Incidence and Burden of the Myelodysplastic Syndrome

Current Hematologic Malignancy Reports 10, 272-281

DOI: 10.1007/s11899-015-0269-y

Citation Report

#	Article	IF	CITATIONS
1	Genetics and epigenetics of myelodysplastic syndromes and response to drug therapy: new insights. Oncology Reviews, 2016, 10, 311.	1.8	9
2	Anemia prevalence and hematologic findings in German geriatric inpatients– results of the prospective cross-sectional multicenter study "GeriAnaemieÂ2013― European Geriatric Medicine, 2016, 7, 328-332.	2.8	15
3	Cytogenetic abnormalities and genomic copy number variations in EPO (7q22) and SEC-61(7p11) genes in primary myelodysplastic syndromes. Blood Cells, Molecules, and Diseases, 2016, 59, 52-57.	1.4	2
4	Connect MDS/AML: design of the myelodysplastic syndromes and acute myeloid leukemia disease registry, a prospective observational cohort study. BMC Cancer, 2016, 16, 652.	2.6	12
5	Efficacy and safety of darbepoetin alpha in patients with myelodysplastic syndromes: a systematic review and metaâ€analysis. British Journal of Haematology, 2016, 174, 730-747.	2.5	37
6	The safety and efficacy of rigosertib in the treatment of myelodysplastic syndromes. Expert Review of Anticancer Therapy, 2016, 16, 805-810.	2.4	8
7	Management of lower-risk myelodysplastic syndromes without del5q: current approach and future trends. Expert Review of Hematology, 2017, 10, 345-364.	2.2	12
8	Patterns of treatment and costs associated with transfusion burden in patients with myelodysplastic syndromes. Leukemia and Lymphoma, 2017, 58, 2649-2656.	1.3	15
9	Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. Blood, 2017, 129, 2959-2970.	1.4	50
10	The Incidence and Health Care Resource Burden of the Myelodysplastic Syndromes in Patients in Whom First-Line Hypomethylating Agents Fail. Oncologist, 2017, 22, 379-385.	3.7	16
11	Computational Modeling and Treatment Identification in the Myelodysplastic Syndromes. Current Hematologic Malignancy Reports, 2017, 12, 478-483.	2.3	7
13	Early treatment initiation in lower-risk myelodysplastic syndromes produces an earlier and higher rate of transfusion independence. Leukemia Research, 2017, 60, 123-128.	0.8	8
14	Multidisciplinary evaluation at baseline and during treatment improves the rate of compliance and efficacy of deferasirox in elderly myelodysplastic patients. International Journal of Clinical Oncology, 2017, 22, 380-386.	2.2	1
15	The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nature Reviews Cancer, 2017, 17, 5-19.	28.4	542
16	Modeling Myeloid Malignancies Using Zebrafish. Frontiers in Oncology, 2017, 7, 297.	2.8	17
17	Systematic Literature Review of Treatment Options and Clinical Outcomes for Patients With Higher-Risk Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, e157-e166.	0.4	13
18	The Effect of Lenalidomide on Health-Related Quality of Life in Patients With Lower-Risk Non-del(5q) Myelodysplastic Syndromes: Results From the MDS-005 Study. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 136-144.e7.	0.4	15
19	NY-ESO-1 Vaccination in Combination with Decitabine Induces Antigen-Specific T-lymphocyte Responses in Patients with Myelodysplastic Syndrome. Clinical Cancer Research, 2018, 24, 1019-1029.	7.0	87

#	Article	IF	CITATIONS
20	Incidence of Myelodysplastic Syndromes in a Major Canadian Metropolitan Area. journal of applied laboratory medicine, The, 2018, 3, 378-383.	1.3	3
21	161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Advances, 2018, 2, 1459-1469.	5.2	85
22	The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34 ⁺ CD123 ⁺ cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Haematologica, 2018, 103, 1288-1297.	3.5	36
23	Impact of lenalidomide use among nonâ€transfusion dependent patients with myelodysplastic syndromes. American Journal of Hematology, 2018, 93, 1119-1126.	4.1	8
24	Selection of patients with myelodysplastic syndromes from a large electronic medical records database and a study of the use of disease-modifying therapy in the United States. BMJ Open, 2018, 8, e019955.	1.9	8
25	Prognostic scoring systems for myelodysplastic syndromes (<scp>MDS</scp>) in a populationâ€based setting: a report from the Swedish <scp>MDS</scp> register. British Journal of Haematology, 2018, 181, 614-627.	2.5	34
26	The current approach to the diagnosis of myelodysplastic syndromesa˜†. Seminars in Hematology, 2019, 56, 15-21.	3.4	22
27	The incidence, risk factors, and survival of acute myeloid leukemia secondary to myelodysplastic syndrome: A populationâ€based study. Hematological Oncology, 2019, 37, 438-446.	1.7	11
28	Banking on a cooperative effort. Leukemia and Lymphoma, 2019, 60, 3102-3103.	1.3	0
29	Economic Burden of Patients Treated for Higher-Risk Myelodysplastic Syndromes (HR-MDS) in Routine Clinical Care in the United States. PharmacoEconomics - Open, 2019, 3, 237-245.	1.8	12
30	Efficacy of granulocyte colony stimulating factor in combination with erythropoiesis stimulating agents for treatment of anemia in patients with lower risk myelodysplastic syndromes: A systematic review. Critical Reviews in Oncology/Hematology, 2019, 136, 37-47.	4.4	11
31	Epoetin alfa for the treatment of myelodysplastic syndrome-related anemia: A review of clinical data, clinical guidelines, and treatment protocols. Leukemia Research, 2019, 81, 35-42.	0.8	10
32	Monozygotic twins with shared <i>de novo GATA2</i> mutation but dissimilar phenotypes due to differential promoter methylation. Leukemia and Lymphoma, 2019, 60, 1053-1061.	1.3	6
33	Treatment of Anemia in Transfusion-Dependent and Non-Transfusion-Dependent Lower-Risk MDS: Current and Emerging Strategies. HemaSphere, 2019, 3, e314.	2.7	21
34	Results from a multidisciplinary clinic guided by geriatric assessment before stem cell transplantation in older adults. Blood Advances, 2019, 3, 3488-3498.	5.2	62
35	SOX7 methylation is an independent prognostic factor in myelodysplastic syndromes. Pathology Research and Practice, 2019, 215, 322-328.	2.3	2
36	Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Experimental Hematology, 2019, 70, 10-23.	0.4	13
37	Anemia in the Young and Old. , 2019, , .		0

3

#	ARTICLE	IF	CITATIONS
38	An update on treatment of higher risk myelodysplastic syndromes. Expert Review of Hematology, 2019, 12, 61-70.	2.2	1
39	Clinical effectiveness and safety of erythropoietinâ€stimulating agents for the treatment of lowâ€and intermediateâ€1â°risk myelodysplastic syndrome: a systematic literature review. British Journal of Haematology, 2019, 184, 134-160.	2.5	37
40	Epidemiology of myelodysplastic syndromes: Why characterizing the beast is a prerequisite to taming it. Blood Reviews, 2019, 34, 1-15.	5.7	117
41	Splicing factor mutant myelodysplastic syndromes: Recent advances. Advances in Biological Regulation, 2020, 75, 100655.	2.3	18
42	Berries and their components on the prevention of myelodysplastic syndromes (MDS): A review on human clinical trials. Journal of Berry Research, 2020, 10, 21-44.	1.4	0
43	Gaucher disease, myelodysplastic syndrome and ICUS. Blood Cells, Molecules, and Diseases, 2020, 80, 102373.	1.4	5
44	Spectrum of myelodysplastic syndrome in patients evaluated for cytopenia(s). A Report from a Reference Centre in Saudi Arabia. Hematology/ Oncology and Stem Cell Therapy, 2020, , .	0.9	4
45	Low participation rates and disparities in participation in interventional clinical trials for myelodysplastic syndromes. Cancer, 2020, 126, 4735-4743.	4.1	11
46	Chronic fatigue in myelodysplastic syndromes: Looking beyond anemia. Critical Reviews in Oncology/Hematology, 2020, 154, 103067.	4.4	4
47	Low-risk myelodysplastic syndrome managed with an erythroid-stimulating agent for 10 years. BMJ Case Reports, 2020, 13, e232285.	0.5	0
48	Guideline-based indicators for adult patients with myelodysplastic syndromes. Blood Advances, 2020, 4, 4029-4044.	5.2	12
49	Alcohol use is not a significant contributor to myelodysplastic syndromes. Cancer Causes and Control, 2020, 31, 549-557.	1.8	3
50	Novel combinations to improve hematopoiesis in myelodysplastic syndrome. Stem Cell Research and Therapy, 2020, 11, 132.	5 . 5	2
51	Patientâ€reported outcome measures in studies of myelodysplastic syndromes and acute myeloid leukemia: Literature review and landscape analysis. European Journal of Haematology, 2020, 104, 476-487.	2.2	25
52	Maintaining adequate donations and a sustainable blood supply: Lessons learned. Transfusion, 2021, 61, 294-302.	1.6	20
53	Proliferative activity is disturbed in myeloproliferative neoplasms (MPN), myelodysplastic syndrome () Tj ETQq1 1 Cytometry, 2021, 100, 322-330.	l 0.784314 1.5	4 rgBT /Ove 12
54	Persistence to hypomethylating agents and clinical and economic outcomes among patients with myelodysplastic syndromes. Hematology, 2021, 26, 261-270.	1.5	3
55	Alternative donor transplantation for myelodysplastic syndromes: haploidentical relative and matched unrelated donors. Blood Advances, 2021, 5, 975-983.	5.2	27

#	Article	IF	CITATIONS
56	Clinical effectiveness of DNA methyltransferase inhibitors and lenalidomide in older patients with refractory anemia with ring sideroblasts: a population-based study in the United States. Leukemia and Lymphoma, 2021, 62, 1-10.	1.3	0
57	Phenotypic and functional changes of NK cells in patients with myelodysplastic syndrome and acute myeloid leukemia treated with hypomethylating drugs. Medical Immunology (Russia), 2021, 23, 223-230.	0.4	0
58	Role of cedazuridine/decitabine in the management of myelodysplastic syndrome and chronic myelomonocytic leukemia. Future Oncology, 2021, 17, 2077-2087.	2.4	11
59	Hypomethylating Chemotherapeutic Agents as Therapy for Myelodysplastic Syndromes and Prevention of Acute Myeloid Leukemia. Pharmaceuticals, 2021, 14, 641.	3.8	13
60	U2af1 is a haplo-essential gene required for hematopoietic cancer cell survival in mice. Journal of Clinical Investigation, $2021, 131, \ldots$	8.2	9
61	Injectable Hypomethylating Agents for Management of Myelodysplastic Syndromes: Patients' Perspectives on Treatment. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, e185-e198.	0.4	9
62	A machine learning approach to predicting risk of myelodysplastic syndrome. Leukemia Research, 2021, 109, 106639.	0.8	11
63	Myelodysplastic Syndrome. Molecular Pathology Library, 2018, , 83-98.	0.1	1
65	Content validity of patient-reported outcomes for use in lower-risk myelodysplastic syndromes. Journal of Patient-Reported Outcomes, 2020, 4, 69.	1.9	6
66	"Comprehensive Identification of Hub Genes and Signaling Pathways for Myelodysplastic Syndrome by Bioinformatics Analysis". Biomedical Journal of Scientific & Technical Research, 2021, 36, .	0.1	1
67	Real-world assessment of myelodysplastic syndrome: Japanese claims data analysis. Future Oncology, 2022, 18, 93-104.	2.4	2
68	Targeting miRâ€126 disrupts maintenance of myelodysplastic syndrome stem and progenitor cells. Clinical and Translational Medicine, 2021, 11, e610.	4.0	4
69	Myelodysplastische Syndrome. , 2017, , 1-15.		0
71	Myelodysplastische Syndrome. , 2018, , 183-197.		0
72	Clonal Hematopoiesis and Cytopenias in theÂElderly. , 2019, , 195-212.		0
73	Clostridium difficile Infection Complicated by Transformation of Myelodysplastic Syndrome to Acute Myeloid Leukemia With Leukostasis and Sweet's Syndrome. Cureus, 2021, 13, e19085.	0.5	0
74	Syndromes myélodysplasiques et leucémies aiguës. , 2020, , 270-278.e3.		0
75	Some characteristics of patients with myelodysplastic syndrome. Medical Herald of the South of Russia, 2020, 11, 32-42.	0.4	0

#	ARTICLE	IF	CITATIONS
76	Evaluation of multiparametric flow cytometry in diagnosis & prognosis of myelodysplastic syndrome in India. Indian Journal of Medical Research, 2020, 152, 254.	1.0	1
77	Recent advances in the cellular and molecular understanding of myelodysplastic syndromes: implications for new therapeutic approaches. Clinical Advances in Hematology and Oncology, 2018, 16, 56-66.	0.3	10
78	Diagnostic and Prognostic Implications of Caspase-1 and PD-L1 Co-Expression Patterns in Myelodysplastic Syndromes. Cancers, 2021, 13, 5712.	3.7	6
80	Association between TNF- $\hat{l}\pm$ gene polymorphisms and susceptibility of myelodysplastic syndromes: a meta-analysis. Hematology, 2021, 26, 1046-1056.	1.5	0
81	Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resistance Updates, 2022, 61, 100805.	14.4	17
82	A Systematic Literature Review of the Relationship between Serum Ferritin and Outcomes in Myelodysplastic Syndromes. Journal of Clinical Medicine, 2022, 11, 895.	2.4	3
83	Humanized three-dimensional scaffold xenotransplantation models for myelodysplastic syndromes. Experimental Hematology, 2022, 107, 38-50.	0.4	4
84	An Unusual Case of Myelodysplastic Syndrome With Intrahepatic Extramedullary Hematopoiesis Leading to Liver Failure. Cureus, 2022, 14, e22733.	0.5	2
85	Myeloid Toxicity of Radionuclide Cancer Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2022, 37, 164-172.	1.0	2
86	Patient-Physician Communication in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical Practice and Epidemiology in Mental Health, 2021, 17, 264-270.	1.2	4
87	Incidence of myeloid malignancies by subtype in Hong Kong and comparisons with Asian and white men and women in the United States. Leukemia and Lymphoma, 2022, 63, 1917-1924.	1.3	2
88	Patient Preferences for Benefits, Risks, and Administration Route of Hypomethylating Agents in Myelodysplastic Syndromes. Clinical Lymphoma, Myeloma and Leukemia, 2022, , .	0.4	2
89	<scp>HLAâ€DRB1</scp> and cytokine polymorphisms in Brazilian patients with myelodysplastic syndromes and its association with red blood cell alloimmunization. Transfusion Medicine, 2022, 32, 394-401.	1.1	2
90	Educational and Emotional Needs of Patients with Myelodysplastic Syndromes: An Al Analysis of Multi-Country Social Media. Advances in Therapy, 2023, 40, 159-173.	2.9	4
91	A natural history of lower-risk myelodysplastic syndromes with ring sideroblasts: an analysis of the MDS-CAN registry. Leukemia and Lymphoma, 2022, 63, 3165-3174.	1.3	2
92	Providing Care to People Living with a Chronic Hematological Malignancy: A Qualitative Evidence Synthesis of Informal Carers' Experiences. Seminars in Oncology Nursing, 2022, 38, 151338.	1.5	3
94	Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Reviews, 2023, 59, 101039.	5 . 7	1
95	The burden of red blood cell transfusions in patients with lower-risk myelodysplastic syndromes and ring sideroblasts: an analysis of the prospective MDS-CAN registry. Leukemia and Lymphoma, 2023, 64, 651-661.	1.3	2

#	Article	IF	CITATIONS
96	High Co-Expression of PDCD1/TIGIT/CD47/KIR3DL2 in Bone Marrow Is Associated with Poor Prognosis for Patients with Myelodysplastic Syndrome. Journal of Oncology, 2023, 2023, 1-11.	1.3	O
97	The effectiveness of an automated algorithm as a tool for investigating the cause of anaemia in undiagnosed patients from general practitioners. Annals of Clinical Biochemistry, 0, , 000456322311606.	1.6	0
98	The Heterogeneous Complexity of Myeloid Neoplasm: Multi-Level Approaches to Study the Disease. Cancers, 2023, 15, 1449.	3.7	0
99	Distinct Clinical and Prognostic Features of Myelodysplastic Syndrome in Patients from the Middle East, North Africa, and Beyond: A Systemic Review. Journal of Clinical Medicine, 2023, 12, 2832.	2.4	2
100	STIMULUS-MDS2 design and rationale: a phase III trial with the anti-TIM-3 sabatolimab (MBG453)Â+Âazacitidine in higher risk MDS and CMML-2. Future Oncology, 2023, 19, 631-642.	2.4	6
101	Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression. Current Issues in Molecular Biology, 2023, 45, 4135-4150.	2.4	0
102	Significant improvement of bone marrow-derived MSC expansion from MDS patients by defined xeno-free medium. Stem Cell Research and Therapy, 2023, 14, .	5.5	1
103	Myelodysplastic neoplasm-associated U2AF1 mutations induce host defense defects by compromising neutrophil chemotaxis. Leukemia, 0, , .	7.2	1
104	Decitabine/Cedazuridine in the Management of Myelodysplastic Syndrome and Chronic Myelomonocytic Leukemia in Canada. Current Oncology, 2023, 30, 8005-8018.	2.2	1
105	Significance of SF3B1 Mutations in Myeloid Neoplasms. Clinics in Laboratory Medicine, 2023, 43, 597-606.	1.4	0
106	Myelodysplastic syndromes mortality in Spain: a comprehensive age-period-cohort and joinpoint analysis. Clinical and Translational Oncology, 0, , .	2.4	0
107	Recent Advances towards the Understanding of Secondary Acute Myeloid Leukemia Progression. Life, 2024, 14, 309.	2.4	0
108	Leukozyten und LeukÃ ¤ nie – Begutachtung. Springer Reference Medizin, 2023, , 1-9.	0.0	O