Pickering Emulsion Gels Prepared by Hydrogen-Bonded Particles

Journal of Agricultural and Food Chemistry 63, 7405-7414

DOI: 10.1021/acs.jafc.5b03113

Citation Report

#	Article	IF	CITATIONS
1	Effect of Grape Seed Proanthocyanidin–Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 10200-10208.	2.4	48
2	Application of whey protein isolates and zein for the formulation of alginate-based delivery systems encapsulating Ganoderma lucidum polyphenols. Croatian Journal of Food Science and Technology, 2016, 8, 99-106.	0.5	11
3	Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion. Materials, 2016, 9, 903.	1.3	67
4	The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein–Lecithin Composite Colloidal Nanoparticles. PLoS ONE, 2016, 11, e0167172.	1.1	92
5	pH-Degradable antioxidant nanoparticles based on hydrogen-bonded tannic acid assembly. RSC Advances, 2016, 6, 31374-31385.	1.7	43
6	Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science and Technology, 2016, 55, 48-60.	7.8	390
7	Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. International Journal of Pharmaceutics, 2016, 513, 191-210.	2.6	97
8	Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28511-28521.	4.0	464
9	Binary Complex Based on Zein and Propylene Glycol Alginate for Delivery of Quercetagetin. Biomacromolecules, 2016, 17, 3973-3985.	2.6	88
10	Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil. Food Hydrocolloids, 2016, 61, 747-755.	5.6	57
11	Modulation of the surface properties of protein particles by a surfactant for stabilizing foams. RSC Advances, 2016, 6, 66018-66026.	1.7	25
12	Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin. Food Hydrocolloids, 2016, 61, 821-831.	5.6	115
13	Engineering functional alginate beads for encapsulation of Pickering emulsions stabilized byÂcolloidal particles. RSC Advances, 2016, 6, 101267-101276.	1.7	13
14	Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloids, 2016, 61, 300-310.	5.6	229
15	Zein based oil-in-glycerol emulgels enriched with \hat{l}^2 -carotene as margarine alternatives. Food Chemistry, 2016, 211, 836-844.	4.2	85
16	Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 2017, 68, 219-231.	5.6	323
17	Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms. Applied Surface Science, 2017, 401, 271-282.	3.1	99
18	Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan. Journal of Agricultural and Food Chemistry, 2017, 65, 1401-1409.	2.4	78

#	ARTICLE	IF	CITATIONS
19	Zein/tannic acid complex nanoparticlesâ€stabilised emulsion as a novel delivery system for controlled release of curcumin. International Journal of Food Science and Technology, 2017, 52, 1221-1228.	1.3	52
20	Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomaterialia, 2017, 61, 88-100.	4.1	74
21	Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food Chemistry, 2017, 234, 339-347.	4.2	202
22	Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocolloids, 2017, 72, 163-173.	5.6	89
23	pH switchable Pickering emulsion based on soy peptides functionalized calcium phosphate particles. Food Hydrocolloids, 2017, 70, 219-228.	5.6	31
24	Advances in Understanding the Molecular Structures and Functionalities of Biodegradable Zein-Based Materials Using Spectroscopic Techniques: A Review. Biomacromolecules, 2017, 18, 331-354.	2.6	54
25	Gelâ€like emulsions prepared with zein nanoparticles produced through phase separation from acetic acid solutions. International Journal of Food Science and Technology, 2017, 52, 2670-2676.	1.3	22
26	Self-assembled colloidal complexes of polyphenol–gelatin and their stabilizing effects on emulsions. Food and Function, 2017, 8, 3145-3154.	2.1	50
27	Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin. Food Hydrocolloids, 2017, 73, 74-89.	5.6	56
28	Formation and characterization of the binary complex between zein and propylene glycol alginate at neutral pH. Food Hydrocolloids, 2017, 64, 36-47.	5.6	95
29	Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, 2017, 174, 1244-1262.	2.7	408
30	Tunable assembly of hydrophobic protein nanoparticle at fluid interfaces with tannic acid. Food Hydrocolloids, 2017, 63, 364-371.	5.6	24
31	Tuning hydrophobicity of zein nanoparticles to control rheological behavior of Pickering emulsions. Food Hydrocolloids, 2018, 80, 130-140.	5.6	67
32	Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion. Journal of Agricultural and Food Chemistry, 2018, 66, 4200-4207.	2.4	29
33	Enhanced antioxidant activity and inÂvitro release of propolis by acid-induced aggregation using heat-denatured zein and carboxymethyl chitosan. Food Hydrocolloids, 2018, 81, 104-112.	5.6	54
34	Eco-Friendly Pickering Emulsion Stabilized by Silica Nanoparticles Dispersed with High-Molecular-Weight Amphiphilic Alginate Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 4105-4114.	3.2	95
35	Fabrication of chitosan gel droplets via crosslinking of inverse Pickering emulsifications. Carbohydrate Polymers, 2018, 186, 1-8.	5.1	15
36	Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion. Journal of Agricultural and Food Chemistry, 2018, 66, 228-237.	2.4	58

#	ARTICLE	IF	CITATIONS
37	The fabrication of amphiphilic double dynamers for responsive Pickering emulsifiers. Polymer Chemistry, 2018, 9, 627-636.	1.9	19
38	Design and Fabrication of a Renewable and Highly Transparent Multilayer Coating on Poly(lactic acid) Film Capable of UV-Shielding and Antifogging. Industrial & Engineering Chemistry Research, 2018, 57, 4577-4584.	1.8	29
39	Reprint of â€~Protein-polyphenol particles for delivering structural and health functionality'. Food Hydrocolloids, 2018, 78, 15-25.	5.6	15
40	Pickering emulsions stabilized by hydrophobically modified alginate nanoparticles: Preparation and pH-responsive performance in vitro. Journal of Dispersion Science and Technology, 2018, 39, 367-374.	1.3	19
41	Rheological behavior of emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocolloids, 2018, 77, 363-371.	5.6	60
42	Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids, 2018, 75, 125-130.	5.6	223
43	Zein self-assembly using the built-in ultrasonic dialysis process: microphase behavior and the effect of dialysate properties. Colloid and Polymer Science, 2018, 296, 173-181.	1.0	4
44	Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocolloids, 2018, 74, 239-248.	5.6	295
45	Fabrication and Characterization of Oleogel Stabilized by Gelatin-Polyphenol-Polysaccharides Nanocomplexes. Journal of Agricultural and Food Chemistry, 2018, 66, 13243-13252.	2.4	83
46	Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture. Journal of Agricultural and Food Chemistry, 2018, 66, 11113-11123.	2.4	190
47	Tannic Acid Crossâ€linked Polysaccharideâ€Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing. Macromolecular Bioscience, 2018, 18, e1800209.	2.1	89
48	Zein and zein -based nano-materials for food and nutrition applications: A review. Trends in Food Science and Technology, 2018, 79, 184-197.	7.8	262
49	Properties of Ternary Biopolymer Nanocomplexes of Zein, Sodium Caseinate, and Propylene Glycol Alginate and Their Functions of Stabilizing High Internal Phase Pickering Emulsions. Langmuir, 2018, 34, 9215-9227.	1.6	65
50	Composite zein - propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocolloids, 2018, 85, 281-290.	5.6	112
51	One-step formation of a double Pickering emulsion <i>via</i> modulation of the oil phase composition. Food and Function, 2018, 9, 4508-4517.	2.1	34
52	Interactions and emulsifying properties of ovalbumin with tannic acid. LWT - Food Science and Technology, 2018, 95, 282-288.	2.5	72
53	Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial delivery system. Carbohydrate Polymers, 2018, 200, 416-426.	5.1	131
54	Cellulose nanocrystals Pickering emulsion incorporated chitosan coatings for improving storability of postharvest Bartlett pears (Pyrus communis) during long-term cold storage. Food Hydrocolloids, 2018, 84, 229-237.	5.6	67

#	Article	IF	Citations
55	Encyclopedia of Food Chemistry: Protein–Phenol Interactions. , 2019, , 532-538.		9
56	Multicompartment emulsion droplets for programmed release of hydrophobic cargoes. Food and Function, 2019, 10, 4522-4532.	2.1	6
57	Nanoparticle Encapsulation Strategy: Leveraging Plant Exine Capsules Used as Secondary Capping for Oral Delivery. Journal of Agricultural and Food Chemistry, 2019, 67, 8168-8176.	2.4	14
58	Nano-encapsulation of curcumin using soy protein hydrolysates – tannic acid complexes regulated by photocatalysis: a study on the storage stability and ⟨i⟩in vitro⟨/i⟩ release. Journal of Microencapsulation, 2019, 36, 385-398.	1.2	16
59	Enhancement of Antioxidant Activity in O/W Emulsion and Cholesterol-Reducing Capacity of Epigallocatechin by Derivatization with Representative Phytosterols. Journal of Agricultural and Food Chemistry, 2019, 67, 12461-12471.	2.4	8
60	Foaming properties and air–water interfacial behavior of corn protein hydrolyzate–tannic acid complexes. Journal of Food Science and Technology, 2019, 56, 905-913.	1.4	14
61	Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chemistry, 2019, 283, 437-444.	4.2	67
62	Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stable pickering emulsions. Food Hydrocolloids, 2019, 97, 105178.	5 . 6	62
63	Alginate microspheres prepared by ionic crosslinking of pickering alginate emulsions. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1083-1096.	1.9	6
64	Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends in Food Science and Technology, 2019, 90, 111-132.	7.8	53
65	Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles. International Journal of Biological Macromolecules, 2019, 136, 653-660.	3 . 6	35
66	Novel food-grade Pickering emulsions stabilized by tea water-insoluble protein nanoparticles from tea residues. Food Hydrocolloids, 2019, 96, 322-330.	5. 6	67
67	Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: Effects of pH and ionic strength on curcumin retention. Food Structure, 2019, 21, 100113.	2.3	58
68	Functional properties and structural profiles of water-insoluble proteins from three types of tea residues. LWT - Food Science and Technology, 2019, 110, 324-331.	2.5	29
69	Maillard-Reacted Whey Protein Isolates and Epigallocatechin Gallate Complex Enhance the Thermal Stability of the Pickering Emulsion Delivery of Curcumin. Journal of Agricultural and Food Chemistry, 2019, 67, 5212-5220.	2.4	131
70	Heteropoly acids-functionalized Janus particles as catalytic emulsifier for heterogeneous acylation in flow ionic liquid-in-oil Pickering emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 191-198.	2.3	22
71	Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+. Chemical Engineering Journal, 2019, 368, 988-998.	6.6	25
72	Whole cereal protein-based Pickering emulsions prepared by zein-gliadin complex particles. Journal of Cereal Science, 2019, 87, 46-51.	1.8	52

#	Article	IF	Citations
73	Enhancing the stability and redispersibility of o/w Pickering emulsion through polyacryloyl hydrazide-tannic acid synergy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 204-215.	2.3	11
74	Microwave-assisted reaction of gelatin with tannic acid: non-thermal effect on the crosslinking process. Chemical Engineering Communications, 2019, 206, 1152-1158.	1.5	7
75	Chitosan hydrochloride/carboxymethyl starch complex nanogels as novel Pickering stabilizers: Physical stability and rheological properties. Food Hydrocolloids, 2019, 93, 215-225.	5.6	121
76	Cereal protein-based nanoparticles as agents stabilizing air–water and oil–water interfaces in food systems. Current Opinion in Food Science, 2019, 25, 19-27.	4.1	29
77	Cereal proteins in nanotechnology: formulation of encapsulation and delivery systems. Current Opinion in Food Science, 2019, 25, 28-34.	4.1	29
78	Preparation and characterisation of zein/polyphenol nanofibres for nerve tissue regeneration. IET Nanobiotechnology, 2019, 13, 571-577.	1.9	9
79	Effect of tannic acid on lysozyme activity through intermolecular noncovalent binding. Journal of Agriculture and Food Research, 2019, 1, 100004.	1.2	7
80	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate, Part 1: Fabrication and Characterization. Journal of Agricultural and Food Chemistry, 2019, 67, 1197-1208.	2.4	58
81	The formation and characterization of antioxidant pickering emulsions: Effect of the interactions between gliadin and chitosan. Food Hydrocolloids, 2019, 90, 482-489.	5.6	118
82	A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance. Solar Energy Materials and Solar Cells, 2019, 191, 218-234.	3.0	99
83	Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism. Food Hydrocolloids, 2019, 91, 40-47.	5.6	94
84	Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 2019, 89, 80-89.	5.6	182
85	Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocolloids, 2019, 89, 163-170.	5.6	60
86	Cereal biopolymers for nano- and microtechnology: A myriad of opportunities for novel (functional) food applications. Trends in Food Science and Technology, 2019, 83, 1-11.	7.8	25
87	Plant based Pickering stabilization of emulsions using soluble flaxseed protein and mucilage nano-assemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 170-182.	2.3	40
88	Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible Cyclodextrin-Based Metal–Organic Frameworks and Glycyrrhizic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 391-398.	2.4	46
89	Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature. Food Research International, 2019, 120, 748-755.	2.9	42
90	Functional and Engineered Colloids from Edible Materials for Emerging Applications in Designing the Food of the Future. Advanced Functional Materials, 2020, 30, 1806809.	7.8	87

#	Article	IF	CITATIONS
91	Double-induced se-enriched peanut protein nanoparticles preparation, characterization and stabilized food-grade pickering emulsions. Food Hydrocolloids, 2020, 99, 105308.	5.6	57
92	Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition, 2020, 60, 2083-2097.	5.4	94
93	Influence of carboxymethylcellulose on the interaction between ovalbumin and tannic acid via noncovalent bonds and its effects on emulsifying properties. LWT - Food Science and Technology, 2020, 118, 108778.	2.5	42
94	Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. International Journal of Food Science and Technology, 2020, 55, 1924-1934.	1.3	38
95	Interfacial characteristics of block copolymer micelles stabilized Pickering emulsion by confocal laser scanning microscopy. Journal of Colloid and Interface Science, 2020, 563, 33-41.	5 . 0	26
96	The development of a direct approach to formulate high oil content zein-based emulsion gels using moderate temperatures. Food Hydrocolloids, 2020, 101, 105528.	5. 6	29
97	Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science and Technology, 2020, 103, 293-303.	7.8	195
98	Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends in Food Science and Technology, 2020, 103, 248-263.	7.8	106
99	Metal–Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface. Journal of Agricultural and Food Chemistry, 2020, 68, 8471-8482.	2.4	27
100	Interactions of zein and zein/rosin nanoparticles with natural polyanion gum arabic. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111289.	2.5	19
101	Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and \hat{l}^2 -carotene bioaccessibility of Pickering emulsions. Food Hydrocolloids, 2020, 104, 105738.	5.6	96
102	Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chemistry, 2020, 330, 127172.	4.2	39
103	Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends in Food Science and Technology, 2020, 102, 123-137.	7.8	142
104	Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Current Opinion in Colloid and Interface Science, 2020, 49, 69-81.	3.4	208
105	Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocolloids, 2020, 108, 105992.	5.6	82
106	Food-grade emulsions stabilized by marine Antarctic krill (Euphausia superba) proteins with long-term physico-chemical stability. LWT - Food Science and Technology, 2020, 128, 109492.	2.5	21
107	Resveratrol-loaded hollow kafirin nanoparticles via gallic acid crosslinking: An evaluation compared with their solid and non-crosslinked counterparts. Food Research International, 2020, 135, 109308.	2.9	13
108	Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocolloids, 2020, 109, 106083.	5.6	54

#	ARTICLE	IF	CITATIONS
109	Slow-Release and Nontoxic Pickering Emulsion Platform for Antimicrobial Peptide. Journal of Agricultural and Food Chemistry, 2020, 68, 7453-7466.	2.4	13
110	Foaming and surface rheological behaviors of gliadin particles: Effect of solvent and concentration of gliadin stock solution. Food Hydrocolloids, 2020, 106, 105868.	5.6	29
111	Polymer network strengthened filter paper for durable water disinfection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124548.	2.3	4
112	Recent advances on proteinâ€based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1934-1968.	5.9	105
113	Influence of interfacial structure on physical stability and antioxidant activity of curcumin multilayer emulsions. Food and Bioproducts Processing, 2020, 121, 65-75.	1.8	20
114	Gelatin Hydrolysate Hybrid Nanoparticles as Soft Edible Pickering Stabilizers for Oil-In-Water Emulsions. Molecules, 2020, 25, 393.	1.7	5
115	Supernatant starch fraction of corn starch and its emulsifying ability: Effect of the amylose content. Food Hydrocolloids, 2020, 103, 105711.	5.6	23
116	Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends in Food Science and Technology, 2020, 98, 117-128.	7.8	73
117	Improving emulsion stability based on ovalbumin-carboxymethyl cellulose complexes with thermal treatment near ovalbumin isoelectric point. Scientific Reports, 2020, 10, 3456.	1.6	22
118	Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 3607-3614.	2.4	65
119	Characterization and enhanced functionality of nanoparticles based on linseed protein and linseed gum biocomplexes. International Journal of Biological Macromolecules, 2020, 151, 116-123.	3.6	18
120	Fabrication, Physicochemical Stability, and Microstructure of Coenzyme Q10 Pickering Emulsions Stabilized by Resveratrol-Loaded Composite Nanoparticles. Journal of Agricultural and Food Chemistry, 2020, 68, 1405-1418.	2.4	41
121	Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin. Food Research International, 2020, 132, 109032.	2.9	76
122	Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocolloids, 2020, 104, 105717.	5.6	49
123	A peppermint oil emulsion stabilized by resveratrol-zein-pectin complex particles: Enhancing the chemical stability and antimicrobial activity in combination with the synergistic effect. Food Hydrocolloids, 2020, 103, 105675.	5.6	58
124	Fabrication and characterization of emulsions stabilized by tannic acid-wheat starch complexes. Food Hydrocolloids, 2020, 107, 105728.	5.6	22
125	A Facile Approach to Increasing the Foliage Retention of Pesticides Based on Coating with a Tannic Acid/Fe3+ Complex. Coatings, 2020, 10, 359.	1.2	11
126	Self-assembled proteins for food applications: A review. Trends in Food Science and Technology, 2020, 101, 1-16.	7.8	7 3

#	ARTICLE	IF	CITATIONS
127	Improving the emulsifying property of gliadin nanoparticles as stabilizer of Pickering emulsions: Modification with sodium carboxymethyl cellulose. Food Hydrocolloids, 2020, 107, 105936.	5.6	45
128	Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science and Technology, 2020, 100, 320-332.	7.8	172
129	Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration. Food Hydrocolloids, 2020, 108, 105915.	5.6	29
130	Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. Journal of Food Engineering, 2020, 281, 109993.	2.7	30
131	Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties. Food Hydrocolloids, 2021, 111, 106179.	5.6	46
132	Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocolloids, 2021, 112, 106303.	5.6	75
133	Bacterial cellulose nanofibers improved the emulsifying capacity of soy protein isolate as a stabilizer for pickering high internal-phase emulsions. Food Hydrocolloids, 2021, 112, 106279.	5.6	63
134	Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic krill (Euphausia superba) proteins. Ultrasonics Sonochemistry, 2021, 71, 105364.	3.8	58
135	Synergistic stabilization of oil in water emulsion with chitin particles and tannic acid. Carbohydrate Polymers, 2021, 254, 117292.	5.1	16
136	Fabrication and characterization of <scp>Pickering</scp> emulsion gels stabilized by zein/pullulan complex colloidal particles. Journal of the Science of Food and Agriculture, 2021, 101, 3630-3643.	1.7	23
137	Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior. Food Hydrocolloids, 2021, 112, 106341.	5.6	52
138	Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer–particle–surfactant interfaces. Food and Function, 2021, 12, 3246-3265.	2.1	11
139	Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. RSC Advances, 2021, 11, 25141-25157.	1.7	17
140	Emulsifying Properties. , 2021, , 171-206.		1
141	Multi-responsive, injectable, and self-healing hydrogels based on benzoxaborole–tannic acid complexation. Polymer Chemistry, 2021, 12, 5623-5630.	1.9	8
142	Enhanced stability and controlled gastrointestinal digestion of β-carotene loaded Pickering emulsions with particle–particle complex interfaces. Food and Function, 2021, 12, 10842-10861.	2.1	11
143	Modulation of liquid structure and controlling molecular diffusion using supramolecular constructs. Chemical Communications, 2021, 57, 10604-10607.	2.2	5
144	A dual-cross-linked hydrogel based on hyaluronic acid/gelatin tethered via tannic acid: mechanical properties' enhancement and stability control. Iranian Polymer Journal (English Edition), 2021, 30, 307-317.	1.3	15

#	Article	IF	CITATIONS
145	Prolaminâ€based complexes: Structure design and foodâ€related applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1120-1149.	5.9	35
146	Amphiphilic Double-Brush Copolymers with a Polyurethane Backbone: A Bespoke Macromolecular Emulsifier for Ionic Liquid-in-Oil Emulsion. Langmuir, 2021, 37, 2376-2385.	1.6	9
147	Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules. ACS Applied Bio Materials, 2021, 4, 2686-2695.	2.3	15
148	Fabrication of Pickering emulsion based on particles combining pectin and zein: Effects of pectin methylation. Carbohydrate Polymers, 2021, 256, 117515.	5.1	53
149	Formulation and characterization of zein/chitosan complex particles stabilized Pickering emulsion with the encapsulation and delivery of vitamin D ₃ . Journal of the Science of Food and Agriculture, 2021, 101, 5419-5428.	1.7	21
150	A Novel Method for Stabilizing Zein Gel Particles to Salt Ion-Induced Aggregation. Molecules, 2021, 26, 1458.	1.7	2
151	Proteins as Promising Biobased Building Blocks for Preparing Functional Hybrid Protein/Synthetic Polymer Nanoparticles. Industrial & Engineering Chemistry Research, 2021, 60, 4745-4765.	1.8	9
152	Interaction between pH-shifted \hat{I}^2 -conglycinin and flavonoids hesperetin/hesperidin: Characterization of nanocomplexes and binding mechanism. LWT - Food Science and Technology, 2021, 140, 110698.	2.5	28
153	The hollow core-shell ferric oxide entrapped chitosan microcapsules as phosphate binders for phosphorus removal in vitro. Carbohydrate Polymers, 2021, 257, 117621.	5.1	4
154	Preparation of pickering emulsion stabilised by Zein/Grape seed proanthocyanidins binary composite. International Journal of Food Science and Technology, 2021, 56, 3763-3772.	1.3	21
155	Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein. Journal of Colloid and Interface Science, 2021, 589, 388-400.	5.0	39
156	The advances of characterization and evaluation methods for the compatibility and assembly structure stability of food soft matter. Trends in Food Science and Technology, 2021, 112, 753-763.	7.8	13
157	Enzymatic and chemical modification of zein for food application. Trends in Food Science and Technology, 2021, 112, 507-517.	7.8	42
158	Characterization of a Novel Food Grade Emulsion Stabilized by the By- Product Proteins Extracted From the Head of Giant Freshwater Prawn (Macrobrachium rosenbergii). Frontiers in Nutrition, 2021, 8, 676500.	1.6	7
159	High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure. Food Chemistry, 2021, 350, 129251.	4.2	77
160	Facile and Robust Route for Preparing Pickering High Internal Phase Emulsions Stabilized by Bare Zein Particles. ACS Food Science & Technology, 2021, 1, 1481-1491.	1.3	7
161	Pickering emulsions stabilized by biocompatible particles: A review of preparation, bioapplication, and perspective. Particuology, 2022, 64, 110-120.	2.0	19
162	Recent Developments in the Formulation and Use of Polymers and Particles of Plantâ€based Origin for Emulsion Stabilizations. ChemSusChem, 2021, 14, 4850-4877.	3.6	10

#	Article	IF	CITATIONS
163	Interplay role between dipole interactions and hydrogen bonding on proton transfer dynamics. Nonlinear Dynamics, 2021, 105, 2619-2643.	2.7	1
164	Effect of heat-treated tea water-insoluble protein nanoparticles on the characteristics of Pickering emulsions. LWT - Food Science and Technology, 2021, 149, 111999.	2.5	36
165	Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method. Food Hydrocolloids, 2021, 118, 106758.	5.6	66
166	Zein Colloidal Particles and Cellulose Nanocrystals Synergistic Stabilization of Pickering Emulsions for Delivery of Î ² -Carotene. Journal of Agricultural and Food Chemistry, 2021, 69, 12278-12294.	2.4	36
167	Structural and functional modifications of myofibrillar protein by natural phenolic compounds and their application in pork meatball. Food Research International, 2021, 148, 110593.	2.9	52
168	Corn starch/polyvinyl alcohol based films incorporated with curcumin-loaded Pickering emulsion for application in intelligent packaging. International Journal of Biological Macromolecules, 2021, 188, 974-982.	3.6	45
169	Interfacial regulation and visualization of Pickering emulsion stabilized by Ca2+-triggered amphiphilic alginate-based fluorescent aggregates. Food Hydrocolloids, 2021, 119, 106843.	5.6	14
170	Chemical hardening of gliadin nanoparticles alters their oil-water interfacial behaviour. Food Structure, 2021, 30, 100218.	2.3	2
171	Effect of cellulose nanocrystals on the formation and stability of oil-in-water emulsion formed by octenyl succinic anhydride starch. LWT - Food Science and Technology, 2021, 151, 112214.	2.5	9
172	Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D3. International Journal of Biological Macromolecules, 2021, 191, 803-810.	3.6	18
173	Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property. International Journal of Biological Macromolecules, 2021, 190, 130-140.	3.6	29
174	Study on the physicochemical and emulsifying property of proteins extracted from Pleurotus tuoliensis. LWT - Food Science and Technology, 2021, 151, 112185.	2.5	5
175	High-viscosity Pickering emulsion stabilized by amphiphilic alginate/SiO2 via multiscale methodology for crude oil-spill remediation. Carbohydrate Polymers, 2021, 273, 118492.	5.1	20
176	Reinforced pickering emulsions stabilized by desalted duck egg white nanogels with Ca2+ as binding agents. Food Hydrocolloids, 2021, 121, 106974.	5.6	12
177	Co-encapsulation of curcumin and \hat{l}^2 -carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids, 2022, 122, 107064.	5.6	70
178	Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature. Food Chemistry, 2022, 370, 130899.	4.2	40
179	Dipole–dipole interactions effects on mobility and conductivity of ionic and bonded defects in hydrogen-bonded chains. Communications in Nonlinear Science and Numerical Simulation, 2022, 104, 106048.	1.7	0
180	Effect of glutamic acid on the preparation and characterization of Pickering emulsions stabilized by zein. Food Chemistry, 2022, 366, 130598.	4.2	37

#	ARTICLE	IF	Citations
181	Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocolloids, 2022, 123, 106963.	5.6	19
182	Relating the structural, air-water interfacial and foaming properties of wheat (Triticum aestivum L.) gliadin and maize (Zea mays L.) zein based nanoparticle suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 249-259.	2.3	39
183	Novel Fabrication of Zein-Soluble Soybean Polysaccharide Nanocomposites Induced by Multifrequency Ultrasound, and Their Roles on Microstructure, Rheological Properties and Stability of Pickering Emulsions. Gels, 2021, 7, 166.	2.1	10
184	Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. Journal of Polymers and the Environment, 2022, 30, 1683-1708.	2.4	9
185	Alginate hydrogel beads containing Thymus daenensis essential oils/Glycyrrhizic acid loaded in \hat{l}^2 -cyclodextrin. Investigation of structural, antioxidant/antimicrobial properties and release assessment. Journal of Molecular Liquids, 2021, 344, 117738.	2.3	26
186	Oleogels Structured with Protein Emulsion Network. Akademik Gıda, 2019, 17, 410-416.	0.5	1
187	Interactions and complex stabilities of grape seed procyanidins with zein hydrolysate. International Journal of Food Science and Technology, 2021, 56, 269-277.	1.3	5
188	Influence of solvent polarity of ethonal/water binary solvent on the structural, emulsifying, interfacial rheology properties of gliadin nanoparticles. Journal of Molecular Liquids, 2021, 344, 117976.	2.3	8
189	Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocolloids, 2022, 124, 107280.	5.6	31
190	The interaction mechanisms, and structural changes of the interaction between zein and ferulic acid under different pH conditions. Food Hydrocolloids, 2022, 124, 107251.	5.6	28
191	Stability and Release Behavior of Bioactive Compounds (with Antioxidant Activity) Encapsulated by Pickering Emulsion. Food Bioactive Ingredients, 2020, , 287-309.	0.3	1
192	High internal phase Pickering emulsions stabilized by tannic acid-ovalbumin complexes: Interfacial property and stability. Food Hydrocolloids, 2022, 125, 107332.	5.6	65
193	Utilizing protein-polyphenol molecular interactions to prepare moringa seed residue protein/tannic acid Pickering stabilizers. LWT - Food Science and Technology, 2022, 154, 112814.	2.5	17
194	Shape-controlled fabrication of zein and peach gum polysaccharide based complex nanoparticles by anti-solvent precipitation for curcumin-loaded Pickering emulsion stabilization. Sustainable Chemistry and Pharmacy, 2022, 25, 100565.	1.6	15
195	Layer-by-layer self-assembly of hollow dextran sulfate/chitosan-coated zein nanoparticles loaded with crocin: Fabrication, structural characterization and potential biological fate. Food Hydrocolloids, 2022, 125, 107420.	5.6	32
196	Enhanced Interface Properties and Stability of Lignocellulose Nanocrystals Stabilized Pickering Emulsions: The Leading Role of Tannic Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 14650-14661.	2.4	22
197	Origins of Structural Elasticity in Metal–Phenolic Networks Probed by Super-Resolution Microscopy and Multiscale Simulations. ACS Nano, 2022, 16, 98-110.	7.3	11
198	The fabrication of novel zein and resveratrol covalent conjugates: Enhanced thermal stability, emulsifying and antioxidant properties. Food Chemistry, 2022, 374, 131612.	4.2	30

#	Article	IF	CITATIONS
199	Comparison analysis of widely-targeted metabolomics revealed the variation of potential astringent ingredients and their dynamic accumulation in the seed coats of both Carya cathayensis and Carya illinoinensis. Food Chemistry, 2022, 374, 131688.	4.2	26
200	Development of wet media milled purple sweet potato particle-stabilized pickering emulsions: The synergistic role of bioactives, starch and cellulose. LWT - Food Science and Technology, 2022, 155, 112964.	2.5	14
201	Pickering emulsions by regulating the molecular interactions between gelatin and catechin for improving the interfacial and antioxidant properties. Food Hydrocolloids, 2022, 126, 107425.	5.6	25
202	Starch-based nanoparticles for fabrication of nutraceutical delivery system. , 2022, , 341-375.		1
203	Preparation of high internal phase Pickering emulsions stabilized by egg yolk high density lipoprotein: Stabilizing mechanism under different pH values and protein concentrations. LWT - Food Science and Technology, 2022, 157, 113091.	2.5	16
204	High internal phase Pickering emulsions stabilized by eggÂyolk low density lipoprotein for delivery of curcumin. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112334.	2.5	23
205	Distinctive rheological properties of Pickering emulsions: from their origin to the applications. Korea Australia Rheology Journal, 2022, 34, 91-103.	0.7	11
206	Boosting the Bioaccessibility of Dietary Bioactives by Delivery as Protein–Polyphenol Aggregate Particles. Journal of Agricultural and Food Chemistry, 2022, 70, 13017-13026.	2.4	11
207	Parameterless detection of liquid–liquid interfaces with sub-micron resolution in single-molecule localization microscopy. Journal of Colloid and Interface Science, 2022, 620, 356-364.	5.0	1
208	Cellulose nanocrystal (CNC)-stabilized Pickering emulsion for improved curcumin storage stability. LWT - Food Science and Technology, 2022, 159, 113249.	2.5	30
209	Formation and stability of Pickering emulsion gels by insoluble soy peptide aggregates through hydrophobic modification. Food Chemistry, 2022, 387, 132897.	4.2	23
210	Effect of chitosan oligosaccharide glycosylation on the emulsifying property of lactoferrin. International Journal of Biological Macromolecules, 2022, 209, 93-106.	3.6	19
211	Complex coacervation microcapsules by tannic acid crosslinking prolong the antifungal activity of cinnamaldehyde against Aspergillus brasiliensis. Food Bioscience, 2022, 47, 101686.	2.0	11
212	Oxidative stability of Pickering emulsions. Food Chemistry: X, 2022, 14, 100279.	1.8	9
213	Stability and photo demulsification of oil-in-seawater Pickering emulsion based on Fe3+ induced amphiphilic alginate. Carbohydrate Polymers, 2022, 289, 119399.	5.1	8
214	Lipid oxidation and in vitro digestion of pickering emulsion based on zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles. Food Chemistry, 2022, 386, 132513.	4.2	25
215	Optically Anisotropic Topical Hemostatic Coacervate for Nakedâ€Eye Identification of Blood Coagulation. Advanced Functional Materials, 2022, 32, .	7.8	17
216	Influence of polyphenol-metal ion-coated ovalbumin/sodium alginate composite nanoparticles on the encapsulation of kaempferol/tannin acid. International Journal of Biological Macromolecules, 2022, 209, 1288-1297.	3.6	11

#	Article	IF	CITATIONS
217	Modulating aroma release of flavour oil emulsion based on mucoadhesive property of tannic acid. Food Chemistry, 2022, 388, 132970.	4.2	5
218	Polysaccharides improved the viscoelasticity, microstructure, and physical stability of ovalbumin-ferulic acid complex stabilized emulsion. International Journal of Biological Macromolecules, 2022, 211, 150-158.	3.6	21
219	Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocolloids, 2022, 131, 107781.	5.6	27
220	In-silico zein/tannic acid colloidal nanoparticles and their activity at oil and water interface of Pickering emulsion using molecular dynamics simulation. Journal of Molecular Liquids, 2022, 359, 119321.	2.3	4
221	Advances in Pickering emulsions stabilized by protein particles: Toward particle fabrication, interaction and arrangement. Food Research International, 2022, 157, 111380.	2.9	47
222	Engineering Emulsion Gels as Functional Colloids Emphasizing Food Applications: A Review. Frontiers in Nutrition, 2022, 9, .	1.6	30
223	Stable O/W emulsions and oleogels with amphiphilic konjac glucomannan network: preparation, characterization, and application. Journal of the Science of Food and Agriculture, 2022, 102, 6555-6565.	1.7	11
224	Development and application of hydrophilic-hydrophobic dual-protein Pickering emulsifiers: EGCG-modified caseinate-zein complexes. Food Research International, 2022, 157, 111451.	2.9	15
225	Stability, rheological properties and microstructure of Pickering emulsions stabilized by different concentration of glidian/sodium caseinate nanoparticles using konjac glucomannan as structural regulator. Food Structure, 2022, 33, 100285.	2.3	11
226	The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. Food and Bioprocess Technology, 2022, 15, 2422-2455.	2.6	5
227	Tannic Acid-Aminated Sugar Beet Pectin Nanoparticles as a Stabilizer of High-Internal-Phase Pickering Emulsions. Journal of Agricultural and Food Chemistry, 2022, 70, 8052-8063.	2.4	20
228	Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil. Carbohydrate Polymers, 2022, 292, 119715.	5.1	21
229	Understanding of physicochemical properties and antioxidant activity of ovalbumin–sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Advances, 2022, 12, 18115-18126.	1.7	2
230	Improvement of Storage Stability of Zein-Based Pickering Emulsions by the Combination of Konjac Glucomannan and L-Lysine. Frontiers in Nutrition, 0, 9, .	1.6	1
231	Formation of protein oleogels via capillary attraction of engineered protein particles. Food Hydrocolloids, 2022, 133, 107912.	5.6	15
232	Zein-stabilized emulsions by ethanol addition; stability and microstructure. Food Hydrocolloids, 2022, 133, 107973.	5.6	9
233	In Situ Characterization and Interfacial Viscoelastic Properties of Pickering Emulsions Stabilized by AIE-Active Modified Alginate and Chitosan Complexes. ACS Sustainable Chemistry and Engineering, 2022, 10, 10275-10285.	3.2	11
234	Preparation of Pickering Emulsions Stabilized by Modified Silica Nanoparticles via the Taguchi Approach. Pharmaceutics, 2022, 14, 1561.	2.0	3

#	Article	IF	CITATIONS
235	Continuous flow modulates zein nanoprecipitation solvent environment to obtain colloidal particles with high curcumin loading. Food Hydrocolloids, 2023, 134, 108089.	5.6	12
236	Ultra-stable pickering emulsions stabilized by zein-cellulose conjugate particles with tunable interfacial affinity. Food Hydrocolloids, 2023, 134, 108055.	5.6	7
237	Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. International Journal of Biological Macromolecules, 2022, 219, 824-834.	3.6	6
238	Enzymatically modified quinoa starch based pickering emulsion as carrier for curcumin: Rheological properties, protection effect and in vitro digestion study. Food Bioscience, 2022, 49, 101933.	2.0	12
239	EGCG-decorated zein complex particles: Relationship to synergistic interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129879.	2.3	3
240	Properties and microstructure of pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides. Food Hydrocolloids, 2023, 134, 108084.	5.6	18
241	Extrusion-based 3D printing of high internal phase emulsions stabilized by co-assembled \hat{l}^2 -cyclodextrin and chitosan. Food Hydrocolloids, 2023, 134, 108036.	5.6	58
242	Improved catalytic properties of Candida antarctica lipase B immobilized on cetyl chloroformate-modified cellulose nanocrystals. International Journal of Biological Macromolecules, 2022, 220, 1231-1240.	3.6	11
243	Mechanisms of deformation and drug release of targeting polypeptides based on fibronectin induction. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112836.	2.5	2
244	Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. International Journal of Biological Macromolecules, 2022, 222, 121-131.	3.6	15
245	Nano and micro lupin protein-grape seed extract conjugates stabilizing oil-in-water emulsions. Food Hydrocolloids, 2023, 135, 108117.	5.6	5
246	Development of Zein/tannic acid nanoparticles as antioxidants for oxidation inhibition of blackberry seed oil emulsions. Food Chemistry, 2023, 403, 134236.	4.2	9
247	Effects of natural waxes on the interfacial behavior, structural properties and foam stabilization of aerated emulsions. Food and Function, 2022, 13, 8860-8870.	2.1	4
248	Singleâ€layer and doubleâ€layer zein–gum arabic nanoencapsulations: Preparation, structural characterization, thermal properties, and controlled release in the gastrointestinal tract. Journal of Food Science, 2022, 87, 4580-4595.	1.5	1
249	Effect of four plant oils on the stability of high internal phase Pickering emulsions stabilized by ovalbumin-tannic acid complex. International Journal of Biological Macromolecules, 2022, 222, 1633-1641.	3.6	19
250	Chestnut Starch Nanocrystal Combined with Macadamia Protein Isolate to Stabilize Pickering Emulsions with Different Oils. Foods, 2022, 11, 3320.	1.9	2
251	A review of protein-phenolic acid interaction: reaction mechanisms and applications. Critical Reviews in Food Science and Nutrition, 0 , , 1 -17.	5.4	3
252	Improving the bioaccessibility of lipophilic ingredient in its oral intestinal delivery by ultrasound and biological crossâ€linker. Journal of the Science of Food and Agriculture, 0, , .	1.7	0

#	ARTICLE	IF	Citations
253	Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chemistry, 2023, 404, 134642.	4.2	17
254	Recent Progress on Biopolymer-based Technologies on Nutraceutical and Natural Plant-based Extracts. RSC Polymer Chemistry Series, 2022, , 361-398.	0.1	1
255	Plant-based Bioactive Components as Encapsulating Agents for Functional Food Applications. RSC Polymer Chemistry Series, 2022, , 122-154.	0.1	1
256	Antioxidative properties of fish roe peptides combined with polyphenol on the fish oil oleogel. Journal of the Science of Food and Agriculture, 2023, 103, 1714-1726.	1.7	2
257	Octenyl succinate hydroxypropyl acidolysis tamarind gum: synthesis, optimization, structure and properties. Polymer Journal, 0, , .	1.3	0
258	Functionality of plant-based proteins. , 2023, , 79-96.		1
259	High internal phase Pickering emulsions prepared by globular protein-tannic acid complexes: A hydrogen bond-based interfacial crosslinking strategy. Journal of Molecular Liquids, 2023, 370, 121025.	2.3	9
260	Pickering emulsions stabilized by zein–gallic acid composite nanoparticles: Impact of covalent or non-covalent interactions on storage stability, lipid oxidation and digestibility. Food Chemistry, 2023, 408, 135254.	4.2	18
261	Structural characterization, interfacial and emulsifying properties of soy protein hydrolysate-tannic acid complexes. Food Hydrocolloids, 2023, 137, 108415.	5.6	18
262	Polyphenol-Enriched Protein Oleogels as Potential Delivery Systems of Omega-3 Fatty Acids. Journal of Agricultural and Food Chemistry, 2023, 71, 749-759.	2.4	4
263	Carboxymethyl Chitosan/Tannic Acid Hydrogel with Antibacterial, Hemostasis, and Antioxidant Properties Promoting Skin Wound Repair. ACS Biomaterials Science and Engineering, 2023, 9, 437-448.	2.6	22
264	Pickering emulsions stabilized by hemp protein nanoparticles: Tuning the emulsion characteristics by adjusting anti-solvent precipitation. Food Hydrocolloids, 2023, 138, 108434.	5.6	10
265	Insight into Comparison of Binding Interactions and Biological Activities of Whey Protein Isolate Exposed Prior to Two Structurally Different Sterols. SSRN Electronic Journal, 0, , .	0.4	0
266	HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. International Journal of Biological Macromolecules, 2023, 238, 124053.	3.6	10
267	Pickering stabilizing capacity of Plasma-treated Grass pea protein nanoparticles. Journal of Food Engineering, 2023, 350, 111458.	2.7	2
268	A "smart-sensing―bactericidal protein-based Pickering emulsion. Journal of Food Engineering, 2023, 350, 111491.	2.7	3
269	A controllable, universal, and natural supramolecular assembly coating strategy for multifunctionality textiles of antibacterial properties, UV resistance, antioxidant, and secondary reactivity. Industrial Crops and Products, 2023, 198, 116637.	2.5	3
270	Depletion attraction driven formation of Spirulina emulsion gels for 3D printing. Food Hydrocolloids, 2023, 141, 108691.	5.6	8

CITATION REPORT

#	Article	IF	CITATIONS
271	Ca2+/pH-triggered gelation of Pickering emulsion in vitro digestion: Visualization and sustained-release performance. Food Hydrocolloids, 2023, 140, 108583.	5 . 6	2
272	Gastrointestinal pH-Sensitive Pickering Emulsions Stabilized by Zein Nanoparticles Coated with Bioactive Glycyrrhizic Acid for Improving Oral Bioaccessibility of Curcumin. ACS Applied Materials & Amp; Interfaces, 0, , .	4.0	2
273	Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods, 2023, 12, 1556.	1.9	2
274	High internal phase Pickering emulsion stabilized by zein-tannic acid-sodium alginate complexes: Î ² -Carotene loading and 3D printing. Food Hydrocolloids, 2023, 142, 108762.	5. 6	19