Awareness and Support of Release of Genetically Modif Florida, USA

Emerging Infectious Diseases 21, 320-324 DOI: 10.3201/eid2102.141035

Citation Report

#	Article	IF	CITATIONS
1	Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics. Insects, 2015, 6, 576-594.	2.2	86
2	Recent trends in ZikV research: A step away from cure. Biomedicine and Pharmacotherapy, 2017, 91, 1152-1159.	5.6	25
3	The Impact of Temperature and Body Size on Fundamental Flight Tone Variation in the Mosquito Vector Aedes aegypti (Diptera: Culicidae): Implications for Acoustic Lures. Journal of Medical Entomology, 2017, 54, 1116-1121.	1.8	59
4	Outdoor spatial spraying against dengue: A false sense of security among inhabitants of Hermosillo, Mexico. PLoS Neglected Tropical Diseases, 2017, 11, e0005611.	3.0	7
5	The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Climatic Change, 2018, 146, 487-500.	3.6	55
6	Ethics of community engagement in field trials of genetically modified mosquitoes. Developing World Bioethics, 2018, 18, 135-143.	0.9	70
7	Mosquito control practices and perceptions: An analysis of economic stakeholders during the Zika epidemic in Belize, Central America. PLoS ONE, 2018, 13, e0201075.	2.5	10
8	Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Tropical Medicine and Infectious Disease, 2018, 3, 4.	2.3	27
9	Vector biology meets disease control: using basic research to fight vector-borne diseases. Nature Microbiology, 2019, 4, 20-34.	13.3	189
10	Biological control of pests and a social model of animal welfare. Journal of Environmental Management, 2019, 247, 313-322.	7.8	13
11	A typology of community and stakeholder engagement based on documented examples in the field of novel vector control. PLoS Neglected Tropical Diseases, 2019, 13, e0007863.	3.0	24
12	â€~Clean up your rain gutters!': mosquito control, responsibility, and blame following the 2009–2010 dengue fever outbreak in Key West, Florida. Geo Journal, 2022, 87, 1335-1347.	3.1	1
13	Community acceptance of yeast interfering RNA larvicide technology for control of Aedes mosquitoes in Trinidad. PLoS ONE, 2020, 15, e0237675.	2.5	8
14	Qualitative Assessment of Environmental Health Risk Perceptions and Community Challenges in a Puerto Rican Community: Change and Continuity in Response to Hurricanes Irma and MarAa. Behavioral Medicine, 2020, 46, 231-244.	1.9	4
15	13. Global Vector Control Response – supporting the pillars. Ecology and Control of Vector-Borne Diseases, 2021, , 235-241.	0.7	1
16	The Eco-Bio-Social Factors That Modulate Aedes aegypti Abundance in South Texas Border Communities. Insects, 2021, 12, 183.	2.2	9
17	Climate Mismatch between Introduced Biological Control Agents and Their Invasive Host Plants: Improving Biological Control of Tropical Weeds in Temperate Regions. Insects, 2021, 12, 549.	2.2	17
18	Assessment of Trinidad community stakeholder perspectives on the use of yeast interfering RNA-baited ovitraps for biorational control of Aedes mosquitoes. PLoS ONE, 2021, 16, e0252997.	2.5	5

#	Article	IF	CITATIONS
19	Oxitec and MosquitoMate in the United States: lessons for the future of gene drive mosquito control. Pathogens and Global Health, 2021, 115, 365-376.	2.3	16
20	Developing Effective Mosquito Control Strategies by Utilizing Vector Mosquito Life Histories and Ecology. Case Studies in the Environment, 2019, 3, 1-12.	0.7	2
22	California Residents' Perceptions of Gene Drive Systems to Control Mosquito-Borne Disease. Frontiers in Bioengineering and Biotechnology, 2022, 10, 848707.	4.1	7
23	Acceptance of a sterile male releases pilot project to reduce Aedes aegypti (Linnaeus, 1762) (Diptera:) Tj ETQq1 1 Chiapas, Mexico. Acta Tropica, 2022, 233, 106573.	0.784314 2.0	4 rgBT /Over O
24	Microsporidia: a promising vector control tool for residual malaria transmission. Frontiers in Tropical Diseases, 0, 3, .	1.4	6
25	Community perceptions on challenges and solutions to implement an Aedes aegypti control project in Ponce, Puerto Rico (USA). PLoS ONE, 2023, 18, e0284430.	2.5	0
26	Assessing the suitability of YY males and ZZ females as an invasive species population control method across life histories. Biological Invasions, 2023, 25, 3737-3751.	2.4	1
27	Acceptability of emergent Aedes aegypti vector control methods in Ponce, Puerto Rico: A qualitative assessment. PLOS Global Public Health, 2024, 4, e0002744.	1.6	Ο

CITATION REPORT