An Analysis of the Pressure Dependence of the Dielectri

Journal of Chemical Physics 20, 1161-1164

DOI: 10.1063/1.1700684

Citation Report

#	Article	IF	CITATIONS
1	Solutions of Sodium in Liquid Ammonia. Journal of Chemical Physics, 1953, 21, 52-54.	3.0	39
2	The System Ozoneâ€Oxygen. Journal of Chemical Physics, 1955, 23, 2049-2054.	3.0	13
3	Effect of Pressure on Dielectric Properties and Volume of 1â€Propanol and Glycerol. Journal of Chemical Physics, 1957, 26, 196-200.	3.0	54
4	Theory of Doubleâ€Layer Differential Capacitance in Electrolytes. Journal of Chemical Physics, 1962, 36, 3062-3080.	3.0	159
5	Some Comments on Electrostatic Volumes and Entropies of Solvation. Journal of Chemical Physics, 1963, 38, 1400-1405.	3.0	51
7	Effect of Pressure on the Dielectric Properties of Ice I. Journal of Chemical Physics, 1965, 43, 2376-2383.	3.0	83
8	Dielectric Study of the Pressure Dependence of Intermolecular Association in Isomeric Octyl Alcohols. Journal of Chemical Physics, 1968, 48, 5114-5122.	3.0	66
9	Study of the Pressure Dependence of Dielectric Polarization. Journal of Chemical Physics, 1969, 50, 2046-2052.	3.0	36
10	The pressure dependence of the static permittivity of pentanol isomers. Journal Physics D: Applied Physics, 1973, 6, 781-789.	2.8	12
11	Pressure dependence of the dielectric constant of H2O and D2O. Journal of Chemical Physics, 1974, 60, 3645-3648.	3.0	70
12	The solution of a modified Poissonâ€"Boltzmann equation for colloidal particles in electrolyte solutions. Journal of Colloid and Interface Science, 1975, 51, 72-86.	9.4	18
13	Structural considerations from dielectric measurements on the aliphatic alcohols. Journal of Solution Chemistry, 1975, 4, 299-310.	1.2	31
14	The electrostrictive effect in diffuse charged layers. Journal of Colloid and Interface Science, 1976, 56, 218-226.	9.4	6
15	Repulsive interface forces in overlapping electric double layers in electrolyte solutions. Advances in Colloid and Interface Science, 1978, 9, 105-141.	14.7	12
16	A1 - L14., 0,, 359-368.		0
17	Pressure and temperature dependence of the permittivity and density of 1,1â€dimethoxyâ€2â€propanone. Journal of Chemical Physics, 1983, 79, 6182-6188.	3.0	4
18	On the Pressure and Electric Field Dependencies of the Relative Permittivity of Liquids. Journal of Solution Chemistry, 1999, 28, 575-592.	1.2	67
19	On the nonlinear variation of dc conductivity with dielectric relaxation time. Journal of Chemical Physics, 2006, 125, 124501.	3.0	31

#	Article	IF	CITATIONS
21	Temperature, pressure, and isotope effects on the structure and properties of liquid water: A lattice approach. Journal of Chemical Physics, 2007, 127, 224106.	3.0	31
22	Dipolmomentbestimmung durch dielektrische Messungen an Lösungen. Zeitschrift Für Chemie, 1963, 3, 1-8.	0.0	0
23	Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions. Journal of Chemical Physics, 2010, 132, 144505.	3.0	76
24	Dielectric fluid in inhomogeneous pulsed electric field. Physical Review E, 2013, 87, 043004.	2.1	51
25	Cavitation in dielectric fluid in inhomogeneous pulsed electric field. Journal of Applied Physics, 2013, 114, .	2.5	24
26	Initiation stage of nanosecond breakdown in liquid. Journal Physics D: Applied Physics, 2014, 47, 025502.	2.8	23
27	Changes in Permittivity and Density of Molecular Liquids under High Pressure. Journal of Physical Chemistry B, 2014, 118, 3702-3709.	2.6	11
28	Pre-breakdown processes in dielectric fluid in inhomogeneous pulsed electric fields. , 2015, , .		0
29	Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields. Journal of Applied Physics, $2015, 117, \ldots$	2.5	26
30	Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy. Langmuir, 2016, 32, 5267-5276.	3.5	23
31	Nonstationary fluid dynamics under exposure to nanosecond voltage pulses. Journal of Communications Technology and Electronics, 2016, 61, 817-823.	0.5	1
32	Hydrodynamical flows in dielectric liquid in strong inhomogeneous pulsed electric field. Journal Physics D: Applied Physics, 2016, 49, 505501.	2.8	3
33	Rayleigh scattering on the cavitation region emerging in liquids. Optics Letters, 2016, 41, 1090.	3.3	3
34	Probe beam deflection optical imaging of thermal and mechanical phenomena resulting from nanosecond electric pulse (nsEP) exposure in-vitro. Optics Express, 2017, 25, 6621.	3.4	7
35	Electrostrictive Mechanism of Liquid Breakdown in Strongly Nonhomogeneous Field under the Action of Nanosecond Voltage Pulse. Journal of Communications Technology and Electronics, 2018, 63, 908-914.	0.5	0
36	Nonlocal and Nonlinear Surface Plasmon Polaritons and Optical Spatial Solitons Induced by the Thermocapillary Effect. Physical Review Letters, 2018, 120, 243904.	7.8	8
37	Multiphysics simulation of the initial stage of plasma discharge formation in liquids. Plasma Sources Science and Technology, 2020, 29, 025011.	3.1	13
38	Towards an improved understanding of nanosecond-pulse discharge initiation in water: from cavitation to electron multiplication. Plasma Sources Science and Technology, 2020, 29, 075005.	3.1	11

#	Article	IF	CITATIONS
39	Investigation of the initial phases of nanosecond discharges in liquid water. Plasma Sources Science and Technology, 2020, 29, 064001.	3.1	16
40	Behavior of Liquids in Strong Electric Fields. , 2007, , 1-51.		5
41	The Structure of Liquids. Handbuch Der Physik, 1960, , 1-133.	0.1	13
42	The Structure of Liquids. , 1960, , 1-133.		1
43	Dielektrische Eigenschaften. , 2013, , 449-908.		0
45	6.2.1 Elements and inorganic compounds. , 0, , 266-275.		0
46	6.2.2 Organic compounds. , 0, , 275-282.		0
47	6.2.3 Binary systems. , 0, , 282-283.		0
48	Water Thermodynamic Behavior Under Influence of Electric Field: A Molecular Dynamics Study. Journal of Heat Transfer, 2022, 144, .	2.1	1