Presynaptic spinophilin tunes neurexin signalling to confunction

Nature Communications 6, 8362

DOI: 10.1038/ncomms9362

Citation Report

#	Article	IF	CITATIONS
1	Neuroligins and Neurexins., 2013,, 671-686.		0
2	BAR-SH3 Sorting nexins are conserved Nervous wreck interactors that organize synapses and promote neurotransmission. Journal of Cell Science, 2016, 129, 166-77.	1.2	18
3	Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLoS Biology, 2016, 14, e1002563.	2.6	82
4	Mechanisms controlling assembly and plasticity of presynaptic active zone scaffolds. Current Opinion in Neurobiology, 2016, 39, 69-76.	2.0	40
5	Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science, 2016, 352, 982-986.	6.0	110
6	Presynaptic DLG regulates synaptic function through the localization of voltage-activated Ca2+Channels. Scientific Reports, 2016, 6, 32132.	1.6	16
7	Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction. Neuron, 2017, 93, 1388-1404.e10.	3.8	118
8	Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Current Opinion in Neurobiology, 2017, 43, 119-129.	2.0	43
9	Genetic interaction of DISC1 and Neurexin in the development of fruit fly glutamatergic synapses. NPJ Schizophrenia, 2017, 3, 39.	2.0	3
10	Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to Defined Release Sites to Promote Synchronous Neurotransmission. Neuron, 2017, 95, 1350-1364.e12.	3.8	106
11	The neuronal protein Neurexin directly interacts with the Scribble–Pix complex to stimulate F-actin assembly for synaptic vesicle clustering. Journal of Biological Chemistry, 2017, 292, 14334-14348.	1.6	29
12	Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia–Ischemia in Rats. Molecular Neurobiology, 2017, 54, 7137-7155.	1.9	23
13	Structural basis for <scp>PDZ</scp> domain interactions in the postâ€synaptic density scaffolding protein Shank3. Journal of Neurochemistry, 2018, 145, 449-463.	2.1	29
14	Vesicle release site organization at synaptic active zones. Neuroscience Research, 2018, 127, 3-13.	1.0	36
15	Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization. Proteomes, 2018, 6, 53.	1.7	11
16	\hat{I}^3 -Neurexin and Frizzled Mediate Parallel Synapse Assembly Pathways Antagonized by Receptor Endocytosis. Neuron, 2018, 100, 150-166.e4.	3.8	57
17	Coupling the Structural and Functional Assembly of Synaptic Release Sites. Frontiers in Neuroanatomy, 2018, 12, 81.	0.9	33
18	Molecular mechanisms that change synapse number. Journal of Neurogenetics, 2018, 32, 155-170.	0.6	8

#	Article	IF	Citations
19	Characterization of developmental and molecular factors underlying release heterogeneity at Drosophila synapses. ELife, $2018, 7, .$	2.8	83
20	Regulation of synaptic releaseâ€site Ca ²⁺ channel couplingÂas a mechanism to control release probability and shortâ€term plasticity. FEBS Letters, 2018, 592, 3516-3531.	1.3	29
21	Spinophilin regulates phosphorylation and interactions of the GluN2B subunit of the <i>N</i> â€methylâ€≺scp>dâ€aspartate receptor. Journal of Neurochemistry, 2019, 151, 185-203.	2.1	11
22	Endogenous tagging reveals differential regulation of Ca ²⁺ channels at single AZs during presynaptic homeostatic potentiation and depression. Journal of Neuroscience, 2019, 39, 3068-18.	1.7	81
23	Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Molecular Psychiatry, 2019, 24, 1400-1414.	4.1	58
24	Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner. Nature Communications, 2019, 10, 1318.	5.8	53
25	Rapid active zone remodeling consolidates presynaptic potentiation. Nature Communications, 2019, 10, 1085.	5.8	97
26	Intracellular protein complexes involved in synapse assembly in presynaptic neurons. Advances in Protein Chemistry and Structural Biology, 2019, 116, 347-373.	1.0	13
27	Neuroligins and neurexins., 2020,, 193-212.		0
28	Neurexins cluster Ca ²⁺ channels within the presynaptic active zone. EMBO Journal, 2020, 39, e103208.	3.5	58
29	Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis. Journal of Neuroscience, 2020, 40, 2817-2827.	1.7	18
30	A Picture Worth a Thousand Moleculesâ€"Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Frontiers in Synaptic Neuroscience, 2020, 12, 615059.	1.3	4
32	Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly. Current Biology, 2021, 31, 1711-1725.e5.	1.8	10
35	Synaptic Properties and Plasticity Mechanisms of Invertebrate Tonic and Phasic Neurons. Frontiers in Physiology, 2020, 11, 611982.	1.3	28
36	Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances. ELife, 2020, 9, .	2.8	33
39	Influence of T-Bar on Calcium Concentration Impacting Release Probability. Frontiers in Computational Neuroscience, 2022, 16, 855746.	1.2	0
40	Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron, 2022, 110, 2094-2109.e10.	3.8	18
42	Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Developmental Cell, 2022, 57, 1802-1816.e4.	3.1	9

#	Article	IF	CITATIONS
44	Spinophilin Limits Metabotropic Glutamate Receptor 5 Scaffolding to the Postsynaptic Density and Cell Type Specifically Mediates Excessive Grooming. Biological Psychiatry, 2023, 93, 976-988.	0.7	2
47	Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials. Frontiers in Cellular Neuroscience, $0,17,.$	1.8	0
49	Presynaptic Cytomatrix Proteins. Advances in Neurobiology, 2023, , 23-42.	1.3	0