Growing the gas-giant planets by the gradual accumula

Nature 524, 322-324 DOI: 10.1038/nature14675

Citation Report

#	Article	IF	CITATIONS
1	Slow-growing pebbles lead to fast-growing Jupiters. Physics Today, 2015, 68, 16-19.	0.3	2
2	Small rocks build big planets. Nature, 2015, , .	13.7	0
3	An Overview of Inside-Out Planet Formation. Proceedings of the International Astronomical Union, 2015, 11, 6-13.	0.0	4
4	How the Solar System didn't form. Nature, 2015, 528, 202-203.	13.7	4
5	Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14180-14185.	3.3	142
6	Origin and Evolution of the Cometary Reservoirs. Space Science Reviews, 2015, 197, 191-269.	3.7	140
7	FROM PLANETESIMALS TO PLANETS IN TURBULENT PROTOPLANETARY DISKS. I. ONSET OF RUNAWAY GROWTH. Astrophysical Journal, 2016, 817, 105.	1.6	38
8	FORMING CHONDRITES IN A SOLAR NEBULA WITH MAGNETICALLY INDUCED TURBULENCE. Astrophysical Journal Letters, 2016, 820, L12.	3.0	13
9	INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY. Astrophysical Journal, 2016, 816, 19.	1.6	49
10	Influence of the water content in protoplanetary discs on planet migration and formation. Astronomy and Astrophysics, 2016, 590, A101.	2.1	34
11	The radial dependence of pebble accretion rates: A source of diversity in planetary systems. Astronomy and Astrophysics, 2016, 591, A72.	2.1	109
12	News Feature: The Mars anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3704-3707.	3.3	0
13	PROMPT PLANETESIMAL FORMATION BEYOND THE SNOW LINE. Astrophysical Journal Letters, 2016, 828, L2.	3.0	53
14	IN SITU FORMATION AND DYNAMICAL EVOLUTION OF HOT JUPITER SYSTEMS. Astrophysical Journal, 2016, 829, 114.	1.6	215
15	On the water delivery to terrestrial embryos by ice pebble accretion. Astronomy and Astrophysics, 2016, 589, A15.	2.1	131
16	Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances, 2016, 2, e1601658.	4.7	38
17	THE SPIRAL WAVE INSTABILITY INDUCED BY A GIANT PLANET. I. PARTICLE STIRRING IN THE INNER REGIONS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 126.	1.6	43
18	On the growth of pebble-accreting planetesimals. Astronomy and Astrophysics, 2016, 586, A66.	2.1	48

ITATION REDO

#	Article	IF	CITATIONS
19	Terrestrial planets and water delivery around low-mass stars. Astronomy and Astrophysics, 2016, 596, A54.	2.1	8
20	Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2962-2972.	1.6	46
21	Impact disruption of gravity-dominated bodies: New simulation data and scaling. Icarus, 2016, 275, 85-96.	1.1	29
22	CAPTURE OF TRANS-NEPTUNIAN PLANETESIMALS IN THE MAIN ASTEROID BELT. Astronomical Journal, 2016, 152, 39.	1.9	100
23	HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS. Astrophysical Journal, 2016, 820, 29.	1.6	25
24	Challenges in planet formation. Journal of Geophysical Research E: Planets, 2016, 121, 1962-1980.	1.5	127
25	Inner solar system material discovered in the Oort cloud. Science Advances, 2016, 2, e1600038.	4.7	45
26	A panoptic model for planetesimal formation and pebble delivery. Astronomy and Astrophysics, 2016, 586, A20.	2.1	75
27	YETI observations of the young transiting planet candidate CVSOÂ30Âb. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2834-2852.	1.6	35
28	Giant planet formation in radially structured protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2779-2795.	1.6	78
29	Dawes Review 7: The Tidal Downsizing Hypothesis of Planet Formation. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	72
30	United theory of planet formation (i): Tandem regime. New Astronomy, 2017, 54, 7-23.	0.8	28
31	The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability. Astrophysical Journal, 2017, 836, 53.	1.6	19
32	Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk. Astrophysical Journal, 2017, 839, 16.	1.6	137
33	Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?. Astronomy and Astrophysics, 2017, 599, A113.	2.1	142
34	Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars. Astronomical Journal, 2017, 153, 216.	1.9	49
35	Setting the scene: what did we know before Rosetta?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160247.	1.6	15
36	Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6712-6716.	3.3	439

	CITATION	Report	
# 37	ARTICLE Using the Main Asteroid Belt to Constrain Planetesimal and Planet Formation. , 0, , 38-68.	IF	CITATIONS
38	Chondrule Accretion with a Growing Protoplanet. Astrophysical Journal, 2017, 837, 103.	1.6	3
39	Size Sorting on the Rubble-Pile Asteroid Itokawa. Physical Review Letters, 2017, 118, 111101.	2.9	17
40	Thermal evolution of planetesimals during accretion. Icarus, 2017, 285, 103-117.	1.1	6
41	ALMA Observations of the Young Substellar Binary System 2M1207. Astronomical Journal, 2017, 154, 24.	1.9	42
42	Saving Super-Earths: Interplay between Pebble Accretion and Type I Migration. Astronomical Journal, 2017, 153, 222.	1.9	35
43	Water and Volatiles in the Outer Solar System. Space Science Reviews, 2017, 212, 835-875.	3.7	44
44	Pebble Accretion at the Origin of Water in Europa. Astrophysical Journal, 2017, 845, 92.	1.6	39
45	Forming Planets via Pebble Accretion. Annual Review of Earth and Planetary Sciences, 2017, 45, 359-387.	4.6	281
46	The empty primordial asteroid belt. Science Advances, 2017, 3, e1701138.	4.7	99
47	The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. Astronomy and Astrophysics, 2017, 603, A3.	2.1	97
48	Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2517-2538.	1.6	38
49	Formation of TRAPPIST-1 and other compact systems. Astronomy and Astrophysics, 2017, 604, A1.	2.1	128
51	Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus, 2017, 297, 134-148.	1.1	197
52	How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3385-3407.	1.6	74
53	Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 2017, 281, 459-475.	1.1	29
54	Tandem planet formation for solar system-like planetary systems. Geoscience Frontiers, 2017, 8, 223-231.	4.3	7
55	The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks. Geoscience Frontiers, 2017, 8, 233-245.	4.3	4

#	Article		CITATIONS
56	Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations. Astrophysical Journal, 2017, 846, 6.	1.6	8
57	Planet Population Synthesis via Pebble Accretion. Astrophysics and Space Science Library, 2017, , 339-366.	1.0	12
58	Self-induced dust traps: overcoming planet formation barriers. Monthly Notices of the Royal Astronomical Society, 0, , stx016.	1.6	64
59	CO ₂ infrared emission as a diagnostic of planet-forming regions of disks. Astronomy and Astrophysics, 2017, 601, A36.	2.1	40
60	<i>N</i> -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2017, 607, A67.	2.1	31
61	Planetesimal formation starts at the snow line. Astronomy and Astrophysics, 2017, 608, A92.	2.1	196
62	Maximum mass of planetary embryos that formed in core-accretion models. Astronomy and Astrophysics, 2017, 606, A69.	2.1	39
63	Giant planet formation at the pressure maxima of protoplanetary disks. Astronomy and Astrophysics, 2017, 604, A10.	2.1	20
64	The Origin of Planetary Ring Systems. , 0, , 517-538.		12
65	Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun. Astrophysical Journal, 2018, 856, 37.	1.6	44
66	A Brief Overview of Planet Formation. , 2018, , 1-19.		1
67	Dust Evolution in Protoplanetary Disks. , 2018, , 1-16.		0
68	Interstellar Interlopers: Number Density and Origin of â€~Oumuamua-like Objects. Astrophysical Journal Letters, 2018, 855, L10.	3.0	121
69	Single planet formation regime in the high-ionization environment: Possible origin of hot Jupiters and super-Earths. Geoscience Frontiers, 2018, 9, 1023-1031.	4.3	2
70	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	0.9	69
71	Tandem Planetary Formation Theory. Journal of Geography (Chigaku Zasshi), 2018, 127, 577-607.	0.1	3
72	Dynamics of multiple protoplanets embedded in gas and pebble discs and its dependence on $\hat{l} \pm$ and $\hat{l} \frac{1}{2}$ parameters. Astronomy and Astrophysics, 2018, 620, A157.	2.1	8
73	Formation of Embryos of the Earth and the Moon from a Common Rarefied Condensation and Their Subsequent Growth. Solar System Research, 2018, 52, 401-416.	0.3	6

#	Article	IF	CITATIONS
74	A Brief Overview of Planet Formation. , 2018, , 2185-2203.		8
75	Dust Evolution in Protoplanetary Disks. , 2018, , 2205-2220.		0
76	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
77	Planet Formation, Migration, and Habitability. , 2018, , 2879-2895.		0
78	Feedstocks of the Terrestrial Planets. Space Science Reviews, 2018, 214, 1.	3.7	15
79	The Elusive Origin of Mercury. , 2018, , 497-515.		21
80	A Lagrangian model for dust evolution in protoplanetary disks: formation of wet and dry planetesimals at different stellar masses. Astronomy and Astrophysics, 2018, 620, A134.	2.1	39
81	Gas-assisted Growth of Protoplanets in a Turbulent Medium. Astrophysical Journal, 2018, 861, 74.	1.6	11
82	On the Dynamics of Pebbles in Protoplanetary Disks with Magnetically Driven Winds. Astrophysical Journal, 2018, 863, 33.	1.6	1
83	Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants. Astronomy and Astrophysics, 2018, 612, A30.	2.1	186
84	Catching drifting pebbles. Astronomy and Astrophysics, 2018, 615, A178.	2.1	69
85	A balanced budget view on forming giant planets by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4338-4354.	1.6	32
86	Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing. , 2018, , 167-185.		6
87	Catching drifting pebbles. Astronomy and Astrophysics, 2018, 615, A138.	2.1	58
88	Restrictions on the Growth of Gas Giant Cores via Pebble Accretion. Astrophysical Journal, 2018, 864, 66.	1.6	12
89	Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical Journal, 2018, 864, 50.	1.6	39
90	Formation of Terrestrial Planets. , 2018, , 1-59.		0
91	The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations. Astronomical Journal, 2018, 155, 54.	1.9	32

#	Article	IF	Citations
92	Formation of Chondrules by Planetesimal Collisions. , 0, , 343-360.		8
93	Calcium signals in planetary embryos. Nature, 2018, 555, 451-452.	13.7	5
94	A mixed model of neuronal diversity. Nature, 2018, 555, 452-454.	13.7	15
95	Saturn's Formation and Early Evolution at the Origin of Jupiter's Massive Moons. Astronomical Journal, 2018, 155, 224.	1.9	26
96	Cladistical Analysis of the Jovian and Saturnian Satellite Systems. Astrophysical Journal, 2018, 859, 97.	1.6	11
97	Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (<scp>VIR</scp>). Meteoritics and Planetary Science, 2018, 53, 1844-1865.	0.7	29
98	Transforming Dust to Planets. Space Science Reviews, 2018, 214, 1.	3.7	12
99	Dust Phenomena Relating to Airless Bodies. Space Science Reviews, 2018, 214, 1.	3.7	21
100	Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization. Astronomy and Astrophysics, 2019, 628, A39.	2.1	97
101	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2019, 627, A83.	2.1	149
102	Experimenting with Mixtures of Water Ice and Dust as Analogues for Icy Planetary Material. Space Science Reviews, 2019, 215, 1.	3.7	29
103	Planet seeding through gas-assisted capture of interstellar objects. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3324-3332.	1.6	19
104	The Properties of Planetesimal Collisions under Jupiter's Perturbation and the Application to Chondrule Formation via Impact Jetting. Astrophysical Journal, 2019, 884, 37.	1.6	1
105	Are the observed gaps in protoplanetary discs caused by growing planets?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3625-3633.	1.6	22
106	The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 2019, 321, 778-790.	1.1	72
107	Formation of planetary systems by pebble accretion and migration: growth of gas giants. Astronomy and Astrophysics, 2019, 623, A88.	2.1	117
108	Growth after the streaming instability. Astronomy and Astrophysics, 2019, 624, A114.	2.1	44
109	Inner Workings: Newborn stars don't have enough dust to build planets. What are the missing ingredients?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7605-7607.	3.3	2

#	Article	IF	Citations
110	Consequences of planetary migration on the minor bodies of the early solar system. Astronomy and Astrophysics, 2019, 623, A169.	2.1	51
111	A Hypothesis for the Rapid Formation of Planets. Astrophysical Journal Letters, 2019, 874, L34.	3.0	22
112	IDP-like Asteroids Formed Later than 5 Myr After Ca–Al-rich Inclusions. Astrophysical Journal, 2019, 875, 30.	1.6	13
113	Exploring the conditions for forming cold gas giants through planetesimal accretion. Astronomy and Astrophysics, 2019, 631, A70.	2.1	34
114	Spinning up planetary bodies by pebble accretion. Icarus, 2020, 335, 113380.	1.1	12
115	Impact bombardment chronology of the terrestrial planets from 4.5â€ ⁻ Ga to 3.5â€ ⁻ Ga. Icarus, 2020, 338, 113514.	1.1	38
116	Tilting Ice Giants with a Spin–Orbit Resonance. Astrophysical Journal, 2020, 888, 60.	1.6	25
117	Dynamical evidence for an early giant planet instability. Icarus, 2020, 339, 113605.	1.1	60
118	The great isotopic dichotomy of the early Solar System. Nature Astronomy, 2020, 4, 32-40.	4.2	117
119	Promoted mass growth of multiple, distant giant planets through pebble accretion and planet–planet collision. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3314-3325.	1.6	9
120	The Non-carbonaceous–Carbonaceous Meteorite Dichotomy. Space Science Reviews, 2020, 216, 1.	3.7	94
121	Influences of protoplanet-induced three-dimensional gas flow on pebble accretion. Astronomy and Astrophysics, 2020, 633, A81.	2.1	13
122	Planet formation by pebble accretion in ringed disks. Astronomy and Astrophysics, 2020, 638, A1.	2.1	49
123	Hypothesis about Enrichment of Solar System. Physics, 2020, 2, 213-276.	0.5	2
124	Linking asteroids and meteorites to the primordial planetesimal population. Geochimica Et Cosmochimica Acta, 2020, 277, 377-406.	1.6	93
125	The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 2020, 4, 492-499.	4.2	73
126	Observations of Planetary Systems. , 2020, , 1-48.		0
127	Terrestrial Planet Formation. , 2020, , 181-219.		0

#	Article	IF	CITATIONS
129	Protoplanetary Disk Structure. , 2020, , 49-85.		0
130	Protoplanetary Disk Evolution. , 2020, , 86-140.		0
131	Planetesimal Formation. , 2020, , 141-180.		0
132	Giant Planet Formation. , 2020, , 220-246.		0
133	Early Evolution of Planetary Systems. , 2020, , 247-300.		0
138	Uranus and Neptune: Origin, Evolution and Internal Structure. Space Science Reviews, 2020, 216, 1.	3.7	61
139	Born eccentric: Constraints on Jupiter and Saturn's pre-instability orbits. Icarus, 2021, 355, 114122.	1.1	22
140	Formation of Venus, Earth and Mars: Constrained by Isotopes. Space Science Reviews, 2021, 217, 1.	3.7	22
141	Linking planetary embryo formation to planetesimal formation. Astronomy and Astrophysics, 2021, 645, A132.	2.1	15
142	Linking planetary embryo formation to planetesimal formation. Astronomy and Astrophysics, 2021, 645, A131.	2.1	17
143	Mars' Formation Can Constrain the Primordial Orbits of the Gas Giants. Astrophysical Journal Letters, 2021, 910, L16.	3.0	8
144	How dust fragmentation may be beneficial to planetary growth by pebble accretion. Astronomy and Astrophysics, 2021, 647, A15.	2.1	32
145	<i>N</i> -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2021, 650, A116.	2.1	14
146	Building the Galilean moons system via pebble accretion and migration: a primordial resonant chain. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1854-1872.	1.6	14
147	Tilting Uranus: Collisions versus Spin–Orbit Resonance. Planetary Science Journal, 2021, 2, 78.	1.5	9
148	The fate of planetesimals formed at planetary gap edges. Astronomy and Astrophysics, 2021, 648, A112.	2.1	15
149	Growing Mars fast: High-resolution GPU simulations of embryo formation. Icarus, 2021, 359, 114305.	1.1	21
150	What Can Meteorites Tell Us About the Formation of Jupiter?. AGU Advances, 2021, 2, e2020AV000376.	2.3	6

CITATION R	FPORT

#	Article		CITATIONS
151	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	2.1	85
152	Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nature Astronomy, 2021, 5, 898-902.	4.2	18
153	The SPHERE infrared survey for exoplanets (SHINE). Astronomy and Astrophysics, 2021, 651, A72.	2.1	117
154	The Effect of a Strong Pressure Bump in the Sun's Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion. Astrophysical Journal, 2021, 915, 62.	1.6	23
155	How drifting and evaporating pebbles shape giant planets. Astronomy and Astrophysics, 2021, 654, A71.	2.1	51
156	Common feedstocks of late accretion for the terrestrial planets. Nature Astronomy, 2021, 5, 1286-1296.	4.2	9
157	The early instability scenario: Mars' mass explained by Jupiter's orbit. Icarus, 2021, 367, 114585.	1.1	11
158	The terrestrial planet formation paradox inferred from high-resolution N-body simulations. Icarus, 2022, 371, 114692.	1.1	13
159	Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing. , 2018, , 1-19.		3
160	The Emerging Paradigm of Pebble Accretion. Astrophysics and Space Science Library, 2017, , 197-228.	1.0	75
162	Eccentricity excitation and merging of planetary embryos heated by pebble accretion. Astronomy and Astrophysics, 2017, 606, A114.	2.1	29
163	Effect of pebble flux-regulated planetesimal formation on giant planet formation. Astronomy and Astrophysics, 2020, 642, A75.	2.1	29
164	The eccentricity distribution of giant planets and their relation to super-Earths in the pebble accretion scenario. Astronomy and Astrophysics, 2020, 643, A66.	2.1	30
165	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
166	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37
167	Dust Evolution in Protoplanetary Disks. , 2014, , .		84
168	On the Estimation of Circumbinary Orbital Properties. Astronomical Journal, 2021, 161, 25.	1.9	9
169	Dust-vortex Instability in the Regime of Well-coupled Grains. Astrophysical Journal, 2019, 883, 176.	1.6	10

#	Article	IF	CITATIONS
170	Delivery of Pebbles from the Protoplanetary Disk into Circumplanetary Disks. Astrophysical Journal, 2020, 903, 98.	1.6	6
171	Why Do M Dwarfs Have More Transiting Planets?. Astrophysical Journal Letters, 2021, 920, L1.	3.0	29
172	Water and Volatiles in the Outer Solar System. Space Sciences Series of ISSI, 2017, , 191-231.	0.0	0
173	Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing. , 2017, , 1-19.		3
174	Origin and Evolution of the Cometary Reservoirs. , 2017, , 191-269.		0
175	Planet Formation, Migration, and Habitability. , 2018, , 1-17.		0
177	Evolution of the parent body of enstatite (EL) chondrites. Icarus, 2022, 373, 114762.	1.1	7
178	The â€~breaking the chains' migration model for super-Earth formation: the effect of collisional fragmentation. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2856-2868.	1.6	13
179	The Discovery of the First Exoplanet Orbiting a Solar-Type Star. , 2020, 1, 1-3.		0
180	Xenoliths in ordinary chondrites and ureilites: Implications for early solar system dynamics. Meteoritics and Planetary Science, 2021, 56, 1949-1987.	0.7	3
181	Thermal Processing of Solids Encountering a Young Jovian Core. Astrophysical Journal, 2022, 925, 141.	1.6	3
182	Planetesimal rings as the cause of the Solar System's planetary architecture. Nature Astronomy, 2022, 6, 357-366.	4.2	43
183	A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astronomical Journal, 2021, 162, 283.	1.9	13
184	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
185	Effects of pebble accretion on the growth and composition of planetesimals in the inner Solar system. Monthly Notices of the Royal Astronomical Society, 2022, 511, 158-175.	1.6	6
186	How the planetary eccentricity influences the pebble isolation mass. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3867-3875.	1.6	5
187	Terrestrial planet formation from lost inner solar system material. Science Advances, 2021, 7, eabj7601.	4.7	49
188	Chondrule formation via impact jetting in the icy outer solar system. Icarus, 2022, 384, 115110.	1.1	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
189	CHAPTER 1. Origin of the Universe and Planetary Systems. Chemical Biology, 2022, , 1-20.		0.1	0
190	Migration Traps as the Root Cause of the Kepler Dichotomy. Astrophysical Journal, 2022, 93	7, 53.	1.6	3
191	Implications of Jupiter Inward Gas-driven Migration for the Inner Solar System. Astrophysical Letters, 2022, 936, L24.	Journal	3.0	10
192	Tilting Uranus via the migration of an ancient satellite. Astronomy and Astrophysics, 2022, 6	668, A108.	2.1	7
194	Rapid formation of massive planetary cores in a pressure bump. Astronomy and Astrophysics A170.	s, 2022, 668,	2.1	11
195	Formation of super-Earths in icy dead zones around low-mass stars. Monthly Notices of the Astronomical Society: Letters, 2022, 519, L10-L14.	Royal	1.2	0
196	Direct measurement of decimetre-sized rocky material in the Oort cloud. Nature Astronomy, 318-329.	, 2023, 7,	4.2	4
197	Forming equal-mass planetary binaries via pebble accretion. Astronomy and Astrophysics, 0,		2.1	1
198	Comparisons of the core and mantle compositions of earth analogs from different terrestria formation scenarios. Icarus, 2023, 394, 115425.	l planet	1.1	3
199	The Habitability of Venus. Space Science Reviews, 2023, 219, .		3.7	10
200	TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variation by TESS*. Astronomical Journal, 2023, 165, 179.	ns Revealed	1.9	6