Molecular adsorption at Pt(111). How accurate are DFT f

Physical Chemistry Chemical Physics 17, 28921-28930 DOI: 10.1039/c5cp04534g

Citation Report

#	Article	IF	CITATIONS
5	Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory. Journal of Chemical Physics, 2016, 144, 164112.	1.2	15
6	Electronic Structure of Iron Porphyrin Adsorbed to the Pt(111) Surface. Journal of Physical Chemistry C, 2016, 120, 29173-29181.	1.5	13
7	Systematic Error Estimation for Chemical Reaction Energies. Journal of Chemical Theory and Computation, 2016, 12, 2762-2773.	2.3	71
8	Controlling the Adsorption of Aromatic Compounds on Pt(111) with Oxygenate Substituents: From DFT to Simple Molecular Descriptors. Journal of Physical Chemistry Letters, 2016, 7, 2074-2079.	2.1	23
9	Electric Field Effects in Electrochemical CO ₂ Reduction. ACS Catalysis, 2016, 6, 7133-7139.	5.5	411
10	Co-adsorption of O ₂ and H ₂ O on Al(111) surface: a vdW-DFT study. RSC Advances, 2016, 6, 79836-79843.	1.7	14
11	Energies of Formation Reactions Measured for Adsorbates on Late Transition Metal Surfaces. Journal of Physical Chemistry C, 2016, 120, 25161-25172.	1.5	63
12	C ₂ H ₂ -Induced Surface Restructuring of Pd–Ag Catalysts: Insights from Theoretical Modeling. Journal of Physical Chemistry C, 2016, 120, 26320-26327.	1.5	26
13	Decomposition Mechanism of Anisole on Pt(111): Combining Single-Crystal Experiments and First-Principles Calculations. ACS Catalysis, 2016, 6, 8166-8178.	5.5	34
14	Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. Physical Chemistry Chemical Physics, 2016, 18, 31850-31861.	1.3	80
15	Local modification of intermolecular interactions at a sub-molecule level. Nanotechnology, 2016, 27, 415711.	1.3	2
16	Density functional theory with modified dispersion correction for metals applied to molecular adsorption on Pt(111). Physical Chemistry Chemical Physics, 2016, 18, 19118-19122.	1.3	20
17	Assessing a First-Principles Model of an Electrochemical Interface by Comparison with Experiment. Journal of Physical Chemistry C, 2016, 120, 5619-5623.	1.5	78
18	Perspective: On the active site model in computational catalyst screening. Journal of Chemical Physics, 2017, 146, 040901.	1.2	48
19	DFT-Based Method for More Accurate Adsorption Energies: An Adaptive Sum of Energies from RPBE and vdW Density Functionals. Journal of Physical Chemistry C, 2017, 121, 4937-4945.	1.5	80
20	Low-temperature activation of methane on the IrO ₂ (110) surface. Science, 2017, 356, 299-303.	6.0	244
21	Adsorption and Decomposition of a Lignin β-O-4 Linkage Model, 2-Phenoxyethanol, on Pt(111): Combination of Experiments and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 9889-9900.	1.5	16
22	A van der Waals DFT study of chain length dependence of alkanethiol adsorption on Au(111): physisorption vs. chemisorption. Physical Chemistry Chemical Physics, 2017, 19, 1 <u>3756-13766.</u>	1.3	23

CITATION REPORT

#	Article	IF	CITATIONS
23	Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions. Surface Science, 2017, 664, 8-15.	0.8	7
24	Modeling the Photochromism of S-Doped Sodalites Using DFT, TD-DFT, and SAC-CI Methods. Inorganic Chemistry, 2017, 56, 414-423.	1.9	18
25	Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111). Catalysis Science and Technology, 2017, 7, 5267-5283.	2.1	19
26	First Principle Study on the Adsorption of Hydrocarbon Chains Involved in Fischer–Tropsch Synthesis over Iron Carbides. Journal of Physical Chemistry C, 2017, 121, 25052-25063.	1.5	16
27	Coadsorption of Butadiene and Hydrogen on the (111) Surfaces of Pt and Pt2Sn Surface Alloy: Understanding the Cohabitation from First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 25152-25163.	1.5	14
28	The Positive Role of Hydrogen on the Dehydrogenation of Propane on Pt(111). ACS Catalysis, 2017, 7, 7495-7508.	5.5	95
29	Adsorption of Acetonitrile, Benzene, and Benzonitrile on Pt(111): Single Crystal Adsorption Calorimetry and Density Functional Theory. Journal of Physical Chemistry C, 2017, 121, 21354-21363.	1.5	14
30	Different catalytic behaviors of Pd and Pt metals in decalin dehydrogenation to naphthalene. Catalysis Science and Technology, 2017, 7, 3728-3735.	2.1	38
31	Comprehensive View of the Ligand–Gold Interface from First Principles. Chemistry of Materials, 2017, 29, 6908-6915.	3.2	59
32	A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers. Journal of Chemical Physics, 2017, 147, 054106.	1.2	31
33	Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate. Journal of Physical Chemistry C, 2017, 121, 28001-28006.	1.5	9
34	Surface Adsorption. , 2017, , 387-416.		4
35	Switch in Relative Stability between <i>cis</i> and <i>trans</i> 2-Butene on Pt(111) as a Function of Experimental Conditions: A Density Functional Theory Study. ACS Catalysis, 2018, 8, 3067-3075.	5.5	8
36	Insight into the support effect on the particle size effect of Pt/C catalysts in dehydrogenation. Journal of Catalysis, 2018, 360, 175-186.	3.1	78
37	Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts. ACS Catalysis, 2018, 8, 5038-5050.	5.5	152
38	Rotation and diffusion of naphthalene on Pt(111). Journal of Chemical Physics, 2018, 148, 124703.	1.2	3
39	Rational design of heterogeneous catalysts for biomass conversion – Inputs from computational chemistry. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 51-59.	3.2	17
40	Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity. Journal of the American Chemical Society, 2018, 140, 2812-2820.	6.6	131

~			-	
CI	TAT	ION	REPC	\mathbf{RT}

#	Article	IF	CITATIONS
41	Evaluating the Risk of C–C Bond Formation during Selective Hydrogenation of Acetylene on Palladium. ACS Catalysis, 2018, 8, 1662-1671.	5.5	65
42	Quantum chemical calculations to determine partitioning coefficients for HgCl2 on iron-oxide aerosols. Science of the Total Environment, 2018, 636, 580-587.	3.9	9
43	Computational predictive design for metal-decorated-graphene size-specific subnanometer to nanometer ORR catalysts. Catalysis Today, 2018, 312, 105-117.	2.2	13
44	Force Field for Water over Pt(111): Development, Assessment, and Comparison. Journal of Chemical Theory and Computation, 2018, 14, 3238-3251.	2.3	38
45	CO Adsorption Site Preference on Platinum: Charge Is the Essence. ACS Catalysis, 2018, 8, 3770-3774.	5.5	51
46	Theoretical Treatment of Surfaces in Equilibrium with Gases. , 2018, , 684-698.		1
47	Enhanced CO catalytic oxidation over an Au–Pt alloy supported on TiO ₂ nanotubes: investigation of the hydroxyl and Au/Pt ratio influences. Catalysis Science and Technology, 2018, 8, 6109-6122.	2.1	25
48	Theoretical Study on PdCu/CeO2-Catalyzed Water–Gas Shift Reaction: Crucial Role of the Metal/Ceria Interface and O2 Enhancement Effects. Journal of Physical Chemistry C, 2018, 122, 28868-28883.	1.5	12
49	Hydrogen adsorption on Pt(111) revisited from random phase approximation. Journal of Chemical Physics, 2018, 149, 164702.	1.2	24
50	Dissociation of CHD3 on Cu(111), Cu(211), and single atom alloys of Cu(111). Journal of Chemical Physics, 2018, 149, 224701.	1.2	17
51	CO Adsorption on Pt(111): From Isolated Molecules to Ordered High-Coverage Structures. ACS Catalysis, 2018, 8, 10225-10233.	5.5	38
52	Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111) and Pt(211). International Journal of Hydrogen Energy, 2018, 43, 19575-19588.	3.8	19
53	Structure–Activity Relationships in Alkane Dehydrogenation on γ-Al ₂ O ₃ : Site-Dependent Reactions. ACS Catalysis, 2018, 8, 11570-11578.	5.5	75
54	Role of Hydroxyl Groups in Low-Temperature CO Catalytic Oxidation over Zn ₄ Si ₂ O ₇ (OH) ₂ Nanowire-Supported Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 25456-25466.	1.5	2
55	Suppression by Pt of CO adsorption and dissociation and methane formation on Fe5C2(100) surfaces. Physical Chemistry Chemical Physics, 2018, 20, 25246-25255.	1.3	9
56	Adsorption of Monocyclic Aromatics on Transition Metal Surfaces: Insight into Variation of Binding Strength from First-Principles. Journal of Physical Chemistry C, 2018, 122, 21897-21909.	1.5	39
57	Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(1 0 0) and Ni(1 0 0). Journal of Catalysis, 2018, 363, 197-203.	3.1	3
58	Extracting Knowledge from Data through Catalysis Informatics. ACS Catalysis, 2018, 8, 7403-7429.	5.5	179

#	Article	IF	CITATIONS
59	Theoretical investigation on the interaction between Rh ^{III} octaethylporphyrin and a graphite basal surface: a comparison study of DFT, DFT-D, and AFM. Physical Chemistry Chemical Physics, 2018, 20, 20235-20246.	1.3	14
60	Water dissociation on K ₂ O-pre-adsorbed transition metals: a systematic theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 19850-19859.	1.3	7
61	Distinct Differences in Peptide Adsorption on Palladium and Gold: Introducing a Polarizable Model for Pd(111). Journal of Physical Chemistry C, 2018, 122, 19625-19638.	1.5	7
62	Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source. Catalysis Science and Technology, 2018, 8, 4318-4331.	2.1	51
63	Deactivation reactions on a commercial lean nox-trap - Effect of hydrocarbon nature, concentration and operation temperature. Applied Catalysis A: General, 2019, 585, 117178.	2.2	3
64	Adsorption on transition metal surfaces: Transferability and accuracy of DFT using the ADS41 dataset. Physical Review B, 2019, 100, .	1.1	51
65	Outstanding Energy Exchange between Organic Molecules and Metal Surfaces: Decomposition Kinetics of Excited Vinyl Derivatives Driven by the Interaction with a Cu(111) Surface. Journal of Physical Chemistry C, 2019, 123, 19625-19636.	1.5	6
66	Incisive study on stability and vibrational properties of NOx (x = 1 to 3) over Pt surfaces: A comparative analysis. Surface Science, 2019, 690, 121467.	0.8	8
67	Evaluating Thermal Corrections for Adsorption Processes at the Metal/Gas Interface. Journal of Physical Chemistry C, 2019, 123, 28828-28835.	1.5	17
68	Size, Composition, and Support-Doping Effects on Oxygen Reduction Activity of Platinum-Alloy and on Non-platinum Metal-Decorated-Graphene Nanocatalysts. Frontiers in Chemistry, 2019, 7, 610.	1.8	3
69	Adhesion Energies of Solvent Films to Pt(111) and Ni(111) Surfaces by Adsorption Calorimetry. ACS Catalysis, 2019, 9, 11819-11825.	5.5	14
70	Reshaping Dynamics of Gold Nanoparticles under H ₂ and O ₂ at Atmospheric Pressure. ACS Nano, 2019, 13, 2024-2033.	7.3	32
71	Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks. Journal of Chemical Theory and Computation, 2019, 15, 5614-5627.	2.3	34
72	Predicting Adsorption Energies Using Multifidelity Data. Journal of Chemical Theory and Computation, 2019, 15, 5588-5600.	2.3	17
73	Dynamical Study of the Dissociative Chemisorption of CHD ₃ on Pd(111). Journal of Physical Chemistry C, 2019, 123, 24013-24023.	1.5	11
74	Doped graphene and Ag(1â€ ⁻ 1â€ ⁻ 1) hybrid material as fuel cell electrode: New insights on interfacial features and oxygen adsorption from dispersion-corrected density functional theory. Computational Materials Science, 2019, 169, 109141.	1.4	2
75	Assessment of van der Waals inclusive density functional theory methods for adsorption and selective dehydrogenation of formic acid on Pt(111) surface. Physical Chemistry Chemical Physics, 2019, 21, 21049-21056.	1.3	23
76	Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis. ACS Catalysis, 2019, 9, 6624-6647.	5.5	134

#	Article	IF	CITATIONS
77	The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene. Journal of Molecular Modeling, 2019, 25, 180.	0.8	6
78	Cooperativity and coverage dependent molecular desorption in self-assembled monolayers: computational case study with coronene on Au(111) and HOPG. Physical Chemistry Chemical Physics, 2019, 21, 10505-10513.	1.3	11
79	Atomistic Models for Highlyâ€Dispersed PtSn/γâ€Al ₂ O ₃ Catalysts: Ductility and Dilution Affect the Affinity for Hydrogen. ChemCatChem, 2019, 11, 3941-3951.	1.8	19
80	The Pressure Gap for Thiols: Methanethiol Self-Assembly on Au(111) from Vacuum to 1 bar. Journal of Physical Chemistry C, 2019, 123, 12382-12389.	1.5	7
81	Atomically Dispersed Pt ₁ –Polyoxometalate Catalysts: How Does Metal–Support Interaction Affect Stability and Hydrogenation Activity?. Journal of the American Chemical Society, 2019, 141, 8185-8197.	6.6	147
82	Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory. Accounts of Chemical Research, 2019, 52, 984-993.	7.6	38
83	Interactions between the Aryldiazonium Cations and Graphene Oxide: A DFT Study. Journal of Chemistry, 2019, 2019, 1-5.	0.9	63
84	Probing the Effect of Surface Strain on CO Binding to Pd Thin Films. Journal of Physical Chemistry C, 2019, 123, 12255-12260.	1.5	4
85	Accurate Probabilities for Highly Activated Reaction of Polyatomic Molecules on Surfaces Using a High-Dimensional Neural Network Potential: CHD ₃ + Cu(111). Journal of Physical Chemistry Letters, 2019, 10, 1763-1768.	2.1	56
86	Electrochemical modification of platinum and glassy carbon surfaces with pyridine layers and their use as complexing agents for copper (II) ions. Open Chemistry, 2019, 17, 722-727.	1.0	3
87	Ethylene adsorption on Ag(111), Rh(111) and Ir(111) by (meta)-GGA based density functional theory calculations. Chinese Journal of Chemical Physics, 2019, 32, 437-443.	0.6	9
88	Efficient and accurate description of adsorption in zeolites. Journal of Chemical Physics, 2019, 151, 234108.	1.2	15
89	Theoretical insight into the origin of the electrochemical promotion of ethylene oxidation on ruthenium oxide. Catalysis Science and Technology, 2019, 9, 5915-5926.	2.1	26
90	Dehydrogenation mechanisms of methyl-cyclohexane on γ-Al2O3 supported Pt13: Impact of cluster ductility. Journal of Catalysis, 2019, 370, 118-129.	3.1	47
91	Energy Decomposition Analysis for Metal Surface–Adsorbate Interactions by Block Localized Wave Functions. Journal of Chemical Theory and Computation, 2019, 15, 265-275.	2.3	13
92	An AIMD study of dissociative chemisorption of methanol on Cu(111) with implications for formaldehyde formation. Journal of Chemical Physics, 2019, 150, 024706.	1.2	9
93	Selective hydrogenation of 1,3-butadiene over single Pt1/Cu(1 1 1) model catalysts: A DFT study. Applied Surface Science, 2019, 466, 946-955.	3.1	23
94	Can microsolvation effects be estimated from vacuum computations? A case-study of alcohol decomposition at the H ₂ O/Pt(111) interface. Physical Chemistry Chemical Physics, 2019, 21, 5368-5377.	1.3	25

#	Article	IF	CITATIONS
95	Developments in the Atomistic Modelling of Catalytic Processes for the Production of Platform Chemicals from Biomass. ChemCatChem, 2019, 11, 357-367.	1.8	3
96	Global Optimization of Adsorbate Covered Supported Cluster Catalysts: The Case of Pt ₇ H ₁₀ CH ₃ on αâ€Al ₂ O ₃ . ChemCatChem, 2020, 12, 762-770.	1.8	11
97	A coverage dependent study of the adsorption of pyridine on the (111) coinage metal surfaces. Surface Science, 2020, 693, 121525.	0.8	12
98	Fundamental understanding of oxygen content in activated carbon on acetone adsorption desorption. Applied Surface Science, 2020, 508, 145211.	3.1	39
99	Adhesion of lubricant on aluminium through adsorption of additive head-groups on γ-alumina: A DFT study. Tribology International, 2020, 145, 106140.	3.0	15
100	A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental, 2020, 264, 118495.	10.8	26
101	Electric-Field-Assisted Modulation of Surface Thermochemistry. ACS Catalysis, 2020, 10, 12867-12880.	5.5	23
102	Reproducibility of potential energy surfaces of organic/metal interfaces on the example of PTCDA on Ag(111). Journal of Chemical Physics, 2020, 153, 104701.	1.2	12
103	A Comprehensive Study of the Bridge Site and Substrate Relaxation Asymmetry for Methanethiol Adsorption on Au(111) at Low Coverage. ACS Omega, 2020, 5, 20874-20881.	1.6	2
104	Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences. Science Advances, 2020, 6, .	4.7	26
105	Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chemical Reviews, 2020, 120, 12834-12872.	23.0	136
106	Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations. Journal of Chemical Theory and Computation, 2020, 16, 6539-6549.	2.3	34
107	Optimal Packing of CO at a High Coverage on Pt(100) and Pt(111) Surfaces. ACS Catalysis, 2020, 10, 9533-9544.	5.5	21
108	Effects of van der Waals Dispersion Interactions in Density Functional Studies of Adsorption, Catalysis, and Tribology on Metals. Journal of Physical Chemistry C, 2020, 124, 16926-16942.	1.5	19
109	Beyond the Reverse Horiuti–Polanyi Mechanism in Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 2020, 10, 14887-14902.	5.5	44
110	Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructures. Nanoscale, 2020, 12, 22658-22667.	2.8	13
111	Water adlayers on noble metal surfaces: Insights from energy decomposition analysis. Journal of Chemical Physics, 2020, 153, 054703.	1.2	10
112	Palladium/Stannic Oxide Interfacial Chemistry Promotes Hydrogen Oxidation Reactions in Alkaline Medium. ChemElectroChem, 2020, 7, 4562-4571.	1.7	19

#	Article	IF	CITATIONS
113	CheKiPEUQ Intro 1: Bayesian Parameter Estimation Considering Uncertainty or Error from both Experiments and Theory**. ChemCatChem, 2020, 12, 5385-5400.	1.8	23
114	Ten Facets, One Force Field: The GAL19 Force Field for Water–Noble Metal Interfaces. Journal of Chemical Theory and Computation, 2020, 16, 4565-4578.	2.3	26
115	A quantum chemical study of substituent effects on CN bonds in aryl isocyanide molecules adsorbed on the Pt surface. Physical Chemistry Chemical Physics, 2020, 22, 12200-12208.	1.3	4
116	Comparing the performance of density functionals in describing the adsorption of atoms and small molecules on Ni(111). Surface Science, 2020, 700, 121675.	0.8	8
117	Multiscale Study of the Mechanism of Catalytic CO ₂ Hydrogenation: Role of the Ni(111) Facets. ACS Catalysis, 2020, 10, 8077-8089.	5.5	43
118	Atomic and molecular adsorption on single platinum atom at the graphene edge: A density functional theory study. Journal of Chemical Physics, 2020, 152, 104707.	1.2	10
119	Configuration interaction approaches for solving quantum impurity models. Journal of Chemical Physics, 2020, 152, 064105.	1.2	3
120	Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an interesting Ag switch. Green Chemistry, 2020, 22, 1432-1442.	4.6	38
121	Computational screening of transition metal/pâ€block hybrid electrocatalysts for CO ₂ reduction. Journal of Computational Chemistry, 2020, 41, 1384-1394.	1.5	2
122	Enhanced carrier mobility and tunable electronic properties in α-tellurene monolayer via an α-tellurene and h-BN heterostructure. Physical Chemistry Chemical Physics, 2020, 22, 6434-6440.	1.3	13
123	Chemisorption characteristics of pyridine on Rh, Pd, Pt and Ni(1 1 1). Electronic Structure, 2020, 2, 015001.	1.0	2
124	A DFT Investigation of the Dehydrogenation of Tetrahydropyrrole on Pt(111). Topics in Catalysis, 2020, 63, 688-699.	1.3	2
125	Kinetics of low-temperature methane activation on IrO2(1Â1Â0): Role of local surface hydroxide species. Journal of Catalysis, 2020, 383, 181-192.	3.1	29
126	Revealing the Interplay Between Covalent and Non-Covalent Interactions Driving the Adsorption of Monosubstituted Thiourea Derivatives on the Au(111) Surface. Journal of Physical Chemistry C, 2020, 124, 9924-9939.	1.5	2
127	First-principles microkinetic analysis of dehydrogenation of cyclohexene on the Pt/Cu/Pt (111) surface. Journal of Molecular Modeling, 2020, 26, 89.	0.8	3
128	Catalysis at Metal/Oxide Interfaces: Density Functional Theory and Microkinetic Modeling of Water Gas Shift at Pt/MgO Boundaries. Topics in Catalysis, 2020, 63, 673-687.	1.3	17
129	Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal–organic frameworks and in acidic zeolites. Physical Chemistry Chemical Physics, 2020, 22, 7577-7585.	1.3	30
130	Adsorption Energies of Oxygenated Aromatics and Organics on Rhodium and Platinum in Aqueous Phase. ACS Catalysis, 2020, 10, 4929-4941.	5.5	37

#	Article	IF	CITATIONS
131	IRMOF â€8: Theoretical evaluation of aluminum doping on hydrogen, methane, and hydrogen sulfide adsorption. International Journal of Quantum Chemistry, 2021, 121, e26510.	1.0	6
132	Atomistic modeling of electrocatalysis: Are we there yet?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1499.	6.2	79
133	Catalytic thermodynamic model for nanocluster adsorbates. Catalysis Today, 2021, 360, 157-164.	2.2	5
134	DFT benchmark studies on representative species and poisons of methane steam reforming on Ni(111). Physical Chemistry Chemical Physics, 2021, 23, 15601-15612.	1.3	4
135	Adsorption of toxic gases on borophene: surface deformation links to chemisorptions. RSC Advances, 2021, 11, 18279-18287.	1.7	21
136	Computational modelling of effects of surface coverage on adsorption of benzene on Pt(111) surface. AIP Conference Proceedings, 2021, , .	0.3	0
137	Moving from Fundamental Knowledge of Kinetics and Mechanisms on Surfaces to Prediction of Catalyst Performance in Reactors. ACS Catalysis, 2021, 11, 3048-3066.	5.5	12
139	Improving and Understanding the Hydrogen Evolving Activity of a Cobalt Dithiolene Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 16384-16395.	4.0	32
140	Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nature Communications, 2021, 12, 1549.	5.8	82
141	Selectivity of the First Two Glycerol Dehydrogenation Steps Determined Using Scaling Relationships. ACS Catalysis, 2021, 11, 3487-3497.	5.5	19
142	Designing Active Sites for Structure-Sensitive Reactions via the Generalized Coordination Number: Application to Alcohol Dehydrogenation. Journal of Physical Chemistry C, 2021, 125, 10370-10377.	1.5	6
143	Gibbs Energy of Hydrogen Adsorption on Pt Surface by Machine Learning Potential and Metadynamics. Chemistry Letters, 2021, 50, 1329-1332.	0.7	1
144	Unveiling the anisotropic behavior of ultrafast electron transfer at the metal/organic interface. Applied Surface Science, 2021, 554, 149311.	3.1	1
145	Dynamics and Site Isolation: Keys to High Propane Dehydrogenation Performance of Silica-Supported PtGa Nanoparticles. Jacs Au, 2021, 1, 1445-1458.	3.6	32
146	Uncertainty Quantification and Error Propagation in the Enthalpy and Entropy of Surface Reactions Arising from a Single DFT Functional. Journal of Physical Chemistry C, 2021, 125, 18187-18196.	1.5	8
147	Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185.	7.3	95
148	Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces. Surface Science Reports, 2021, 76, 100541.	3.8	31
149	Isotope effect of methane adsorbed on fcc metal (1 1 1) surfaces. Chemical Physics Letters, 2021, 780, 138943.	1.2	1

CITATION REPORT

#	Article	IF	CITATIONS
150	Simulation of metal-supported metal-Nanoislands: A comparison of DFT methods. Surface Science, 2021, 712, 121889.	0.8	7
151	Rational design of intermetallic compound catalysts for propane dehydrogenation from a descriptor-based microkinetic analysis. Journal of Catalysis, 2021, 404, 32-45.	3.1	15
152	The catalytic decomposition of nitrous oxide and the NO + CO reaction over Ni/Cu dilute and single atom alloy surfaces: first-principles microkinetic modelling. Catalysis Science and Technology, 2021, 11, 3681-3696.	2.1	12
153	What does graphitic carbon nitride really look like?. Physical Chemistry Chemical Physics, 2021, 23, 2853-2859.	1.3	12
154	Understanding the influence of the composition of the Ag Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 17339-17353.	3.8	29
155	Cobalt Carbide from Co–Mn Layered Double Hydroxide: Highly Efficient Catalyst for Toluene Pyrolysis. Energy & Fuels, 2020, 34, 2221-2229.	2.5	6
156	Thermokinetic and Spectroscopic Mapping of Carbon Monoxide Adsorption on Highly Dispersed Pt/γ-Al ₂ O ₃ . ACS Catalysis, 2021, 11, 13280-13293.	5.5	17
157	Adsorption of benzene on defective Pt surfaces: A DFT study. Surface Science, 2022, 716, 121959.	0.8	3
158	Singly Dispersed Bimetallic Sites as Stable and Efficient Single-Cluster Catalysts for Activating N ₂ and CO ₂ . Journal of Physical Chemistry C, 2021, 125, 27192-27198.	1.5	8
159	Adsorption of CH4 on the Pt(111) surface: Random phase approximation compared to density functional theory. Journal of Chemical Physics, 2021, 155, 174702.	1.2	10
160	Reinvestigating oxygen adsorption on Ag(111) by using strongly constrained and appropriately normed semi-local density functional with the revised Vydrov van Voorhis van der Waals force correction. Journal of Chemical Physics, 2021, 155, 234704.	1.2	6
161	Exfoliating silica bilayers via intercalation at the silica/transition metal interface. Nanotechnology, 2022, 33, 135702.	1.3	0
162	Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.	1.4	2
163	Assessing density functionals for describing methane dissociative chemisorption on Pt(110)-(2×1) surface. Chinese Journal of Chemical Physics, 2021, 34, 883-895.	0.6	2
164	Possibility of Chemisorption for Benzene on Stepped Surface of Coinage Metals. Surface Science, 2022, , 122084.	0.8	0
165	Impact of Intrinsic Density Functional Theory Errors on the Predictive Power of Nitrogen Cycle Electrocatalysis Models. ACS Catalysis, 2022, 12, 4784-4791.	5.5	20
166	Mechanistic Investigation and Free Energies of the Reactive Adsorption of Ethanol at the Alumina/Water Interface. Journal of Physical Chemistry C, 2022, 126, 7446-7455.	1.5	8
168	Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys. Chemical Science, 2022, 13, 6385-6396.	3.7	9

CITATION REPORT

#	Article	IF	CITATIONS
169	Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 2022, 122, 10651-10674.	23.0	39
170	Phthalo-carbonitride nanosheets as excellent N ₂ reduction reaction electrocatalysts: a first-principles study. Physical Chemistry Chemical Physics, 2022, 24, 14472-14478.	1.3	5
171	Hubbard <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>U</mml:mi> parameters for transition metals from first principles. Physical Review B, 2022, 105, .</mml:math 	1.1	23
172	Understanding the effect of the exchange-correlation functionals on methane and ethane formation over ruthenium catalysts. Chinese Journal of Chemical Physics, 0, , .	0.6	1
173	Uncovering strong π-metal interactions on Ag and Au nanosurfaces under ambient conditions via in-situ surface-enhanced Raman spectroscopy. CheM, 2022, 8, 2514-2528.	5.8	13
174	Surface Coverage as an Important Parameter for Predicting Selectivity Trends in Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 11927-11936.	1.5	9
175	Free Energy and Solvation Structure Analysis for Adsorption of Aromatic Molecules at Pt(111)/Water Interface by 3D-RISM Theory. Chemistry Letters, 2022, 51, 791-795.	0.7	1
176	Verification of the Accuracy and Efficiency of Dispersion-Corrected Density Functional Theory Methods to Describe the Lattice Structure and Energy of Energetic Cocrystals. Crystal Growth and Design, 2022, 22, 5307-5321.	1.4	5
177	Dynamical Study of Adsorbate-Induced Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. Journal of the American Chemical Society, 2022, 144, 15132-15142.	6.6	13
178	Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt. Nature Communications, 2022, 13, .	5.8	35
179	Facilitating Hydrogen Dissociation over Dilute Nanoporous Ti–Cu Catalysts. Journal of the American Chemical Society, 2022, 144, 16778-16791.	6.6	10
180	Hydrogen Dissociation Controls 1-Hexyne Selective Hydrogenation on Dilute Pd-in-Au Catalysts. ACS Catalysis, 2022, 12, 13321-13333.	5.5	6
181	PtO _x Cl _y (OH) _z (H ₂ O) _n Complexes under Oxidative and Reductive Conditions: Impact of the Level of Theory on Thermodynamic Stabilities. ChemPhysChem, 2023, 24, .	1.0	3
182	Beyond single-crystal surfaces: The GAL21 water/metal force field. Journal of Chemical Physics, 2022, 157, .	1.2	2
183	A systematic theoretical study the active sites of potassium promoter on the activity of water-gas shift reaction over Pt(1 1 1). Applied Surface Science, 2023, 611, 155638.	3.1	5
184	Dual-Site Model for <i>Ab Initio</i> Calculations of Gibbs Free Energies and Enthalpies of Adsorption: Methane in Zeolite Mobile Five (H-MFI). Journal of Physical Chemistry Letters, 2022, 13, 11595-11600.	2.1	3
185	Study of physical adsorption of aromatic molecules on hydroxylated α-SiO2 (001) surface using dispersion-corrected density functional theory. Computational and Theoretical Chemistry, 2022, , 113991.	1.1	1
186	Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. Small, 2023, 19, .	5.2	8

#	Article	IF	CITATIONS
187	Bifunctional Ultrathin RhRu _{0.5} â€Alloy Nanowire Electrocatalysts for Hydrazineâ€Assisted Water Splitting. Advanced Materials, 2023, 35, .	11.1	27
188	Two-dimensional acetate-based light lanthanide fluoride nanomaterials: An ultrahigh adsorption capacity and salt-tolerance endowed by surface acetates exchange. Applied Surface Science, 2023, 621, 156842.	3.1	2
189	Multiscale modeling reveals aluminum nitride as an efficient propane dehydrogenation catalyst. Catalysis Science and Technology, 2023, 13, 3527-3536.	2.1	2
194	Application of Molecular Simulation Methods in Treating Intrinsic Structures of Energetic Materials. , 2023, , 41-113.		1

207 Artificial intelligence in catalysis. , 2024, , 167-204.