The multi-millennial Antarctic commitment to future s

Nature 526, 421-425 DOI: 10.1038/nature15706

Citation Report

#	Article	IF	CITATIONS
1	Modeling Surface Sensible Heat Flux Using Surface Radiative Temperatures in a Simple Urban Area. Journal of Applied Meteorology and Climatology, 2000, 39, 1679-1699.	1.7	166
2	Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth's Future, 2015, 3, 317-329.	2.4	50
3	Ice Sheets, Glaciers, and Sea Level. , 2015, , 713-747.		3
4	The long future of Antarctic melting. Nature, 2015, 526, 327-328.	13.7	1
5	A bacterial nudge to T-cell function. Nature, 2015, 526, 328-330.	13.7	4
6	Ocean-Ice Shelf Interaction in East Antarctica. , 2016, 29, 130-143.		59
7	Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics. Annals of Glaciology, 2016, 57, 1-9.	2.8	39
8	Uncertainties in Sandy Shorelines Evolution under the Bruun Rule Assumption. Frontiers in Marine Science, 2016, 3, .	1.2	28
9	Future Challenges in Southern Ocean Ecology Research. Frontiers in Marine Science, 2016, 3, .	1.2	53
10	Sensitivity of the Lambert-Amery glacial system to geothermal heat flux. Annals of Glaciology, 2016, 57, 56-68.	2.8	9
11	A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 2016, 143, 228-250.	1.6	202
12	Improving ice sheet model calibration using paleoclimate and modern data. Annals of Applied Statistics, 2016, 10, .	0.5	11
13	Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances, 2016, 2, e1601610.	4.7	140
14	Past and present dynamics of Skelton Clacier, Transantarctic Mountains. Antarctic Science, 2016, 28, 371-386.	0.5	5
15	Contribution of Antarctica to past and future sea-level rise. Nature, 2016, 531, 591-597.	13.7	1,444
16	Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophysical Research Letters, 2016, 43, 2675-2682.	1.5	57
17	Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature, 2016, 533, 385-389.	13.7	98
18	Climate Sensitivity in the Geologic Past. Annual Review of Earth and Planetary Sciences, 2016, 44, 277-293.	4.6	55

ITATION REDO

#	Article	IF	CITATIONS
19	Reconstructing the retreat dynamics of the BjĄ̃rnĄ̃yrenna Ice Stream based on new 3D seismic data from the central Barents Sea. Quaternary Science Reviews, 2016, 151, 212-227.	1.4	31
20	Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quaternary Science Reviews, 2016, 152, 49-59.	1.4	110
21	Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica. Geophysical Research Letters, 2016, 43, 11,720.	1.5	48
22	The contribution of glacial isostatic adjustment to projections of seaâ€level change along the Atlantic and Gulf coasts of North America. Earth's Future, 2016, 4, 440-464.	2.4	58
23	The influence of continental shelf bathymetry on Antarctic Ice Sheet response to climate forcing. Global and Planetary Change, 2016, 142, 87-95.	1.6	13
24	Ice streams waned as ice sheets shrank. Nature, 2016, 530, 287-288.	13.7	5
25	lce stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation. Nature, 2016, 530, 322-326.	13.7	90
26	A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales. Surveys in Geophysics, 2017, 38, 385-406.	2.1	88
27	Responses of Basal Melting of Antarctic Ice Shelves to the Climatic Forcing of the Last Glacial Maximum and CO2 Doubling. Journal of Climate, 2017, 30, 3473-3497.	1.2	16
28	Tide gauge observations in Antarctica (1958–2014) and recent ice loss. Antarctic Science, 2017, 29, 369-381.	0.5	6
29	To what extent are land resource managers preparing for high-end climate change in Scotland?. Climatic Change, 2017, 141, 181-195.	1.7	9
30	East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophysical Research Letters, 2017, 44, 2343-2351.	1.5	67
31	Distribution of water masses and meltwater on the continental shelf near the <scp>T</scp> otten and <scp>M</scp> oscow <scp>U</scp> niversity ice shelves. Journal of Geophysical Research: Oceans, 2017, 122, 2050-2068.	1.0	60
32	How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Global and Planetary Change, 2017, 153, 16-34.	1.6	118
33	The Modulation of Stationary Waves, and Their Response to Climate Change, by Parameterized Orographic Drag. Journals of the Atmospheric Sciences, 2017, 74, 2557-2574.	0.6	28
34	Is ice sheet collapse in West Antarctica unstoppable?. Science, 2017, 356, 910-911.	6.0	25
36	The sensitivity of West Antarctica to the submarine melting feedback. Geophysical Research Letters, 2017, 44, 2352-2359.	1.5	50
37	Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature, 2017, 541, 72-76.	13.7	68

#	Article	IF	CITATIONS
38	Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination. Scientific Reports, 2017, 7, 39979.	1.6	33
39	Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet. Current Climate Change Reports, 2017, 3, 316-329.	2.8	56
40	Variations of the Antarctic Ice Sheet in a Coupled Ice Sheetâ€Earth‣ea Level Model: Sensitivity to Viscoelastic Earth Properties. Journal of Geophysical Research F: Earth Surface, 2017, 122, 2124-2138.	1.0	43
41	Why do climate change scenarios return to coal?. Energy, 2017, 140, 1276-1291.	4.5	68
42	Risk Conundrums. , 0, , .		9
43	Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nature Communications, 2017, 8, 14596.	5.8	70
44	Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics. Current Climate Change Reports, 2017, 3, 174-184.	2.8	45
45	The down-stress transition from cluster to cone fabrics in experimentally deformed ice. Earth and Planetary Science Letters, 2017, 471, 136-147.	1.8	36
46	Evolving Understanding of Antarctic Iceâ€Sheet Physics and Ambiguity in Probabilistic Sea‣evel Projections. Earth's Future, 2017, 5, 1217-1233.	2.4	269
47	Initiation and long-term instability of the East Antarctic Ice Sheet. Nature, 2017, 552, 225-229.	13.7	95
48	Heat Flux Distribution of Antarctica Unveiled. Geophysical Research Letters, 2017, 44, 11,417.	1.5	136
49	West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature, 2017, 547, 43-48.	13.7	109
50	Future sea level change from Antarctica's Lambert-Amery glacial system. Geophysical Research Letters, 2017, 44, 7347-7355.	1.5	11
51	Bounding probabilistic sea-level projections within the framework of the possibility theory. Environmental Research Letters, 2017, 12, 014012.	2.2	54
52	Introduction: the politics of Antarctica. , 2017, , .		4
53	Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica. Cryosphere, 2017, 11, 2675-2690.	1.5	25
54	Combustion and Emission Characteristics of Coconut-Based Biodiesel in a Liquid Fuel Burner. Energies, 2017, 10, 458.	1.6	17
55	Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23†Ma. Climate of the Past, 2017, 13, 959-975.	1.3	40

ARTICLE IF CITATIONS # Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian 1.1 29 56 Calibration. PLoS ONE, 2017, 12, e0170052. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). Cryosphere, 2017, 11, 1851-1878. 1.5 Impact of asymmetric uncertainties in ice sheet dynamics on regional sea level projections. Natural 59 1.5 10 Hazards and Earth System Sciences, 2017, 17, 2125-2141. Antarctic ice dynamics in warm climates. Nature, 2017, 552, 183-184. Living in the Landscape. , 2017, , 405-453. 61 0 A Coupled Ice Sheet–Sea Level Model Incorporating 3D Earth Structure: Variations in Antarctica during the Last Deglacial Retreat. Journal of Climate, 2018, 31, 4041-4054. 1.2 Quantifying predictability of sea ice around the Indian Antarctic stations using coupled ocean sea ice 64 0.5 3 model with shelf ice. Polar Science, 2018, 18, 83-93. Recent progress in understanding climate thresholds. Progress in Physical Geography, 2018, 42, 24-60. 1.4 Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East 66 1.6 46 Antarctica. Scientific Reports, 2018, 8, 4477. The Paris warming targets: emissions requirements and sea level consequences. Climatic Change, 2018, 1.7 39 147, 31-45. Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf 68 1.3 30 and FESOM 1.4. Geoscientific Model Development, 2018, 11, 1257-1292. A continuum model (PSUMEL1) of ice mÃ $m{\circ}$ lange and its role during retreat of the Antarctic Ice Sheet. 1.3 Geoscientific Model Development, 2018, 11, 5149-5172. Influence of temperature fluctuations on equilibrium ice sheet volume. Cryosphere, 2018, 12, 39-47. 70 1.5 12 Retrieval of the Absorption Coefficient of L-Band Radiation in Antarctica From SMOS Observations. 1.8 Remote Sensing, 2018, 10, 1954. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nature Climate Change, 2018, 8, 73 8.1 135 1053-1061. Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model 74 uncertainties using the ISSM framework. Cryosphere, 2018, 12, 3511-3534. Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, 75 1.534 ice shelf melt scenarios and basal friction laws. Cryosphere, 2018, 12, 3861-3876. Sea-level change in the Dutch Wadden Sea. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 19 2018, 97, 79-127.

#	Article	IF	Citations
77	Stopping the flood: could we use targeted geoengineering to mitigate sea level rise?. Cryosphere, 2018, 12, 2955-2967.	1.5	22
78	Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering. Earth's Future, 2018, 6, 230-251.	2.4	49
79	Influence of El Niñoâ€Southern Oscillation on Global Coastal Flooding. Earth's Future, 2018, 6, 1311-1322.	2.4	37
80	Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator. Environmental Research Letters, 2018, 13, 084003.	2.2	40
81	Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event. Cryosphere, 2018, 12, 3123-3136.	1.5	26
82	Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere, 2018, 12, 1433-1460.	1.5	89
83	Representation of basal melting at the grounding line in ice flow models. Cryosphere, 2018, 12, 3085-3096.	1.5	62
84	COMBUSTION CHARACTERISTICS OF RICE BRAN OIL BIODIESEL IN AN OIL BURNER. Jurnal Teknologi (Sciences and Engineering), 2018, 80, .	0.3	6
86	Future Earth and the Cryosphere. , 0, , 91-113.		3
87	The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700Âyears. Climate of the Past, 2018, 14, 193-214.	1.3	44
88	Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature, 2018, 561, 383-386.	13.7	76
89	Influence of climate change on Antarctic flora. Polar Science, 2018, 18, 94-101.	0.5	27
90	Past ice stream and ice sheet changes on the continental shelf off the Sabrina Coast, East Antarctica. Geomorphology, 2018, 317, 10-22.	1.1	20
91	Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere, 2018, 12, 49-70.	1.5	58
92	Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet. Quaternary Science Reviews, 2018, 195, 32-47.	1.4	15
93	Mapping Sea-Level Change in Time, Space, and Probability. Annual Review of Environment and Resources, 2018, 43, 481-521.	5.6	140
94	Ocean as the main driver of Antarctic ice sheet retreat during the Holocene. Global and Planetary Change, 2018, 166, 62-74.	1.6	17
95	Variability in diatom and silicoflagellate assemblages during mid-Pliocene glacial-interglacial cycles determined in Hole U1361A of IODP Expedition 318, Antarctic Wilkes Land Margin. Marine Micropaleontology, 2018, 139, 28-41	0.5	9

#	Article	IF	CITATIONS
96	Climate Constraints on Glaciation Over Highâ€Mountain Asia During the Last Glacial Maximum. Geophysical Research Letters, 2018, 45, 9024-9033.	1.5	29
97	High climate model dependency of Pliocene Antarctic ice-sheet predictions. Nature Communications, 2018, 9, 2799.	5.8	21
98	Choosing the future of Antarctica. Nature, 2018, 558, 233-241.	13.7	172
99	The global influence of localized dynamics in the Southern Ocean. Nature, 2018, 558, 209-218.	13.7	181
100	Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces. Nature Communications, 2018, 9, 2289.	5.8	34
101	Antarctic iceberg impacts on future Southern Hemisphere climate. Nature Climate Change, 2019, 9, 672-677.	8.1	32
102	Framework for Highâ€End Estimates of Sea Level Rise for Stakeholder Applications. Earth's Future, 2019, 7, 923-938.	2.4	46
103	Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14887-14892.	3.3	61
104	Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise. PLoS ONE, 2019, 14, e0218430.	1.1	29
105	Low-End Probabilistic Sea-Level Projections. Water (Switzerland), 2019, 11, 1507.	1.2	16
106	Contributions to 21st century projections of extreme sea-level change around the UK. Environmental Research Communications, 2019, 1, 095002.	0.9	28
107	Sustained Antarctic Research: A 21st Century Imperative. One Earth, 2019, 1, 95-113.	3.6	54
108	Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Current Biology, 2019, 29, R1021-R1035.	1.8	323
109	Usable Science for Managing the Risks of Seaâ€Level Rise. Earth's Future, 2019, 7, 1235-1269.	2.4	85
110	East Antarctic ice flow dynamic based on subglacial landforms near Dibble Glacier. Marine Geology, 2019, 417, 106007.	0.9	2
111	Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice. Cryosphere, 2019, 13, 2023-2041.	1.5	42
112	Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand. Nature Communications, 2019, 10, 5040.	5.8	57
113	Evaluation of Regional Climate Models Using Regionally Optimized GRACE Mascons in the Amery and Getz Ice Shelves Basins, Antarctica. Geophysical Research Letters, 2019, 46, 13883-13891.	1.5	8

#	Article	IF	CITATIONS
114	Adequacy of the Ocean Observation System for Quantifying Regional Heat and Freshwater Storage and Change. Frontiers in Marine Science, 2019, 6, .	1.2	19
115	Brief communication: A submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves. Cryosphere, 2019, 13, 2317-2324.	1.5	4
116	Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing. Cryosphere, 2019, 13, 2615-2631.	1.5	7
117	Probabilistic Sea Level Projections at the Coast by 2100. Surveys in Geophysics, 2019, 40, 1673-1696.	2.1	58
118	Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 535, 109346.	1.0	78
119	Projected Slowdown of Antarctic Bottom Water Formation in Response to Amplified Meltwater Contributions. Journal of Climate, 2019, 32, 6319-6335.	1.2	42
121	Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing. Science Advances, 2019, 5, eaav8754.	4.7	27
122	Solid Earth change and the evolution of the Antarctic Ice Sheet. Nature Communications, 2019, 10, 503.	5.8	93
123	Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. Cryosphere, 2019, 13, 1349-1380.	1.5	68
124	initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6. Cryosphere, 2019, 13, 1441-1471.	1.5	69
125	Subglacial Geology and Geomorphology of the Pensacolaâ€Pole Basin, East Antarctica. Geochemistry, Geophysics, Geosystems, 2019, 20, 2786-2807.	1.0	22
126	Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis. Cryosphere, 2019, 13, 1621-1633.	1.5	6
127	Ice sheet contributions to future sea-level rise from structured expert judgment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11195-11200.	3.3	383
128	Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nature Communications, 2019, 10, 1900.	5.8	108
129	The impact of spatially-variable basal properties on outlet glacier flow. Earth and Planetary Science Letters, 2019, 515, 200-208.	1.8	20
130	Polar climate system modeling in China: Recent progress and future challenges. Science China Earth Sciences, 2019, 62, 1076-1091.	2.3	0
131	An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes. Journal of Physical Oceanography, 2019, 49, 917-939.	0.7	15
132	New York City Panel on Climate Change 2019 Report Chapter 3: Sea Level Rise. Annals of the New York Academy of Sciences, 2019, 1439, 71-94.	1.8	22

#	ARTICLE	IF	CITATIONS
133	Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth's Future, 2019, 7, 320-337.	2.4	112
134	Does nature matter? Arguing for a biophysical turn in the ecotourism narrative. Journal of Ecotourism, 2019, 18, 243-260.	1.5	5
135	Revised chronostratigraphy of DSDP Site 270 and late Oligocene to early Miocene paleoecology of the Ross Sea sector of Antarctica. Global and Planetary Change, 2019, 178, 46-64.	1.6	25
136	Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 2019, 566, 65-72.	13.7	277
137	Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 2019, 566, 58-64.	13.7	215
138	The Antarctic Ice Sheet response to glacial millennial-scale variability. Climate of the Past, 2019, 15, 121-133.	1.3	9
139	Magneto-biostratigraphic age models for Pleistocene sedimentary records from the Ross Sea. Global and Planetary Change, 2019, 176, 36-49.	1.6	12
140	Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of European Sandy Coasts Under a High Greenhouse Gas Emissions Scenario. Water (Switzerland), 2019, 11, 2607.	1.2	30
141	Elevated geothermal surface heat flow in the Amundsen Sea Embayment, West Antarctica. Earth and Planetary Science Letters, 2019, 506, 530-539.	1.8	9
142	Sedimentary processes at ice sheet groundingâ€≢one wedges revealed by outcrops, Washington State (USA). Earth Surface Processes and Landforms, 2019, 44, 1209-1220.	1.2	8
143	Millennialâ€ S cale Vulnerability of the Antarctic Ice Sheet to Regional Ice Shelf Collapse. Geophysical Research Letters, 2019, 46, 1467-1475.	1.5	26
144	Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geoscience, 2019, 12, 132-137.	5.4	74
145	Are European decision-makers preparing for high-end climate change?. Regional Environmental Change, 2019, 19, 629-642.	1.4	9
146	A comparison of modelled ice thickness and volume across the entire Antarctic Peninsula region. Geografiska Annaler, Series A: Physical Geography, 2019, 101, 45-67.	0.6	7
147	Tectonic activity and the history of Wairau Bar, New Zealand's iconic site of early settlement. Journal of the Royal Society of New Zealand, 2019, 49, 459-473.	1.0	2
148	Late Pleistocene oceanographic and depositional variations along the Wilkes Land margin (East) Tj ETQq1 1 0.78 Change, 2020, 184, 103045.	4314 rgBT 1.6	/Overlock 1 16
149	Seismic stratigraphy of the Sabrina Coast shelf, East Antarctica: Early history of dynamic meltwater-rich glaciations. Bulletin of the Geological Society of America, 2020, 132, 545-561.	1.6	8
150	Optimal temperature overshoot profile found by limiting global sea level rise as a lower-cost climate target. Science Advances, 2020, 6, eaaw9490.	4.7	12

#	ARTICLE	IF	CITATIONS
151	Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environmental Research Letters, 2020, 15, 034007.	2.2	72
152	It's not "too late― Learning from Pacific Small Island Developing States in a warming world. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e612.	3.6	14
153	Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1867-1876.	3.3	86
154	Mass balance of the ice sheets and glaciers – Progress since AR5 and challenges. Earth-Science Reviews, 2020, 201, 102976.	4.0	44
155	Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Science Advances, 2020, 6, .	4.7	45
156	Towards adaptation pathways for atoll islands. Insights from the Maldives. Regional Environmental Change, 2020, 20, 1.	1.4	14
157	Could the Last Interglacial Constrain Projections of Future Antarctic Ice Mass Loss and Sea‣evel Rise?. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005418.	1.0	20
158	Midâ€Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 2020, 47, e2020GL088476.	1.5	28
159	Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature, 2020, 583, 554-559.	13.7	36
160	The Antarctic Crust and Upper Mantle: A Flexible 3D Model and Software Framework for Interdisciplinary Research. Frontiers in Earth Science, 2020, 8, .	0.8	8
161	Longâ€Term Increase in Antarctic Ice Sheet Vulnerability Driven by Bed Topography Evolution. Geophysical Research Letters, 2020, 47, e2020GL090003.	1.5	24
162	Constraining Ice Shelf Anisotropy Using Shear Wave Splitting Measurements from Activeâ€Source Borehole Seismics. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005707.	1.0	13
163	The role of internal climate variability in projecting Antarctica's contribution to future sea-level rise. Climate Dynamics, 2020, 55, 1875-1892.	1.7	13
164	Abrupt Holocene ice-sheet thinning along the southern Soya Coast, Lützow-Holm Bay, East Antarctica, revealed by glacial geomorphology and surface exposure dating. Quaternary Science Reviews, 2020, 247, 106540.	1.4	19
165	The hysteresis of the Antarctic Ice Sheet. Nature, 2020, 585, 538-544.	13.7	115
166	Burning embers: towards more transparent and robust climate-change risk assessments. Nature Reviews Earth & Environment, 2020, 1, 516-529.	12.2	29
167	Glacier Surface Motion Estimation from SAR Intensity Images Based on Subpixel Gradient Correlation. Sensors, 2020, 20, 4396.	2.1	6
168	The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 2020, 58, e2019RG000663.	9.0	49

#	Article	IF	CITATIONS
169	Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing. Cryosphere, 2020, 14, 599-632.	1.5	37
170	Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	49
171	Contribution of Wave Setup to Projected Coastal Sea Level Changes. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016078.	1.0	48
172	Limited Retreat of the Wilkes Basin Ice Sheet During the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL088131.	1.5	13
173	Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification. Remote Sensing, 2020, 12, 1327.	1.8	11
174	A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic Structure. Geophysical Research Letters, 2020, 47, e2020GL086955.	1.5	51
175	Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland. Remote Sensing, 2020, 12, 1474.	1.8	6
176	The uncertain future of the Antarctic Ice Sheet. Science, 2020, 367, 1331-1335.	6.0	83
178	Tipping elements and amplified polar warming during the Last Interglacial. Quaternary Science Reviews, 2020, 233, 106222.	1.4	20
179	Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018. Journal of Glaciology, 2020, 66, 485-495.	1.1	33
180	Geologic controls on ice sheet sensitivity to deglacial climate forcing in the Ross Embayment, Antarctica. Quaternary Science Advances, 2020, 1, 100002.	1.1	19
181	Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth-Science Reviews, 2020, 202, 103110.	4.0	94
182	Melt in Antarctica derived from Soil Moisture and Ocean Salinity (SMOS) observations at LÂband. Cryosphere, 2020, 14, 539-548.	1.5	16
183	Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes. Nature Communications, 2020, 11, 390.	5.8	31
184	Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3996-4006.	3.3	50
185	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	2.7	92
186	Sea-level rise projections for Sweden based on the new IPCC special report: The ocean and cryosphere in a changing climate. Ambio, 2020, 49, 1587-1600.	2.8	37
187	Longâ€ŧerm projections of seaâ€ŀevel rise from ice sheets. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e634.	3.6	19

	CITATION REL		
# 188	ARTICLE Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature, 2020, 577, 660-664.	IF 13.7	CITATIONS
189	Timing and pathways of East Antarctic Ice Sheet retreat. Quaternary Science Reviews, 2020, 230, 106166.	1.4	43
190	Surveying perceptions and practices of high-end climate change. Climatic Change, 2020, 161, 65-87.	1.7	2
192	A probabilistic and model-based approach to the assessment of glacial detritus from ice sheet change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561, 110053.	1.0	3
193	Late Quaternary dynamics of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. Quaternary Science Reviews, 2021, 252, 106738.	1.4	9
194	Extreme-city-territories. Coastal geographies in the Veneto region. Journal of Urbanism, 2021, 14, 185-203.	0.6	2
195	Ice sheets, glaciers, and sea level. , 2021, , 707-740.		2
196	Full crystallographic orientation (<i>c</i> and) Tj ETQq1 1 0.784314 rgBT /Overlocl case study, Storglaciäen, Sweden. Cryosphere, 2021, 15, 303-324.	10 Tf 50 1.5	467 Td (&a 20
197	The GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for phase 6 of the Coupled Model Intercomparison Project (ISMIP6) – Part 2: Projections of the Antarctic ice sheet evolution by the end of the 21st century. Cryosphere, 2021, 15, 1031-1052.	1.5	5
198	A simple parametrization of mélange buttressing for calving glaciers. Cryosphere, 2021, 15, 531-545.	1.5	10
199	Antarctic palaeotopography. Geological Society Memoir, 2023, 56, 231-251.	0.9	3
200	Thermal controls on ice stream shear margins. Journal of Glaciology, 2021, 67, 435-449.	1.1	16
201	Antarctic Geothermal Heat Flow Model: Aq1. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009428.	1.0	23
202	Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. Cryosphere, 2021, 15, 663-676.	1.5	14
203	Antarctic Ice Sheet Elevation Impacts on Water Isotope Records During the Last Interglacial. Geophysical Research Letters, 2021, 48, e2020GL091412.	1.5	5
204	Integrating new seaâ€level scenarios into coastal risk and adaptation assessments: An ongoing process. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e706.	3.6	34
205	Oceanâ€Driven and Topographyâ€Controlled Nonlinear Glacier Retreat During the Holocene: Southwestern Ross Sea, Antarctica. Geophysical Research Letters, 2021, 48, e2020GL091454.	1.5	9
206	Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere, 2021, 15, 1215-1236.	1.5	71

#	Article	IF	CITATIONS
207	Sea Surface Temperatures in the Indian Subâ€Antarctic Southern Ocean for the Last Four Interglacial Periods. Geophysical Research Letters, 2021, 48, e2020GL090994.	1.5	7
208	Pattern, style and timing of British–Irish Ice Sheet advance and retreat over the last 45 000 years: evidence from NW Scotland and the adjacent continental shelf. Journal of Quaternary Science, 2021, 36, 871-933.	1.1	24
210	Ice drilling on Skytrain Ice Rise and Sherman Island, Antarctica. Annals of Glaciology, 2021, 62, 311-323.	2.8	14
211	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	13.7	200
212	The triggers of the disaggregation of Voyeykov Ice Shelf (2007), Wilkes Land, East Antarctica, and its subsequent evolution. Journal of Glaciology, 2021, 67, 933-951.	1.1	13
213	Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties. Cryosphere, 2021, 15, 2683-2699.	1.5	6
214	Future Projections of Petermann Glacier Under Ocean Warming Depend Strongly on Friction Law. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005921.	1.0	15
215	Bathymetry data and water column profiles in the shallow waters of Langhovde in Lützow-Holm Bay, East Antarctica. Polar Science, 2021, 28, 100650.	0.5	5
216	Contrasting Response of West and East Antarctic Ice Sheets to Glacial Isostatic Adjustment. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006003.	1.0	10
217	Public understanding of climate change-related sea-level rise. PLoS ONE, 2021, 16, e0254348.	1.1	14
219	PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries. Geoscientific Model Development, 2021, 14, 5285-5305.	1.3	0
220	An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3. Geoscientific Model Development, 2021, 14, 5107-5124.	1.3	2
221	Modeling the Greenland englacial stratigraphy. Cryosphere, 2021, 15, 4539-4556.	1.5	2
222	Iceâ€Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica. Journal of Geophysical Research: Oceans, 2017, 122, 10206-10224.	1.0	35
223	On the Use of Electromagnetics for Earth Imaging of the Polar Regions. Surveys in Geophysics, 2020, 41, 5-45.	2.1	17
224	Effect of <scp>l</scp> -Tryptophan in Promoting the Kinetics of Carbon Dioxide Hydrate Formation. Energy & Fuels, 2021, 35, 649-658.	2.5	55
225	Antarctic model raises prospect of unstoppable ice collapse. Nature, 2016, 531, 562-562.	13.7	1
226	Coral Reefs: Challenges, Opportunities and Evolutionary Strategies for Surviving Climate Change in the Caribbean. Journal of Mason Graduate Research, 2016, 3, 71.	0.0	1

#	Article	IF	CITATIONS
227	Semi-equilibrated global sea-level change projections for the next 10 000 years. Earth System Dynamics, 2020, 11, 953-976.	2.7	16
228	A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change. Earth System Science Data, 2020, 12, 3341-3356.	3.7	26
229	Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1). Geoscientific Model Development, 2020, 13, 6481-6500.	1.3	3
230	Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics. Cryosphere, 2016, 10, 2317-2328.	1.5	13
231	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	1.5	198
232	Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica. Cryosphere, 2020, 14, 4021-4037.	1.5	17
233	The Antarctic Ice Sheet: A Paleoclimate Modeling Perspective. Oceanography, 2020, 33, .	0.5	15
235	Antarctica Ice Sheet Melt Detection Using a Machine Learning Algorithm Based on SMAP Microwave Radiometery. , 2021, , .		1
236	A New Geophysical Model Based Algorithm to Detcet Melt Events Over the Antractic Ice Sheet Using Smap Microwave Radiometry. , 2021, , .		0
237	Unprecedented threats to cities from multi-century sea level rise. Environmental Research Letters, 2021, 16, 114015.	2.2	14
238	Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica. Cryosphere, 2021, 15, 4675-4702.	1.5	10
239	The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Communications Earth & Environment, 2021, 2, .	2.6	17
240	Sequestering seawater on land: a water-based solution to global issues. F1000Research, 0, 5, 889.	0.8	0
241	Sequestering seawater on land: a water-based solution to global issues. F1000Research, 0, 5, 889.	0.8	1
242	Multi-component vertical seismic profiling and crosswell shooting to define Ross Ice Shelf Structure, Antarctica. , 2019, , .		0
243	Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz. Earth System Dynamics, 2020, 11, 1153-1194.	2.7	4
244	Past Antarctic ice sheet dynamics (PAIS) and implications for future sea-level change. , 2022, , 689-768.		6
245	Advances in numerical modelling of the Antarctic ice sheet. , 2022, , 199-218.		5

#	Article	IF	CITATIONS
246	Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies. , 2022, , 41-164.		3
247	Antarctic environmental change and ice sheet evolution through the Miocene to Pliocene $\hat{a} \in $ a perspective from the Ross Sea and George V to Wilkes Land Coasts. , 2022, , 389-521.		5
248	Multi entury Impacts of Ice Sheet Retreat on Sea Level and Ocean Tides in Hudson Bay. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015104.	1.0	3
249	Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation. Nature Communications, 2021, 12, 6683.	5.8	10
250	A Novel Approach to Map the Intensity of Surface Melting on the Antarctica Ice Sheet Using SMAP L-Band Microwave Radiometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 1724-1743.	2.3	8
251	Subglacial lakes and their changing role in a warming climate. Nature Reviews Earth & Environment, 2022, 3, 106-124.	12.2	54
252	Supporting a Resilience Observatory to Climate Risks in French Polynesia: From Valorization of Preexisting Data to Low-Cost Data Acquisition. Water (Switzerland), 2022, 14, 359.	1.2	4
253	CO ₂ Hydrate Formation Kinetics and Morphology Observations Using High-Pressure Liquid CO ₂ Applicable to Sequestration. Energy & Fuels, 2022, 36, 10627-10641.	2.5	19
254	Ice Sheet Surface and Subsurface Melt Water Discrimination Using Multiâ€Frequency Microwave Radiometry. Geophysical Research Letters, 2022, 49, .	1.5	5
255	Rapid ice sheet response to deglacial and Holocene paleoenvironmental changes in eastern Prydz Bay, East Antarctica. Quaternary Science Reviews, 2022, 280, 107401.	1.4	2
256	Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C). Scientific Drilling, 0, 30, 101-112.	1.0	2
257	Asymptotic analysis of subglacial plumes in stratified environments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	6
258	PISM-LakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model. Cryosphere, 2022, 16, 941-965.	1.5	5
260	Mass loss of the Antarctic ice sheet until the year 3000 under a sustained late-21st-century climate. Journal of Glaciology, 2022, 68, 605-617.	1.1	8
263	The ocean response to climate change guides both adaptation and mitigation efforts. Atmospheric and Oceanic Science Letters, 2022, 15, 100221.	0.5	8
264	Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?. Cryosphere, 2022, 16, 2009-2024.	1.5	4
265	Modeling the climate sensitivity of Patagonian glaciers and their responses to climatic change during the global last glacial maximum. Quaternary Science Reviews, 2022, 288, 107582.	1.4	6
269	CO2 hydrate stability in oceanic sediments under brine conditions. Energy, 2022, 256, 124625.	4.5	22

#	Article	IF	CITATIONS
270	Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters. Journal of Applied Remote Sensing, 2022, 16, .	0.6	3
271	Projected Changes of Surface Winds Over the Antarctic Continental Margin. Geophysical Research Letters, 2022, 49, .	1.5	9
272	Response of the East Antarctic Ice Sheet to past and future climate change. Nature, 2022, 608, 275-286.	13.7	40
273	Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 2022, 377, .	6.0	562
274	Quantifying Basal Roughness and Internal Layer Continuity Index of Ice Sheets by an Integrated Means with Radar Data and Deep Learning. Remote Sensing, 2022, 14, 4507.	1.8	2
275	A Highâ€End Estimate of Sea Level Rise for Practitioners. Earth's Future, 2022, 10, .	2.4	16
276	Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing. Cryosphere, 2022, 16, 4537-4552.	1.5	9
277	The Paris Agreement and Climate Justice: Inequitable Impacts of Sea Level Rise Associated With Temperature Targets. Earth's Future, 2022, 10, .	2.4	4
278	Regional sea-level highstand triggered Holocene ice sheet thinning across coastal Dronning Maud Land, East Antarctica. Communications Earth & Environment, 2022, 3, .	2.6	6
279	An ensemble of Antarctic deglacial simulations constrained by geological observations. Quaternary Science Reviews, 2022, 298, 107800.	1.4	3
280	Modeling the timing and extent of glaciations over southeastern Tibet during the last glacial stage. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 610, 111336.	1.0	2
281	The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond. , 2023, 1, .		4
295	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	9.0	10
296	The evolution of UK sea-level projections. Environmental Research Communications, 2023, 5, 032001.	0.9	3
297	On the Multiscale Oceanic Heat Transports Toward the Bases of the Antarctic Ice Shelves. , 2023, 2, .		0
298	Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years. Nature Communications, 2023, 14, .	5.8	3