Susceptibility of Mycobacterium abscessus to Antimyco Models

Antimicrobial Agents and Chemotherapy 59, 6904-6912 DOI: 10.1128/aac.00459-15

Citation Report

#	Article	IF	CITATIONS
1	Animal Models of Non-Tuberculous Mycobacterial Infections. Mycobacterial Diseases: Tuberculosis & Leprosy, 2016, 6, .	0.1	6
2	Update on pulmonary disease due to non-tuberculous mycobacteria. International Journal of Infectious Diseases, 2016, 45, 123-134.	1.5	267
3	Infections caused by <i>Mycobacterium abscessus</i> : epidemiology, diagnostic tools and treatment. Expert Review of Anti-Infective Therapy, 2016, 14, 1139-1154.	2.0	63
4	<i><scp>MAB</scp>_3551c</i> encodes the primary triacylglycerol synthase involved in lipid accumulation in <scp><i>M</i></scp> <i>ycobacterium abscessus</i> . Molecular Microbiology, 2016, 102, 611-627.	1.2	37
5	Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science, 2016, 354, 751-757.	6.0	462
6	Bedaquiline as a potential agent in the treatment of <i>Mycobacterium abscessus</i> infections. European Respiratory Journal, 2017, 49, 1700083.	3.1	28
7	Clofazimine-Containing Regimen for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	86
8	New insights in the treatment of nontuberculous mycobacterial pulmonary disease. Future Microbiology, 2017, 12, 1109-1112.	1.0	7
9	Clofazimine in Nontuberculous Mycobacterial Infections: A Growing Niche. Open Forum Infectious Diseases, 2017, 4, ofx147.	0.4	30
10	Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	79
11	Preclinical Efficacy Testing of New Drug Candidates. Microbiology Spectrum, 2017, 5, .	1.2	49
12	Activity of LCB01-0371, a Novel Oxazolidinone, against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	49
13	Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. Journal of Antimicrobial Chemotherapy, 2017, 72, 338-353.	1.3	103
14	Preclinical Efficacy Testing of New Drug Candidates. , 0, , 269-293.		3
15	The Diverse Cellular and Animal Models to Decipher the Physiopathological Traits of Mycobacterium abscessus Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 100.	1.8	65
16	NTM drug discovery: status, gaps and the way forward. Drug Discovery Today, 2018, 23, 1502-1519.	3.2	186
17	Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	90
18	Determination of MIC Distribution and Mechanisms of Decreased Susceptibility to Bedaquiline among Clinical Isolates of Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	34

CITATION REPORT

#	Article	IF	CITATIONS
19	Skin and Soft Tissue Infections Due to Nontuberculous Mycobacteria. Current Infectious Disease Reports, 2018, 20, 6.	1.3	56
20	Nontuberculous Mycobacteria: An Update on Infections Caused, Laboratory Identification and their Treatment. , 2018, , 225-238.		0
21	Mycobacterium abscessus and \hat{l}^2 -Lactams: Emerging Insights and Potential Opportunities. Frontiers in Microbiology, 2018, 9, 2273.	1.5	35
22	Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Frontiers in Microbiology, 2018, 9, 1145.	1.5	80
23	Mycobacterium abscessus Complex Cutaneous Infection. Current Tropical Medicine Reports, 2018, 5, 170-178.	1.6	0
24	Inhaled Antibiotics for Mycobacterial Lung Disease. Pharmaceutics, 2019, 11, 352.	2.0	22
25	Managing antibiotic resistance in nontuberculous mycobacterial pulmonary disease: challenges and new approaches. Expert Review of Respiratory Medicine, 2019, 13, 851-861.	1.0	14
26	A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. Journal of Antimicrobial Chemotherapy, 2019, 74, 935-943.	1.3	72
27	Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opinion on Drug Discovery, 2019, 14, 867-878.	2.5	49
28	Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. Journal of Cystic Fibrosis, 2019, 18, 714-720.	0.3	46
29	Synergistic Efficacy of β-Lactam Combinations against <i>Mycobacterium abscessus</i> Pulmonary Infection in Mice. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	29
30	Mycobacterium bolletii Lung Disease inÂCystic Fibrosis. Chest, 2019, 156, 247-254.	0.4	9
31	Mycobacterium avium Infection in a C3HeB/FeJ Mouse Model. Frontiers in Microbiology, 2019, 10, 693.	1.5	20
32	Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms, 2019, 7, 90.	1.6	103
33	Future Nontuberculous Mycobacteria DST and Therapeutic Interventions. , 2019, , 85-100.		0
34	The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Neglected Tropical Diseases, 2019, 13, e0007083.	1.3	78
35	Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. International Journal of Molecular Sciences, 2019, 20, 5868.	1.8	84
36	Indole-2-Carboxamides Are Active against <i>Mycobacterium abscessus</i> in a Mouse Model of Acute Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	28

#	Article	IF	CITATIONS
37	The role of demographic and behavioural change for the long-term decline in daily smoking in Norway. European Journal of Public Health, 2019, 29, 760-765.	0.1	2
38	Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in <i>Mycobacterium abscessus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	55
39	<i>In Vitro</i> Susceptibility Testing of Bedaquiline against Mycobacterium abscessus Complex. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	38
40	Rifabutin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	59
41	A New Model of Chronic Mycobacterium abscessus Lung Infection in Immunocompetent Mice. International Journal of Molecular Sciences, 2020, 21, 6590.	1.8	14
42	Non-Tuberculous Mycobacteria Interference with BCG-Current Controversies and Future Directions. Vaccines, 2020, 8, 688.	2.1	8
43	Alternative and Experimental Therapies of Mycobacterium abscessus Infections. International Journal of Molecular Sciences, 2020, 21, 6793.	1.8	23
44	Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research. Pathogens, 2020, 9, 641.	1.2	13
45	Single Cell Analysis of Drug Susceptibility of Mycobacterium abscessus during Macrophage Infection. Antibiotics, 2020, 9, 711.	1.5	3
46	Drug discovery targeting drug-resistant nontuberculous mycobacteria. , 2020, , 361-376.		2
47	Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nature Reviews Microbiology, 2020, 18, 392-407.	13.6	407
48	A mouse model of pulmonary Mycobacteroides abscessus infection. Scientific Reports, 2020, 10, 3690.	1.6	41
49	Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics, 2020, 9, 18.	1.5	34
50	Efficacy of Bedaquiline, Alone or in Combination with Imipenem, against Mycobacterium abscessus in C3HeB/FeJ Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31
51	Rifamycin O, An Alternative Anti-Mycobacterium abscessus Agent. Molecules, 2020, 25, 1597.	1.7	10
52	Differential <i>In Vitro</i> Activities of Individual Drugs and Bedaquiline-Rifabutin Combinations against Actively Multiplying and Nutrient-Starved Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	11
53	Developing Tadpole Xenopus laevis as a Comparative Animal Model to Study Mycobacterium abscessus Pathogenicity. International Journal of Molecular Sciences, 2021, 22, 806.	1.8	6
54	Efficacy estimation of a combination of triple antimicrobial agents against clinical isolates of <i>Mycobacterium abscessus</i> subsp. <i>abscessus in vitro</i> . JAC-Antimicrobial Resistance, 2021, 3, dlab004	0.9	7

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology, 202	21, 10, 96.	1.3	54
56	Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Hub Genes A Mycobacterial Infection of Human Macrophages. Antibiotics, 2021, 10, 97.	ssociated with	1.5	8
57	Considerations for Phage Therapy Against Mycobacterium abscessus. Frontiers in Microb 11, 609017.	iology, 2020,	1.5	16
58	The doubleâ€edged sword of Tregs in M tuberculosis , M avium , and M. abscessus infect Immunological Reviews, 2021, 301, 48-61.	ion.	2.8	6
59	Pipeline of antiâ€∢i>Mycobacterium abscessus small molecules: Repurposable drugs novel chemical entities. Medicinal Research Reviews, 2021, 41, 2350-2387.	and promising	5.0	32
60	A Screening of the MMV Pandemic Response Box Reveals Epetraborole as A New Potent against Mycobacterium abscessus. International Journal of Molecular Sciences, 2021, 22	nhibitor , 5936.	1.8	16
61	Increased Virulence of Outer Membrane Porin Mutants of Mycobacterium abscessus. Fro Microbiology, 2021, 12, 706207.	ntiers in	1.5	3
63	Current Molecular Therapeutic Agents and Drug Candidates for Mycobacterium abscess in Pharmacology, 2021, 12, 724725.	ıs. Frontiers	1.6	15
64	<i>In Vitro</i> Activity of Bedaquiline and Imipenem against Actively Growing, Nutrient-S Intracellular Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 6	tarved, and 55, e0154521.	1.4	4
65	Mycobacteriophage–antibiotic therapy promotes enhanced clearance of drug-resistan <i>Mycobacterium abscessus</i> . DMM Disease Models and Mechanisms, 2021, 14, .		1.2	22
68	Potency of Omadacycline against Mycobacteroides abscessus Clinical Isolates <i>In Vitro Mouse Model of Pulmonary Infection. Antimicrobial Agents and Chemotherapy, 2022, 66</i>		1.4	31
69	Infección pulmonar por Mycobacterium abscessus complex. Revista Colombiana De Neu 30, 47-51.	ımologÃa, 2018,	0.1	0
72	Ex vivo infection of murine precision-cut lung tissue slices with Mycobacterium abscessu study antimycobacterial agents. Annals of Clinical Microbiology and Antimicrobials, 2020		1.7	9
74	Environment in the lung of cystic fibrosis patients stimulates the expression of biofilm ph Mycobacterium abscessus. Journal of Medical Microbiology, 2022, 71, .	enotype in	0.7	2
75	A Rabbit Model to Study Antibiotic Penetration at the Site of Infection for Nontuberculou Mycobacterial Lung Disease: Macrolide Case Study. Antimicrobial Agents and Chemother aac0221221.		1.4	13
76	Rough and smooth variants of Mycobacterium abscessus are differentially controlled by l immunity during chronic infection of adult zebrafish. Nature Communications, 2022, 13,		5.8	23
77	Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in <i>Mycobacteriun abscessus</i> . Science Translational Medicine, 2022, 14, eabj3860.	1	5.8	15
78	Apramycin Overcomes the Inherent Lack of Antimicrobial Bactericidal Activity in Mycoba abscessus. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0151021.	cterium	1.4	7

CITATION REPORT

#	Article	IF	CITATIONS
79	Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Frontiers in Microbiology, 2022, 13, 842017.	1.5	9
80	Mycobacterium abscessus: It's Complex. Microorganisms, 2022, 10, 1454.	1.6	18
81	Clofazimine as a comparator for preclinical efficacy evaluations of experimental therapeutics against pulmonary M. abscessus infection in mice. Tuberculosis, 2022, , 102268.		2
82	Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3. Tuberculosis, 2023, 138, 102288.	0.8	4
84	Quantitative evaluation of Mycobacterium abscessus clinical isolate virulence using a silkworm infection model. PLoS ONE, 2022, 17, e0278773.		2
86	Preclinical murine models to study lung infection with Mycobacterium abscessus complex. Tuberculosis, 2023, 138, 102301.	0.8	6
87	Contemporary Pharmacotherapies for Nontuberculosis Mycobacterial Infections: A Narrative Review. Infectious Diseases and Therapy, 2023, 12, 343-365.	1.8	2
88	Activity of the old antimicrobial nitroxoline against Mycobacterium abscessus complex isolates. Journal of Global Antimicrobial Resistance, 2023, 33, 1-4.	0.9	1
89	A Genome-Wide Screen in Macrophages Defines Host Genes Regulating the Uptake of Mycobacterium abscessus. MSphere, 2023, 8, .	1.3	2
90	Histopathological analysis revealed that <i>Mycobacterium abscessus</i> proliferates in the fat bodies of silkworms Drug Discoveries and Therapeutics, 2023, 17, 139-143.	0.6	1
91	Phages for the treatment of Mycobacterium species. Progress in Molecular Biology and Translational Science, 2023, , 41-92.	0.9	0