Genome sequence of the Asian Tiger mosquito, <i>Aede into its biology, genetics, and evolution

Proceedings of the National Academy of Sciences of the Unite 112, E5907-15

DOI: 10.1073/pnas.1516410112

Citation Report

#	Article	IF	CITATIONS
1	Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenetic and Genome Research, 2015, 147, 217-239.	1.1	119
2	Wnt7b gene expression and functional analysis in the mussel Mytilus coruscus. Genetics and Molecular Research, 2016, 15, .	0.2	1
3	The Worldwide Spread of the Tiger Mosquito as Revealed by Mitogenome Haplogroup Diversity. Frontiers in Genetics, 2016, 7, 208.	2.3	54
4	PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes. PLoS Pathogens, 2016, 12, e1006017.	4.7	151
5	Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector <i>Anopheles sinensis</i> (Diptera: Culicidae). Insect Science, 2016, 23, 366-376.	3.0	30
6	The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus. Scientific Reports, 2016, 6, 24707.	3.3	60
7	Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology, 2016, 133, 1-12.	3.6	265
8	Identification of Aadnr1 , a novel gene related to innate immunity and apoptosis in Aedes albopictus. Gene, 2016, 587, 18-26.	2.2	4
9	DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology, 2016, 498, 164-171.	2.4	41
10	Molecular Physiology of Mosquito Diapause. Advances in Insect Physiology, 2016, , 329-361.	2.7	20
11	Developmental piRNA profiles of the invasive vector mosquito Aedes albopictus. Parasites and Vectors, 2016, 9, 524.	2.5	38
12	Functions of Small RNAs in Mosquitoes. Advances in Insect Physiology, 2016, 51, 189-222.	2.7	18
13	Identification of AaCASPS7, an effector caspase in Aedes albopictus. Gene, 2016, 593, 117-125.	2.2	4
14	A mosquito sperm's journey from male ejaculate to egg: Mechanisms, molecules, and methods for exploration. Molecular Reproduction and Development, 2016, 83, 897-911.	2.0	52
15	Sex Determination in Mosquitoes. Advances in Insect Physiology, 2016, , 37-66.	2.7	18
16	Comparative performance of transcriptome assembly methods for non-model organisms. BMC Genomics, 2016, 17, 523.	2.8	47
17	Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasites and Vectors, 2016, 9, 363.	2.5	33
18	Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity, 2016, 117, 125-134.	2.6	94

		CITATION REPORT		
#	Article		IF	Citations
19	Disease vectors in the era of next generation sequencing. Genome Biology, 2016, 17, 95		8.8	25
20	Photoperiodic Diapause and the Establishment of <i>Aedes albopictus </i> (Diptera: Culicie America. Journal of Medical Entomology, 2016, 53, 1013-1023.	dae) in North	1.8	94
21	Control of Mosquito-Borne Infectious Diseases: Sex and Gene Drive. Trends in Parasitolog 219-229.	şy, 2016, 32,	3.3	106
22	Rapid Spread of Zika Virus in The Americas - Implications for Public Health Preparedness f Gatherings at the 2016 Brazil Olympic Games. International Journal of Infectious Disease 11-15.	or Mass s, 2016, 44,	3.3	306
23	Discovery of flavivirus-derived endogenous viral elements in <i>Anopheles</i> mosquito g supports the existence of <i>Anopheles</i> -associated insect-specific flaviviruses. Virus E 2017, 3, vew035.	enomes volution,	4.9	43
24	Functional characterization of the active Mutator-like transposable element, Muta1 from mosquito Aedes aegypti. Mobile DNA, 2017, 8, 1.	the	3.6	24
25	Aedes-Borne Virusâ \in "Mosquito Interactions: Mass Spectrometry Strategies and Findings and Zoonotic Diseases, 2017, 17, 361-375.	Vector-Borne	1.5	6
26	Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved Infection. Journal of Virology, 2017, 91, .	in Zika Virus	3.4	47
27	Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. MSpl	nere, 2017, 2, .	2.9	92
28	Proteomic analysis of a mosquito host cell response to persistent Wolbachia infection. R Microbiology, 2017, 168, 609-625.	esearch in	2.1	15
29	Highâ€ŧhroughput sequencing of transposable element insertions suggests adaptive evo invasive Asian tiger mosquito towards temperate environments. Molecular Ecology, 2017	lution of the 7, 26, 3968-3981.	3.9	34
30	Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or someth Current Opinion in Insect Science, 2017, 22, 45-53.	ling more?.	4.4	45
31	Genomic features of the damselfly <i>Calopteryx splendens</i> representing a sister clac insect orders. Genome Biology and Evolution, 2017, 9, evx006.	e to most	2.5	53
32	Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (<i>Aedes aegypti 2017, 206, 2119-2137.</i>). Genetics,	2.9	22
33	Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genome Virology, 2017, 91, .	s. Journal of	3.4	81
34	Wide-scale analysis of protein expression in head and thorax of Aedes albopictus females Insect Physiology, 2017, 99, 33-38.	. Journal of	2.0	0
35	The Climate Range Expansion of Aedes albopictus (Diptera: Culicidae) in Asia Inferred Fro Distribution of Albopictus Subgroup Species of Aedes (Stegomyia). Journal of Medical En 2017, 54, 1615-1625.	m the tomology,	1.8	16
36	Population genomics of the Asian tiger mosquito, <i>Aedes albopictus</i> : insights into two worldwide invasion. Ecology and Evolution, 2017, 7, 10143-10157.	he recent	1.9	89

~		_	
CITAT	ON		DT
CHAD		NLFU	IC I

#	ARTICLE	IF	CITATIONS
37	Genomics of natural populations: Evolutionary forces that establish and maintain gene arrangements in <i>Drosophila pseudoobscura</i> . Molecular Ecology, 2017, 26, 6539-6562.	3.9	37
38	Complete mitochondrial genomes of Anopheles stephensi and An. dirus and comparative evolutionary mitochondriomics of 50 mosquitoes. Scientific Reports, 2017, 7, 7666.	3.3	47
39	Damage-Induced Cell Regeneration in the Midgut of Aedes albopictus Mosquitoes. Scientific Reports, 2017, 7, 44594.	3.3	33
40	MicroRNAs are differentially abundant during <i>Aedes albopictus</i> diapause maintenance but not diapause induction. Insect Molecular Biology, 2017, 26, 721-733.	2.0	44
41	Proteomics technique opens new frontiers in mobilome research. Mobile Genetic Elements, 2017, 7, 1-9.	1.8	4
42	The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the Aedes aegypti Genome. Current Biology, 2017, 27, 3511-3519.e7.	3.9	167
43	Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon, 2017, 136, 6-14.	1.6	23
44	Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics, 2017, 18, 101.	2.8	49
45	Histone-derived piRNA biogenesis depends on the ping-pong partners Piwi5 and Ago3 inAedes aegypti. Nucleic Acids Research, 2017, 45, gkw1368.	14.5	29
46	Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics, 2017, 18, 512.	2.8	138
47	Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin. PLoS Neglected Tropical Diseases, 2017, 11, e0005533.	3.0	36
48	Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Neglected Tropical Diseases, 2017, 11, e0006009.	3.0	40
49	From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes. BMC Evolutionary Biology, 2017, 17, 262.	3.2	39
50	Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus. BMC Genomics, 2017, 18, 770.	2.8	30
51	Targeting Dengue Virus Replication in Mosquitoes. , 2017, , 201-217.		5
53	Insect Virus Discovery by Metagenomic and Cell Culture-Based Approaches. Methods in Molecular Biology, 2018, 1746, 197-213.	0.9	6
54	Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus. Infection, Genetics and Evolution, 2018, 58, 145-156.	2.3	29
55	Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. GigaScience, 2018, 7, 1-13.	6.4	51

	CHAHON R		
#	ARTICLE Antiviral systems in vector mosquitoes. Developmental and Comparative Immunology, 2018, 83, 34-43.	IF	Citations
56	Antivital systems in vector mosquitoes. Developmental and Comparative initiatiology, 2016, 65, 54-45.	2.3	13
57	The immune strategies of mosquito Aedes aegypti against microbial infection. Developmental and Comparative Immunology, 2018, 83, 12-21.	2.3	44
58	Complete mitogenome of Anopheles sinensis and mitochondrial insertion segments in the nuclear genomes of 19 mosquito species. PLoS ONE, 2018, 13, e0204667.	2.5	10
59	Membrane Proteins Mediating Reception and Transduction in Chemosensory Neurons in Mosquitoes. Frontiers in Physiology, 2018, 9, 1309.	2.8	16
60	The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti. Parasites and Vectors, 2018, 11, 549.	2.5	6
61	Photoperiodic diapause in a subtropical population of Aedes albopictus in Guangzhou, China: optimized field-laboratory-based study and statistical models for comprehensive characterization. Infectious Diseases of Poverty, 2018, 7, 89.	3.7	13
62	The C-Type Lectin Domain Gene Family in Aedes aegypti and Their Role in Arbovirus Infection. Viruses, 2018, 10, 367.	3.3	29
63	Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae). Frontiers in Physiology, 2018, 9, 107.	2.8	46
64	piRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues. Viruses, 2018, 10, 213.	3.3	49
65	Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. Journal of Virology, 2018, 92, .	3.4	19
66	Population genomics of Culiseta melanura, the principal vector of Eastern equine encephalitis virus in the United States. PLoS Neglected Tropical Diseases, 2018, 12, e0006698.	3.0	5
67	Comparative genomics of chemosensory protein genes (CSPs) in twenty-two mosquito species (Diptera:) Tj ETÇ)q1 <u>1</u> 0.78	4314 rgBT /
68	Recurrent Amplification of the Heterochromatin Protein 1 (HP1) Gene Family across Diptera. Molecular Biology and Evolution, 2018, 35, 2375-2389.	8.9	12
69	Vector biology meets disease control: using basic research to fight vector-borne diseases. Nature Microbiology, 2019, 4, 20-34.	13.3	189
70	Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in southern Europe. PLoS Neglected Tropical Diseases, 2019, 13, e0007554.	3.0	25
71	Cold adaptation in the Asian tiger mosquito's native range precedes its invasion success in temperate regions. Evolution; International Journal of Organic Evolution, 2019, 73, 1793-1808.	2.3	28
72	Arboviruses and the Challenge to Establish Systemic and Persistent Infections in Competent Mosquito Vectors: The Interaction With the RNAi Mechanism. Frontiers in Physiology, 2019, 10, 890.	2.8	20
73	Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evolution, 2019, 5, vez010.	4.9	34

#	Article	IF	CITATIONS
74	Differentiation of Long Non-Coding RNA and mRNA Expression Profiles in Male and Female Aedes albopictus. Frontiers in Genetics, 2019, 10, 975.	2.3	16
75	Deducing the Role of Virus Genome-Derived PIWI-Associated RNAs in the Mosquito–Arbovirus Arms Race. Frontiers in Genetics, 2019, 10, 1114.	2.3	18
76	Predicting the success of an invader: Niche shift versus niche conservatism. Ecology and Evolution, 2019, 9, 12658-12675.	1.9	20
77	Evolution and biological significance of flaviviral elements in the genome of the arboviral vector <i>Aedes albopictus</i> . Emerging Microbes and Infections, 2019, 8, 1265-1279.	6.5	7
78	Genome projects in invasion biology. Conservation Genetics, 2019, 20, 1201-1222.	1.5	21
79	A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 2019, 10, 4237.	12.8	102
80	Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology. Frontiers in Cellular Neuroscience, 2018, 12, 533.	3.7	23
81	Water-induced strong protection against acute exposure to low subzero temperature of adult Aedes albopictus. PLoS Neglected Tropical Diseases, 2019, 13, e0007139.	3.0	8
82	Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758.	2.0	115
83	Voltages and resistances of the anterior Malpighian tubule of <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2019, 222, .	1.7	4
84	Fat body–specific vitellogenin expression regulates host-seeking behaviour in the mosquito Aedes albopictus. PLoS Biology, 2019, 17, e3000238.	5.6	22
85	Infection of Aedes albopictus Mosquito C6/36 Cells with the <i>w</i> Melpop Strain of <i>Wolbachia</i> Modulates Dengue Virus-Induced Host Cellular Transcripts and Induces Critical Sequence Alterations in the Dengue Viral Genome. Journal of Virology, 2019, 93, .	3.4	11
86	Insights Into an Unexplored Component of the Mosquito Repeatome: Distribution and Variability of Viral Sequences Integrated Into the Genome of the Arboviral Vector Aedes albopictus. Frontiers in Genetics, 2019, 10, 93.	2.3	21
87	Unravelling the invasion history of the Asian tiger mosquito in Europe. Molecular Ecology, 2019, 28, 2360-2377.	3.9	82
88	Apollo: Democratizing genome annotation. PLoS Computational Biology, 2019, 15, e1006790.	3.2	179
89	Endogenous non-retroviral elements in genomes of <i>Aedes</i> mosquitoes and vector competence. Emerging Microbes and Infections, 2019, 8, 542-555.	6.5	34
90	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 2019, 20, 64.	8.8	114
91	High-throughput genotyping of a full voltage-gated sodium channel gene via genomic DNA using target capture sequencing and analytical pipeline MoNaS to discover novel insecticide resistance mutations. PLoS Neglected Tropical Diseases, 2019, 13, e0007818.	3.0	18

#	Article	IF	CITATIONS
92	Polymorphism analyses and protein modelling inform on functional specialization of PiwiÂclade genes in the arboviral vector Aedes albopictus. PLoS Neglected Tropical Diseases, 2019, 13, e0007919.	3.0	16
93	Microevolution of medically important mosquitoes $\hat{a} \in \hat{A}$ review. Acta Tropica, 2019, 191, 162-171.	2.0	25
94	Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Molecular and Cellular Proteomics, 2019, 18, S6-S22.	3.8	46
95	Aedes aegypti vector competence studies: A review. Infection, Genetics and Evolution, 2019, 67, 191-209.	2.3	251
96	Functional Consequences of the Evolution of Matrimony, a Meiosis-Specific Inhibitor of Polo Kinase. Molecular Biology and Evolution, 2019, 36, 69-83.	8.9	3
97	Of Genes and Genomes: Mosquito Evolution and Diversity. Trends in Parasitology, 2019, 35, 32-51.	3.3	35
98	Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito <i>Aedes albopictus</i> . Insect Science, 2019, 26, 1045-1054.	3.0	19
99	Comparative analyses of simple sequence repeats (SSRs) in 23 mosquito species genomes: Identification, characterization and distribution (Diptera: Culicidae). Insect Science, 2019, 26, 607-619.	3.0	26
100	Chromosomeâ€level genome assembly of the predator <i>Propylea japonica</i> to understand its tolerance to insecticides and high temperatures. Molecular Ecology Resources, 2020, 20, 292-307.	4.8	43
101	Mitogenome diversity of Aedes (Stegomyia) albopictus: Detection of multiple introduction events in Portugal. PLoS Neglected Tropical Diseases, 2020, 14, e0008657.	3.0	12
102	Bioinformatic, genomic and evolutionary analysis of genes: A case study in dipteran CSPs. Methods in Enzymology, 2020, 642, 35-79.	1.0	0
103	Transcriptome studies of the floodwater mosquito, <scp><i>Aedes vexans</i></scp> (Diptera:) Tj ETQq1 1 0.784 Research, 2020, 50, 563-574.	4314 rgBT 1.1	7 /Overlock 10 5
104	Population genomics of two invasive mosquitoes (Aedes aegypti and Aedes albopictus) from the Indo-Pacific. PLoS Neglected Tropical Diseases, 2020, 14, e0008463.	3.0	30
105	A Novel Anphevirus in Aedes albopictus Mosquitoes Is Distributed Worldwide and Interacts with the Host RNA Interference Pathway. Viruses, 2020, 12, 1264.	3.3	10
106	Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics. Scientific Reports, 2020, 10, 18823.	3.3	37
107	Identification of mucins and their expression in the vector mosquito Aedes albopictus. Journal of Vector Ecology, 2020, 45, 297-305.	1.0	7
108	Alternative splicing patterns of <i>doublesex</i> reveal a missing link between <i>Nix</i> and <i>doublesex</i> in the sex determination cascade of <i>Aedes albopictus</i> . Insect Science, 2021, 28, 1601-1620.	3.0	4
109	Transcriptional variation of sensory-related genes in natural populations of Aedes albopictus. BMC Genomics, 2020, 21, 547.	2.8	6

#	Article	IF	CITATIONS
110	Characterization of B-Genome Specific High Copy hAT MITE Families in Brassica nigra Genome. Frontiers in Plant Science, 2020, 11, 1104.	3.6	1
111	The Developmental Transcriptome of <i>Aedes albopictus</i> , a Major Worldwide Human Disease Vector. G3: Genes, Genomes, Genetics, 2020, 10, 1051-1062.	1.8	30
112	Diversity and evolution of the P450 family in arthropods. Insect Biochemistry and Molecular Biology, 2020, 127, 103490.	2.7	109
113	Analysis of novel siRNA and piRNA and identification of vsiRNA and vpiRNA expressed in the midgut of Aedes albopictus during dengue infection. Entomological Research, 2020, 50, 463-474.	1.1	1
114	Improved reference genome of the arboviral vector Aedes albopictus. Genome Biology, 2020, 21, 215.	8.8	65
115	A chromosome-level assembly of the cat flea genome uncovers rampant gene duplication and genome size plasticity. BMC Biology, 2020, 18, 70.	3.8	29
116	Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Communications Biology, 2020, 3, 326.	4.4	39
117	Microsatellite typing of Aedes albopictus (Diptera: Culicidae) populations from Germany suggests regular introductions. Infection, Genetics and Evolution, 2020, 81, 104237.	2.3	11
118	Aedes albopictus (Asian Tiger Mosquito). Trends in Parasitology, 2020, 36, 942-943.	3.3	42
119	Multiple Factors Determine the Structure of Bacterial Communities Associated With Aedes albopictus Under Artificial Rearing Conditions. Frontiers in Microbiology, 2020, 11, 605.	3.5	23
120	Draft genome sequences of Hirudo medicinalis and salivary transcriptome of three closely related medicinal leeches. BMC Genomics, 2020, 21, 331.	2.8	21
121	Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochemistry and Molecular Biology, 2020, 122, 103386.	2.7	46
122	The direct regulation of <i>Aalbdsx</i> on <i>AalVgR</i> is indispensable for ovarian development in <i>Aedes albopictus</i> . Pest Management Science, 2021, 77, 1654-1667.	3.4	2
123	A longâ€lasting biological larvicide against the dengue vector mosquito <scp><i>Aedes albopictus</i></scp> . Pest Management Science, 2021, 77, 741-748.	3.4	8
124	Olfactory systems across mosquito species. Cell and Tissue Research, 2021, 383, 75-90.	2.9	41
125	Whole-genome assembly of <i>Culex tarsalis</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	17
126	Exploring Changes in the Microbiota of Aedes albopictus: Comparison Among Breeding Site Water, Larvae, and Adults. Frontiers in Microbiology, 2021, 12, 624170.	3.5	24
127	A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.	5.5	29

#	Article	IF	CITATIONS
128	Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection. PLoS Neglected Tropical Diseases, 2021, 15, e0008351.	3.0	19
129	A Gene-Based Method for Cytogenetic Mapping of Repeat-Rich Mosquito Genomes. Insects, 2021, 12, 138.	2.2	1
130	ViR: a tool to solve intrasample variability in the prediction of viral integration sites using whole genome sequencing data. BMC Bioinformatics, 2021, 22, 45.	2.6	8
131	Chronological Incongruences between Mitochondrial and Nuclear Phylogenies of Aedes Mosquitoes. Life, 2021, 11, 181.	2.4	14
132	Transcriptome Analysis of Responses to Dengue Virus 2 Infection in Aedes albopictus (Skuse) C6/36 Cells. Viruses, 2021, 13, 343.	3.3	6
133	Mosquito Sexual Selection and Reproductive Control Programs. Trends in Parasitology, 2021, 37, 330-339.	3.3	23
135	Flavivirus integrations in Aedes aegypti are limited and highly conserved across samples from different geographic regions unlike integrations in Aedes albopictus. Parasites and Vectors, 2021, 14, 332.	2.5	6
137	Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms, 2021, 9, 1653.	3.6	23
138	How will mosquitoes adapt to climate warming?. ELife, 2021, 10, .	6.0	46
140	Shared properties and singularities of exoribonuclease-resistant RNAs in viruses. Computational and Structural Biotechnology Journal, 2021, 19, 4373-4380.	4.1	4
141	InvasionDB: A genome and gene database of invasive alien species. Journal of Integrative Agriculture, 2021, 20, 191-200.	3.5	2
142	Patchy DNA forms of the Zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes. Journal of General Virology, 2017, 98, 2731-2737.	2.9	22
152	Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genetics, 2020, 16, e1008946.	3.5	31
153	Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia. PLoS ONE, 2016, 11, e0157893.	2.5	8
154	Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS ONE, 2017, 12, e0171345.	2.5	32
155	The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes. Current Issues in Molecular Biology, 2020, 34, 13-30.	2.4	40
156	Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells, 2020, 9, 2180.	4.1	10
157	A Linkage-Based Genome Assembly for the Mosquito Aedes albopictus and Identification of Chromosomal Regions Affecting Diapause, Insects, 2021, 12, 167.	2.2	33

#	Article	IF	CITATIONS
158	Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens. American Journal of Tropical Medicine and Hygiene, 2018, 98, 410-419.	1.4	45
159	A <i>de novo</i> transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes <i>Aedes albopictus</i> : insights into diuresis, detoxification, and blood meal processing. PeerJ, 2016, 4, e1784.	2.0	49
160	RNA helicase domains of viral origin in proteins of insect retrotransposons: possible source for evolutionary advantages. PeerJ, 2017, 5, e3673.	2.0	4
161	Identification of AaAtg8 as a marker of autophagy and a functional autophagy-related protein in Aedes albopictus. PeerJ, 2018, 6, e5988.	2.0	5
168	Targeting the diapause response of Aedes albopictus via CRISPR/Cas9-mediated genome editing to control the spread of mosquito-borne disease. Bios, 2018, 89, 82.	0.0	0
170	Purification and Proteomic Analysis of Alphavirus Particles from Sindbis Virus Grown in Mammalian and Insect Cells. Bio-protocol, 2019, 9, e3239.	0.4	1
179	The Differential Metabolic Profiles Between Deltamethrin-Resistant and -Susceptible Strains of <i>Aedes albopictus</i> (Diptera: Culicidae) by 1H-NMR. Journal of Medical Entomology, 2021, 58, 1256-1263.	1.8	2
182	RNA virus EVEs in insect genomes. Current Opinion in Insect Science, 2022, 49, 42-47.	4.4	13
183	Revisiting dengue virus-mosquito interactions: molecular insights into viral fitness. Journal of General Virology, 2021, 102, .	2.9	7
185	Molecular and functional characterization of a conserved odorant receptor from Aedes albopictus. Parasites and Vectors, 2022, 15, 43.	2.5	4
187	Screening for odorant receptor genes expressed in Aedes aegypti involved in host-seeking, blood-feeding and oviposition behaviors. Parasites and Vectors, 2022, 15, 71.	2.5	9
189	Functional Constraints on Insect Immune System Components Govern Their Evolutionary Trajectories. Molecular Biology and Evolution, 2022, 39, .	8.9	3
190	Vector Specificity of Arbovirus Transmission. Frontiers in Microbiology, 2021, 12, 773211.	3.5	27
209	Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasites and Vectors, 2022, 15, 143.	2.5	4
210	Metagenome Sequencing Reveals the Microbiome of Aedes albopictus and Its Possible Relationship With Dengue Virus Susceptibility. Frontiers in Microbiology, 2022, 13, .	3.5	7
211	Meeting a threat of the Anthropocene: Taste avoidance of metal ions by <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
212	PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses, 2022, 14, 1442.	3.3	7
213	Local-scale virome depiction in MedellÃn, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus. PLoS ONE, 2022, 17, e0263143.	2.5	9

#	Article	IF	CITATIONS
214	The worldwide spread of Aedes albopictus: New insights from mitogenomes. Frontiers in Genetics, 0, 13, .	2.3	5
216	CRISPR/Cas9-mediated F1534S substitution in the voltage-gated sodium channel reveals its necessity and sufficiency for deltamethrin resistance in Aedes albopictus. Journal of Pest Science, 2023, 96, 1173-1186.	3.7	2
217	Structure and dynamics of Toll immunoreceptor activation in the mosquito Aedes aegypti. Nature Communications, 2022, 13, .	12.8	7
219	Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. Insects, 2022, 13, 962.	2.2	5
220	Revised Annotation and Characterization of Novel Aedes albopictus miRNAs and Their Potential Functions in Dengue Virus Infection. Biology, 2022, 11, 1536.	2.8	0
221	Genome-wide SNPs reveal novel patterns of spatial genetic structure in Aedes albopictus (Diptera) Tj ETQq1 1 0.	784314 rg	BT_/Overlock
222	Impact of CHIKV Replication on the Global Proteome of Aedes albopictus Cells. Proteomes, 2022, 10, 38.	3.5	3
224	A Brief History of the Discovery of RNA-Mediated Antiviral Immune Defenses in Vector Mosquitos. Microbiology and Molecular Biology Reviews, 2023, 87, .	6.6	4
225	Chapter 3: The molecular and neural determinants of olfactory behaviour in mosquitoes. , 2022, , 71-115.		7
226	Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors. ELife, 0, 11, .	6.0	1
228	Mosquito vector competence for dengue is modulated by insect-specific viruses. Nature Microbiology, 2023, 8, 135-149.	13.3	48
229	Aedes albopictus host odor preference does not drive observed variation in feeding patterns across field populations. Scientific Reports, 2023, 13, .	3.3	1
230	Two novel, tightly linked, and rapidly evolving genes underlie Aedes aegypti mosquito reproductive resilience during drought. ELife, 0, 12, .	6.0	3
231	Chromatin profiling identifies transcriptional readthrough as a conserved mechanism for piRNA biogenesis in mosquitoes. Cell Reports, 2023, 42, 112257.	6.4	2
232	Chromosomeâ€level de novo genome assembly of two coniferâ€parasitic wasps, <i>Megastigmus duclouxiana</i> and <i>Megastigmus sabinae</i> , reveals genomic imprints of adaptation to hosts. Molecular Ecology Resources, 2023, 23, 1142-1154.	4.8	2
233	Unraveling the genomic complexity of sylvatic mosquitoes in changing Neotropical environments. Current Opinion in Biotechnology, 2023, 81, 102944.	6.6	1
234	Tracking Adaptive Pathways of Invasive Insects: Novel Insight from Genomics. International Journal of Molecular Sciences, 2023, 24, 8004.	4.1	1
235	Prostaglandin <scp>E₂</scp> mediates chorion formation of the Asian tiger mosquito, <i>Aedes albopictus</i> , at late oogenesis. Insect Molecular Biology, 0, , .	2.0	Ο

#	Article	IF	CITATIONS
236	A mosquito-specific antennal protein is critical for the attraction to human odor in the malaria vector Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2023, 159, 103988.	2.7	1
237	AsOBP1 is required for host seeking in the malaria vector mosquito, Anopheles sinensis. Journal of Pest Science, 2024, 97, 1017-1032.	3.7	1
239	RNAi: The Mosquito Defense System Against Damage Due to Arbovirus Infection. , 2023, , 3-14.		0
240	Chemical Ecology and Management of Dengue Vectors. Annual Review of Entomology, 2024, 69, .	11.8	3
241	Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. Insects, 2023, 14, 802.	2.2	0
242	The effect of temperature on dengue virus transmission by Aedes mosquitoes. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
244	Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. Insects, 2023, 14, 904.	2.2	0
245	Intrinsic factors driving mosquito vector competence and viral evolution: a review. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
246	Mosquito transgenerational antiviral immunity is mediated by vertical transfer of virus DNA sequences and RNAi. IScience, 2024, 27, 108598.	4.1	0
247	Localization of nitric oxide–producing hemocytes in Aedes and Culex mosquitoes infected with bacteria. Cell and Tissue Research, 2024, 395, 313-326.	2.9	0
248	Chromosome-level genome assembly of the giant ladybug Megalocaria dilatata. Scientific Data, 2024, 11,	5.3	0
249	Pyrethroid susceptibility status and functional analysis of cytochrome P450 CYP6 subfamily genes in field Aedes albopictus, in Jiangsu, China. Journal of Asia-Pacific Entomology, 2024, 27, 102210.	0.9	0
250	A genotyping array for the globally invasive vector mosquito, Aedes albopictus. Parasites and Vectors, 2024, 17, .	2.5	0
251	Populationâ€specific responses to developmental temperature in the arboviral vector <i>Aedes albopictus</i> : Implications for climate change. Global Change Biology, 2024, 30, .	9.5	0