and CO2 emissions. Nature Climate Change, 2016, 6, 687-690.	8.1	91
66	Energy performance heterogeneity in China׳s buildings sector: A data-driven investigation. Renewable and Sustainable Energy Reviews, 2016, 58, 1587-1600.	8.2	17
67	National carbon emissions from the industry process: Production of glass, soda ash, ammonia, calcium carbide and alumina. Applied Energy, 2016, 166, 239-244.	5.1	59
68	Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005–2013 and Projections to 2050. Environmental Science & Technology, 2016, 50, 2027-2034.	4.6	42
69	Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?. Energy Policy, 2016, 89, 224-236.	4.2	194
70	Food security under climate change. Nature Climate Change, 2016, 6, 10-13.	8.1	68
71	Multiple carbon accounting to support just and effective climate policies. Nature Climate Change, 2016, 6, 35-41.	8.1	138
72	Targeted opportunities to address the climate–trade dilemma in China. Nature Climate Change, 2016, 6, 201-206.	8.1	206
73	Spatiotemporal characteristics of consumption based CO 2 emissions from China's power sector. Resources, Conservation and Recycling, 2017, 121, 156-163.	5.3	32
74	China's changing economy: implications for its carbon dioxide emissions. Climate Policy, 2017, 17, 423-442.	2.6	188
75	Assessing the synergistic reduction effects of different energy environmental taxes: the case of China. Natural Hazards, 2017, 85, 811-827.	1.6	11
76	Carbon dioxide (CO2) emissions during urbanization: A comparative study between China and Japan. Journal of Cleaner Production, 2017, 143, 356-368.	4.6	125
77	Sector decomposition of China's national economic carbon emissions and its policy implication for national ETS development. Renewable and Sustainable Energy Reviews, 2017, 75, 855-867.	8.2	42
78	A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China. Applied Energy, 2017, 190, 172-180.	5.1	170
79	Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Applied Clay Science, 2017, 138, 100-106.	2.6	96
80	Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy, 2017, 63, 493-500.	2.5	171
81	Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecological Indicators, 2017, 77, 185-193.	2.6	281

ARTICLE IF CITATIONS # Study of the relationship between greenhouse gas emissions and the economic growth of Russia 82 5.1 107 based on the Environmental Kuznets Curve. Applied Energy, 2017, 193, 162-173. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?. Environmental Science 4.6 & Technology, 2017, 51, 2554-2562. The impact of urbanization on GHG emissions in China: The role of population density. Journal of 84 4.6 137 Cleaner Production, 2017, 157, 299-309. Role of climate anomalies on decadal variation in the occurrence of wintertime haze in the Yangtze 3.9 River Delta, China. Science of the Total Environment, 2017, 599-600, 918-925. Switching of semiconducting behavior from n -type to p -type induced high photocatalytic NO removal 10.8 100 86 activity in g-C 3 N 4. Applied Catalysis B: Environmental, 2017, 214, 46-56. Investigation of the Cofiring of Methane and Biosyngas for Combined Cooling, Heating, and Power Generation with Zero Carbon Dioxide Emissions. Energy Technology, 2017, 5, 1647-1655. 87 1.8 Economic growth model, structural transformation, and green productivity in China. Applied Energy, 88 5.1 208 2017, 187, 489-500. Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban 4.2 carbon footprints. Energy Policy, 2017, 108, 460-466. Analyzing the impact factors of energy-related CO 2 emissions in China: What can spatial panel 90 90 4.6 regréssions tell us?. Journal of Cleaner Production, 2017, 161, 1085-1093. Quantification and driving force analysis of provincial-level carbon emissions in China. Applied 5.1 Energy, 2017, 198, 223-238. Methodology and applications of city level CO2 emission accounts in China. Journal of Cleaner 92 351 4.6 Production, 2017, 161, 1215-1225. Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations. Atmospheric Environment, 2017, 165, 35-45. Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014. Chemosphere, 2017, 183, 94 4.2 97 429-436. Identify sectors' role on the embedded CO 2 transfer networks through China's regional trade. 2.6 29 Ecological Indicators, 2017, 80, 114-123. Constructing a process model for low-carbon supply chain cooperation practices based on the 96 3.7 34 DEMATEL and the NK model. Supply Chain Management, 2017, 22, 237-257. Pattern changes in determinants of Chinese emissions. Environmental Research Letters, 2017, 12, 2.2 074003. Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel 98 3.9 53 vehicle exhaust in China. Science of the Total Environment, 2017, 593-594, 462-469. A two-level comparison of CO 2 emission data in China: Evidence from three gridded data sources. Journal of Cleaner Production, 2017, 148, 194-201.

#	Article	IF	CITATIONS
100	Committed CO 2 emissions of China's coal-fired power generators from 1993 to 2013. Energy Policy, 2017, 104, 295-302.	4.2	17
101	Decoupling environmental pressure from economic growth on city level: The Case Study of Chongqing in China. Ecological Indicators, 2017, 75, 27-35.	2.6	82
102	Embodied carbon in China's foreign trade: An online SCI-E and SSCI based literature review. Renewable and Sustainable Energy Reviews, 2017, 68, 492-510.	8.2	61
103	Unequal household carbon footprints in China. Nature Climate Change, 2017, 7, 75-80.	8.1	345
104	Characteristics of carbonaceous particles from residential coal combustion and agricultural biomass burning in China. Atmospheric Pollution Research, 2017, 8, 521-527.	1.8	58
105	Secondary organic aerosol formation from photo-oxidation of toluene with NO x and SO 2 : Chamber simulation with purified air versus urban ambient air as matrix. Atmospheric Environment, 2017, 150, 67-76.	1.9	36
106	Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models. Energy Economics, 2017, 68, 522-538.	5.6	100
107	Chemical Feedback From Decreasing Carbon Monoxide Emissions. Geophysical Research Letters, 2017, 44, 9985-9995.	1.5	49
108	Energy consumption and CO ₂ emissions in Tibet and its cities in 2014. Earth's Future, 2017, 5, 854-864.	2.4	48
109	Organic carbon storage change in China's urban landfills from 1978–2014. Environmental Research Letters, 2017, 12, 104013.	2.2	8
110	Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach. Applied Energy, 2017, 206, 1544-1551.	5.1	47
111	Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China. Ecological Modelling, 2017, 365, 30-44.	1.2	81
112	Forest biomass carbon dynamics (1980–2009) in western Himalaya in the context of REDD+ policy. Environmental Earth Sciences, 2017, 76, 1.	1.3	6
113	Hydrothermal Synthesis of Carbon-Coated CoS ₂ –MoS ₂ Catalysts with Enhanced Hydrophobicity and Hydrodeoxygenation Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 8602-8609.	3.2	31
114	Estimation of greenhouse gas emissions in China 1990–2013. , 2017, 7, 1097-1115.		24
115	Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agricultural and Forest Meteorology, 2017, 247, 467-475.	1.9	64
116	The cost of carbon capture and storage for coal-fired power plants in China. International Journal of Greenhouse Gas Control, 2017, 65, 23-31.	2.3	60
118	Preparation of an ultrathin 2D/2D rGO/g-C ₃ N ₄ nanocomposite with enhanced visible-light-driven photocatalytic performance. RSC Advances, 2017, 7, 36793-36799.	1.7	28

#	Article	IF	CITATIONS
119	Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy, 2017, 134, 659-671.	4.5	108
120	Linkages Analysis for Water-carbon Nexus in Urban System. Energy Procedia, 2017, 105, 3876-3880.	1.8	7
121	Enhanced Biological Hydrogen Production from <i>Escherichia coli</i> with Surface Precipitated Cadmium Sulfide Nanoparticles. Advanced Energy Materials, 2017, 7, 1700611.	10.2	133
122	CO ₂ Emissions Embodied in Interprovincial Electricity Transmissions in China. Environmental Science & Technology, 2017, 51, 10893-10902.	4.6	96
123	CO 2 emission data for Chinese cities. Resources, Conservation and Recycling, 2017, 126, 198-208.	5.3	60
124	Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve?. Journal of Cleaner Production, 2017, 166, 1448-1461.	4.6	227
125	Ultrathin BiOX (X = Cl, Br, I) Nanosheets as Al-air Battery Catalysts. Electrochimica Acta, 2017, 249, 413-420.	2.6	11
126	"Decoupling―Indicators for Evaluation of Urban Low-Carbon Economy Development: a Case Study of Shanghai. IOP Conference Series: Earth and Environmental Science, 2017, 51, 012013.	0.2	1
127	Invisible transportation infrastructure technology to mitigate energy and environment. Energy, Sustainability and Society, 2017, 7, 27.	1.7	14
128	Greenhouse gas emission factor for the energy sector in Mauritius. Journal of Environmental Chemical Engineering, 2017, 5, 5994-6000.	3.3	6
129	Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions from fossil fuel combustion. Tellus, Series B: Chemical and Physical Meteorology, 2017, 69, 1325723.	0.8	16
130	Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method. Natural Hazards, 2017, 88, 1691-1707.	1.6	35
131	Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion. Geoscience Letters, 2017, 4, .	1.3	44
133	The Paris Agreement: China's â€~New Normal' role in international climate negotiations. Climate Policy, 2017, 17, 48-58.	2.6	75
134	Cement industry of China: Driving force, environment impact and sustainable development. Renewable and Sustainable Energy Reviews, 2017, 75, 618-628.	8.2	168
135	Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat. Bioresource Technology, 2017, 223, 1-9.	4.8	21
136	Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity. Materials Chemistry and Physics, 2017, 186, 353-364.	2.0	33
137	Comparative life cycle assessment of regional electricity supplies in China. Resources, Conservation and Recycling, 2017, 119, 47-59.	5.3	64

#	Article	IF	CITATIONS
138	An improved method for estimating GHG emissions from onshore oil and gas exploration and development in China. Science of the Total Environment, 2017, 574, 707-715.	3.9	18
139	The effects of urbanization and household-related factors on residential direct CO2 emissions in Shanxi, China from 1995 to 2014: A decomposition analysis. Atmospheric Pollution Research, 2017, 8, 297-309.	1.8	58
140	Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030. Journal of Cleaner Production, 2017, 142, 2227-2236.	4.6	346
141	A carbon oxidation factor regression model of coal-fired power plants in China. Journal of Cleaner Production, 2017, 142, 4403-4411.	4.6	10
142	Comparative study of cement manufacturing with different strength grades using the coupled LCA and partial LCC methods—A case study in China. Resources, Conservation and Recycling, 2017, 119, 60-68.	5.3	41
143	Optimal Carbon Reduction Strategies in the Building Sector with Emission Trading System. Energy Procedia, 2017, 143, 307-312.	1.8	1
144	Estimating the cost of carbon abatement for China. , 2017, , .		0
145	Pacifying uncooperative carbon: examining the materiality of the carbon market. Economy and Society, 2017, 46, 522-544.	1.3	11
146	Chinese CO2 emission flows have reversed since the global financial crisis. Nature Communications, 2017, 8, 1712.	5.8	678
147	Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmospheric Chemistry and Physics, 2017, 17, 1329-1342.	1.9	59
148	Variations of China's emission estimates: response to uncertainties in energy statistics. Atmospheric Chemistry and Physics, 2017, 17, 1227-1239.	1.9	65
149	Ozone and haze pollution weakens net primary productivity in China. Atmospheric Chemistry and Physics, 2017, 17, 6073-6089.	1.9	169
150	Assessing climate change mitigation proposals for Malaysia: Implications for emissions and abatement costs. Journal of Cleaner Production, 2017, 167, 163-173.	4.6	15
151	Emissions embodied in global trade have plateaued due to structural changes in China. Earth's Future, 2017, 5, 934-946.	2.4	44
152	The accounting for greenhouse gas emissions of a low-carbon industrial park in China: a case study in Chongqing. Energy Procedia, 2017, 142, 3176-3181.	1.8	8
153	Characterizing Regional-Scale Combustion Using Satellite Retrievals of CO, NO2 and CO2. Remote Sensing, 2017, 9, 744.	1.8	34
154	The Uncertainty of Nighttime Light Data in Estimating Carbon Dioxide Emissions in China: A Comparison between DMSP-OLS and NPP-VIIRS. Remote Sensing, 2017, 9, 797.	1.8	42
155	Spatial Configuration of Energy Consumption and Carbon Emissions of Shanghai, and Our Policy Suggestions. Sustainability, 2017, 9, 104.	1.6	13

#	Article	IF	CITATIONS
156	Environmental Governance in China: State, Society, and Market. Brill Research Perspectives in Governance and Public Policy in China, 2017, 1, 1-67.	0.0	5
157	Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China. Sustainability, 2017, 9, 2342.	1.6	28
158	Energy Consumption and Energy-Related CO2 Emissions from China's Petrochemical Industry Based on an Environmental Input-Output Life Cycle Assessment. Energies, 2017, 10, 1585.	1.6	12
159	Are Developed Regions in China Achieving Their CO2 Emissions Reduction Targets on Their Own?—Case of Beijing. Energies, 2017, 10, 1952.	1.6	6
160	China's fast growing CO2emissions driven by increasing consumption in 1992-2012: A structural decomposition analysis. IOP Conference Series: Earth and Environmental Science, 2017, 59, 012051.	0.2	0
161	An Improved Vegetation Adjusted Nighttime Light Urban Index and Its Application in Quantifying Spatiotemporal Dynamics of Carbon Emissions in China. Remote Sensing, 2017, 9, 829.	1.8	40
162	Peaking China's CO2 Emissions: Trends to 2030 and Mitigation Potential. Energies, 2017, 10, 209.	1.6	23
164	Carbon emission imbalances and the structural paths of Chinese regions. Applied Energy, 2018, 215, 396-404.	5.1	118
165	Effects and mechanisms of surface-treatment of cementitious materials with nanoSiO2@PCE core-shell nanoparticles. Construction and Building Materials, 2018, 166, 12-22.	3.2	19
166	How modifications of China's energy data affect carbon mitigation targets. Energy Policy, 2018, 116, 337-343.	4.2	48
167	Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China. Atmospheric Environment, 2018, 181, 1-11.	1.9	65
168	Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors. Environmental Research Letters, 2018, 13, 044017.	2.2	19
169	Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags. Energy, 2018, 149, 792-803.	4.5	23
170	Exploring the driving forces of energy consumption and environmental pollution in China's cement industry at the provincial level. Journal of Cleaner Production, 2018, 184, 274-285.	4.6	54
171	Infrastructure Shapes Differences in the Carbon Intensities of Chinese Cities. Environmental Science & Technology, 2018, 52, 6032-6041.	4.6	30
172	China's "Exported Carbon―Peak: Patterns, Drivers, and Implications. Geophysical Research Letters, 2018, 45, 4309-4318.	1.5	124
173	Creating a Lowâ€Potential Redox Polymer for Efficient Electroenzymatic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 6692-6696.	1.6	32
174	Creating a Lowâ€Potential Redox Polymer for Efficient Electroenzymatic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 6582-6586.	7.2	79

#	Article	IF	CITATIONS
175	Will China's building sector participate in emission trading system? Insights from modelling an owner's optimal carbon reduction strategies. Energy Policy, 2018, 118, 232-244.	4.2	45
176	Analysis of drivers and policy implications of carbon dioxide emissions of industrial energy consumption in an underdeveloped city: The case of Nanchang, China. Journal of Cleaner Production, 2018, 183, 843-857.	4.6	51
177	Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 2018, 8, 2107.	1.6	48
178	China CO2 emission accounts 1997–2015. Scientific Data, 2018, 5, 170201.	2.4	824
179	The impacts of economic structure on China's carbon dioxide emissions: an analysis with reference to other East Asian economies. Climate Policy, 2018, 18, 1235-1245.	2.6	9
180	China's R&D of advanced ultra-supercritical coal-fired power generation for addressing climate change. Thermal Science and Engineering Progress, 2018, 5, 364-371.	1.3	74
181	The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012. Energy Economics, 2018, 69, 404-417.	5.6	44
182	How Sustainable Is Big Data?. Production and Operations Management, 2018, 27, 1685-1695.	2.1	73
183	Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households. Nature Energy, 2018, 3, 109-118.	19.8	107
184	Interregional carbon flows of China. Applied Energy, 2018, 227, 342-352.	5.1	87
185	Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet. Chemical Physics Letters, 2018, 693, 170-175.	1.2	57
186	Simulations of summertime fossil fuel CO2 in the Guanzhong basin, China. Science of the Total Environment, 2018, 624, 1163-1170.	3.9	11
187	Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 2018, 1, 59-68.	11.5	215
188	The carbon footprints of secondary industry in China: an input–output subsystem analysis. Natural Hazards, 2018, 91, 635-657.	1.6	25
189	Technological Change and Energy Efficiency in Large Chinese Firms. Ecological Economics, 2018, 150, 241-250.	2.9	33
190	Dehydrogenation of methylcyclohexane over Pt Sn supported on Mg Al mixed metal oxides derived from layered double hydroxides. International Journal of Hydrogen Energy, 2018, 43, 9343-9352.	3.8	53
191	Life cycle greenhouse gas emissions from power generation in China's provinces in 2020. Applied Energy, 2018, 223, 93-102.	5.1	40
192	Potential of European ¹⁴ CO ₂ observation network to estimate the fossil fuel CO ₂ emissions via atmospheric inversions. Atmospheric Chemistry and Physics. 2018. 18. 4229-4250.	1.9	17

#	Article	IF	CITATIONS
193	Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder. Applied Clay Science, 2018, 161, 110-118.	2.6	11
194	Potential commercialisation of biocoke production in Malaysia—A best evidence review. Renewable and Sustainable Energy Reviews, 2018, 90, 636-649.	8.2	21
195	Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 1-17.	1.3	9
196	The impact of inter-industry R&D technology spillover on carbon emission in China. Natural Hazards, 2018, 91, 913-929.	1.6	59
197	Patterns of CO2 emissions in 18 central Chinese cities from 2000 to 2014. Journal of Cleaner Production, 2018, 172, 529-540.	4.6	64
198	Carbon footprints and embodied CO2 transfers among provinces in China. Renewable and Sustainable Energy Reviews, 2018, 82, 1068-1078.	8.2	95
199	From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation. Applied Energy, 2018, 211, 549-567.	5.1	23
200	Hydrodeoxygenation of p-cresol as a model compound for bio-oil on MoS2: Effects of water and benzothiophene on the activity and structure of catalyst. Fuel, 2018, 214, 480-488.	3.4	37
201	Experimental study of carbon fiber reinforced alkali-activated slag composites with micro-encapsulated PCM for energy storage. Construction and Building Materials, 2018, 161, 442-451.	3.2	56
202	Pt nanoparticles encapsulated in a hollow zeolite microreactor as a highly active and stable catalyst for low-temperature ethanol steam reforming. Fuel, 2018, 214, 88-97.	3.4	36
203	How the transitions in iron and steel and construction material industries impact China's CO2 emissions: Comprehensive analysis from an inter-sector linked perspective. Applied Energy, 2018, 211, 64-75.	5.1	34
204	What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Climate Policy, 2018, 18, 690-714.	2.6	99
205	Rates and fluxes of centennial-scale carbon storage in the fine-grained sediments from the central South Yellow Sea and Min-Zhe belt, East China Sea. Journal of Oceanology and Limnology, 2018, 36, 139-152.	0.6	9
206	Cautious Optimism and Incremental Goals Toward Stabilizing Atmospheric CO 2. Earth's Future, 2018, 6, 1632-1637.	2.4	6
207	Informing energy consumption uncertainty: an analysis of energy data revisions. Environmental Research Letters, 2018, 13, 124023.	2.2	10
208	Carbon Productivity: Findings from Industry Case Studies in Beijing. Energies, 2018, 11, 2796.	1.6	14
209	Assessing Carbon Footprint and Inter-Regional Carbon Transfer in China Based on a Multi-Regional Input-Output Model. Sustainability, 2018, 10, 4626.	1.6	10
210	Design on Power Information Communication System and Discussion About Key Technology in Smart Grid. , 2018, , .		0

ARTICLE IF CITATIONS # Analysis of global energy consumption inequality by using Lorenz curve. Energy Procedia, 2018, 152, 211 1.8 24 750-755. Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol. Journal of Fuel Chemistry and Technology, 2018, 46, 1193-1201. A comparison of MoS 2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity. Journal of Fuel Chemistry and Technology, 2018, 213 0.9 10 46, 535-542. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. International Journal of Coal Geology, 2018, 200, 199-212. 214 119 Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. 215 1.9 1,613 Atmospheric Chemistry and Physics, 2018, 18, 14095-14111. The long-term relationship between emissions and economic growth for SO ₂, CO ₂, and BC. Environmental Research Letters, 2018, 13, 124021. 2.2 Influence of enlarged section parameters on pressure transients of high-speed train passing through 217 1.2 14 a tunnel. Journal of Central South University, 2018, 25, 2831-2840. Research on the applicability of international databases to fossil fuel emission in China. Carbon 218 1.2 Management, 2018, 9, 255-263. 219 Global energy growth is outpacing decarbonization. Environmental Research Letters, 2018, 13, 120401. 2.2 188 From collapsed coal mines to floating solar farms, why China's new power stations matter. Energy 4.2 Policy, 2018, 123, 414-420. Impact of fiscal decentralization on green total factor productivity. International Journal of 222 228 5.1Production Economics, 2018, 205, 359-367. Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data. Applied Energy, 2018, 231, 1070-1078. 5.1 Environmentally-extended input-output simulation for analyzing production-based and 224 5.1 71 consumption-based industrial greenhouse gas mitigation policies. Applied Energy, 2018, 232, 69-78. Low-carbon roadmap of chemical production: A case study of ethylene in China. Renewable and Sustainable Energy Reviews, 2018, 97, 580-591. 8.2 Evaluating the Coordination of Industrial-Economic Development Based on Anthropogenic Carbon 226 Emissions in Henan Province, China. International Journal of Environmental Research and Public 1.2 7 Health, 2018, 15, 1815. Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric 227 Warming. Sustainability, 2018, 10, 3646. Has coal use peaked in China: Near-term trends in China's coal consumption. Energy Policy, 2018, 123, 228 4.2 88 208-214. Outsourcing natural resource requirements within China. Journal of Environmental Management, 229 3.8 2018, 228, 292-302.

#	Article	IF	CITATIONS
230	Are capitalists green? Firm ownership and provincial CO emissions in China. Energy Policy, 2018, 123, 349-359.	4.2	45
231	Distinguishing Anthropogenic CO ₂ Emissions From Different Energy Intensive Industrial Sources Using OCOâ€2 Observations: A Case Study in Northern China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9462-9473.	1.2	36
232	Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing. Sustainability, 2018, 10, 2033.	1.6	14
233	Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. Journal of Cleaner Production, 2018, 204, 702-711.	4.6	89
234	Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing. Energy Policy, 2018, 123, 184-197.	4.2	35
235	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 2018, 9, 3581.	5.8	87
236	Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025. Applied Energy, 2018, 225, 869-875.	5.1	31
237	Carbon implications of China's changing economic structure at the city level. Structural Change and Economic Dynamics, 2018, 46, 163-171.	2.1	9
238	Tracking carbon transfers embodied in Chinese municipalities' domestic and foreign trade. Journal of Cleaner Production, 2018, 192, 950-960.	4.6	50
239	Changing carbon content of Chinese coal and implications for emissions of CO2. Journal of Cleaner Production, 2018, 194, 150-157.	4.6	11
240	Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China. Environmental Pollution, 2018, 240, 661-669.	3.7	55
241	Linkage analysis for water-carbon nexus in China. Applied Energy, 2018, 225, 682-695.	5.1	62
242	Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China. Environmental Science and Pollution Research, 2018, 25, 23157-23169.	2.7	14
243	Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia. Applied Energy, 2018, 225, 183-194.	5.1	40
244	The rise of South–South trade and its effect on global CO2 emissions. Nature Communications, 2018, 9, 1871.	5.8	328
245	Future ozone-related acute excess mortality under climate and population change scenarios in China: A modeling study. PLoS Medicine, 2018, 15, e1002598.	3.9	54
246	Exploring spatial patterns of carbon dioxide emission abatement via energy service companies in China. Resources, Conservation and Recycling, 2018, 137, 145-155.	5.3	25
247	Structural decline in China's CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 2018, 11, 551-555.	5.4	340

	CITATION	Report	
#	Article	IF	CITATIONS
248	Regional uncertainty of GOSAT XCO ₂ retrievals in China: quantification and attribution. Atmospheric Measurement Techniques, 2018, 11, 1251-1272.	1.2	14
249	Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 2018, 11, 369-408.	1.3	1,058
250	Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city. Applied Energy, 2018, 226, 1076-1086.	5.1	125
251	Changes of energy consumption with economic development when an economy becomes more productive. Journal of Cleaner Production, 2018, 196, 788-795.	4.6	50
252	City-level climate change mitigation in China. Science Advances, 2018, 4, eaaq0390.	4.7	287
253	China's inter-regional carbon emissions: An input-output analysis under considering national economic strategy. Journal of Cleaner Production, 2018, 197, 794-803.	4.6	53
254	The consistency of China's energy statistics and its implications for climate policy. Journal of Cleaner Production, 2018, 199, 27-35.	4.6	13
255	Decoding the carbonization mode of the south coastal economic zone in China from the perspective of a dynamic industrial structure. Journal of Cleaner Production, 2018, 199, 518-528.	4.6	21
256	The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization. Energy Economics, 2018, 74, 693-707.	5.6	109
257	Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective. Applied Energy, 2018, 228, 2298-2307.	5.1	90
258	Energy efficiency in China's industry sectors: A non-parametric production frontier approach analysis. Journal of Cleaner Production, 2018, 200, 880-889.	4.6	17
259	Tracking embodied carbon flows in the Belt and Road regions. Journal of Chinese Geography, 2018, 28, 1263-1274.	1.5	64
260	The Characteristics of the Aerosol Optical Depth within the Lowest Aerosol Layer over the Tibetan Plateau from 2007 to 2014. Remote Sensing, 2018, 10, 696.	1.8	17
261	Re-Examining Embodied SO2 and CO2 Emissions in China. Sustainability, 2018, 10, 1505.	1.6	14
262	How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data. Sustainability, 2018, 10, 2163.	1.6	63
263	Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Applied Energy, 2018, 228, 1683-1692.	5.1	124
264	Inventory, environmental impact, and economic burden of GHG emission at the city level: Case study of Jinan, China. Journal of Cleaner Production, 2018, 192, 236-243.	4.6	30
265	Topâ€Down Constraints on Anthropogenic CO ₂ Emissions Within an Agriculturalâ€Urban Landscape. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4674-4694.	1.2	18

#	Article	IF	CITATIONS
266	China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring. Energy Economics, 2018, 73, 91-107.	5.6	150
267	Study of urban carbon dioxide equivalent (CO ₂ e) accounting based on the comparable GPC framework: a case of the underdeveloped city, Nanning, China. Journal of Integrative Environmental Sciences, 2018, 15, 59-81.	1.0	2
268	Life cycle carbon emission modelling of coal-fired power: Chinese case. Energy, 2018, 162, 841-852.	4.5	66
269	Critical sectors and paths for climate change mitigation within supply chain networks. Journal of Environmental Management, 2018, 226, 30-36.	3.8	31
270	Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecological Indicators, 2018, 94, 357-366.	2.6	115
271	A top-bottom method for city-scale energy-related CO2 emissions estimation: A case study of 41 Chinese cities. Journal of Cleaner Production, 2018, 202, 444-455.	4.6	73
272	Spatiotemporal Changes of China's Carbon Emissions. Geophysical Research Letters, 2018, 45, 8536-8546.	1.5	15
273	Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing. Applied Energy, 2018, 228, 1714-1725.	5.1	7
275	Research on filed flowrate measuring technology of stack gas for stationary emission source. IOP Conference Series: Earth and Environmental Science, 2018, 170, 032055.	0.2	0
276	Ar ²⁺ Beam Irradiation-Induced Multivancancies in MoSe ₂ Nanosheet for Enhanced Electrochemical Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2167-2172.	8.8	73
277	Changes in Emissions of Ozone-Depleting Substances from China Due to Implementation of the Montreal Protocol. Environmental Science & amp; Technology, 2018, 52, 11359-11366.	4.6	54
278	Regional embodied carbon emissions and their transfer characteristics in China. Structural Change and Economic Dynamics, 2018, 46, 180-193.	2.1	86
279	Mapping inter-industrial CO2 flows within China. Renewable and Sustainable Energy Reviews, 2018, 93, 400-408.	8.2	36
280	Urban carbon dioxide equivalent (CO ₂ e) accounting based on the GPC framework. International Journal of Climate Change Strategies and Management, 2018, 10, 812-832.	1.5	5
281	The temporal variation of SO2 emissions embodied in Chinese supply chains, 2002–2012. Environmental Pollution, 2018, 241, 172-181.	3.7	52
282	A review of China's carbon trading market. Renewable and Sustainable Energy Reviews, 2018, 91, 613-619.	8.2	150
283	Impacts of nationally determined contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions. Environmental Research Letters, 2018, 13, 014022.	2.2	41
284	Uncertainty of Consumption-Based Carbon Accounts. Environmental Science & Technology, 2018, 52, 7577-7586.	4.6	67

#	Article	IF	CITATIONS
285	Rapid growth of petroleum coke consumption and its related emissions in China. Applied Energy, 2018, 226, 494-502.	5.1	60
286	Potential of energy savings and CO2 emission reduction in China's iron and steel industry. Applied Energy, 2018, 226, 862-880.	5.1	202
287	Quantifying coal power plant responses to tighter SO ₂ emissions standards in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7004-7009.	3.3	122
288	Treating bituminous coal with ionic liquids to inhibit coalÂspontaneous combustion. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2711-2721.	2.0	34
289	Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 301-328.	1.0	27
290	Fairness of China's provincial energy environment efficiency evaluation: empirical analysis using a three-stage data envelopment analysis model. Natural Hazards, 2019, 95, 343-362.	1.6	11
291	VALIDATING CHINA'S OUTPUT DATA USING SATELLITE OBSERVATIONS. Macroeconomic Dynamics, 2019, 23, 3327-3354.	0.6	10
292	Energy and air pollution benefits of household fuel policies in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16773-16780.	3.3	152
293	Forty years of reform and opening up: China's progress toward a sustainable path. Science Advances, 2019, 5, eaau9413.	4.7	222
294	Killing two birds with one stone: a negative emissions strategy for a soft landing of the US coal sector. , 2019, , 219-236.		0
295	Satellite-Based Detection and Characterization of Industrial Heat Sources in China. Environmental Science & Technology, 2019, 53, 11031-11042.	4.6	21
296	End-of-Life Tire Destination from a Life Cycle Assessment Perspective. , 2019, , .		3
297	Regional difference and drivers in China's carbon emissions embodied in internal trade. Energy Economics, 2019, 83, 217-228.	5.6	49
298	China's carbon dioxide emissions from cement production toward 2030 and multivariate statistical analysis of cement consumption and peaking time at provincial levels. Environmental Science and Pollution Research, 2019, 26, 28372-28383.	2.7	14
299	Supply-side carbon accounting and mitigation analysis for Beijing-Tianjin-Hebei urban agglomeration in China. Journal of Environmental Management, 2019, 248, 109243.	3.8	18
300	Evolution of urban household indirect carbon emission responsibility from an inter-sectoral perspective: A case study of Guangdong, China. Energy Economics, 2019, 83, 197-207.	5.6	20
301	The Drivers of China's Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007. Sustainability, 2019, 11, 3254.	1.6	6
302	Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma, 2019, 353, 133-143.	2.3	61

#	Article	IF	CITATIONS
303	Valorization of sewage sludge via non-catalytic transesterification. Environment International, 2019, 131, 105035.	4.8	23
304	Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1007-1050.	1.0	77
305	Energy saving and emission reduction of fossil energy based on low carbon economy and its consumption structure optimization. International Journal of Low-Carbon Technologies, 2019, 14, 381-385.	1.2	3
306	Recent advances in microbial production of malic acid from renewable byproducts. Reviews in Environmental Science and Biotechnology, 2019, 18, 579-595.	3.9	29
307	Design of Efficient, Hierarchical Porous Polymers Endowed with Tunable Structural Base Sites for Direct Catalytic Elimination of COS and H ₂ S. ACS Applied Materials & Interfaces, 2019, 11, 29950-29959.	4.0	61
308	CO2 emissions and their spatial patterns of Xinjiang cities in China. Applied Energy, 2019, 252, 113473.	5.1	30
309	Spillover effects of railway and road on CO2 emission in China: AÂspatiotemporal analysis. Journal of Cleaner Production, 2019, 234, 797-809.	4.6	27
310	Emission drivers of cities at different industrialization phases in China. Journal of Environmental Management, 2019, 250, 109494.	3.8	24
311	Primary particulate matter emissions and estimates of secondary organic aerosol formation potential from the exhaust of a China V diesel engine. Atmospheric Environment, 2019, 218, 116987.	1.9	12
312	The Slowdown in China's Carbon Emissions Growth in the New Phase of Economic Development. One Earth, 2019, 1, 240-253.	3.6	138
313	China's provincial energyâ€related carbon emissionsâ€economy nexus: A twoâ€stage framework based on decoupling analysis and panel vector autoregression. Energy Science and Engineering, 2019, 7, 1201-1213.	1.9	12
314	Indirect carbon emissions of urban households in China: Patterns, determinants and inequality. Journal of Cleaner Production, 2019, 241, 118335.	4.6	60
315	Comparisons of CO2 emission performance between secondary and service industries in Yangtze River Delta cities. Journal of Environmental Management, 2019, 252, 109667.	3.8	52
316	Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective. Sustainability, 2019, 11, 4531.	1.6	11
317	A Mass-Conservative Temporal Second Order and Spatial Fourth Order Characteristic Finite Volume Method for Atmospheric Pollution Advection Diffusion Problems. SIAM Journal of Scientific Computing, 2019, 41, B1178-B1210.	1.3	10
318	Energy Flows and Carbon Footprint in the Forestry-Pulp and Paper Industry. Forests, 2019, 10, 725.	0.9	19
319	Dilution effect of the building area on energy intensity in urban residential buildings. Nature Communications, 2019, 10, 4944.	5.8	34
320	Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/Ce Mg Al O catalysts derived from their layered double hydroxides. International Journal of Hydrogen Energy, 2019, 44, 2918-2925.	3.8	38

#	Article	IF	CITATIONS
321	Kinetics of CO2 Absorption in Novel Tertiary N-Methyl-4-Piperidinol Solvent. International Journal of Greenhouse Gas Control, 2019, 90, 102796.	2.3	14
322	Dynamic Acquisition and Real-Time Distribution of Carbon Emission for Machining Through Mining Energy Data. IEEE Access, 2019, 7, 78963-78975.	2.6	10
323	Standalone Hybrid Minigrid for Empowering Every Families in Rural Areas without Dependency to Grid Electricity. SSRN Electronic Journal, 0, , .	0.4	3
324	An Application of Analytic Hierarchy Process (AHP) for Sustainable Procurement of Construction Equipment: Multicriteria-Based Decision Framework for Malaysia. Mathematical Problems in Engineering, 2019, 2019, 1-20.	0.6	68
325	China's non-fossil fuel CO2 emissions from industrial processes. Applied Energy, 2019, 254, 113537.	5.1	43
326	Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China. Sustainability, 2019, 11, 4220.	1.6	9
327	Analysis of a coal-fired power system integrated with a reheat S-CO2 cycle. Energy Procedia, 2019, 158, 1461-1466.	1.8	2
328	Inequality of air pollution and carbon emission embodied in inter-regional transport. Energy Procedia, 2019, 158, 3833-3839.	1.8	12
329	Analysis of the Impact of China's Emissions Trading Scheme on Reducing Carbon Emissions. Energy Procedia, 2019, 158, 3596-3601.	1.8	12
330	Effects of urbanization on airport CO2 emissions: A geographically weighted approach using nighttime light data in China. Resources, Conservation and Recycling, 2019, 150, 104454.	5.3	40
331	Market segmentation and urban CO2 emissions in China: Evidence from the Yangtze River Delta region. Journal of Environmental Management, 2019, 248, 109324.	3.8	114
332	Working towards confident spaceborne monitoring of carbon emissions from cities using Orbiting Carbon Observatory-2. Remote Sensing of Environment, 2019, 233, 111359.	4.6	30
333	Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards. Nature Energy, 2019, 4, 929-938.	19.8	273
334	Mapping Carbon and Water Networks in the North China Urban Agglomeration. One Earth, 2019, 1, 126-137.	3.6	58
335	N ⁺ -ion irradiation engineering towards the efficient oxygen evolution reaction on NiO nanosheet arrays. Journal of Materials Chemistry A, 2019, 7, 4729-4733.	5.2	48
336	Cement production, environmental pollution, and economic growth: evidence from China and USA. Clean Technologies and Environmental Policy, 2019, 21, 783-793.	2.1	47
337	Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. Journal of Cleaner Production, 2019, 217, 503-509.	4.6	71
338	Information-based ecological network analysis for carbon emissions. Applied Energy, 2019, 238, 45-53.	5.1	36

#	Article	IF	CITATIONS
339	Estimates of carbon dioxide emissions based on incomplete condition information: a case study of liquefied natural gas in China. Environmental Science and Pollution Research, 2019, 26, 8847-8861.	2.7	2
340	Uncovering the national and regional household carbon emissions in China using temporal and spatial decomposition analysis models. Journal of Cleaner Production, 2019, 232, 966-979.	4.6	49
341	Does FDI have energy-saving spillover effect in China? A perspective of energy-biased technical change. Journal of Cleaner Production, 2019, 234, 436-450.	4.6	61
342	Comparison of CO2 emissions reduction efficiency of household fuel consumption in China. Sustainability, 2019, 11, 979.	1.6	13
343	In-Situ Capture of Mercury in Coal-Fired Power Plants Using High Surface Energy Fly Ash. Environmental Science & Technology, 2019, 53, 7913-7920.	4.6	56
344	Identification and evolution of critical betweenness sectors and transactions from the view of CO2 reduction in supply chain network. Journal of Cleaner Production, 2019, 232, 163-173.	4.6	29
345	A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renewable and Sustainable Energy Reviews, 2019, 111, 571-594.	8.2	89
346	Sensitivity of sectoral CO2 emissions to demand and supply pattern changes in China. Science of the Total Environment, 2019, 682, 572-582.	3.9	8
347	Opportunities for low-carbon socioeconomic transition during the revitalization of Northeast China: Insights from Heilongjiang province. Science of the Total Environment, 2019, 683, 380-388.	3.9	19
348	City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China. Energies, 2019, 12, 2025.	1.6	10
349	Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty. Applied Energy, 2019, 250, 273-282.	5.1	47
350	Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends. Environmental Science and Technology Letters, 2019, 6, 473-478.	3.9	52
351	Key challenges for China's carbon emissions trading program. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e599.	3.6	15
352	CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta. Applied Energy, 2019, 251, 113384.	5.1	69
353	The circular economy and carbon footprint: A systematic accounting for typical coal-fuelled power industrial parks. Journal of Cleaner Production, 2019, 229, 1262-1273.	4.6	36
354	How will the Chinese Certified Emission Reduction scheme save cost for the national carbon trading system?. Journal of Environmental Management, 2019, 244, 99-109.	3.8	52
355	Carbon dioxide capture and bioenergy production using biological system – A review. Renewable and Sustainable Energy Reviews, 2019, 110, 143-158.	8.2	152
356	Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces. Sustainability, 2019, 11, 2591.	1.6	6

#	Article	IF	CITATIONS
357	A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 907-939.	1.0	15
358	What determines the diversity of CO2 emission patterns in the Beijing-Tianjin-Hebei region of China? An analysis focusing on industrial structure change. Journal of Cleaner Production, 2019, 228, 1088-1098.	4.6	48
359	Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China. Technological Forecasting and Social Change, 2019, 144, 103-117.	6.2	89
360	Synthesis of fatty acid methyl esters via non-catalytic transesterification of avocado oil with dimethyl carbonate. Energy Conversion and Management, 2019, 195, 1-6.	4.4	25
361	Anthropogenic Methane Emission and Its Partitioning for the Yangtze River Delta Region of China. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1148-1170.	1.3	14
362	Methane budget of East Asia, 1990–2015: A bottom-up evaluation. Science of the Total Environment, 2019, 676, 40-52.	3.9	34
363	A panel coâ€integration analysis for economic development, energy consumption, urbanization, and carbon dioxide emissions in China's six provinces. Environmental Progress and Sustainable Energy, 2019, 38, e13247.	1.3	6
364	Pathways for sustainable energy transition. Journal of Cleaner Production, 2019, 228, 1564-1571.	4.6	106
365	Energy-related CO2 emission peaking target and pathways for China's city: A case study of Baoding City. Journal of Cleaner Production, 2019, 226, 471-481.	4.6	47
367	Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013–2017 by geostatistics. Scientific Reports, 2019, 9, 3613.	1.6	30
368	Features and drivers for energy-related carbon emissions in mega city: The case of Guangzhou, China based on an extended LMDI model. PLoS ONE, 2019, 14, e0210430.	1.1	17
369	The economic effects of carbon tax on China's provinces. Journal of Policy Modeling, 2019, 41, 784-802.	1.7	12
370	Regional development and carbon emissions in China. Energy Economics, 2019, 81, 25-36.	5.6	284
371	Are per capita carbon emissions predictable across countries?. Journal of Environmental Management, 2019, 237, 569-575.	3.8	5
372	Spatiotemporal dynamics of CO2 emissions from central heating supply in the North China Plain over 2012–2016 due to natural gas usage. Applied Energy, 2019, 241, 245-256.	5.1	25
373	Analyzing the influence factors of the carbon emissions from China's building and construction industry from 2000 to 2015. Journal of Cleaner Production, 2019, 221, 552-566.	4.6	106
374	Systematic error and uncertain carbon dioxide emissions from U.S. power plants. Journal of the Air and Waste Management Association, 2019, 69, 646-658.	0.9	10
375	Comparative study on the influence of final use structure on carbon emissions in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2019, 668, 271-282.	3.9	37

#	Article	IF	CITATIONS
376	Structural patterns of city-level CO2 emissions in Northwest China. Journal of Cleaner Production, 2019, 223, 553-563.	4.6	24
377	Tracing carbon emissions embodied in 2012 Chinese supply chains. Journal of Cleaner Production, 2019, 226, 28-36.	4.6	41
378	Multiangle land use-linked carbon balance examination in Nanjing City, China. Land Use Policy, 2019, 84, 305-315.	2.5	50
379	Decoupling of economic growth and emissions in China's cities: A case study of the Central Plains urban agglomeration. Applied Energy, 2019, 244, 36-45.	5.1	72
380	Exploring China's carbon emissions peak for different carbon tax scenarios. Energy Policy, 2019, 129, 1245-1252.	4.2	140
381	Frequent interactions of Tibet's CO ₂ emissions with those of other regions in China. Earth's Future, 2019, 7, 491-502.	2.4	12
382	Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 2019, 568, 221-225.	13.7	124
383	Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options. Agricultural and Forest Meteorology, 2019, 272-273, 1-11.	1.9	24
384	Microstructure of β-Dicalcium Silicate after Accelerated Carbonation. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 122-126.	0.4	10
385	A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1343-1362.	1.0	18
386	Backward and forward multilevel indicators for identifying key sectors of China's intersectoral CO2 transfer network. Environmental Science and Pollution Research, 2019, 26, 9661-9671.	2.7	10
387	Peak cementâ€related CO ₂ emissions and the changes in drivers in China. Journal of Industrial Ecology, 2019, 23, 959-971.	2.8	64
388	Predicting Hydration Reactivity of Cu-Doped Clinker Crystals by Capturing Electronic Structure Modification. ACS Sustainable Chemistry and Engineering, 2019, 7, 6412-6421.	3.2	20
389	How to Construct a Combined S-CO2 Cycle for Coal Fired Power Plant?. Entropy, 2019, 21, 19.	1.1	13
390	Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmospheric Research, 2019, 222, 25-35.	1.8	24
391	CO2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating. Energies, 2019, 12, 3864.	1.6	5
392	Introduction of megacities. , 2019, , 7-16.		0
393	Sustainable urbanization. , 2019, , 347-358.		3

#	Article	IF	CITATIONS
395	Carbon and health implications of trade restrictions. Nature Communications, 2019, 10, 4947.	5.8	49
396	China Act on the Energy Efficiency of Civil Buildings (2008): A decade review. Science of the Total Environment, 2019, 651, 42-60.	3.9	98
397	Identification of key sectors and key provinces at the view of CO2 reduction and economic growth in China: Linkage analyses based on the MRIO model. Ecological Indicators, 2019, 96, 1-15.	2.6	49
398	Influential factors of national and regional CO2 emission in China based on combined model of DPSIR and PLS-SEM. Journal of Cleaner Production, 2019, 212, 698-712.	4.6	69
399	Effective use of ground waste expanded perlite as green supplementary cementitious material in eco-friendly alkali activated slag composites. Journal of Cleaner Production, 2019, 213, 406-414.	4.6	45
400	Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. Journal of Energy Chemistry, 2019, 37, 93-96.	7.1	52
401	Integrating Dynamic Material Flow Analysis and Computable General Equilibrium Models for Both Mass and Monetary Balances in Prospective Modeling: A Case for the Chinese Building Sector. Environmental Science & Technology, 2019, 53, 224-233.	4.6	29
402	Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs. Science of the Total Environment, 2019, 656, 1108-1120.	3.9	52
403	Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmospheric Environment, 2019, 201, 417-427.	1.9	154
404	Leader-follower game-theoretic method towards carbon-economy trade-off in a key construction project group. Journal of Environmental Management, 2019, 233, 499-512.	3.8	10
405	Identifying local anthropogenic CO ₂ emissions with satellite retrievals: a case study in South Korea. International Journal of Remote Sensing, 2019, 40, 1011-1029.	1.3	18
406	Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling. Journal of Cleaner Production, 2019, 214, 615-622.	4.6	50
407	Research on the peak of CO2 emissions in the developing world: Current progress and future prospect. Applied Energy, 2019, 235, 186-203.	5.1	86
408	Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Applied Energy, 2019, 235, 95-105.	5.1	183
409	Equity-efficiency trade-off in China's energy capping policy. Energy Policy, 2019, 126, 57-65.	4.2	20
410	Empirical assessing cement CO2 emissions based on China's economic and social development during 2001–2030. Science of the Total Environment, 2019, 653, 200-211.	3.9	88
411	Carbon emissions of cities from a consumption-based perspective. Applied Energy, 2019, 235, 509-518.	5.1	198
412	Price transmission mechanism and socio-economic effect of carbon pricing in Beijing: A two-region social accounting matrix analysis. Journal of Cleaner Production, 2019, 211, 134-145.	4.6	11

#	Article	IF	CITATIONS
413	Global environmental vulnerability and the survival period of all living beings on earth. International Journal of Environmental Science and Technology, 2019, 16, 755-762.	1.8	7
414	Intensive carbon dioxide emission of coal chemical industry in China. Applied Energy, 2019, 236, 540-550.	5.1	86
415	Low-carbon developments in Northeast China: Evidence from cities. Applied Energy, 2019, 236, 1019-1033.	5.1	69
416	A systematic review of empirical methods for modelling sectoral carbon emissions in China. Journal of Cleaner Production, 2019, 215, 1382-1401.	4.6	42
417	Assessment of climate change adaptation measures on the income of herders in a pastoral region. Journal of Cleaner Production, 2019, 208, 728-735.	4.6	23
418	Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil and Tillage Research, 2019, 186, 70-78.	2.6	65
419	Industry relocation or emission relocation? Visualizing and decomposing the dislocation between China's economy and carbon emissions. Journal of Cleaner Production, 2019, 208, 1109-1119.	4.6	32
420	Analysis of regional environment and regional innovation strategy based on cybernetics. Cognitive Systems Research, 2019, 57, 25-31.	1.9	3
421	Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Science of the Total Environment, 2019, 652, 683-695.	3.9	178
422	Driving factors and predictions of CO2 emission in China's coal chemical industry. Journal of Cleaner Production, 2019, 210, 1131-1140.	4.6	71
425	Best Management Practices. , 2019, , 419-431.		8
426	Spatial and temporal analysis of carbon sources and sinks through land use/cover changes in the Beijing-Tianjin-Hebei urban agglomeration region. Physics and Chemistry of the Earth, 2019, 110, 61-70.	1.2	37
427	Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model. International Journal of Biometeorology, 2019, 63, 701-710.	1.3	17
428	Does major agriculture production zone have higher carbon efficiency and abatement cost under climate change mitigation?. Ecological Indicators, 2019, 105, 376-385.	2.6	20
429	High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 881-905.	1.0	23
430	An Outlook on the Biomass Energy Development Out to 2100 in China. Computational Economics, 2019, 54, 1359-1377.	1.5	8
431	Effect of CaO mineral change on coal ash melting characteristics. Journal of the Energy Institute, 2020, 93, 642-648.	2.7	25
432	Re-examining the realization of provincial carbon dioxide emission intensity reduction targets in China from a consumption-based accounting. Journal of Cleaner Production, 2020, 244, 118488.	4.6	40

#	Article	IF	CITATIONS
433	China's emissions embodied in exports: How regional and trade heterogeneity matter. Energy Economics, 2020, 87, 104479.	5.6	19
434	A new method of energy-related carbon dioxide emissions estimation at the provincial-level: A case study of Shandong Province, China. Science of the Total Environment, 2020, 700, 134384.	3.9	23
435	An emissions accounting framework for industrial parks in China. Journal of Cleaner Production, 2020, 244, 118712.	4.6	31
436	Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. Science of the Total Environment, 2020, 699, 134357.	3.9	30
437	Influencing factors and spatial patterns of energy-related carbon emissions at the city-scale in Fujian province, Southeastern China. Journal of Cleaner Production, 2020, 244, 118840.	4.6	73
438	First principles study on the functionalization of graphene with Fe catalyst for the detection of CO2: Effect of catalyst clustering. Applied Surface Science, 2020, 502, 144153.	3.1	18
439	Multi-Agents-Based Modeling and Simulation for Carbon Permits Trading in China: A Regional Development Perspective. International Journal of Environmental Research and Public Health, 2020, 17, 301.	1.2	6
440	A city-level inventory for atmospheric mercury emissions from coal combustion in China. Atmospheric Environment, 2020, 223, 117245.	1.9	25
441	Adaption to climate change risk in eastern China: Carbon emission characteristics and analysis of reduction path. Physics and Chemistry of the Earth, 2020, 115, 102829.	1.2	16
442	Whether China made efforts to decouple economic growth from CO2 emissions?-Production vs consumption perspective. Environmental Science and Pollution Research, 2020, 27, 5138-5154.	2.7	3
443	Industrial total factor CO2 emission performance assessment of Chinese heavy industrial province. Energy Efficiency, 2020, 13, 177-192.	1.3	11
444	Synthesis of Ni–Mo–N catalysts for removing oxygen from acetophenone. Biomass and Bioenergy, 2020, 133, 105448.	2.9	6
445	Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. Journal of Cleaner Production, 2020, 253, 119803.	4.6	126
446	Does environmental infrastructure investment contribute to emissions reduction? A case of China. Frontiers in Energy, 2020, 14, 57-70.	1.2	20
447	Carbon transfer within China: Insights from production fragmentation. Energy Economics, 2020, 86, 104647.	5.6	34
448	Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. Science Advances, 2020, 6, eaay0748.	4.7	81
449	Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach. Applied Energy, 2020, 261, 114431.	5.1	116
450	A statistics-based method to quantify residential energy consumption and stock at the city level in China: The case of the Guangdong-Hong Kong-Macao Greater Bay Area cities. Journal of Cleaner Production, 2020, 251, 119637.	4.6	25

		CITATION REPORT	
#	Article	IF	CITATIONS
451	Data accuracy in Ecological Footprint's carbon footprint. Ecological Indicators, 2020, 111, 105	983. 2.6	16
452	Predictions and driving factors of production-based CO2 emissions in Beijing, China. Sustainable Cities and Society, 2020, 53, 101909.	5.1	39
453	Who shapes China's carbon intensity and how? A demand-side decomposition analysis. Energy Economics, 2020, 85, 104600.	5.6	74
454	How China's electricity generation sector can achieve its carbon intensity reduction targets?. Scier of the Total Environment, 2020, 706, 135689.	ice 3.9	44
455	Drivers of carbon emissions in China's tourism industry. Journal of Sustainable Tourism, 2020, 747-770.	28, 5.7	40
456	Screening Out Reactivity-Promoting Candidates for \hat{I}^3 -Ca2SiO4 Carbonation by First-Principles Calculations. Frontiers in Materials, 2020, 7, .	1.2	5
457	How does urbanization affect CO2 emissions of central heating systems in China? An assessment natural gas transition policy based on nighttime light data. Journal of Cleaner Production, 2020, 27 123188.	of 76, 4.6	29
458	Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CCE-bas analysis. Resources Policy, 2020, 68, 101775.	sed 4.2	30
459	Energy carbon emission structure and reduction potential focused on the supply-side and demand-side. PLoS ONE, 2020, 15, e0239634.	1.1	7
460	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	5.8	420
461	Study on the spatial spillover effects of cement production on air pollution in China. Science of the Total Environment, 2020, 748, 141421.	3.9	38
462	A multi-perspective factorial hypothetical simulation model for cutting the carbon emission intensi of China. Journal of Cleaner Production, 2020, 275, 123943.	ty 4.6	5
463	Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network. Scientific Data, 2020, 7, 325.	2.4	47
464	Effect of Ash on Coal Combustion Performance and Kinetics Analysis. Combustion Science and Technology, 2022, 194, 785-800.	1.2	3
465	How the manufacturing economy impacts China's energy-related GHG emissions: Insights from structural path analysis. Science of the Total Environment, 2020, 743, 140769.	3.9	24
466	Exploring the trade-offs between electric heating policy and carbon mitigation in China. Nature Communications, 2020, 11, 6054.	5.8	198
467	Investigating the Uncertainties Propagation Analysis of CO2 Emissions Gridded Maps at the Urban Scale: A Case Study of Jinjiang City, China. Remote Sensing, 2020, 12, 3932.	1.8	3
468	Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Scientific Data, 2020, 7, 392.	2.4	115

#	Article	IF	CITATIONS
469	Evaluating critical barriers and pathways to implementation of e-waste formalization management systems in Ghana: a hybrid BWM and fuzzy TOPSIS approach. Environmental Science and Pollution Research, 2020, 27, 44561-44584.	2.7	49
470	Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants. Energy Economics, 2020, 91, 104891.	5.6	36
471	Satellite Observations of PM2.5 Changes and Driving Factors Based Forecasting Over China 2000–2025. Remote Sensing, 2020, 12, 2518.	1.8	9
472	Vital COVID-19 Economic Stimulus Packages Pose a Challenge for Long-Term Environmental Sustainability. , 2020, , 97-105.		6
473	Biologically mediated release of endogenous N2O and NO2 gases in a hydrothermal, hypoxic subterranean environment. Science of the Total Environment, 2020, 747, 141218.	3.9	21
474	Synergies of Cutting Air Pollutants and CO2 Emissions by the End-of-Pipe Treatment Facilities in a Typical Chinese Integrated Steel Plant. Sustainability, 2020, 12, 5157.	1.6	3
475	Does urbanization impact the municipal infrastructure operation GHG emission? According to a systematic estimation framework. International Journal of Urban Sciences, 2021, 25, 501-521.	1.3	1
476	Temporal changes of carbon emission transmissions in China's supply chain, 1997–2017. Journal of Cleaner Production, 2020, 269, 122367.	4.6	5
477	Province-level fossil fuel CO2 emission estimates for China based on seven inventories. Journal of Cleaner Production, 2020, 277, 123377.	4.6	19
478	Embodied carbon emissions in China-US trade. Science China Earth Sciences, 2020, 63, 1577-1586.	2.3	32
479	Estimation of Gridded Atmospheric Oxygen Consumption from 1975 to 2018. Journal of Meteorological Research, 2020, 34, 646-658.	0.9	18
480	EXPLORING THE IMPACTS OF CARBON MARKET LINKAGE ON SECTORAL COMPETITIVENESS: A CASE STUDY OF BEIJING–TIANJIN–HEBEI REGION BASED ON THE CEECPA MODEL. Climate Change Economics, 2020, 11, 2041005.	2.9	2
481	Driving effects of urbanization on city-level carbon dioxide emissions: from multiple perspectives of urbanization. International Journal of Urban Sciences, 2022, 26, 108-128.	1.3	19
482	Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 586, 720-723.	13.7	320
483	Outdoor sunlight-driven scalable water-gas shift reaction through novel photothermal device-supported CuO _x /ZnO/Al ₂ O ₃ nanosheets with a hydrogen generation rate of 192 mmol g ^{â^'1} h ^{â^'1} . Journal of Materials Chemistry A, 2020, 8, 19467-19472.	5.2	23
484	Holistic suitability for regional biomass power generation development in China: An application of matter-element extension model. Journal of Environmental Management, 2020, 276, 111294.	3.8	13
485	Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 1363-1380.	1.0	31
486	Optimization Techniques of Islanded Hybrid Microgrid System. , 2020, , .		7

#	Article	IF	CITATIONS
487	Embodied carbon emissions in the supply chains of multinational enterprises. Nature Climate Change, 2020, 10, 1096-1101.	8.1	114
488	A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories. Carbon Balance and Management, 2020, 15, 25.	1.4	22
489	Accuracy analysis of inverting provincial-level carbon emissions from night-time light data in China: comparison based on international carbon emission data. IOP Conference Series: Earth and Environmental Science, 2020, 601, 012046.	0.2	0
490	Study on energy consumption index system and calculation method of highway transportation infrastructure in Qinghai Province. IOP Conference Series: Earth and Environmental Science, 2020, 440, 032003.	0.2	1
491	Drivers of energy-related CO2 emissions under structural adjustment in China. IOP Conference Series: Earth and Environmental Science, 2020, 569, 012022.	0.2	0
492	Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective. Sustainability, 2020, 12, 8966.	1.6	3
493	Optimal Scheduling of Distributed Hydrogen-based Multi-Energy Systems for Building Energy Cost and Carbon Emission Reduction. , 2020, , .		9
494	Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment. Applied Energy, 2020, 279, 115878.	5.1	33
495	Identification of Key Carbon Emission Sectors and Analysis of Emission Effects in China. Sustainability, 2020, 12, 8673.	1.6	5
496	The spatial-temporal pattern of sintered flue gas emissions in iron and steel enterprises of China. Journal of Cleaner Production, 2020, 266, 121667.	4.6	17
497	Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities. Carbon Balance and Management, 2020, 15, 9.	1.4	15
498	Decoupling or delusion? Mapping carbon emission per capita based on the human development index in Southwest China. Science of the Total Environment, 2020, 741, 138722.	3.9	80
499	China's CH4 emissions from coal mining: A review of current bottom-up inventories. Science of the Total Environment, 2020, 725, 138295.	3.9	31
500	Statistical characterization of urban CO2 emission signals observed by commercial airliner measurements. Scientific Reports, 2020, 10, 7963.	1.6	19
501	The influence of pozzolanic additives on the carbonation rate and Life Cycle Inventory of concrete. Construction and Building Materials, 2020, 254, 119301.	3.2	8
502	Sustainable criterion selection framework for green building materials – An optimisation based study of fly-ash Geopolymer concrete. Sustainable Materials and Technologies, 2020, 25, e00178.	1.7	55
503	Opposite interdecadal variations of wintertime haze occurrence over North China Plain and Yangtze River Delta regions in 1980–2013. Science of the Total Environment, 2020, 732, 139240.	3.9	9
504	Two-Year Observation of Fossil Fuel Carbon Dioxide Spatial Distribution in Xi'an City. Advances in Atmospheric Sciences, 2020, 37, 569-575.	1.9	5

#	Article	IF	CITATIONS
505	Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–2018). Energies, 2020, 13, 2600.	1.6	29
506	Energy flows embodied in China's interregional trade: Case study of Hebei Province. Ecological Modelling, 2020, 428, 109061.	1.2	4
507	The policy-driven peak and reduction of China's carbon emissions. Advances in Climate Change Research, 2020, 11, 65-71.	2.1	73
508	Fossil fuel CO2 traced by radiocarbon in fifteen Chinese cities. Science of the Total Environment, 2020, 729, 138639.	3.9	23
509	Iron and steel industry emissions and contribution to the air quality in China. Atmospheric Environment, 2020, 237, 117668.	1.9	55
510	Spatial analysis of mainland cities' carbon emissions of and around Guangdong-Hong Kong-Macao Greater Bay area. Sustainable Cities and Society, 2020, 61, 102299.	5.1	51
511	Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmospheric Environment, 2020, 237, 117670.	1.9	36
512	High-resolution spatiotemporal patterns of China's FFCO ₂ emissions under the impact of LUCC from 2000 to 2015. Environmental Research Letters, 2020, 15, 044007.	2.2	8
513	Strategies for Engineering Highâ€Performance PGMâ€Free Catalysts toward Oxygen Reduction and Evolution Reactions. Small Methods, 2020, 4, 2000016.	4.6	70
514	Molecular Simulation of the Adsorption Behaviors of CO2/CH4in Curvature, Planar, and Mixture Models. Energy & Fuels, 2020, 34, 4153-4161.	2.5	12
515	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
516	Economic development and converging household carbon footprints in China. Nature Sustainability, 2020, 3, 529-537.	11.5	224
517	Charging Chinese future: the roadmap of China's policy for new energy automotive industry. International Journal of Hydrogen Energy, 2020, 45, 11409-11423.	3.8	47
518	Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. Journal of Environmental Management, 2020, 262, 110300.	3.8	62
519	Energy transition for the low-carbon pulp and paper industry in China. Renewable and Sustainable Energy Reviews, 2020, 131, 109998.	8.2	43
520	A Framework for Assessing Green Capacity Utilization Considering CO2 Emissions in China's High-Tech Manufacturing Industry. Sustainability, 2020, 12, 4424.	1.6	7
521	Urban carbon emissions associated with electricity consumption in Beijing and the driving factors. Applied Energy, 2020, 275, 115425.	5.1	67
522	Short-run forecast and reduction mechanism of CO2 emissions: a Chinese province-level study. Environmental Science and Pollution Research, 2022, 29, 12777-12796.	2.7	10

#	Article	IF	CITATIONS
523	Subnational carbon flow pattern analysis using multi-scale input-output model. Ecological Modelling, 2020, 431, 109138.	1.2	8
524	How urban agglomeration improve the emission efficiency?A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. Journal of Environmental Management, 2020, 260, 110061.	3.8	145
525	Managing energy infrastructure to decarbonize industrial parks in China. Nature Communications, 2020, 11, 981.	5.8	37
526	Identifying common paths of CO2 and air pollutants emissions in China. Journal of Cleaner Production, 2020, 256, 120599.	4.6	26
527	Carbon inequality and economic development across the Belt and Road regions. Journal of Environmental Management, 2020, 262, 110250.	3.8	80
528	Density functional theory study on catalytic dehydrogenation of methylcyclohexane on Pt(111). International Journal of Hydrogen Energy, 2020, 45, 6727-6737.	3.8	35
529	Enhancement of hydrogen production and energy recovery through electro-fermentation from the dark fermentation effluent of food waste. Environmental Science and Ecotechnology, 2020, 1, 100006.	6.7	37
530	Achieving environmental sustainability through information technology: "Digital Pakistan―initiative for green development. Environmental Science and Pollution Research, 2020, 27, 10011-10026.	2.7	52
531	Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresource Technology, 2020, 302, 122863.	4.8	188
532	China's <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mrow emission structure for 1957–2017 through transitions in economic and environmental policies. Journal of Cleaner Production, 2020, 255, 120288.</mml:mrow </mml:msub></mml:mrow></mml:math>	ow> <mml: 4.6</mml: 	mŋ>210
533	A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015. Energies, 2020, 13, 2076.	1.6	16
534	Unbalanced economic benefits and the electricity-related carbon emissions embodied in China's interprovincial trade. Journal of Environmental Management, 2020, 263, 110390.	3.8	92
535	Retrospect driving forces and forecasting reduction potentials of energy-related industrial carbon emissions from China's manufacturing at city level. Environmental Research Letters, 2020, 15, 074020.	2.2	6
536	A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coordination Chemistry Reviews, 2020, 416, 213341.	9.5	159
537	Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environmental Science and Pollution Research, 2020, 27, 28768-28779.	2.7	66
538	Evaluating China's anthropogenic CO ₂ emissions inventories: aÂnorthern China case study using continuous surface observations from 2005 to 2009. Atmospheric Chemistry and Physics, 2020, 20, 3569-3588.	1.9	5
539	Does green innovation mitigate financing constraints? Evidence from China's private enterprises. Journal of Cleaner Production, 2020, 264, 121698.	4.6	149
540	Analysis of urban carbon metabolism characteristics based on provincial input-output tables. Journal of Environmental Management, 2020, 265, 110561.	3.8	34

#	Article	IF	CITATIONS
541	Drivers toward a Low-Carbon Electricity System in China's Provinces. Environmental Science & Technology, 2020, 54, 5774-5782.	4.6	33
542	Improving the estimation of greenhouse gas emissions from the Chinese coal-to-electricity chain by a bottom-up approach. Resources, Conservation and Recycling, 2021, 167, 105237.	5.3	37
543	Sectoral CO ₂ emissions in China: asymmetric and time-varying analysis. Journal of Environmental Planning and Management, 2021, 64, 581-610.	2.4	19
544	The effects of poverty alleviation investment on carbon emissions in China based on the multiregional input–output model. Technological Forecasting and Social Change, 2021, 162, 120344.	6.2	39
545	Sustainable scheduling optimization of mixed-line production for large marine power components. Journal of Cleaner Production, 2021, 280, 124461.	4.6	9
546	Hollow Co ₃ O ₄ dodecahedrons with controlled crystal orientation and oxygen vacancies for the high performance oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 259-267.	3.2	22
547	Global and local carbon footprints of city of Hong Kong and Macao from 2000 to 2015. Resources, Conservation and Recycling, 2021, 164, 105167.	5.3	20
548	High spatial resolution WRF-Chem model over Asia: Physics and chemistry evaluation. Atmospheric Environment, 2021, 244, 118004.	1.9	38
549	Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO2 to fatty acids in single chambered system. Bioresource Technology, 2021, 320, 124272.	4.8	28
550	Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm. Energy, 2021, 214, 119022.	4.5	62
551	Uncovering CO2 emission drivers under regional industrial transfer in China's Yangtze River Economic Belt: a multi-layer LMDI decomposition analysis. Frontiers in Energy, 2021, 15, 292-307.	1.2	10
552	A comprehensive evaluation of the eco-carrying capacity and green economy in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Journal of Cleaner Production, 2021, 281, 124945.	4.6	93
553	Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?. Renewable and Sustainable Energy Reviews, 2021, 137, 110635.	8.2	25
554	Identifying the key sectors for regional energy, water and carbon footprints from production-, consumption- and network-based perspectives. Science of the Total Environment, 2021, 764, 142821.	3.9	34
555	Reducing disparities between carbon emissions and economic benefits in Guangdong's exports: A supply chain perspective. Journal of Cleaner Production, 2021, 286, 124976.	4.6	2
556	Carbon reduction potential of China's coal-fired power plants based on a CCUS source-sink matching model. Resources, Conservation and Recycling, 2021, 168, 105320.	5.3	65
557	The formation and transmission of upstream and downstream sectoral carbon emission responsibilities: Evidence from China. Sustainable Production and Consumption, 2021, 25, 563-576.	5.7	13
558	Dynamic assessment of ecological sustainability and the associated driving factors in Tibet and its cities. Science of the Total Environment, 2021, 759, 143552.	3.9	29

#	ARTICLE	IF	CITATIONS
559	Multi-region and multi-sector comparisons and analysis of industrial carbon productivity in China. Journal of Cleaner Production, 2021, 279, 123623.	4.6	21
560	Seasonal distribution and vertical structure of different types of aerosols in southwest China observed from CALIOP. Atmospheric Environment, 2021, 246, 118145.	1.9	26
561	Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data. Science of the Total Environment, 2021, 750, 141688.	3.9	92
562	Mechanical Behaviour of a Green Composite from Biopolymers Reinforced with Sisal Fibres. Journal of Polymers and the Environment, 2021, 29, 429-440.	2.4	15
563	COVID-19 and Its Impact on Carbon Dioxide Emissions. , 2021, , 195-210.		0
565	A mesoporous silica-supported CeO ₂ /cellulose cathode catalyst for efficient bioelectrochemical reduction of inorganic carbon to biofuels. Reaction Chemistry and Engineering, 2021, 6, 1993-2001.	1.9	6
566	Advanced Green Building Technology. , 2021, , 129-145.		0
567	Research on the Driving Forces of Carbon Emissions in China's Manufacturing Industry: A Multi-sector Decomposition Analysis. , 2021, , 35-46.		0
568	Substantial Nitrogen Oxide Pollution Is Embodied in the Bilateral Trade between China and the European Union. International Journal of Environmental Research and Public Health, 2021, 18, 675.	1.2	2
569	Deurbanization and Rural Development. , 2021, , 335-345.		0
570	Carbon Monoxide Gas Pollution Control Model Using Reducing Plants. Journal of Environmental Treatment Techniques (discontinued), 2020, 9, 428-434.	0.5	3
571	How will natural gas market reforms affect carbon marginal abatement costs? Evidence from China. Economic Systems Research, 2022, 34, 129-150.	1.2	22
572	Optimized Conductivity and Spin States in N-Doped LaCoO ₃ for Oxygen Electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 2447-2454.	4.0	34
573	Analysis of Economy, Energy Efficiency and Environment within the Operation Domains of Combined Heat and Power Units Integrating the Industrial Steam Supply System. SSRN Electronic Journal, 0, , .	0.4	0
574	Evaluation of the coordinated development of economic, urbanization and environmental systems: a case study of China. Clean Technologies and Environmental Policy, 2021, 23, 685-708.	2.1	12
575	Impacts of changes in commercial non-coking coal grading system and other coal policies towards estimation of CO2 emission in Indian power sector. Carbon Management, 0, , 1-12.	1.2	1
576	Spatio-temporal variability of atmospheric CO2 and its main causes: A case study in Xi'an city, China. Atmospheric Research, 2021, 249, 105346.	1.8	9
577	Was it better or worse? Simulating the environmental and health impacts of emissions trading scheme in Hubei province, China. Energy, 2021, 217, 119427.	4.5	13

#	Article	IF	CITATIONS
578	Carbon and air pollutant emissions from China's cement industry 1990–2015: trends, evolution of technologies, and drivers. Atmospheric Chemistry and Physics, 2021, 21, 1627-1647.	1.9	62
579	Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando x-ray absorption spectroscopy. Electronic Structure, 2021, 3, 013001.	1.0	4
580	Effect of Treated Sago Pith Waste Ash and Silica Fume to the Mechanical Properties of Fly Ash-Based Geopolymer Brick. Key Engineering Materials, 0, 879, 100-114.	0.4	0
581	Surface Treatment of Cementitious Composites by Ultrasound and Its Effect on Durability Performance. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	1
582	Tracking embodied water uses and GHG emissions along Chinese supply chains. Journal of Cleaner Production, 2021, 288, 125590.	4.6	6
583	Assessment and offset of the adverse effects induced by PM2.5 from coal-fired power plants in China. Journal of Cleaner Production, 2021, 286, 125397.	4.6	9
584	Critical transmission sectors for CO2 emission mitigation in supply chains. Technological Forecasting and Social Change, 2021, 164, 120499.	6.2	15
585	Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission. Energy Policy, 2021, 150, 112150.	4.2	32
586	A comparative study of anthropogenic CH ₄ emissions over China based on the ensembles of bottom-up inventories. Earth System Science Data, 2021, 13, 1073-1088.	3.7	20
587	Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China. Environment, Development and Sustainability, 2021, 23, 18186-18203.	2.7	38
588	Experiment and simulation study on mechanism and solution of ash agglomeration in supercritical water gasification of coal for hydrogen production. Fuel, 2021, 290, 120016.	3.4	16
589	Black Carbon Emission Reduction Due to COVIDâ€19 Lockdown in China. Geophysical Research Letters, 2021, 48, e2021GL093243.	1.5	20
590	Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China. Nature Communications, 2021, 12, 1938.	5.8	96
591	The Fast Response of the Atmospheric Water Cycle to Anthropogenic Black Carbon Aerosols during Summer in East Asia. Journal of Climate, 2021, 34, 3049-3065.	1.2	1
592	Has processing trade made China's exports cleaner? A regional level analysis. Energy Economics, 2021, 96, 105150.	5.6	14
593	The future of coal supply in China based on non-fossil energy development and carbon price strategies. Energy, 2021, 220, 119644.	4.5	81
594	Declining Oxygen Level as an Emerging Concern to Global Cities. Environmental Science & Technology, 2021, 55, 7808-7817.	4.6	14
595	Superior performance of rGO-tin oxide nanocomposite for selective reduction of CO2 to methanol. Journal of CO2 Utilization, 2021, 46, 101460.	3.3	15

#	ARTICLE CDIAC-FF: global and national CO ₂ emissions from fossil fuel	IF 3.7	CITATIONS
597	combustion and cement manufacture: 1751–2017. Earth System Science Data, 2021, 13, 1667-1680. Determinants of consumption-based carbon emissions in Chile: anÂapplication of non-linear ARDL. Environmental Science and Pollution Research, 2021, 28, 43908-43922.	2.7	109
598	Analyzing the features of energy consumption and carbon emissions in the Upper Yangtze River Economic Zone. , 2021, 11, 573.		7
599	How should China prioritize the deregulation of electricity prices in the context of carbon pricing? A computable general equilibrium analysis. Energy Economics, 2021, 96, 105187.	5.6	12
600	Estimation of economic benefits associated with the reduction in the CO2 emission due to COVID-19. Environmental Challenges, 2021, 3, 100069.	2.0	16
601	Fe13+-ion irradiated WS2 with multi-vacancies and Fe dopants for hydrogen evolution reaction. FlatChem, 2021, 27, 100247.	2.8	3
602	Using high-resolution remote sensing images to explore the spatial relationship between landscape patterns and ecosystem service values in regions of urbanization. Environmental Science and Pollution Research, 2021, 28, 56139-56151.	2.7	16
603	The Driving Factors of Carbon Emissions in China's Transportation Sector: A Spatial Analysis. Frontiers in Energy Research, 2021, 9, .	1.2	18
604	Circular economy for clean energy transitions: A new opportunity under the COVID-19 pandemic. Applied Energy, 2021, 289, 116666.	5.1	89
605	Microphysics effects of anthropogenic aerosols on urban heavy precipitation over the Pearl River Delta, China. Atmospheric Research, 2021, 253, 105478.	1.8	12
606	The Spillover Effect Evaluation of Chinese Emissions Trading Scheme. Frontiers in Energy Research, 2021, 9, .	1.2	3
607	Water disclosure and financial reporting quality for social changes: Empirical evidence from China. Technological Forecasting and Social Change, 2021, 166, 120571.	6.2	25
608	Evaluation of the influence of El Niño-Southern Oscillation on air quality in southern China from long-term historical observations. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	3
609	A fractional multi-stage simulation-optimization energy model for carbon emission management of urban agglomeration. Science of the Total Environment, 2021, 774, 144963.	3.9	15
610	A novel composite for thermal energy storage from alumina hollow sphere/paraffin and alkali-activated slag. Ceramics International, 2021, 47, 15947-15957.	2.3	19
611	Climate Impact of China's Promotion of the Filling Mining Method: Bottom-Up Estimation of Greenhouse Gas Emissions in Underground Metal Mines. Energies, 2021, 14, 3273.	1.6	5
612	Z-Scheme Core–Shell <i>meso</i> -TiO ₂ @ZnIn ₂ S ₄ /Ti ₃ C ₂ MXene Enhances Visible Light-Driven CO ₂ -to-CH ₄ Selectivity. Industrial & Engineering Chemistry Research, 2021, 60, 8720-8732.	1.8	39
613	Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt cities. Science of the Total Environment, 2021, 775, 145927.	3.9	66

#	Article	IF	CITATIONS
614	Carbon dioxide (CO ₂) emissions from the service industry, traffic, and secondary industry as revealed by the remotely sensed nighttime light data. International Journal of Digital Earth, 2021, 14, 1514-1527.	1.6	23
615	How well has economic strategy changed CO2 emissions? Evidence from China's largest emission province. Science of the Total Environment, 2021, 774, 146575.	3.9	20
616	Carbon Emissions in the Xinjiang Production and Construction Corps and Driving Factors. Frontiers in Energy Research, 2021, 9, .	1.2	1
617	Effects of Long-Term Freeze–Thaw Cycles on the Properties of Stabilized/Solidified Lead-Zinc-Cadmium Composite-Contaminated Soil. International Journal of Environmental Research and Public Health, 2021, 18, 6114.	1.2	4
618	SO2 mitigation in China's coal-fired power plants: A satellite-based assessment on compliance and enforcement. Atmospheric Environment, 2021, 254, 118396.	1.9	10
619	Spatio-temporal evolution characteristics and influencing factors of carbon emission reduction potential in China. Environmental Science and Pollution Research, 2021, 28, 59925-59944.	2.7	15
620	Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nature Sustainability, 2021, 4, 811-820.	11.5	53
621	Renewable electricity generation proposed pathways for the US and China. Renewable Energy, 2021, 170, 212-223.	4.3	12
622	Estimating Smart Grid's Carbon Emission Reduction Potential in China's Manufacturing Industry Based on Decomposition Analysis. Frontiers in Energy Research, 2021, 9, .	1.2	5
623	Spatiotemporal patterns of industrial carbon emissions at the city level. Resources, Conservation and Recycling, 2021, 169, 105499.	5.3	67
624	Preparation of Pt supported on mesoporous Mg–Al oxide catalysts for efficient dehydrogenation of methylcyclohexane. International Journal of Hydrogen Energy, 2021, 46, 25513-25519.	3.8	9
625	Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China. Technological Forecasting and Social Change, 2021, 168, 120744.	6.2	282
626	Why do China and India burn 60% of the world's coal? A decomposition analysis from a global perspective. Energy, 2021, 227, 120389.	4.5	27
627	Prediction and evaluation of greenhouse gas emissions for sustainable road transport within Europe. Sustainable Cities and Society, 2021, 70, 102924.	5.1	59
628	Energy-related carbon emissions mitigation potential for the construction sector in China. Environmental Impact Assessment Review, 2021, 89, 106599.	4.4	39
629	Heterogeneous green innovations and carbon emission performance: Evidence at China's city level. Energy Economics, 2021, 99, 105269.	5.6	388
630	Threats to human health and ecosystem: Looking for air-pollution related damage since 1990. Renewable and Sustainable Energy Reviews, 2021, 145, 111146.	8.2	27
631	CO2 emissions from the electricity sector during China's economic transition: from the production to the consumption perspective. Sustainable Production and Consumption, 2021, 27, 1010-1020.	5.7	24

#	ARTICLE	IF	CITATIONS
632	Assessment on the interaction between technology innovation and eco-environmental systems in China. Environmental Science and Pollution Research, 2021, 28, 63127-63149.	2.7	15
633	High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach. Energy Economics, 2021, 99, 105271.	5.6	247
634	Assessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China. Journal of Environmental Management, 2021, 292, 112717.	3.8	16
635	Applying the Super-EBM model and spatial Durbin model to examining total-factor ecological efficiency from a multi-dimensional perspective: evidence from China. Environmental Science and Pollution Research, 2022, 29, 2183-2202.	2.7	33
636	PM2.5 concentration distribution patterns and influencing meteorological factors in the central and eastern China during 1980–2018. Journal of Cleaner Production, 2021, 311, 127565.	4.6	13
637	China's carbon emissions structure and reduction potential on the supply-side and demand-side of energy: Under the background of four influencing factors. PLoS ONE, 2021, 16, e0255387.	1.1	8
638	Research on the Ash Melting Characteristics of Blended Coal Based on DFT Calculations. ACS Omega, 2021, 6, 22039-22046.	1.6	4
639	Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021. Energies, 2021, 14, 4983.	1.6	4
640	Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets. Communications Materials, 2021, 2, .	2.9	19
641	Investigating the nexus between education expenditure, female employers, renewable energy consumption and CO2 emission: Evidence from China. Journal of Cleaner Production, 2021, 312, 127824.	4.6	85
642	What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces. Renewable Energy, 2021, 174, 31-42.	4.3	26
643	An Investigation of the Impact of COVID-19 Pandemic on Energy Consumption in the United States. ASME Journal of Engineering for Sustainable Buildings and Cities, 2021, 2, .	0.6	1
644	Recent Slowdown of Anthropogenic Methane Emissions in China Driven by Stabilized Coal Production. Environmental Science and Technology Letters, 2021, 8, 739-746.	3.9	25
645	Estimation, decomposition and reduction potential calculation of carbon emissions from urban construction land: evidence from 30 provinces in China during 2000–2018. Environment, Development and Sustainability, 2022, 24, 7958-7975.	2.7	24
646	China's CO2 emission intensity and its drivers: An evolutionary Geo-Tree approach. Resources, Conservation and Recycling, 2021, 171, 105630.	5.3	23
647	Projection of Air Pollution in Northern China in the Two RCPs Scenarios. Remote Sensing, 2021, 13, 3064.	1.8	4
648	Defect Engineering of Sb ₂ Te ₃ through Different Doses of Ion Irradiation to Boost Hydrogen Evolution Reaction Performance. ACS Applied Energy Materials, 2021, 4, 8465-8474.	2.5	7
649	A review on fundamental combustion characteristics of syngas mixtures and feasibility in combustion devices. Renewable and Sustainable Energy Reviews, 2021, 146, 111178.	8.2	26

#	ARTICLE	IF	CITATIONS
650	Sustainability and EU Road Transport Carbon Emissions from Consumption of Diesel and Gasoline in 2000 and 2018. Applied Sciences (Switzerland), 2021, 11, 7601.	1.3	6
651	Structural emission reduction in China's industrial systems and energy systems: an input-output analysis. Environmental Science and Pollution Research, 2022, 29, 6010-6025.	2.7	14
652	The regional disparity of per-capita CO2 emissions in China's building sector: An analysis of macroeconomic drivers and policy implications. Energy and Buildings, 2021, 244, 111011.	3.1	49
653	A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?. Energy Economics, 2021, 100, 105327.	5.6	115
654	Strategies and scenarios to reduce energy consumption and CO2 emission in the urban, rural and sustainable neighbourhoods. Sustainable Cities and Society, 2021, 72, 103053.	5.1	60
655	The Impact on Carbon Emissions of China with the Trade Situation versus the U.S Sustainability, 2021, 13, 10324.	1.6	3
656	Chinese environmentally extended input-output database for 2017 and 2018. Scientific Data, 2021, 8, 256.	2.4	14
657	Spatiotemporal decomposition analysis of carbon emissions on Chinese residential central heating. Energy and Buildings, 2021, 253, 111485.	3.1	23
658	Vehicle mix evaluation in Beijing's passenger-car sector: From air pollution control perspective. Science of the Total Environment, 2021, 785, 147264.	3.9	15
659	A sustainable syngas cryogenic separation process combined with ammonia absorption refrigeration pre-cooling cycle. Journal of Cleaner Production, 2021, 313, 127612.	4.6	3
660	Optimal design, thermodynamic and economic analysis of coal to ethylene glycol processes integrated with various methane reforming technologies for CO2 reduction. Energy Conversion and Management, 2021, 244, 114538.	4.4	25
661	Examining embodied carbon emission flow relationships among different industrial sectors in China. Sustainable Production and Consumption, 2022, 29, 100-114.	5.7	33
662	Water-energy-carbon nexus in China's intra and inter-regional trade. Science of the Total Environment, 2022, 806, 150666.	3.9	34
663	Resources and environmental costs of China's rapid economic growth: From the latest theoretic SEEA framework to modeling practice. Journal of Cleaner Production, 2021, 315, 128126.	4.6	22
664	Decarbonizing China's iron and steel industry from the supply and demand sides for carbon neutrality. Applied Energy, 2021, 298, 117209.	5.1	137
665	The Effect of Human Capital on CO2 Emissions: Macro Evidence from China. Energy Journal, 2021, 42, .	0.9	9
666	The Spatial Distribution Characteristics of Carbon Emissions at County Level in the Harbin–Changchun Urban Agglomeration. Atmosphere, 2021, 12, 1268.	1.0	6
667	The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach. Energy Economics, 2021, 101, 105408.	5.6	63

#	Article	IF	CITATIONS
668	Global status of dioxin emission and China's role in reducing the emission. Journal of Hazardous Materials, 2021, 418, 126265.	6.5	24
669	Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem, 2021, 14, 4636-4657.	3.6	28
670	Spatially explicit carbon emissions at the county scale. Resources, Conservation and Recycling, 2021, 173, 105706.	5.3	41
671	Decoupling without outsourcing? How China's consumption-based CO2 emissions have plateaued. IScience, 2021, 24, 103130.	1.9	34
672	Critical provincial transmission sectors for carbon dioxide emissions in China. Renewable and Sustainable Energy Reviews, 2021, 149, 111415.	8.2	19
673	Water consumption and conservation assessment of the coal power industry in China. Sustainable Energy Technologies and Assessments, 2021, 47, 101464.	1.7	5
674	Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sensing of Environment, 2021, 264, 112625.	4.6	24
675	Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations. Land Use Policy, 2021, 109, 105587.	2.5	123
676	Using system dynamics to analyse key factors influencing China's energy-related CO2 emissions and emission reduction scenarios. Journal of Cleaner Production, 2021, 320, 128811.	4.6	52
677	CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement. Resources, Conservation and Recycling, 2021, 174, 105760.	5.3	40
678	Drivers of the water use efficiency changes in China during 1982–2015. Science of the Total Environment, 2021, 799, 149145.	3.9	36
679	Technological development pathway for a low-carbon primary aluminum industry in China. Technological Forecasting and Social Change, 2021, 173, 121052.	6.2	28
680	Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities. Research in International Business and Finance, 2021, 58, 101450.	3.1	50
681	Development of an SMR-induced environmental input-output analysis model $\hat{a} \in \mathcal{A}$ Application to Saskatchewan, Canada. Science of the Total Environment, 2022, 806, 150297.	3.9	3
682	Analyzing the spatio-temporal variation of the CO2 emissions from district heating systems with "Coal-to-Gas―transition: Evidence from GTWR model and satellite data in China. Science of the Total Environment, 2022, 803, 150083.	3.9	24
683	Constructing Nitrogen Self-Doped Covalent Triazine-Based Frameworks for Visible-Light-Driven Photocatalytic Conversion of CO ₂ into CH ₄ . ACS Sustainable Chemistry and Engineering, 2021, 9, 1333-1340.	3.2	43
684	Research on Low-Carbon Development Pathways of China's Industrial Parks Under the Guidance of Big Data. E3S Web of Conferences, 2021, 251, 01051.	0.2	0
685	Mechanism investigation on the reaction of methylmethoxy radical with nitrogen monoxide. Structural Chemistry, 2021, 32, 1563-1570.	1.0	0

#	Article	IF	CITATIONS
686	Green Infrastructure. , 2021, , 149-156.		0
687	Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2. Sensors, 2021, 21, 256.	2.1	38
688	Paris INDCs. Springer Climate, 2017, , 115-146.	0.3	6
689	Economic Growth Quality, Environmental Sustainability, and Social Welfare in China - Provincial Assessment Based on Genuine Progress Indicator (GPI). Ecological Economics, 2019, 159, 157-176.	2.9	90
690	Unveiling Carbon Emission Attributions along Sale Chains. Environmental Science & Technology, 2021, 55, 220-229.	4.6	18
691	China CO2 emission accounts 2016–2017. Scientific Data, 2020, 7, 54.	2.4	527
692	An emissions-socioeconomic inventory of Chinese cities. Scientific Data, 2019, 6, 190027.	2.4	107
693	Anthropogenic CO ₂ emissions assessment of Nile Delta using XCO ₂ and SIF data from OCO-2 satellite. Environmental Research Letters, 2020, 15, 095010.	2.2	26
694	Is working less really good for the environment? A systematic review of the empirical evidence for resource use, greenhouse gas emissions and the ecological footprint. Environmental Research Letters, 2021, 16, 013002.	2.2	31
695	Analyzing and Predicting CO2 Emissions in China Based on the LMDI and GA-SVM Model. Polish Journal of Environmental Studies, 2018, 27, 927-938.	0.6	5
696	On the impact of granularity of space-based urban CO2 emissions in urban atmospheric inversions: A case study for Indianapolis, IN. Elementa, 2017, 5, 28.	1.1	34
697	Validating China's Output Data Using Satellite Observations. SSRN Electronic Journal, 0, , .	0.4	1
699	Evaluating China's fossil-fuel CO ₂ emissions from a comprehensive dataset of nine inventories. Atmospheric Chemistry and Physics, 2020, 20, 11371-11385.	1.9	36
700	Clobal CO ₂ emissions from cement production. Earth System Science Data, 2018, 10, 195-217.	3.7	762
701	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	3.7	1,167
702	Global CO ₂ emissions from cement production, 1928–2017. Earth System Science Data, 2018, 10, 2213-2239.	3.7	138
703	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	3.7	801
704	Global CO ₂ emissions from cement production, 1928–2018. Earth System Science Data, 2019, 11, 1675-1710.	3.7	327

	CITATION R	EPORT	
#	Article	IF	CITATIONS
705	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	3.7	1,159
706	EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth System Science Data, 2019, 11, 959-1002.	3.7	345
707	A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth System Science Data, 2020, 12, 1437-1465.	3.7	52
708	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
709	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	3.7	1,477
710	A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth System Science Data, 2020, 12, 3413-3442.	3.7	209
712	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	3.7	616
713	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	3.7	905
714	KOH-activated graphite nanofibers as CO2adsorbents. Carbon Letters, 2016, 19, 99-103.	3.3	13
715	Enhanced Looping Biomass/Vapour Gasification Utilizing Waste Heat from Molten Copper Slags. SSRN Electronic Journal, 0, , .	0.4	0
716	Greenhouse Gas Emissions Analysis Working toward Zero-Waste and Its Indication to Low Carbon City Development. Energies, 2021, 14, 6644.	1.6	3
717	Sub-national climate change risk assessment: A case analysis for Tibet and its prefecture-level cities. Science of the Total Environment, 2022, 807, 151045.	3.9	6
718	Assessment to China's Recent Emission Pattern Shifts. Earth's Future, 2021, 9, e2021EF002241.	2.4	266
719	Impact of uncertainty on regional carbon peak paths: an analysis based on carbon emissions accounting, modeling, and driving factors. Environmental Science and Pollution Research, 2022, 29, 17544-17560.	2.7	14
720	Urban residential heating policy in China: A review. Energy and Buildings, 2021, 253, 111547.	3.1	7
721	Global carbon emissions nearly stalled in 2014. Nature, 0, , .	13.7	0
722	Carbon Emissions Embodied in Trade. Springer Theses, 2016, , 85-97.	0.0	0
724	Research on the Carbon Emissions of Beijing Residents Based on the Input-Output Model. Polish Journal of Environmental Studies, 2017, 26, 2397-2406.	0.6	1

#	Article	IF	CITATIONS
725	Influence of Harbor Cement Production on the Concentration of Solid Suspension in the Surrounding Atmosphere. Journal of Coastal Research, 2019, 83, 309.	0.1	0
726	Climate Change Mitigation and Pastoral Livelihood in theÂHindu Kush Himalaya Region: Research Focuses, Opportunities and Challenges. , 2020, , 25-43.		0
727	Potential Reduction of CO2 Emissions Under Rebalancing Process in China. Environmental Science and Engineering, 2020, , 249-273.	0.1	0
728	Dynamic evolution analysis of the factors driving the growth of energy-related CO2 emissions in China: An input-output analysis. PLoS ONE, 2020, 15, e0243557.	1.1	13
729	Coupling Utilization of Energy and Mass of Hot Metallurgical Slag: a review. , 2020, , .		0
730	China's pathways to peak carbon emissions: New insights from various industrial sectors. Applied Energy, 2022, 306, 118039.	5.1	112
731	Increasing disparities in the embedded carbon emissions of provincial urban households in China. Journal of Environmental Management, 2022, 302, 113974.	3.8	20
732	Tracking the carbon footprint of China's coal-fired power system. Resources, Conservation and Recycling, 2022, 177, 105964.	5.3	35
733	Relieving the water-energy nexus pressure through whole supply chain management: Evidence from the provincial-level analysis in China. Science of the Total Environment, 2022, 807, 150809.	3.9	6
734	CO2 Emissions from Residential Consumption in China. , 2020, , 1-26.		0
735	Retrieval of greenhouse gas concentrations using ground- based FTS spectra at Wuhan, China. , 2021, ,		0
736	Estimating Greenhouse Gas Emissions in the Pacific Island Countries. Advances in Global Change Research, 2020, , 3-27.	1.6	0
737	Field Test and Economic Analysis of Energy-Saving Renovation for an Old Nursery Pig Building in Beijing, China. Applied Engineering in Agriculture, 2020, 36, 619-628.	0.3	0
738	Review of Resource Utilization Technology of Steel Slag and Carbon Capture Utilization. E3S Web of Conferences, 2020, 218, 01033.	0.2	0
739	Fundamentals and applications of enzymatic bioelectrocatalysis. , 2023, , 456-491.		1
742	Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Science Advances, 2021, 7, eabf9415.	4.7	33
743	Ni-cermet with straight pore paths as cathode for solid oxide electrolysis cell enabling energy-efficient and coking-resistant conversion of CO2. Journal of Power Sources, 2022, 518, 230787.	4.0	8
744	The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source-sink matching analysis for existing coal-fired power plants. Resources, Conservation and Recycling, 2022, 178, 106070.	5.3	33

#	Article	IF	CITATIONS
745	Print media representations of carbon capture utilization and storage (CCUS) technology in China. Renewable and Sustainable Energy Reviews, 2022, 155, 111938.	8.2	33
746	Spatial–Temporal Heterogeneity and Driving Factors of Rural Residents' Food Consumption Carbon Emissions in China—Based on an ESDA-GWR Model. Sustainability, 2021, 13, 12419.	1.6	5
747	Carbon emissions from smallholder pig production in China: a precise account based on farmers' survey. Environmental Science and Pollution Research, 2022, 29, 25651-25664.	2.7	7
748	Influence of CaO Content on the Fly Ash–Lime System Hydrothermal Synthesis Reaction Under Autoclave Curing. Frontiers in Physics, 2021, 9, .	1.0	1
749	Evaluating pollution damage function through carbon pricing, renewable energy demand, and cleaner technologies in China: blue versus green economy. Environmental Science and Pollution Research, 2022, 29, 24878-24893.	2.7	22
750	Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science & Technology, 2021, 55, 16573-16580.	4.6	39
751	Study on End-of-Life Tires (ELTs) Recycling Strategy and Applications. IOP Conference Series: Materials Science and Engineering, 2021, 1200, 012009.	0.3	1
752	Can Compulsory Ecological Compensation for Land Damaged by Mining Activities Mitigate CO2 Emissions in China?. Frontiers in Environmental Science, 2021, 9, .	1.5	1
753	Global anthropogenic CO ₂ emissions and uncertainties as a prior for Earth system modelling and data assimilation. Earth System Science Data, 2021, 13, 5311-5335.	3.7	7
754	A Hybrid Framework for Direct CO2 Emissions Quantification in China's Construction Sector. International Journal of Environmental Research and Public Health, 2021, 18, 11965.	1.2	5
755	Coupled nitrogen transformation and carbon sink in the karst aquatic system: a review. Blue-Green Systems, 2021, 3, 201-212.	0.6	1
756	From Global to National Scenarios: Exploring Carbon Emissions to 2050. SSRN Electronic Journal, 0, , .	0.4	0
757	Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China's Exports. Environmental and Resource Economics, 2022, 81, 453-479.	1.5	2
758	Clean heating in Northern China: Regional investigations and roadmap studies for urban area towards 2050. Journal of Cleaner Production, 2022, 334, 130233.	4.6	21
759	Towards carbon neutrality: The role of different paths of technological progress in mitigating China's CO2 emissions. Science of the Total Environment, 2022, 813, 152588.	3.9	38
760	Assessing the effects of fuel energy consumption, foreign direct investment and GDP on CO2 emission: New data science evidence from Europe & Central Asia. Fuel, 2022, 314, 123098.	3.4	87
761	Non-Linear Nexus between COâ,, Emission, Economic Growth in Nigeria. European Journal of Business Management and Research, 2020, 5, .	0.2	0
762	The CO2 Emission Efficiency of China's Hotel Industry under the Double Carbon Objectives and Homestay Growth. Energies, 2021, 14, 8228.	1.6	6

#	Article	IF	CITATIONS
763	Is high speed rail heading towards a low carbon economy? Evidence from a quasi natural experiment in China. SSRN Electronic Journal, 0, , .	0.4	0
764	Polycyclic Aromatic Hydrocarbons in China: Will Decoupling of Their Emissions and Socioeconomic Growth Emerge?. Earth's Future, 2022, 10, .	2.4	10
765	Indirect cost of renewable energy: Insights from dispatching. Energy Economics, 2022, 105, 105778.	5.6	17
766	Spatio-temporal evolution of ecological environment quality in China from a concept of strong sustainability. Environmental Science and Pollution Research, 2022, 29, 28769-28787.	2.7	16
767	Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst. Journal of Fuel Chemistry and Technology, 2022, 50, 54-62.	0.9	6
768	Structural paths of changes in CO ₂ emissions in the Chinese construction industry. Journal of Environmental Planning and Management, 2023, 66, 1108-1126.	2.4	3
769	Impacts of regional development on emissions in China's transport sector. Environmental Science and Pollution Research, 2022, 29, 37411-37422.	2.7	1
770	Group 6 transition metal-based molecular complexes for sustainable catalytic CO ₂ activation. Catalysis Science and Technology, 2022, 12, 390-408.	2.1	8
771	Analysis of economy, energy efficiency, environment: A case study of the CHP system with both civil and industrial heat users. Case Studies in Thermal Engineering, 2022, 30, 101768.	2.8	18
772	The development of highway infrastructure and CO2 emissions: The mediating role of agglomeration. Journal of Cleaner Production, 2022, 337, 130501.	4.6	22
773	A feasibility study of using coffee cup waste as a building material - Life cycle assessment and multi-objective optimisation. Journal of Cleaner Production, 2022, 339, 130498.	4.6	9
774	Assessing spatially multistage carbon transfer in the life cycle of energy with a novel multi-flow and multi-node model: A case of China's coal-to-electricity chain. Journal of Cleaner Production, 2022, 339, 130699.	4.6	12
775	Fixed asset changes with carbon regulation: The cases of China. Journal of Environmental Management, 2022, 306, 114494.	3.8	34
776	Spatial-temporal evolution and driving forces of provincial carbon footprints in China: An integrated EE-MRIO and WA-SDA approach. Ecological Engineering, 2022, 176, 106543.	1.6	33
777	China's flexibility challenge in achieving carbon neutrality by 2060. Renewable and Sustainable Energy Reviews, 2022, 158, 112112.	8.2	87
778	China's changing city-level greenhouse gas emissions from municipal solid waste treatment and driving factors. Resources, Conservation and Recycling, 2022, 180, 106168.	5.3	16
779	Analyzing variability and decomposing electricity-generation emission factors for three U.S. states. Sustainable Energy Technologies and Assessments, 2022, 51, 101986.	1.7	0
780	Advancement in electrode materials and membrane separators for scaling up of MES. , 2022, , 161-172.		1

#	Article	IF	CITATIONS
781	Theoretical and empirical analyses on the factors affecting carbon emissions: case of Zhejiang Province, China. Environment, Development and Sustainability, 2023, 25, 2522-2549.	2.7	9
782	Carbon emissions from land use in Jiangsu, China, and analysis of the regional interactions. Environmental Science and Pollution Research, 2022, 29, 44523-44539.	2.7	17
783	User behavior, influence factors, and impacts on real-world pollutant emissions from the household heating stoves in rural China. Science of the Total Environment, 2022, 823, 153718.	3.9	6
784	An approach to assess spatio-temporal heterogeneity of rural ecosystem health: A case study in Chongqing mountainous area, China. Ecological Indicators, 2022, 136, 108644.	2.6	9
785	Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit. Energy Policy, 2022, 163, 112809.	4.2	4
786	Applicability of Lattice Boltzmann Method to Optimize Vacuum Insulation Panel with Fibrous Porous Core. SSRN Electronic Journal, 0, , .	0.4	0
787	A lamellar structure zeolite LTA for CO ₂ capture. New Journal of Chemistry, 2022, 46, 6720-6728.	1.4	11
788	Potential Contribution to Carbon Neutrality Strategy from Industrial Symbiosis: Evidence from a Local Coal-Aluminum-Electricity-Steel Industrial System. Sustainability, 2022, 14, 2487.	1.6	0
789	How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis. Energy Economics, 2022, 110, 105996.	5.6	33
790	Extreme Level of CO2 Accumulation into the Atmosphere Due to the Unequal Global Carbon Emission and Sequestration. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	10
791	Regional allowance allocation in China based on equity and efficiency towards achieving the carbon neutrality target: A composite indicator approach. Journal of Cleaner Production, 2022, 342, 130914.	4.6	19
793	Near-Real-Time Carbon Emission Accounting Technology Toward Carbon Neutrality. Engineering, 2022, 14, 44-51.	3.2	38
794	Analysis on carbon emissions efficiency differences and optimization evolution of China's industrial system: An input-output analysis. PLoS ONE, 2022, 17, e0258147.	1.1	13
795	Renewable energy for a green future: Electricity produced from efficient luminescent solar concentrators. Solar Energy Advances, 2022, 2, 100013.	1.2	9
796	Recent advances in carbon footprint studies of urban ecosystems: overview, application, and future challenges. Environmental Reviews, 2022, 30, 342-356.	2.1	6
797	Evaluating regional carbon emissions trading in China: effects, pathways, co-benefits, spillovers, and prospects. Climate Policy, 2022, 22, 918-934.	2.6	17
798	Ordered Mesoporous Carbon Encapsulating KF: Efficient and Stable Solid Base for Biodiesel and Fine Chemical Catalytic Synthesis. ACS Sustainable Chemistry and Engineering, 2022, 10, 3477-3487.	3.2	6
799	Quantifying trade-related carbon emission in China's provinces: Insight from sectoral production technology heterogeneity. Journal of Cleaner Production, 2022, 344, 131141.	4.6	8

#	Article	IF	CITATIONS
800	Research on the impact of green finance on carbon emissions: evidence from China. Economic Research-Ekonomska Istrazivanja, 2022, 35, 6965-6984.	2.6	48
801	Temporal characteristics and influencing factors of agricultural carbon emission in Jiangxi province of China. Environmental Research Communications, 2022, 4, 045006.	0.9	4
802	Will China achieve its 2060 carbon neutral commitment from the provincial perspective?. Advances in Climate Change Research, 2022, 13, 169-178.	2.1	129
803	A novel dodecanol/tepexil PCM composite for thermal energy storage in buildings. Materials Chemistry and Physics, 2022, 284, 126067.	2.0	6
804	Tracking carbon intensity changes between China and Japan: Based on the decomposition technique. Journal of Cleaner Production, 2022, 349, 131090.	4.6	12
805	Energy consumption in China's ICT sectors: From the embodied energy perspective. Renewable and Sustainable Energy Reviews, 2022, 160, 112313.	8.2	16
806	Economic effects of command-and-control abatement policies under China's 2030 carbon emission goal. Journal of Environmental Management, 2022, 312, 114925.	3.8	23
807	A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing. Applied Energy, 2022, 315, 118974.	5.1	14
808	Deciphering the CO2 emissions and emission intensity of cement sector in China through decomposition analysis. Journal of Cleaner Production, 2022, 352, 131627.	4.6	39
809	Imidazole functionalized graphene and carbon nanotubes for CO2 detection. Journal of Molecular Structure, 2022, 1259, 132719.	1.8	0
810	Analysis on the evolution law and influencing factors of Beijing's power generation carbon emissions. Energy Reports, 2022, 8, 1689-1697.	2.5	17
811	Impact of carbon markets on industrial competitiveness: An analysis of selected industries in Beijing. Energy Reports, 2021, 7, 1601-1611.	2.5	1
812	Carbon Footprint Assessment in Nature-Based Conservation Management Estates Using South African National Parks as a Case Study. Sustainability, 2021, 13, 13969.	1.6	6
813	Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China. International Journal of Environmental Research and Public Health, 2022, 19, 198.	1.2	12
814	Carbon emissions, consumption structure upgrading, and high-quality economic development: empirical evidence from China. Journal of the Asia Pacific Economy, 2024, 29, 237-259.	1.0	10
815	Multiâ€scenario simulation on reducing CO ₂ emissions from China's major manufacturing industries targeting 2060. Journal of Industrial Ecology, 2022, 26, 850-861.	2.8	8
816	Electricity-Water Consumption and Metropolitan Economic Growth: An Empirical Dual Sectors Dynamic Equilibrium Model. Frontiers in Energy Research, 2021, 9, .	1.2	2
817	CH-Ï€ interaction boosts photocatalytic CO2 reduction activity of a molecular cobalt catalyst anchored on carbon nitride. Cell Reports Physical Science, 2021, 2, 100681.	2.8	8

#	Article	IF	Citations
818	Market-based solution in China to Finance the clean from the dirty. Fundamental Research, 2022, , .	1.6	2
819	China's provincial process CO2 emissions from cement production during 1993–2019. Scientific Data, 2022, 9, 165.	2.4	23
820	An improved extended exergy accounting method for assessing the sustainability of the Chinese society. Journal of Cleaner Production, 2022, 354, 131739.	4.6	8
821	Comparing Decoupling and Driving Forces of CO2 Emissions in China and India. Frontiers in Environmental Science, 2022, 10, .	1.5	5
822	Price and scale effects of China's carbon emission trading system pilots on emission reduction. Journal of Environmental Management, 2022, 314, 115054.	3.8	42
824	Processing Bulk Wood into a Light-Permeable Passive Radiative Cooling Material for Energy-Efficient Building. SSRN Electronic Journal, 0, , .	0.4	0
826	Synergy evaluation of China's economy–energy low-carbon transition and its improvement strategy for structure optimization. Environmental Science and Pollution Research, 2022, 29, 65061-65076.	2.7	6
827	Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China. Land, 2022, 11, 632.	1.2	3
828	Quo Vadis Dry Reforming of Methane?—A Review on Its Chemical, Environmental, and Industrial Prospects. Catalysts, 2022, 12, 465.	1.6	9
829	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	3.7	663
830	Impacts of Energy Structure on Carbon Emissions in China, 1997–2019. International Journal of Environmental Research and Public Health, 2022, 19, 5850.	1.2	6
831	Nature-based solutions for urban expansion: Integrating ecosystem services into the delineation of growth boundaries. Habitat International, 2022, 124, 102575.	2.3	16
832	Sustainable transition towards biomass-based cement industry: A review. Renewable and Sustainable Energy Reviews, 2022, 163, 112503.	8.2	38
833	Power ultrasound assisted coalbed methane enhancement recovery: Field application and performance evaluation in underground coal mine. Fuel, 2022, 324, 124575.	3.4	25
837	From global to national scenarios: Exploring carbon emissions to 2050. Energy Strategy Reviews, 2022, 41, 100860.	3.3	14
838	Balancing greenhouse gas sources and sinks: Inventories, budgets, and climate policy. , 2022, , 3-28.		0
839	A Method for Estimating the Background Column Concentration of CO ₂ Using the Lagrangian Approach. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	17
840	Trends, Drivers, and Mitigation of CO2 Emissions in the Guangdong–Hong Kong–Macao Greater Bay Area. Engineering, 2023, 23, 138-148.	3.2	8

ARTICLE IF CITATIONS China's efforts towards carbon neutrality: Does energy-saving and emission-reduction policy mitigate 841 3.8 59 carbon emissions?. Journal of Environmental Management, 2022, 316, 115286. Carbon Emission Prediction Model and Analysis in the Yellow River Basin Based on a Machine Learning 842 1.6 Method. Sustainability, 2022, 14, 6153. The nexus of disaggregated energy sources and cement production carbon emission in China. Energy 843 2.7 5 and Environment, 2023, 34, 1937-1956. Information and communication technology and carbon emissions in China: The rebound effect of 844 energy intensive industry. Sustainable Production and Consumption, 2022, 32, 731-742. A study of CO2 emissions in China's domestic construction industry based on non-competitive 845 5.7 16 input-output. Sustainable Production and Consumption, 2022, 32, 743-754. Carbon footprint and embodied carbon transfer at city level: A nested MRIO analysis of Central Plain urban agglomeration in China. Sustainable Cities and Society, 2022, 83, 103977. 846 5.1 Achievement of Carbon Peak Goals in China's Road Transportâ€"Possibilities and Pathways. SSRN 848 0.4 0 Electronic Journal, 0, , . Carbon dioxide emissions reduction efficiency and growth potential: case of China. PSU Research 849 1.3 Review, 2022, ahead-of-print, . Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China's Coal Power 850 1.6 13 Industry. Energies, 2022, 15, 4466. Performance comparison of urea production using one set of integrated indicators considering 4.5 energy use, economic cost and emissions' impacts: A case from China. Energy, 2022, 254, 124489. Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions 852 21 3.4 reduction?. Transport Policy, 2022, 125, 151-163. Rethinking on regional CO2 allocation in China: A consideration of the carbon sink. Environmental 4.4 Impact Assessment Review, 2022, 96, 106822. Driving Forces of Residential Co2 Emission Inequality from the Perspective of Energy Use Pattern and 855 0.4 0 Income Disparities. SSRN Electronic Journal, 0, , . Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 2022, 15, 615-620. 5.4 46 Scenario prediction and critical factors of CO2 emissions in the Pearl River Delta: A regional 857 10 2.4 imbalanced development perspective. Urban Climate, 2022, 44, 101226. How Does Green Innovation Strategy Influence Corporate Financing? Corporate Social Responsibility and Gender Diversity Play a Moderating Role. International Journal of Environmental Research and 1.2 30 Public Health, 2022, 19, 8724. A Calculation Model of Carbon Emissions Based on Multi-Scenario Simulation Analysis of Electricity 859 1.6 2 Consumption. Sustainability, 2022, 14, 8765. Carbon tax policy-induced air travel carbon emission reduction and biofuel usage in China. Journal of 2.4 Air Transport Management, 2022, 103, 102241.

#	Article	IF	CITATIONS
861	An integrated analysis of China's iron and steel industry towards carbon neutrality. Applied Energy, 2022, 322, 119453.	5.1	45
862	Estimation of city energy consumption in China based on downscaling energy balance tables. Energy, 2022, 256, 124658.	4.5	11
863	China's carbon inequality of households: Perspectives of the aging society and urban-rural gaps. Resources, Conservation and Recycling, 2022, 185, 106449.	5.3	34
864	Performance of Different Concrete Types Exposed to Elevated Temperatures: A Review. Materials, 2022, 15, 5032.	1.3	12
865	How Does Internet Development Affect Green Technology Innovation in China?. Journal of Global Information Management, 2022, 30, 1-21.	1.4	8
866	Research on carbon emission measurement and low-carbon path of regional industry. Environmental Science and Pollution Research, 2022, 29, 90301-90317.	2.7	7
867	Exploring the drivers of energy-related CO2 emissions in western China: a case study of Haixi. Environment, Development and Sustainability, 0, , .	2.7	0
868	Decomposition and Decoupling Analysis of Carbon Emissions in Xinjiang Energy Base, China. Energies, 2022, 15, 5526.	1.6	6
869	Decomposition and decoupling analysis of electricity consumption carbon emissions in China. Frontiers of Engineering Management, 2022, 9, 486-498.	3.3	2
870	City-level emission peak and drivers in China. Science Bulletin, 2022, 67, 1910-1920.	4.3	121
870 871	City-level emission peak and drivers in China. Science Bulletin, 2022, 67, 1910-1920. Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & amp; Technology, 2022, 56, 13900-13908.	4.3 4.6	121 4
	Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental		
871	Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & amp; Technology, 2022, 56, 13900-13908. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2	4.6	4
871 872	Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & amp; Technology, 2022, 56, 13900-13908. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2 in China's cement sector. One Earth, 2022, 5, 892-906. Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality	4.6 3.6	4 28
871 872 873	 Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & amp; Technology, 2022, 56, 13900-13908. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2 in Chinaâ∈™s cement sector. One Earth, 2022, 5, 892-906. Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China. Sustainability, 2022, 14, 9686. Challenges to achieve carbon neutrality of China by 2060: status and perspectives. Science Bulletin, 	4.6 3.6 1.6	4 28 4
871 872 873 874	Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & amp; Technology, 2022, 56, 13900-13908. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2 in Chinaâ∈™s cement sector. One Earth, 2022, 5, 892-906. Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China. Sustainability, 2022, 14, 9686. Challenges to achieve carbon neutrality of China by 2060: status and perspectives. Science Bulletin, 2022, 67, 2030-2035. Chinaâ∈™s pathway to carbon neutrality for the iron and steel industry. Global Environmental Change,	4.6 3.6 1.6 4.3	4 28 4 20
871 872 873 874 875	Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & amp; Technology, 2022, 56, 13900-13908. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2 in China's cement sector. One Earth, 2022, 5, 892-906. Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China. Sustainability, 2022, 14, 9686. Challenges to achieve carbon neutrality of China by 2060: status and perspectives. Science Bulletin, 2022, 67, 2030-2035. China's pathway to carbon neutrality for the iron and steel industry. Global Environmental Change, 2022, 76, 102574. How does digital finance influence green technology innovation in China? Evidence from the	4.6 3.6 1.6 4.3 3.6	4 28 4 20 34

#	Article	IF	CITATIONS
879	Does drought increase carbon emissions? Evidence from Southwestern China. Ecological Economics, 2022, 201, 107564.	2.9	2
880	Water-carbon nexus relationship and interaction mechanism analysis within Beijing-Tianjin-Hebei urban agglomeration. Journal of Environmental Management, 2022, 321, 115823.	3.8	9
881	Utilization and life cycle assessment of low activity solid waste as cementitious materials: A case study of titanium slag and granulated blast furnace slag. Science of the Total Environment, 2022, 849, 157797.	3.9	20
882	Can corn stove bioethanol production substantially contribute to China's carbon neutrality ambition?. Resources, Conservation & Recycling Advances, 2022, 15, 200111.	1.1	4
883	Carbon mitigation and energy conservation effects of emissions trading policy in China considering regional disparities. Energy and Climate Change, 2022, 3, 100079.	2.2	4
884	A new detection method to assess the influence of human activities and climate change of CO2 emissions in coal field. Ecological Indicators, 2022, 143, 109417.	2.6	4
885	Environmental performance of reusing a contaminated soil solidified/stabilized by a low-carbon binder as roadway subgrade material. Journal of Cleaner Production, 2022, 375, 134125.	4.6	5
886	From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 2022, 322, 116087.	3.8	70
887	Do electricity flows hamper regional economic–environmental equity?. Applied Energy, 2022, 326, 120001.	5.1	4
888	Evaluating the dynamic effects of mitigation instruments on CO2 emissions in China's nonferrous metal industry: A vector autoregression analysis. Science of the Total Environment, 2022, 853, 158409.	3.9	4
889	In-Situ Study of Volatile Potassium Produced on Carbon Matrix and its Contribution to Other Char Particle Gasification. SSRN Electronic Journal, 0, , .	0.4	0
890	Electro-oxidative depolymerization of lignin for production of value-added chemicals. Green Chemistry, 2022, 24, 8585-8605.	4.6	17
891	Sustainability Design and Evaluation of High-Performance Concrete Joint Reticulated Shell Structure Based on LCA. , 2022, , 588-601.		0
892	Carbon Regulation and Economic Growth: The Role of Low-Carbon Technology. SSRN Electronic Journal, 0, , .	0.4	0
893	Achievement of Carbon Peak Goals in China's Road Transport—Possibilities and Pathways. SSRN Electronic Journal, 0, , .	0.4	0
894	Co-benefits of CO2 emission reduction from China's clean air actions between 2013-2020. Nature Communications, 2022, 13, .	5.8	73
895	Heterogeneous Variations on Historical and Future Trends of CO ₂ and Multiple Air Pollutants from the Cement Production Process in China: Emission Inventory, Spatial–Temporal Characteristics, and Scenario Projections. Environmental Science & Technology, 2022, 56, 14306-14314.	4.6	9
896	Development of a Multiâ€Region Power System Risk Management Model for Supporting China's Carbon Neutrality Ambition in 2060s. Earth's Future, 2022, 10, .	2.4	2

#	Article	IF	CITATIONS
898	CO2 Emissions Inventory and Its Uncertainty Analysis of China's Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area. International Journal of Environmental Research and Public Health, 2022, 19, 11684.	1.2	4
899	Applications of Transition Metal (Fe, Co, Ni)-Based Metal–Organic Frameworks and their Derivatives in Batteries and Supercapacitors. Transactions of Tianjin University, 2022, 28, 446-468.	3.3	4
900	Cross-Inventory Uncertainty Analysis of Fossil Fuel CO2 Emissions for Prefecture-Level Cities in Shandong Province. Atmosphere, 2022, 13, 1474.	1.0	1
901	Can Fujian Achieve Carbon Peak and Pollutant Reduction Targets before 2030? Case Study of 3E System in Southeastern China Based on System Dynamics. Sustainability, 2022, 14, 11364.	1.6	3
902	Dynamic scenario analysis of CO2 emission in China's cement industry by 2100 under the context of cutting overcapacity. Mitigation and Adaptation Strategies for Global Change, 2022, 27, .	1.0	6
903	China's experience in developing green finance to reduce carbon emissions: from spatial econometric model evidence. Environmental Science and Pollution Research, 2023, 30, 15531-15547.	2.7	6
904	Empirical analysis of the role of the environmental accountability system in energy conservation and emission reduction in China. Scientific Reports, 2022, 12, .	1.6	5
905	Influence mechanisms and spatial spillover effects of industrial agglomeration on carbon productivity in China's Yellow River Basin. Environmental Science and Pollution Research, 2023, 30, 15861-15880.	2.7	8
906	Spatio-temporal variations and influencing factors of energy-related carbon emissions for Xinjiang cities in China based on time-series nighttime light data. Journal of Chinese Geography, 2022, 32, 1886-1910.	1.5	4
907	Global and Regional Drivers of Power Plant CO ₂ Emissions Over the Last Three Decades Revealed From Unitâ€Based Database. Earth's Future, 2022, 10, .	2.4	6
908	Quantification of CO2 emission from the preparation and utilization of solid waste-based sulphoaluminate cementitious materials. Journal of Cleaner Production, 2022, 376, 134054.	4.6	15
909	Effects of the Impact Factors on Transportation Sector's CO2-eq Emissions: Panel Evaluation on South Africa's Major Economies. Atmosphere, 2022, 13, 1705.	1.0	2
910	Multiyear emissions of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue as well as their key driving forces in China. Earth System Science Data, 2022, 14, 4757-4775.	3.7	2
911	Detection of Anthropogenic CO2 Emission Signatures with TanSat CO2 and with Copernicus Sentinel-5 Precursor (S5P) NO2 Measurements: First Results. Advances in Atmospheric Sciences, 2023, 40, 1-5.	1.9	5
912	Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective. Sustainability, 2022, 14, 12962.	1.6	5
913	Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries. International Journal of Environmental Research and Public Health, 2022, 19, 12855.	1.2	8
914	Analysis of Economic Efficiency and Influencing Factors of Urban Construction Land in Beijing–Tianjin–Hebei under Carbon Emission Constraints. Land, 2022, 11, 1926.	1.2	2
915	Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides. Separation and Purification Technology, 2023, 305, 122455.	3.9	20

#	Article	IF	CITATIONS
916	A robust fluorine-containing ceramic cathode for direct CO2 electrolysis in solid oxide electrolysis cells. Journal of Energy Chemistry, 2023, 77, 300-309.	7.1	21
917	Towards carbon neutrality: what has been done and what needs to be done for carbon emission reduction?. Environmental Science and Pollution Research, 2023, 30, 20570-20589.	2.7	19
918	<scp>Mahuikaâ€Auckland</scp> : A spatially and temporally resolved fossil fuel <scp> CO ₂ </scp> emissions data product for Auckland, New Zealand. Geoscience Data Journal, 0, , .	1.8	1
919	How does carbon emissions trading scheme affect steel enterprises' pollution control performance? A quasi natural experiment from China. Science of the Total Environment, 2023, 858, 159871.	3.9	15
920	The importance of the functional mixed entropy for the explanation of residential and transport CO2 emissions in the urban center of China. Journal of Cleaner Production, 2022, 380, 134947.	4.6	6
921	Bond properties between concrete and high ductility cementitious composite with totally recycled fine aggregate. Construction and Building Materials, 2022, 357, 129373.	3.2	4
922	What is the role of the board sustainable committee for corporate social responsibility? The moderating effect of gender diversity and ownership concentration. Journal of Cleaner Production, 2022, 379, 134710.	4.6	8
923	Environmental stewardship: Analyzing the dynamic impact of renewable energy, foreign remittances, and globalization index on China's CO2 emissions. Renewable Energy, 2022, 201, 418-425.	4.3	20
924	A multi-level characteristic analysis of urban agglomeration energy-related carbon emission: A case study of the Pearl River Delta. Energy, 2023, 263, 125651.	4.5	24
925	Modeling spatiotemporal carbon emissions for two mega-urban regions in China using urban form and panel data analysis. Science of the Total Environment, 2023, 857, 159612.	3.9	14
926	Volatile potassium transfer behavior in carbon matrix and its effect on char gasification. Fuel, 2023, 333, 126302.	3.4	2
927	Near-real-time daily estimates of fossil fuel CO2 emissions from major high-emission cities in China. Scientific Data, 2022, 9, .	2.4	5
928	Spatiotemporal dynamics of CO2 emissions using nighttime light data: a comparative analysis between the Yellow and Yangtze River Basins in China. Environment, Development and Sustainability, 2024, 26, 1081-1102.	2.7	1
929	Towards Low Carbon: A Lightweight Design of Automotive Brake Hub. Sustainability, 2022, 14, 15122.	1.6	2
930	Spatiotemporal Characteristics and Factors Driving Exploration of Industrial Carbon-Emission Intensity: A Case Study of Guangdong Province, China. Sustainability, 2022, 14, 15064.	1.6	1
931	Global Carbon Budget 2022. Earth System Science Data, 2022, 14, 4811-4900.	3.7	492
932	Identifying an over tenfold variation in carbon intensities of coal mines in China by multi-scale multi-benchmark accounting. Journal of Cleaner Production, 2023, 384, 135621.	4.6	5
933	A novel spatio-temporally stratified heterogeneity model for identifying factors influencing carbon emissions. Energy and Buildings, 2023, 280, 112714.	3.1	3

#	Article	IF	CITATIONS
934	Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building. Composites Part B: Engineering, 2023, 250, 110426.	5.9	7
935	Estimating the CO2 emissions of Chinese cities from 2011 to 2020 based on SPNN-GNNWR. Environmental Research, 2023, 218, 115060.	3.7	11
936	Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode. Journal of Power Sources, 2023, 556, 232467.	4.0	6
937	Changes in cropland soil carbon through improved management practices in China: A meta-analysis. Journal of Environmental Management, 2023, 329, 117065.	3.8	2
938	Carbon regulation and economic growth: City-level evidence from China. Environmental Impact Assessment Review, 2023, 99, 107020.	4.4	13
939	Performance comparison and multi-objective optimization of improved and traditional compressed air energy storage systems integrated with solar collectors. Journal of Energy Storage, 2023, 58, 106149.	3.9	7
940	Carbon emission trading policy and corporate green innovation: internal incentives or external influences. Environmental Science and Pollution Research, 2023, 30, 31501-31523.	2.7	10
941	Spatial and nonlinear effects of new-type urbanization and technological innovation on industrial carbon dioxide emission in the Yangtze River Delta. Environmental Science and Pollution Research, 2023, 30, 29243-29257.	2.7	11
942	Historical trend and drivers of China's CO2 emissions from 2000 to 2020. Environment, Development and Sustainability, 2024, 26, 2225-2244.	2.7	3
943	Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook. Atmosphere, 2022, 13, 2131.	1.0	3
945	Consideration of Top-down Greenhouse Gas Estimation Approaches to Prepare Carbon Neutral Policy. Journal of Korean Society for Atmospheric Environment, 2022, 38, 933-947.	0.2	0
946	CO2 emissions are first aggravated and then alleviated with economic growth in China: a new multidimensional EKC analysis. Environmental Science and Pollution Research, 2023, 30, 37516-37534.	2.7	2
947	Analysis Method and Case Study of the Lightweight Design of Automotive Parts and Its Influence on Carbon Emissions. Processes, 2022, 10, 2560.	1.3	4
948	What drives carbon emissions reduction in Beijing? An empirical study based on SDA and SPD. Energy and Environment, 0, , 0958305X2211341.	2.7	2
950	Horizontal CO2 Compensation in the Yangtze River Delta Based on CO2 Footprints and CO2 Emissions Efficiency. International Journal of Environmental Research and Public Health, 2023, 20, 1369.	1.2	2
951	Assessing the Impact of the Recent Unprecedented World Events on the Economic and Environmental Conditions of Saudi Arabia. Sustainability, 2023, 15, 1610.	1.6	1
952	Can the opening of China railway express reduce urban carbon emissions? a Difference-in-differences analysis in China. Frontiers in Environmental Science, 0, 10, .	1.5	0
953	Worsening Carbon Inequality Embodied in Trade within China. Environmental Science & Technology, 2023, 57, 863-873.	4.6	18

#	Article	IF	CITATIONS
954	An inversion model based on GEOS-Chem for estimating global and China's terrestrial carbon fluxes in 2019. Advances in Climate Change Research, 2023, 14, 49-61.	2.1	2
955	Socio-economic and energy-environmental impacts of technological change on China's agricultural development under the carbon neutrality strategy. Petroleum Science, 2023, 20, 1289-1299.	2.4	7
956	Empirical analysis of influencing factors of carbon emissions in transportation industry in Fujian Province, China. , 2023, 53, 5.		0
957	Evaluation of Land Carrying Capacity of 31 Provinces in China Based on a Natural–Societal-Supply–Demand Framework. Sustainability, 2023, 15, 1037.	1.6	4
958	A review of the effect of external pressure on all-solid-state batteries. ETransportation, 2023, 15, 100220.	6.8	18
959	Embodied Carbon Emissions in China's Building Sector: Historical Track from 2005 to 2020. Buildings, 2023, 13, 211.	1.4	5
960	Air pollutant emissions and reduction potentials from municipal solid waste incineration in China. Environmental Pollution, 2023, 319, 121021.	3.7	7
961	The greenhouse gas rebound effect from increased energy efficiency across China's staple crops. Energy Policy, 2023, 173, 113398.	4.2	2
962	An input-output-based Bayesian neural network method for analyzing carbon reduction potential: A case study of Guangdong province. Journal of Cleaner Production, 2023, 389, 135986.	4.6	10
963	Achievement of carbon peak goals in China's road transport—possibilities and pathways. Journal of Cleaner Production, 2023, 388, 135894.	4.6	6
964	Do tourism clusters contribute to low-carbon destinations? The spillover effect of tourism agglomerations on urban residential CO2 emissions. Journal of Environmental Management, 2023, 330, 117160.	3.8	13
965	Spatially explicit carbon emissions by remote sensing and social sensing. Environmental Research, 2023, 221, 115257.	3.7	11
966	How Russia's trade with China influences carbon dioxide emissions in Russian regions. BRICS Journal of Economics, 2022, 3, 271-298.	0.2	0
967	Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China. International Journal of Environmental Research and Public Health, 2023, 20, 265.	1.2	4
968	An Empirical Study of Carbon Emission Calculation in the Production and Construction Phase of A Prefabricated Office Building from Zhejiang, China. Buildings, 2023, 13, 53.	1.4	7
969	Spatiotemporal Changes in Supply–Demand Patterns of Carbon Sequestration Services in an Urban Agglomeration under China's Rapid Urbanization. Remote Sensing, 2023, 15, 811.	1.8	5
970	Transition Metalâ€based Perovskite Oxides: Emerging Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2023, 15, .	1.8	16
971	Improvement and prediction on high temperature melting characteristics of coal ash. High Temperature Materials and Processes, 2023, 42, .	0.6	Ο

		CITATION REPORT		
#	Article		IF	CITATIONS
972	China's process-related greenhouse gas emission dataset 1990–2020. Scientific Data, 2023, I	.0,.	2.4	6
973	Advances in Carbon Dioxide Storage Projects: Assessment and Perspectives. Energy & Fuels, 20 37, 1757-1776.	23,	2.5	14
974	Combustion behaviors of pulverized coal MILD-oxy combustion under different steam injection parameters. Fuel, 2023, 340, 127534.		3.4	4
975	Direct and spillover effects of new-type urbanization on CO2 emissions from central heating sector and EKC analyses: Evidence from 144 cities in China. Resources, Conservation and Recycling, 2023, 106913.	192,	5.3	26
976	The potential of biomass-derived bio-liquid to prevent the spread of SARS-CoV-2 from waste and its production-based life cycle assessment. Science of the Total Environment, 2023, 869, 161833.		3.9	0
977	Overestimated carbon emission of the pulp and paper industry in China. Energy, 2023, 273, 127279		4.5	4
978	Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions. Applied Energy, 2023, 339, 120934.		5.1	11
979	Ultrafine sulfur–doped carbon nanoparticles enhanced the transmembrane bioelectricity of Clostridium butyricum for biohydrogen production. Nano Energy, 2023, 110, 108382.		8.2	4
980	Revealing the bifunction mechanism of LaCoO3 as electrocatalyst: Oxygen vacancies effect and synergistic reaction process. Journal of Alloys and Compounds, 2023, 941, 168918.		2.8	3
981	China's carbon accounting system in the context of carbon neutrality: Current situation, challen and suggestions. Advances in Climate Change Research, 2023, 14, 23-31.	ges	2.1	5
982	Is high-speed rail heading towards a low-carbon industry? Evidence from a quasi-natural experiment i China. Resources and Energy Economics, 2023, 72, 101355.	n	1.1	7
983	Driving factors and emission reduction scenarios analysis of CO2 emissions in Guangdong-Hong Kong-Macao Greater Bay Area and surrounding cities based on LMDI and system dynamics. Science the Total Environment, 2023, 870, 161966.	of	3.9	24
984	Decoupling analysis and peak prediction of carbon emission in less developed provinces: A case stud of Sichuan province, China. , 0, , .	у		0
985	Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era. Energy Policy, 2023, 174, 113464.		4.2	3
986	Examining energy eco-efficiency in China's logistics industry. International Journal of Production Economics, 2023, 258, 108797.		5.1	10
987	Dynamic Reconstitution Between Copper Single Atoms and Clusters for Electrocatalytic Urea Synthesis. Advanced Materials, 2023, 35, .		11.1	66
988	Uncovering the roadmap of decoupling economic growth and CO2 emissions targeting energy-resource-emission-intensive industrial parks located nearby large river: Practices and implications from China. Journal of Cleaner Production, 2023, 393, 136306.		4.6	4
989	Preparation of Pt/MgAl2O4 Decalin Dehydrogenation Catalyst for Chemical Hydrogen Storage Application. Catalysis Letters, 2024, 154, 191-205.		1.4	3

#	Article	IF	CITATIONS
990	Monitoring the enterprise carbon emissions using electricity big data: A case study of Beijing. Journal of Cleaner Production, 2023, 396, 136427.	4.6	6
991	Progress of 2014—2016 China's Earth Observation and Earth Science. Kongjian Kexue Xuebao, 2016, 36, 771.	0.2	2
992	Carbon dioxide emission typology and policy implications: Evidence from machine learning. China Economic Review, 2023, 78, 101941.	2.1	7
993	A multivariate hierarchical regionalization method to discovering spatiotemporal patterns. GIScience and Remote Sensing, 2023, 60, .	2.4	2
994	Can new energy demonstration city policy reduce carbon emissions? A quasi-natural experiment from China. Environmental Science and Pollution Research, 2023, 30, 51861-51874.	2.7	4
995	Carbon emission fluctuations of Chinese inter-regional interaction: a network multi-hub diffusion perspective. Environmental Science and Pollution Research, 2023, 30, 52141-52156.	2.7	1
996	Utilization of Gasification Coarse Slag Powder as Cement Partial Replacement: Hydration Kinetics Characteristics, Microstructure and Hardening Properties. Materials, 2023, 16, 1922.	1.3	3
997	Layout of measuring points for flue gas flow velocity in coal-fired power plants based on CFD technology. Journal of Physics: Conference Series, 2023, 2441, 012056.	0.3	0
998	Dynamic contribution and structural changes of carbon emissions in China's energy chemical industry with high-emission subsectors heterogeneity. Environmental Science and Pollution Research, 2023, 30, 54600-54615.	2.7	0
999	City-Level CH4 Emissions from Anthropogenic Sources and Its Environmental Behaviors in China's Cold Cities. Atmosphere, 2023, 14, 535.	1.0	1
1000	Prediction of carbon peak path based on STIRPAT model: a case study in Anji County. , 2022, , .		0
1001	Toward carbon neutrality: Projecting a desert-based photovoltaic power network circumnavigating the globe. , 2023, 2, .		0
1002	Chinese industrial air pollution emissions based on the continuous emission monitoring systems network. Scientific Data, 2023, 10, .	2.4	3
1003	Can e-commerce reduce urban CO2 emissions? Evidence from National E-commerce Demonstration Cities policy in China. Environmental Science and Pollution Research, 2023, 30, 58553-58568.	2.7	3
1004	Coupling Amino Acid with THF for the Synergistic Promotion of CO ₂ Hydrate Micro Kinetics: Implication for Hydrate-Based CO ₂ Sequestration. ACS Sustainable Chemistry and Engineering, 2023, 11, 6057-6069.	3.2	19
1005	Regional trends and socioeconomic drivers of energy-related water use in China from 2007 to 2017. Energy, 2023, 275, 127404.	4.5	0
1006	Estimation of Anthropogenic CH ₄ and CO ₂ Emissions in Taiyuanâ€Jinzhong Region: One of the World's Largest Emission Hotspots. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
1012	Review on Experimental Investigation into Formation Damage during Geologic Carbon Sequestration: Advances and Outlook. Energy & Fuels, 2023, 37, 6382-6400.	2.5	5

#	Article	IF	CITATIONS
1024	Research on Carbon Accounting Method of Industrial Park Considering Various Uncertain Factors. , 2023, , .		0
1049	Carbon Dioxide Capture and Bioenergy Production by Utilizing the Biological System. , 2023, , 159-194.		0
1062	Production and consumption-based accounting of emissions. , 2023, , .		0
1072	Survival Period of Mankind on Earth. , 2023, , 3-9.		0
1073	Sustainable Sanitation Technology: Transformation of Sanitation Waste into Useful Element. , 2023, , 197-213.		0
1088	The Relation Among Ownership, Environmental, Social, Governance (ESG), and Corporate Social Responsibility (CSR) in China. , 2023, , 2877-2897.		0
1104	A Fossil Fuel Consumption Calculation Method Based on Regression Model of Electricity Consumption. , 2023, , .		0
1109	Research on Energy Carbon Emission Situation Prediction Technology: A Case Study of Fujian Province. , 2024, , 780-796.		0
1118	Spatiotemporal Disparity and Environmental Inequality in Fossil Fuel Carbon Emissions in China: 2010-2019. , 2023, , .		0
1131	The Effect of Renewable Energy Development and Market-Oriented Reform on Low-carbon Transformation of Power Industry: An Agent-Based Approach. , 2023, , .		0
1175	Unpacking the Technical and Financial Challenges of Carbon Capture and Storage in Depleted Gas Fields for a Sustainable and Economically Viable Energy Future: Insights from the Egyptian Nile Delta. , 2024, , .		0