Identification of catalytic sites for oxygen reduction in a graphene materials

Nature Materials 14, 937-942 DOI: 10.1038/nmat4367

Citation Report

#	Article	IF	CITATIONS
8	Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano, 2015, 9, 12496-12505.	7.3	499
9	Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chemical Communications, 2015, 51, 17092-17095.	2.2	85
10	Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 25917-25928.	1.5	433
11	Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 11014-11022.	7.3	165
12	Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 27405-27413.	4.0	139
13	Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis, 2015, 5, 7288-7298.	5.5	78
14	PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. Journal of Power Sources, 2016, 326, 43-49.	4.0	79
15	Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone. Journal of Materials Chemistry A, 2016, 4, 12768-12773.	5.2	55
16	CO Poisoning Effects on FeNC and CN _{<i>x</i>} ORR Catalysts: A Combined Experimental–Computational Study. Journal of Physical Chemistry C, 2016, 120, 15173-15184.	1.5	57
17	Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 14650-14664.	2.8	61
18	A 3D hierarchical assembly of optimized heterogeneous carbon nanosheets for highly efficient electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11625-11629.	5.2	12
19	Theoretical study of stability of metal-N4 macrocyclic compounds in acidic media. Chinese Journal of Catalysis, 2016, 37, 1166-1171.	6.9	16
20	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	15.6	216
21	Graphene layer encapsulated metal nanoparticles as a new type of nonâ€precious metal catalysts for oxygen reduction. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 382-385.	0.8	11
22	Highly Efficient Oxygen and Hydrogen Electrocatalytic Activities of Selfâ€Morphogenic Nanoporous Carbon, Nitrogen Architectures. ChemNanoMat, 2016, 2, 99-103.	1.5	25
23	Highly active Fe, N co-doped graphene nanoribbon/carbon nanotube composite catalyst for oxygen reduction reaction. Electrochimica Acta, 2016, 222, 1922-1930.	2.6	27
24	Fe–N-doped carbon-based composite as an efficient and durable electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 114553-114559.	1.7	29
25	Ionic liquid-derived Fe–N/C catalysts for highly efficient oxygen reduction reaction without any supports, templates, or multi-step pyrolysis. Journal of Materials Chemistry A, 2016, 4, 6630-6638.	5.2	48

#	Article	IF	CITATIONS
26	Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts. Nano Energy, 2016, 29, 54-64.	8.2	116
27	Iron–nitrogen-functionalized carbon as efficient oxygen reduction reaction electrocatalyst in microbial fuel cells. International Journal of Hydrogen Energy, 2016, 41, 19637-19644.	3.8	47
28	Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium. ACS Catalysis, 2016, 6, 3136-3146.	5.5	201
29	Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7781-7787.	5.2	88
30	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
31	Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 509-532.	3.3	46
32	Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 2016, 29, 149-165.	8.2	177
33	Nitrogen-Deficient ORR Active Sites Formation by Iron-Assisted Water Vapor Activation of Electrospun Carbon Nanofibers. Journal of Physical Chemistry C, 2016, 120, 7705-7714.	1.5	48
34	Electrochemistry of N4 Macrocyclic Metal Complexes. , 2016, , .		32
35	A hollow spherical doped carbon catalyst derived from zeolitic imidazolate framework nanocrystals impregnated/covered with iron phthalocyanines. Journal of Materials Chemistry A, 2016, 4, 7859-7868.	5.2	37
36	Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction. , 2016, , 41-68.		12
37	Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 2016, 29, 126-135.	8.2	248
38	Chemical Nature of Catalytic Active Sites for the Oxygen Reduction Reaction on Nitrogen-Doped Carbon-Supported Non-Noble Metal Catalysts. Journal of Physical Chemistry C, 2016, 120, 9884-9896.	1.5	87
39	Non-noble Metal (NNM) Catalysts for Fuel Cells: Tuning the Activity by a Rational Step-by-Step Single Variable Evolution. , 2016, , 69-101.		8
40	Oxygen Electroreduction on M-N4 Macrocyclic Complexes. , 2016, , 1-39.		2
41	Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS Catalysis, 2016, 6, 3558-3568.	5.5	74
42	Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 15870-15879.	5.2	81
43	Single Co atom catalyst stabilized in C/N containing matrix. Chinese Journal of Catalysis, 2016, 37, 1443-1445.	6.9	15

ARTICLE IF CITATIONS Pt nanoparticle and Fe,N-codoped 3D graphene as synergistic electrocatalyst for oxygen reduction 4.0 32 44 reaction. Journal of Power Sources, 2016, 335, 31-37. ReaktivitÃtsdeskriptoren für die AktivitÃtvon molekularen MN4â€Katalysatoren zur 1.6 39 Sauerstoffreduktion. Angewandte Chemie, 2016, 128, 14726-14738. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction 46 7.2 463 Reaction. Angewandte Chemie - International Edition, 2016, 55, 14510-14521. Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogenâ€Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction. Śmall, 2016, 12, 6398-6406. Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon 48 2.6 42 nanotubes in acid media. Electrochimica Acta, 2016, 218, 303-310. Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation. Chemical Communications, 2016, 52, 13728-13748. 49 2.2 Boron-doped graphene for fast electrochemical detection of HMX explosive. Electrochimica Acta, 50 2.6 13 2016, 216, 219-227. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction 104 electrocatalysis. Journal of Power Sources, 2016, 332, 305-311. A mesoporous Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells. Chinese Journal of 52 6.9 29 Catalysis, 2016, 37, 1103-1108. Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 26783-26793. Influence of counter electrode material during accelerated durability test of non-precious metal 54 6.9 13 electrocatalysts in acidic medium. Chinese Journal of Catalysis, 2016, 37, 1109-1118. Single Cobalt Atoms with Precise N oordination as Superior Oxygen Reduction Reaction Catalysts. 1,836 Angewandte Chemie - International Edition, 2016, 55, 10800-108Ó5 Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. 56 1.6 373 Angewandte Chemie, 2016, 128, 10958-10963. Is Ammonium Peroxydisulfate Indispensable for Preparation of Anilineâ€Derived Iron–Nitrogen–Carbon Electrocatalysts?. ChemSusChem, 2016, 9, 2301-2306. 3.6 14 Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in 58 1.2 7 an acidic condition. Korean Journal of Chemical Engineering, 2016, 33, 2582-2588. Recent Progress in Synthesis, Characterization and Evaluation of Nonâ€Precious Metal Catalysts for 108 the Oxygen Reduction Reaction. Fuel Cells, 2016, 16, 4-22. Cobalt/nitrogen co-doped porous carbon nanosheets as highly efficient catalysts for the oxygen 60 1.7 18 reduction reaction in both basic and acidic media. RSC Advances, 2016, 6, 82341-82347. Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochimica Acta, 2016, 215, 388-397.

#	Article	IF	CITATIONS
62	One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2016, 109, 402-410.	5.4	96
63	Carbonaceous thin film coating with Fe–N 4 site for enhancement of dioxovanadium ion reduction. Journal of Power Sources, 2016, 324, 521-527.	4.0	7
64	Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect. Journal of Physical Chemistry Letters, 2016, 7, 3542-3547.	2.1	50
65	Nitrogen Doping in Oxygen-Deficient Ca ₂ Fe ₂ O ₅ : A Strategy for Efficient Oxygen Reduction Oxide Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 34387-34395.	4.0	46
66	Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 32875-32886.	4.0	120
67	lron nanoparticles with a square pyramidal structure in mesoporous carbons as an effective catalyst toward oxygen reduction. RSC Advances, 2016, 6, 111366-111373.	1.7	3
68	Water splitting: Taking cobalt in isolation. Nature Energy, 2016, 1, .	19.8	17
69	Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CN _{<i>x</i>}) in Acidic Media Using Phosphate Anion. ACS Catalysis, 2016, 6, 7249-7259.	5.5	123
70	Effect of the pyrolysis atmosphere and nature of iron precursor on the structure and activity of Fe/N based electrocatalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22560-22569.	3.8	13
71	Facile Synthesis of Mesoporous Reduced Graphene Oxide Microspheres with Well-Distributed Fe ₂ O ₃ Nanoparticles for Photochemical Catalysis. Industrial & Engineering Chemistry Research, 2016, 55, 10591-10599.	1.8	21
72	Metal–Organicâ€Frameworkâ€Derived Mesoporous Carbon Nanospheres Containing Porphyrinâ€Like Metal Centers for Conformal Phototherapy. Advanced Materials, 2016, 28, 8379-8387.	11.1	264
73	Synthesis and Activity of A Single Active Site N-doped Electro-catalyst for Oxygen Reduction. Electrochimica Acta, 2016, 213, 927-932.	2.6	14
74	Evidences of the presence of different types of active sites for the oxygen reduction reaction with Fe/N/C based catalysts. Journal of Power Sources, 2016, 327, 204-211.	4.0	28
75	Immobilization of a Metal–Nitrogen–Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells. ChemSusChem, 2016, 9, 2226-2232.	3.6	109
76	Enhanced performance of non-PGM catalysts in air operated PEM-fuel cells. International Journal of Hydrogen Energy, 2016, 41, 22598-22604.	3.8	12
77	A General Approach to Preferential Formation of Active Fe–N _{<i>x</i>} Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 15046-15056.	6.6	663
78	Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nature Communications, 2016, 7, 12582.	5.8	261
79	Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy, 2016, 30, 443-449.	8.2	114

#	Article	IF	Citations
80	Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: Protonation of pyridinic nitrogen. Electrochemistry Communications, 2016, 73, 71-74.	2.3	116
81	In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nature Communications, 2016, 7, 13285.	5.8	349
82	Rationally Designed 3D Fe and N Codoped Graphene with Superior Electrocatalytic Activity toward Oxygen Reduction. Small, 2016, 12, 2549-2553.	5.2	33
83	Preparation and Characterization of Newly Discovered Fibrous Aggregates of Singleâ€Walled Carbon Nanohorns. Advanced Materials, 2016, 28, 7174-7177.	11.1	20
84	Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy and Environmental Science, 2016, 9, 2418-2432.	15.6	472
85	Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy and Environmental Science, 2016, 9, 2623-2632.	15.6	164
86	Hierarchically porous Fe–N–C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale, 2016, 8, 14271-14277.	2.8	62
87	Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy, 2016, 24, 121-129.	8.2	131
88	Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chemical Science, 2016, 7, 5758-5764.	3.7	571
89	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
90	Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity. Chemical Science, 2016, 7, 1462-1467.	3.7	41
91	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 311, 137-143.	4.0	71
92	Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?. Journal of Materials Chemistry A, 2016, 4, 4998-5001.	5.2	72
93	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>} . Journal of the American Chemical Society, 2016, 138, 3570-3578.	6.6	1,549
94	Structural effects of a carbon matrix in non-precious metal O ₂ -reduction electrocatalysts. Chemical Society Reviews, 2016, 45, 2396-2409.	18.7	175
95	Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent 57 Fe Mössbauer spectroscopy study. Catalysis Today, 2016, 262, 110-120.	2.2	70
96	On an Easy Way To Prepare Metal–Nitrogen Doped Carbon with Exclusive Presence of MeN ₄ -type Sites Active for the ORR. Journal of the American Chemical Society, 2016, 138, 635-640.	6.6	420
97	Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. Journal of Physical Chemistry C, 2016, 120, 1586-1596.	1.5	148

#	Article	IF	CITATIONS
98	Nanocarbon-intercalated and Fe–N-codoped graphene as a highly active noble-metal-free bifunctional electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 1930-1934.	5.2	88
99	Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Research, 2017, 10, 1449-1470.	5.8	144
100	Oxygen Binding to Active Sites of Fe–N–C ORR Electrocatalysts Observed by Ambient-Pressure XPS. Journal of Physical Chemistry C, 2017, 121, 2836-2843.	1.5	135
101	Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-N _{<i>x</i>} Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis, 2017, 7, 1655-1663.	5.5	483
102	Facile ionothermal synthesis of mesoporous Fe–N _x –C composites as efficient catalysts for oxygen reduction in acid media. Journal of Materials Chemistry A, 2017, 5, 3832-3838.	5.2	39
103	Hydrogen adsorption on Be, Mg, Ca and Sr doped graphenes: The role of the dopant in the IIA main group. Chemical Physics Letters, 2017, 669, 238-244.	1.2	10
104	Selfâ€īemplated Synthesis of Co―and Nâ€Doped Carbon Microtubes Composed of Hollow Nanospheres and Nanotubes for Efficient Oxygen Reduction Reaction. Small, 2017, 13, 1603437.	5.2	57
105	Urchin-Shaped Hollow Iron-Nitrogen-Doped Carbon Microspheres as High-Performance Electrocatalysts for Oxygen Reduction. Journal of the Electrochemical Society, 2017, 164, F224-F228.	1.3	11
106	Nitrogen-doped carbon quantum dot/graphene hybrid nanocomposite as an efficient catalyst support for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 2931-2942.	3.8	47
107	Pyrolysis of conjugated nanoporous polycarbazoles to mesoporous N-doped carbon nanotubes as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 4507-4512.	5.2	41
108	Electrochemical Reduction of CO ₂ Catalyzed by Fe-N-C Materials: A Structure–Selectivity Study. ACS Catalysis, 2017, 7, 1520-1525.	5.5	363
109	Metal–Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Coâ€Doped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1601671.	10.2	336
110	Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal–Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Letters, 2017, 2, 504-511.	8.8	279
111	Density Functional Theory (DFT) Calculations for Oxygen Reduction Reaction Mechanisms on Metal-, Nitrogen- co-doped Graphene (M-N2-G (M = Ti, Cu, Mo, Nb and Ru)) Electrocatalysts. Electrochimica Acta, 2017, 228, 619-627.	2.6	29
112	Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction. Nano Letters, 2017, 17, 2003-2009.	4.5	168
113	Molecule-Level g-C ₃ N ₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 3336-3339.	6.6	1,094
114	Zirconium Oxynitride-Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes. ACS Omega, 2017, 2, 678-684.	1.6	49
115	Controllable synthesis of three-dimensional nitrogen-doped graphene as a high performance electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 17504-17513.	3.8	40

#	Article	IF	CITATIONS
116	Phthalocyanine tethered iron phthalocyanine on graphitized carbon black as superior electrocatalyst for oxygen reduction reaction. Nano Energy, 2017, 34, 338-343.	8.2	113
117	Roles of Feâ^'N _{<i>x</i>} and Feâ^'Fe ₃ C@C Species in Feâ^'N/C Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 9567-9575.	4.0	151
118	Unraveling the Oxygenâ€Reduction Sites in Graphiticâ€Carbon Co–N–Câ€Type Electrocatalysts Prepared by Singleâ€Precursor Pyrolysis. ChemCatChem, 2017, 9, 1969-1978.	1.8	18
119	Heterogeneous iron-containing carbon gels as catalysts for oxygen electroreduction: Multifunctional role of sulfur in the formation of efficient systems. Carbon, 2017, 116, 655-669.	5.4	31
120	Selfâ€Assembled Fe–Nâ€Doped Carbon Nanotube Aerogels with Singleâ€Atom Catalyst Feature as Highâ€Efficiency Oxygen Reduction Electrocatalysts. Small, 2017, 13, 1603407.	5.2	254
121	Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes. Journal of Power Sources, 2017, 348, 30-39.	4.0	60
122	Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon, 2017, 117, 163-173.	5.4	105
123	Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: a green and high yield route to high-quality graphene preparation. Journal of Materials Chemistry A, 2017, 5, 5880-5885.	5.2	73
124	Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	36
125	Isolated Single Iron Atoms Anchored on Nâ€Đoped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	7.2	1,542
126	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	5.2	290
127	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	1.6	306
128	Highly active and stable non noble metal catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 10423-10434.	3.8	29
129	"Wiring―Feâ€N _{<i>x</i>} â€Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606534.	11.1	342
130	In Situ Formation of Hierarchical Porous Fe,Coâ^Nâ€Doped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2005-2011.	1.7	8
131	Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 2017, 13, 1604290.	5.2	132
132	Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 16178-16186.	4.0	94
133	Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. Catalysis Science and Technology, 2017, 7, 2228-2235	2.1	37

#	Article	IF	CITATIONS
134	Nitrogen-rich Fe-N-C materials derived from polyacrylonitrile as highly active and durable catalysts for the oxygen reduction reaction in both acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2017, 502, 44-51.	5.0	34
135	Metalâ€Organic Frameworkâ€Derived Nonâ€Precious Metal Nanocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700363.	10.2	297
136	Role of Local Carbon Structure Surrounding FeN ₄ Sites in Boosting the Catalytic Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2017, 121, 11319-11324.	1.5	150
137	Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Materials Chemistry Frontiers, 2017, 1, 2155-2173.	3.2	109
138	Effect of metal species on the stability of Me-N-C catalysts during accelerated stress tests mimicking the start-up and shut-down conditions. Electrochimica Acta, 2017, 243, 183-196.	2.6	60
139	Co-based heterogeneous catalysts from well-defined α-diimine complexes: Discussing the role of nitrogen. Journal of Catalysis, 2017, 351, 79-89.	3.1	65
140	Highly Active and Stable Fe–N–C Catalyst for Oxygen Depolarized Cathode Applications. Langmuir, 2017, 33, 9246-9253.	1.6	23
141	Atomically Dispersed Iron–Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angewandte Chemie, 2017, 129, 625-629.	1.6	140
142	Atomically Dispersed Iron–Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angewandte Chemie - International Edition, 2017, 56, 610-614.	7.2	950
143	Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?. Catalysis Science and Technology, 2017, 7, 51-55.	2.1	50
144	MOFâ€Based Metalâ€Dopingâ€Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries. Small, 2017, 13, 1700740.	5.2	170
145	Electrocatalysis for the Hydrogen Economy. , 2017, , 23-50.		11
146	Hierarchical Porous Carbon Doped with Iron/Nitrogen/Sulfur for Efficient Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 20963-20973.	4.0	103
147	Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy, 2017, 38, 281-289.	8.2	301
148	Einzelatomâ€Elektrokatalysatoren. Angewandte Chemie, 2017, 129, 14132-14148.	1.6	99
149	Singleâ€Atom Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 13944-13960.	7.2	1,040
150	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie, 2017, 129, 8935-8938.	1.6	16
151	Nitrogen and Iron-Codoped Carbon Hollow Nanotubules as High-Performance Catalysts toward Oxygen Reduction Reaction: A Combined Experimental and Theoretical Study. Chemistry of Materials, 2017, 29, 5617-5628.	3.2	92

ARTICLE IF CITATIONS # Fe–N–C Catalyst Graphitic Layer Structure and Fuel Cell Performance. ACS Energy Letters, 2017, 2, 152 8.8 104 1489-1493. Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient 1,115 6.6 Electroreduction of CO₂. Journal of the American Chemical Society, 2017, 139, 8078-8081. Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic 154 2.2 73 metal organic framework. Chemical Communications, 2017, 53, 6496-6499. Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction. Carbon, 2017, 121, 143-153. In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Fe–N 156 3.2 23 Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653. Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron–nitrogen-doped graphitic carbon spheres. Journal of Materials Chemistry A, 2017, 5, 5.2 12243-12251. Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts. 158 7.2 176 Angewandte Chemie - International Edition, 2017, 56, 8809-8812. Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media. Journal of 2.1 Physical Chemistry Letters, 2017, 8, 2881-2886. Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. Journal 160 1.5 89 of Physical Chemistry C, 2017, 121, 14524-14533. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen 199 Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano, 2017, 11, 4358-4364. Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free 162 5.2 95 electrocatalysts for overall water-splitting. Journal of Materials Chemistry A, 2017, 5, 7784-7790. Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for 9.5 oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58. Low-Temperature and Gram-Scale Synthesis of Two-Dimensional Fe–N–C Carbon Sheets for Robust 164 3.2 55 Electrochemical Oxygen Reduction Reaction. Chemistry of Materials, 2017, 29, 2890-2898. Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene 15.6 431 frameworks. Energy and Environmental Science, 2017, 10, 1186-1195. Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen 166 8.2 289 reduction catalysis. Nano Energy, 2017, 35, 9-16. Novel Iron/Cobaltâ€Containing Polypyrrole Hydrogelâ€Derived Trifunctional Electrocatalyst for 320 Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1606497. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331. 168 23.0 3,940 Pyrolysis of Self-Assembled Iron Porphyrin on Carbon Black as Core/Shell Structured Electrocatalysts for Highly Efficient Oxygen Reduction in Both Alkaline and Acidic Medium. Advanced Functional Materials, 2017, 27, 1604356.

#	Article	IF	CITATIONS
170	Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2017, 490, 576-586.	5.0	26
171	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. Journal of Materials Chemistry A, 2017, 5, 3239-3248.	5.2	37
172	Highly exposed Fe–N ₄ active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Transactions, 2017, 46, 1803-1810.	1.6	32
173	Electrochemical and In Situ Spectroscopic Evidences toward Empowering Ruthenium-Based Chalcogenides as Solid Acid Fuel Cell Cathodes. ACS Catalysis, 2017, 7, 581-591.	5.5	10
174	Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 1742-1748.	5.2	51
175	Engineering Favorable Morphology and Structure of Feâ€N Oxygenâ€Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors. ChemSusChem, 2017, 10, 774-785.	3.6	124
176	Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity?. Small Methods, 2017, 1, 1600014.	4.6	179
177	Structural Descriptors of Zeolitic–Imidazolate Frameworks Are Keys to the Activity of Fe–N–C Catalysts. Journal of the American Chemical Society, 2017, 139, 453-464.	6.6	173
178	Fe–N _x moiety-modified hierarchically porous carbons derived from porphyra for highly effective oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1526-1532.	5.2	60
179	Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction. Chemical Communications, 2017, 53, 1660-1663.	2.2	46
180	Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 3336-3345.	5.2	88
181	Polypyrrole-assisted oxygen electrocatalysis on perovskite oxides. Energy and Environmental Science, 2017, 10, 523-527.	15.6	60
182	High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor. Science Bulletin, 2017, 62, 1602-1608.	4.3	7
183	Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. ACS Applied Materials & Interfaces, 2017, 9, 41303-41313.	4.0	74
184	Ionically dispersed Fe(<scp>ii</scp>)–N and Zn(<scp>ii</scp>)–N in porous carbon for acidic oxygen reduction reactions. Chemical Communications, 2017, 53, 11453-11456.	2.2	22
185	Multifunctional Mo–N/C@MoS ₂ Electrocatalysts for HER, OER, ORR, and Zn–Air Batteries. Advanced Functional Materials, 2017, 27, 1702300.	7.8	658
186	Heteroatomâ€Doped Carbon Nanotube and Grapheneâ€Based Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1702002.	5.2	202
187	The Oxygen Reduction Reaction on Graphene from Quantum Mechanics: Comparing Armchair and Zigzag Carbon Edges. Journal of Physical Chemistry C, 2017, 121, 24408-24417.	1.5	29

#	Article	IF	CITATIONS
188	Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions. ACS Catalysis, 2017, 7, 7908-7916.	5.5	42
189	Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nature Communications, 2017, 8, 957.	5.8	443
190	Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding. ACS Applied Materials & Interfaces, 2017, 9, 38499-38506.	4.0	42
191	Influence of nitrogen-doping in carbon on equivalent distributed resistance and capacitance – Implications to electrocatalysis of oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2017, 805, 184-192.	1.9	59
192	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry, 2017, 26, 1077-1093.	7.1	287
193	3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries' cathodes. Nano Energy, 2017, 40, 382-389.	8.2	153
194	Exploring an effective oxygen reduction reaction catalyst via 4eâ^' process based on waved-graphene. Science China Materials, 2017, 60, 739-746.	3.5	11
195	Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2017, 7, 6864-6871.	5.5	256
196	Noncrystalline Titanium Oxide Catalysts for Electrochemical Oxygen Reduction Reactions. ACS Omega, 2017, 2, 5209-5214.	1.6	31
197	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.	1.6	88
198	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.	7.2	409
199	Electrochemical estimation of the active site density on metal-free nitrogen-doped carbon using catechol as an adsorbate. Physical Chemistry Chemical Physics, 2017, 19, 25414-25422.	1.3	25
200	Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review. Journal of Materials Chemistry A, 2017, 5, 20095-20119.	5.2	108
201	Platinum-free catalysts for low temperature fuel cells. Journal of Physics: Conference Series, 2017, 829, 012007.	0.3	3
202	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
203	Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with the layered MoS2-reduced graphene oxide and Prussian Blue. Mikrochimica Acta, 2017, 184, 4587-4595.	2.5	21
204	Driving electrochemical oxygen reduction and hydrazine oxidation reaction by enzyme-inspired polymeric Cu(3,3′-diaminobenzidine) catalyst. Journal of Materials Chemistry A, 2017, 5, 17413-17420.	5.2	38
205	Air plasma etching towards rich active sites in Fe/N-porous carbon for the oxygen reduction reaction with superior catalytic performance. Journal of Materials Chemistry A, 2017, 5, 16605-16610.	5.2	45

#	Article	IF	CITATIONS
206	3D Space-Confined Pyrolysis of Double-Network Aerogels Containing In-Fe Cyanogel and Polyaniline: A New Approach to Hierarchically Porous Carbon with Exclusive Fe-N <i> _x </i> Active Sites for Oxygen Reduction Catalysis. Small Methods, 2017, 1, 1700167.	4.6	85
207	Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. Journal of Catalysis, 2017, 352, 579-585.	3.1	130
208	Electrocatalysts Derived from Metal–Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small, 2017, 13, 1701143.	5.2	150
209	Enhanced Electrochemical Performance of Tiâ€Doping Li _{1.} <scp>₁₅Ni₀_..<scp>₄₇Sb_{0as Lithiumâ€excess Cathode for Lithiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1853-1860.}</scp></scp>	> 2/6 cp> <s< td=""><td>ub>.</td></s<>	u b>.
210	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
211	NaCl Crystallites as Dual-Functional and Water-Removable Templates To Synthesize a Three-Dimensional Graphene-like Macroporous Fe-N-C Catalyst. ACS Catalysis, 2017, 7, 6144-6149.	5.5	131
212	Atomicâ€Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€6ite Photocatalyst. Angewandte Chemie, 2017, 129, 12359-12364.	1.6	36
213	Atomicâ€Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€6ite Photocatalyst. Angewandte Chemie - International Edition, 2017, 56, 12191-12196.	7.2	269
214	Bioinspired catalytic materials for energy-relevant conversions. Nature Energy, 2017, 2, .	19.8	89
215	Effect of Carbon Supports on Enhancing Mass Kinetic Current Density of Feâ€N/C Electrocatalysts. Chemistry - A European Journal, 2017, 23, 14597-14603.	1.7	18
216	Well-Defined Metal–O ₆ in Metal–Catecholates as a Novel Active Site for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2017, 9, 28473-28477.	4.0	63
217	MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction. Electrochimica Acta, 2017, 251, 638-650.	2.6	42
218	First principles study of oxygen molecule interaction with the graphitic active sites of a boron-doped pyrolyzed Fe–N–C catalyst. Physical Chemistry Chemical Physics, 2017, 19, 23497-23504.	1.3	36
219	A new 3D crosslinked polymer strategy for highly efficient oxygen reduction Fe–N _x /C catalysts. RSC Advances, 2017, 7, 39178-39184.	1.7	7
220	Out-of-plane Fe ^{II} –N ₄ moiety modified Fe–N co-doped porous carbons as high-performance electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 4017-4023.	2.1	32
221	Thermodynamic Stability in Acid Media of FeN ₄ -Based Catalytic Sites Used for the Reaction of Oxygen Reduction in PEM Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F948-F957.	1.3	34
222	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 18933-18950.	5.2	146
223	Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science, 2017, 357, 479-484.	6.0	1,273

#	Article	IF	CITATIONS
224	Discriminating Catalytically Active FeN _{<i>x</i>} Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of the C–H Bond. Journal of the American Chemical Society, 2017, 139, 10790-10798.	6.6	738
225	Multi-Scaled Porous Fe-N/C Nanofibrous Catalysts for the Cathode Electrodes of Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F1556-F1565.	1.3	19
226	Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Science Advances, 2017, 3, eaap9252.	4.7	824
227	Tuning the Physical and Chemical Properties of 2D InSe with Interstitial Boron Doping: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 28312-28316.	1.5	11
228	Metall-N-C-Katalysatoren in der Elektrokatalyse. Nachrichten Aus Der Chemie, 2017, 65, 1096-1099.	0.0	0
229	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	6.6	1,220
230	Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. Nano Energy, 2017, 42, 249-256.	8.2	41
231	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	6.6	556
232	Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal–Organic Framework. ACS Nano, 2017, 11, 8379-8386.	7.3	100
233	Nitrogen-Mediated Graphene Oxide Enables Highly Efficient Proton Transfer. Scientific Reports, 2017, 7, 5213.	1.6	4
234	Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy, 2017, 39, 245-252.	8.2	143
235	Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24545-24554.	4.0	81
236	A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2017, 121, 16283-16290.	1.5	75
237	A comprehensive review on recent progress in aluminum–air batteries. Green Energy and Environment, 2017, 2, 246-277.	4.7	280
238	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	7.3	435
239	Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 13907-13943.	5.2	242
240	Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks. Materials Horizons, 2017, 4, 20-37.	6.4	139
241	Coâ€Nâ€Doped Mesoporous Carbon Hollow Spheres as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1602507.	5.2	143

#	Article	IF	CITATIONS
242	Nitrogenâ€Ðoped Carbon Vesicles with Dual Ironâ€Based Sites for Efficient Oxygen Reduction. ChemSusChem, 2017, 10, 499-505.	3.6	24
243	Modeling Fe/N/C Catalysts in Monolayer Graphene. ACS Catalysis, 2017, 7, 139-145.	5.5	100
244	Effect of Protonated Amine Molecules on the Oxygen Reduction Reaction on Metal-Nitrogen-Carbon-Based Catalysts. Electrocatalysis, 2017, 8, 74-85.	1.5	9
245	Catalysis by Supported Single Metal Atoms. ACS Catalysis, 2017, 7, 34-59.	5.5	1,047
246	Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coordination Chemistry Reviews, 2017, 334, 25-42.	9.5	136
247	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31, 331-350.	8.2	317
248	Polyaniline-based electrocatalysts through emulsion polymerization: Electrochemical and electrocatalytic performances. Journal of Energy Chemistry, 2017, 26, 182-192.	7.1	13
249	Promotion of oxygen reduction performance by Fe3O4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst. International Journal of Hydrogen Energy, 2017, 42, 4133-4145.	3.8	20
250	Ag/Fe ₃ O ₄ -N-Doped Ketjenblack Carbon Composite as Highly Efficient Oxygen Reduction Catalyst in Al-Air Batteries. Journal of the Electrochemical Society, 2017, 164, A3595-A3601.	1.3	17
251	Post Iron Decoration of Mesoporous Nitrogenâ€Doped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	10.2	65
252	Atomically Dispersed Metal Sites in MOFâ€Based Materials for Electrocatalytic and Photocatalytic Energy Conversion. Angewandte Chemie - International Edition, 2018, 57, 9604-9633.	7.2	452
253	Facile synthesis of 3D hierarchical mesoporous Fe-C-N catalysts as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 5163-5174.	3.8	43
254	Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H ₂ O ₂ Activation. Environmental Science and Technology Letters, 2018, 5, 186-191.	3.9	202
255	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	5.5	433
256	Anchoring Ironâ€EDTA Complex on Graphene toward the Synthesis of Highly Efficient Feâ€N Oxygen Reduction Electrocatalyst for Fuel Cells. Chinese Journal of Chemistry, 2018, 36, 287-292.	2.6	22
257	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	5.5	405
258	Atomar dispergierte Metallzentren in Metallâ€organischen Gerüststrukturen für die elektrokatalytische und photokatalytische Energieumwandlung. Angewandte Chemie, 2018, 130, 9750-9780.	1.6	58
259	A Polycarboxylâ€Decorated Fe ^{III} â€Based Xerogelâ€Derived Multifunctional Composite (Fe ₃ O ₄ /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application. Chemistry - A European Journal, 2018, 24, 6586-6594.	1.7	12

#	Article	IF	CITATIONS
260	Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362, 1-23.	9.5	737
261	Ancient Chemistry "Pharaoh's Snakes―for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 10778-10785.	4.0	64
262	Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy, 2018, 47, 199-209.	8.2	202
263	Effective Oxygen Reduction and Evolution Catalysts Derived from Metal Organic Frameworks by Optimizing Active Sites. Journal of the Electrochemical Society, 2018, 165, F158-F165.	1.3	13
264	Iron and Nitrogen Coâ€doped Carbideâ€Derived Carbon and Carbon Nanotube Composite Catalysts for Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1827-1836.	1.7	42
265	Nitrogenâ€Doped Grapheneâ€Supported Iron Catalyst for Highly Chemoselective Hydrogenation of Nitroarenes. ChemCatChem, 2018, 10, 2009-2013.	1.8	12
266	Engineering Singleâ€Atom Cobalt Catalysts toward Improved Electrocatalysis. Small, 2018, 14, e1704319.	5.2	97
267	A Durable Nickel Singleâ€Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angewandte Chemie - International Edition, 2018, 57, 7071-7075.	7.2	243
268	Phase Diversity of Nickel Phosphides in Oxygen Reduction Catalysis. ChemElectroChem, 2018, 5, 1985-1994.	1.7	17
269	Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118, 4981-5079.	23.0	3,103
270	Creation of oxygen reduction reaction active sites on titanium oxynitride without increasing the nitrogen doping level. Physical Chemistry Chemical Physics, 2018, 20, 15613-15617.	1.3	18
271	Impact of Textural Properties of Mesoporous Porphyrinic Carbon Electrocatalysts on Oxygen Reduction Reaction Activity. ChemElectroChem, 2018, 5, 1928-1936.	1.7	25
272	Carbon-supported metal single atom catalysts. New Carbon Materials, 2018, 33, 1-11.	2.9	74
273	Incorporation of Multinuclear Copper Active Sites into Nitrogen-Doped Graphene for Electrochemical Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 2358-2364.	2.5	15
274	Structure and activity of metal-centered coordination sites in pyrolyzed metal–nitrogen–carbon catalysts for the electrochemical reduction of O2. Current Opinion in Electrochemistry, 2018, 9, 198-206.	2.5	51
275	Crab Shellâ€Templated Fe and N Co–Doped Mesoporous Carbon Nanofibers as a Highly Efficient Oxygen Reduction Reaction Electrocatalyst. ChemistrySelect, 2018, 3, 3722-3730.	0.7	6
076			
276	Inhibition of Surface Chemical Moieties by Tris(hydroxymethyl)aminomethane: A Key to Understanding Oxygen Reduction on Iron–Nitrogen–Carbon Catalysts. ACS Applied Energy Materials, 2018, 1, 1942-1949.	2.5	18

#	Article	IF	CITATIONS
278	Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochimica Acta, 2018, 265, 547-555.	2.6	56
279	Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2018, 27, 1124-1139.	7.1	89
280	Increased SO2 electrooxidation activity on a copper-nitrogen doped catalyst and its active sites analysis. International Journal of Hydrogen Energy, 2018, 43, 2794-2802.	3.8	8
281	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	8.2	319
282	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc–Air Battery. ACS Nano, 2018, 12, 1949-1958.	7.3	336
283	Recent Progress of Carbonâ€Based Materials in Oxygen Reduction Reaction Catalysis. ChemElectroChem, 2018, 5, 1764-1774.	1.7	66
284	Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems. Chemical Reviews, 2018, 118, 2313-2339.	23.0	642
285	Porous carbon supported atomic iron as electrocatalysts for acidic oxygen reduction reaction. Science Bulletin, 2018, 63, 213-215.	4.3	12
286	Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon, 2018, 132, 85-94.	5.4	19
287	Recent Advancements in Transition Metalâ€Nitrogenâ€Carbon Catalysts for Oxygen Reduction Reaction. Electroanalysis, 2018, 30, 1217-1228.	1.5	73
288	The role of arginine as nitrogen doping and carbon source for enhanced oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 1479-1488.	3.8	7
289	Significantly enhanced oxygen reduction activity of Cu/CuN x C y co-decorated ketjenblack catalyst for Al–air batteries. Journal of Energy Chemistry, 2018, 27, 419-425.	7.1	41
290	Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe–Nitrogen–Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors. ACS Catalysis, 2018, 8, 1640-1647.	5.5	126
291	Synergetic Contribution of Boron and Fe–N _{<i>x</i>} Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2018, 3, 252-260.	8.8	269
292	Facile Metal Coordination of Active Site Imprinted Nitrogen Doped Carbons for the Conservative Preparation of Nonâ€Noble Metal Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2018, 8, 1701771.	10.2	73
293	Recent Progress in MOFâ€Derived, Heteroatomâ€Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Advanced Functional Materials, 2018, 28, 1704537.	7.8	552
294	N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Materials, 2018, 10, e461-e461.	3.8	103
295	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	16.1	1,476

#	Article	IF	CITATIONS
296	Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. Journal of Electroanalytical Chemistry, 2018, 810, 222-231.	1.9	23
297	Co(II) or Cu(II) Schiff Base Complex Immobilized onto Carbon Nanotubes as a Synergistic Catalyst for the Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 581-585.	0.7	9
298	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2018, 130, 1218-1222.	1.6	57
299	Defect-Free Encapsulation of Fe ⁰ in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2018, 140, 1737-1742.	6.6	124
300	Influence of sulfur in the precursor mixture on the structural composition of Fe-N-C catalysts. Hyperfine Interactions, 2018, 239, 1.	0.2	13
301	Strategies for Enhancing the Electrocatalytic Activity of M–N/C Catalysts for the Oxygen Reduction Reaction. Topics in Catalysis, 2018, 61, 1077-1100.	1.3	27
302	A Durable Nickel Singleâ€Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angewandte Chemie, 2018, 130, 7189-7193.	1.6	64
303	The chemical identity, state and structure of catalytically active centers during the electrochemical CO ₂ reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chemical Science, 2018, 9, 5064-5073.	3.7	128
304	Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction. Current Opinion in Electrochemistry, 2018, 9, 224-232.	2.5	145
305	Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. Journal of Power Sources, 2018, 389, 260-266.	4.0	55
306	A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018, 1, 339-348.	16.1	1,214
307	Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 7893-7902.	3.8	49
308	On the effect of sulfite ions on the structural composition and ORR activity of Fe-N-C catalysts. Hyperfine Interactions, 2018, 239, 1.	0.2	6
309	Atomically Dispersed Iron–Nitrogen Active Sites within Porphyrinic Triazine-Based Frameworks for Oxygen Reduction Reaction in Both Alkaline and Acidic Media. ACS Energy Letters, 2018, 3, 883-889.	8.8	273
310	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	10.2	369
311	Toward the Decentralized Electrochemical Production of H ₂ O ₂ : A Focus on the Catalysis. ACS Catalysis, 2018, 8, 4064-4081.	5.5	663
312	Three-Dimensional Networks of S-Doped Fe/N/C with Hierarchical Porosity for Efficient Oxygen Reduction in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 14602-14613.	4.0	50
313	Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83.	13.1	87

\sim	T . T	1011	DEDC	NDT.
		10N	REPC	ד אונ
\sim	/		ICEI C	

#	Article	IF	CITATIONS
314	Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions. Applied Catalysis B: Environmental, 2018, 234, 357-364.	10.8	49
315	Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 2018, 9, 137-144.	2.5	85
316	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
317	Identifying the Active Site of N-Doped Graphene for Oxygen Reduction by Selective Chemical Modification. ACS Energy Letters, 2018, 3, 986-991.	8.8	102
318	Evaluation of ORR active sites in nitrogen-doped carbon nanofibers by KOH post treatment. Catalysis Today, 2018, 301, 11-16.	2.2	36
319	Improved electrochemical performance of Fe-N-C catalysts through ionic liquid modification in alkaline media. Journal of Power Sources, 2018, 375, 222-232.	4.0	66
320	Cold start of proton exchange membrane fuel cell. Progress in Energy and Combustion Science, 2018, 64, 29-61.	15.8	215
321	Earthâ€Abundant Alkali Iron Phosphates (AFePO ₄) as Efficient Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2018, 10, 1122-1127.	1.8	32
322	Fe–N co-decorated hierarchically porous graphene as a highly efficient electrocatalyst for the oxygen reduction reaction. Sustainable Energy and Fuels, 2018, 2, 169-174.	2.5	14
323	In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Research, 2018, 11, 2217-2228.	5.8	108
324	Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-N x /C active sites for oxygen reduction reaction in fuel cells. Applied Catalysis B: Environmental, 2018, 222, 191-199.	10.8	115
325	Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells. Journal of Power Sources, 2018, 375, 233-243.	4.0	74
326	57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 221, 406-412.	10.8	61
327	Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Applied Catalysis B: Environmental, 2018, 224, 518-532.	10.8	83
328	From 3D ZIF Nanocrystals to Co–N <i>_x</i> /C Nanorod Array Electrocatalysts for ORR, OER, and Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1704638.	7.8	708
329	Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. Science Bulletin, 2018, 63, 24-30.	4.3	18
330	Facile synthesis of efficient core-shell structured iron-based carbon catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 1386-1395.	3.8	7
331	From biological enzyme to single atomic Fe–N–C electrocatalyst for efficient oxygen reduction. Chemical Communications, 2018, 54, 1307-1310.	2.2	50

#	Article	IF	Citations
332	A specific demetalation of Fe–N ₄ catalytic sites in the micropores of NC_Ar + NH ₃ is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy and Environmental Science, 2018, 11, 365-382.	15.6	280
333	Litchi-like porous Fe/N/C spheres with atomically dispersed FeN _x promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 4605-4610.	5.2	54
334	The Solidâ€Phase Synthesis of an Feâ€N Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	7.2	293
335	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 776-804.	5.2	357
336	Enhancement of oxygen reduction reaction performance: The characteristic role of Fe N coordinations. Electrochimica Acta, 2018, 260, 264-273.	2.6	27
337	Enhanced Fe dispersion via "pinning―effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode. Journal of Power Sources, 2018, 376, 161-167.	4.0	30
338	Biomassâ€Derived Nâ€doped Carbon Materials with Silicaâ€Supported Ultrasmall ZnO Nanoparticles: Robust Catalysts for the Green Synthesis of Benzimidazoles. Chemistry - A European Journal, 2018, 24, 3481-3487.	1.7	27
339	Fe/Fe ₃ C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 516-526.	5.2	366
340	Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol. Journal of Colloid and Interface Science, 2018, 512, 844-852.	5.0	58
341	Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 475-483.	1.8	18
342	Mechanisms of Twoâ€Electron versus Fourâ€Electron Reduction of Dioxygen Catalyzed by Earthâ€Abundant Metal Complexes. ChemCatChem, 2018, 10, 9-28.	1.8	82
343	The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy and Environmental Science, 2018, 11, 3176-3182.	15.6	332
344	Tungsten nitride/carbide nanocomposite encapsulated in nitrogen-doped carbon shell as an effective and durable catalyst for hydrogen evolution reaction. New Journal of Chemistry, 2018, 42, 19557-19563.	1.4	14
345	Wurtzite CoO: a direct band gap oxide suitable for a photovoltaic absorber. Chemical Communications, 2018, 54, 13949-13952.	2.2	21
346	Highly Active and Stable Fe-N-C Oxygen Reduction Electrocatalysts Derived from Electrospinning and In Situ Pyrolysis. Nanoscale Research Letters, 2018, 13, 218.	3.1	18
347	Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science, 2018, 362, 1276-1281.	6.0	735
348	Fe-Doped Metal-Organic Frameworks-Derived Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, F1278-F1285.	1.3	12
349	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	10.2	371

#	Article	IF	CITATIONS
350	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	5.8	696
351	Metal-Cluster-Directed Surface Charge Manipulation of Two-Dimensional Nanomaterials for Efficient Urea Electrocatalytic Conversion. ACS Applied Nano Materials, 2018, 1, 6649-6655.	2.4	11
352	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	3.3	325
353	Oxygen reduction reaction of FeN4 center embedded in graphene and carbon nanotube: Density functional calculations. AIP Advances, 2018, 8, .	0.6	17
354	Atomic approaches towards stability. Nature Catalysis, 2018, 1, 900-902.	16.1	10
355	Template-Free Synthesis of Two-Dimensional Fe/N Codoped Carbon Networks as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 37079-37086.	4.0	20
356	Fe-N _{<i>x</i>} Sites Enriched Carbon Micropolyhedrons Derived from Fe-Doped Zeolitic Imidazolate Frameworks with Reinforced Fe-N Coordination for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 15624-15633.	3.2	57
357	Effect of Acid-Washing on the Nature of Bulk Characteristics of Nitrogen-Doped Carbon Nanostructures as Oxygen Reduction Reaction Electrocatalysts in Acidic Media. Energy & Fuels, 2018, 32, 11038-11045.	2.5	12
358	In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER. ACS Applied Materials & Interfaces, 2018, 10, 35025-35038.	4.0	185
359	Tuning the Performance of Single-Atom Electrocatalysts: Support-Induced Structural Reconstruction. Chemistry of Materials, 2018, 30, 7494-7502.	3.2	24
360	Engineering the activity of CoNx-graphene for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 20573-20579.	3.8	29
361	Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. Journal of the Electrochemical Society, 2018, 165, J3148-J3156.	1.3	11
362	Fe–N–C Artificial Enzyme: Activation of Oxygen for Dehydrogenation and Monoxygenation of Organic Substrates under Mild Condition and Cancer Therapeutic Application. ACS Applied Materials & Interfaces, 2018, 10, 35327-35333.	4.0	73
363	Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst. Chemical Communications, 2018, 54, 12073-12076.	2.2	44
364	Platinum-free electrocatalysts for oxygen reduction reaction: Fe-Nx modified mesoporous carbon prepared from biosources. Journal of Power Sources, 2018, 402, 434-446.	4.0	36
365	Single Atom Catalysts on Carbonâ€Based Materials. ChemCatChem, 2018, 10, 5058-5091.	1.8	148
366	Water oxidation on a mononuclear manganese heterogeneous catalyst. Nature Catalysis, 2018, 1, 870-877.	16.1	244
367	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945	16.1	1,075

#	Article	IF	CITATIONS
368	Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2018, 408, 17-27.	4.0	45
369	Carbon Monoxide as a Promoter of Atomically Dispersed Platinum Catalyst in Electrochemical Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 16198-16205.	6.6	74
370	Physical and Chemical Considerations for Improving Catalytic Activity and Stability of Non-Precious-Metal Oxygen Reduction Reaction Catalysts. ACS Catalysis, 2018, 8, 11264-11276.	5.5	101
371	Mechanism of Oxygen Reduction Reaction on Transition Metal–Nitrogen–Carbon Catalysts: Establishing the Role of Nitrogen-containing Active Sites. ACS Applied Energy Materials, 2018, 1, 5948-5953.	2.5	54
372	Efficient hydrogenation of stearic acid over carbon coated Ni Fe catalyst. Journal of Catalysis, 2018, 367, 139-149.	3.1	63
373	Mesoporous CoO/Co–N–C nanofibers as efficient cathode catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 19075-19084.	5.2	45
374	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	7.3	455
375	Bio-inspired FeN ₅ moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. Journal of Materials Chemistry A, 2018, 6, 18488-18497.	5.2	53
378	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	4.0	52
379	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	5.5	121
380	Oxygen reduction reaction activity and the microbial community in response to magnetite coordinating nitrogen-doped carbon catalysts in bioelectrochemical systems. Biosensors and Bioelectronics, 2018, 122, 113-120.	5.3	18
381	Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nature Communications, 2018, 9, 3715.	5.8	77
382	Promoting Oxygen Reduction Reaction Activity of Fe–N/C Electrocatalysts by Silica-Coating-Mediated Synthesis for Anion-Exchange Membrane Fuel Cells. Chemistry of Materials, 2018, 30, 6684-6701.	3.2	105
383	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	11.1	289
384	Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate. Journal of Materials Chemistry A, 2018, 6, 18417-18425.	5.2	58
385	Boron-doped graphene as a promising electrocatalyst for NO electrochemical reduction: a computational study. New Journal of Chemistry, 2018, 42, 16346-16353.	1.4	27
386	SiO ₂ -protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy and Environmental Science, 2018, 11, 2208-2215.	15.6	196
387	FeNi Cubic Cage@N-Doped Carbon Coupled with N-Doped Graphene toward Efficient Electrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8266-8273.	3.2	68

#	Article	IF	CITATIONS
388	Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2018, 2, 65-81.	13.8	2,728
389	Atomic Iron Catalysis of Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19311-19317.	4.0	152
390	Makroskopische kristalline 2Dâ€Polymere. Angewandte Chemie, 2018, 130, 13942-13959.	1.6	23
391	Towards Macroscopic Crystalline 2D Polymers. Angewandte Chemie - International Edition, 2018, 57, 13748-13763.	7.2	113
392	Towards Highâ€Performance Electrocatalysts for Oxygen Reduction: Inducing Atomic‣evel Reconstruction of Feâ€N _{<i>x</i>} Site for Atomically Dispersed Fe/Nâ€Doped Hierarchically Porous Carbon. Chemistry - A European Journal, 2018, 24, 8848-8856.	1.7	25
393	Highly Active and Durable Core–Shell fct-PdFe@Pd Nanoparticles Encapsulated NG as an Efficient Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2018, 10, 18734-18745.	4.0	58
394	Rational Design of Fe/N/Sâ€Doped Nanoporous Carbon Catalysts from Covalent Triazine Frameworks for Efficient Oxygen Reduction. ChemSusChem, 2018, 11, 2402-2409.	3.6	45
395	Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of Materials Chemistry A, 2018, 6, 14663-14674.	5.2	94
396	Atomically Dispersed Feâ€N <i>_x</i> /C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
397	Singleâ€Atom Catalysts for the Hydrogen Evolution Reaction. ChemElectroChem, 2018, 5, 2963-2974.	1.7	89
398	Zinc oordinated Nitrogen odoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO ₂ to CO. ChemSusChem, 2018, 11, 2944-2952.	3.6	107
399	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.5	1
400	Melamine-sponge-derived non-precious fuel cell electrocatalyst with hierarchical pores and tunable nitrogen chemical states for exceptional oxygen reduction reaction activity. Materials Today Energy, 2018, 9, 271-278.	2.5	12
401	Iron Phosphide Incorporated into Ironâ€Treated Heteroatomsâ€Doped Porous Bioâ€Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1944-1953.	1.7	28
402	Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li–oxygen batteries. Nanoscale, 2018, 10, 15763-15770.	2.8	21
403	Building Pyridinium Molecular Wires as Axial Ligands for Tuning the Electrocatalytic Activity of Iron Phthalocyanines for the Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 8406-8419.	5.5	57
404	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	6.6	464
405	Key Singleâ€Atom Electrocatalysis in Metal—Organic Framework (MOF)â€Đerived Bifunctional Catalysts. ChemSusChem, 2018, 11, 3473-3479.	3.6	71

#	Article	IF	CITATIONS
406	Porous Fe–N-codoped carbon microspheres: an efficient and durable electrocatalyst for oxygen reduction reaction. Inorganic Chemistry Frontiers, 2018, 5, 2211-2217.	3.0	8
407	Carbonâ€Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts. Advanced Materials, 2018, 30, e1800528.	11.1	135
408	The Subâ€Nanometer Scale as a New Focus in Nanoscience. Advanced Materials, 2018, 30, e1802031.	11.1	99
409	Single-atom catalyst: a rising star for green synthesis of fine chemicals. National Science Review, 2018, 5, 653-672.	4.6	258
410	An Iron-Based Catalyst with Multiple Active Components Synergetically Improved Electrochemical Performance for Oxygen Reduction Reaction. Catalysts, 2018, 8, 243.	1.6	5
411	FeP Nanocrystals Embedded in N-Doped Carbon Nanosheets for Efficient Electrocatalytic Hydrogen Generation over a Broad pH Range. ACS Sustainable Chemistry and Engineering, 2018, 6, 11587-11594.	3.2	56
412	Microwaveâ€Assisted Rapid Synthesis of Grapheneâ€Supported Single Atomic Metals. Advanced Materials, 2018, 30, e1802146.	11.1	244
413	Well-elaborated, mechanochemically synthesized Fe-TPPâŠ,ZIF precursors (Fe-TPP = tetraphenylporphine) Tj ETQq batteries. Nano Energy, 2018, 52, 29-37.	1 1 0.7843 8.2	314 rgBT /O 108
414	Fully Synthetic Approach toward Transition Metal–Nitrogen–Carbon Oxygen Reduction Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 3802-3806.	2.5	9
415	The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe–N coordination for the oxygen reduction reaction. RSC Advances, 2018, 8, 24509-24516.	1.7	25
416	Probing Nitrogenâ€Doping Effects in the Coreâ€Shell Structured Catalysts for Bifunctional Electrocatalysis ChemCatChem, 2018, 10, 4248-4252.	1.8	6
417	N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction. Journal of Materials Science, 2018, 53, 15246-15256.	1.7	12
418	Directly Anchoring Highly Dispersed Copper Sites on Nitrogenâ€Doped Carbon for Enhanced Oxygen Reduction Electrocatalysis. ChemElectroChem, 2018, 5, 1822-1826.	1.7	21
419	A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy and Environmental Science, 2018, 11, 1723-1729.	15.6	298
420	Subâ€50 nm Iron–Nitrogenâ€Đoped Hollow Carbon Sphereâ€Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science, 2018, 5, 1800120.	5.6	187
421	From Metal–Organic Frameworks to Singleâ€Atom Fe Implanted Nâ€doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 8525-8529.	7.2	669
422	From Metal–Organic Frameworks to Singleâ€Atom Fe Implanted Nâ€doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Angewandte Chemie, 2018, 130, 8661-8665.	1.6	104
423	Structure, Activity, and Faradaic Efficiency of Nitrogenâ€Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. ChemSusChem, 2018, 11, 3388-3395.	3.6	148

#	Article	IF	CITATIONS
424	A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn–air cells. Nanoscale, 2018, 10, 16145-16152.	2.8	37
425	Hierarchically Porous M–N–C (M = Co and Fe) Singleâ€Atom Electrocatalysts with Robust MN <i>_x</i> Active Moieties Enable Enhanced ORR Performance. Advanced Energy Materials, 2018, 8, 1801956.	10.2	540
426	Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation. ACS Applied Materials & Interfaces, 2018, 10, 28664-28671.	4.0	34
427	Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn–air batteries. Nanoscale, 2018, 10, 16996-17001.	2.8	25
428	Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy, 2018, 52, 485-493.	8.2	188
429	Understanding Oxygen Activation on Metal- and Nitrogen-Codoped Carbon Catalysts. ACS Catalysis, 2018, 8, 8618-8629.	5.5	34
430	Morphological Ensembles of Nâ€Doped Porous Carbon Derived from ZIFâ€8/Feâ€Graphene Nanocomposites: Processing and Electrocatalytic Studies. ChemistrySelect, 2018, 3, 8688-8697.	0.7	8
431	Fe/N Codoped Carbon Nanocages with Single-Atom Feature as Efficient Oxygen Reduction Reaction Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 4982-4990.	2.5	38
432	N-doping goes sp-hybridized. Nature Chemistry, 2018, 10, 900-902.	6.6	17
433	Exploring Active Sites in Multiâ€Heteroatomâ€Doped Coâ€Based Catalysts for Hydrogen Evolution Reactions. Chemistry - A European Journal, 2018, 24, 12480-12484.	1.7	17
434	Exploring Feâ€N _{<i>x</i>} for Peroxide Reduction: Templateâ€Free Synthesis of Feâ€N _{<i>x</i>} Traumatized Mesoporous Carbon Nanotubes as an ORR Catalyst in Acidic and Alkaline Solutions. Chemistry - A European Journal, 2018, 24, 10630-10635.	1.7	79
435	Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports. Electrochimica Acta, 2018, 281, 684-691.	2.6	8
436	Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst <i>via</i> space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect. Journal of Materials Chemistry A, 2018, 6, 13050-13061.	5.2	74
437	Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy, 2018, 50, 691-698.	8.2	303
438	Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. Journal of Materials Chemistry A, 2018, 6, 13254-13262.	5.2	156
439	Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6626-6631.	3.3	500
440	Hyperporous arbonâ€6upported Nonprecious Metal Electrocatalysts for the Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 2671-2676.	1.7	13
441	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angewandte Chemie, 2018, 130, 9176-9181.	1.6	105

#	ARTICLE Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a	IF	CITATIONS
442	Hierarchically Structured Porous Carbon Framework. Angewandte Chemie - International Edition, 2018, 57, 9038-9043.	7.2	467
443	Combining SAXS and XAS To Study the <i>Operando</i> Degradation of Carbon-Supported Pt-Nanoparticle Fuel Cell Catalysts. ACS Catalysis, 2018, 8, 7000-7015.	5.5	58
444	Enhanced Oxygen Reduction Activity by Selective Anion Adsorption on Non-Precious-Metal Catalysts. ACS Catalysis, 2018, 8, 7104-7112.	5.5	53
445	Surface Engineering of Twoâ€Dimensional Materials. ChemNanoMat, 2019, 5, 6-23.	1.5	22
446	Doped and Decorated Carbon Foams for Energy Applications. Nanostructure Science and Technology, 2019, , 175-203.	0.1	2
447	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	11.1	239
448	Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells. Renewable Energy, 2019, 131, 563-584.	4.3	61
449	Enhancing by nano-engineering: Hierarchical architectures as oxygen reduction/ evolution reactions for zinc-air batteries. Journal of Power Sources, 2019, 438, 226919.	4.0	44
450	Coordination-Engineered Cu–N _{<i>x</i>} Single-Site Catalyst for Enhancing Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 6497-6504.	2.5	58
451	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 14866-14872.	1.6	95
452	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 14724-14730.	7.2	139
453	Atomically dispersed Fe-N-C derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells. Applied Catalysis B: Environmental, 2019, 259, 118042.	10.8	89
454	An Fe–N co-doped tube-in-tube carbon nanostructure used as an efficient catalyst for the electrochemical oxygen reduction reaction. Nanotechnology, 2019, 30, 485705.	1.3	0
455	High durability fuel cell cathodes obtained from cobalt metal organic frameworks. Electrochimica Acta, 2019, 320, 134623.	2.6	8
456	Assembly of favorable 2D Co-N4-based polymer nanosheets for proficient oxygen reduction reaction. Ionics, 2019, 25, 5939-5947.	1.2	10
457	Iron-Salt Thermally Emitted Strategy to Prepare Graphene-like Carbon Nanosheets with Trapped Fe Species for an Efficient Electrocatalytic Oxygen Reduction Reaction in the All-pH Range. ACS Applied Materials & Interfaces, 2019, 11, 27823-27832.	4.0	23
458	Correlations between Synthesis and Performance of Fe-Based PGM-Free Catalysts in Acidic and Alkaline Media: Evolution of Surface Chemistry and Morphology. ACS Applied Energy Materials, 2019, 2, 5406-5418.	2.5	44
459	Activity–Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal–Nitrogen–Carbon Catalysts. Journal of the American Chemical Society, 2019, 141, 12372-12381.	6.6	493

#	Article	IF	Citations
460	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	15.6	317
461	Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 21506-21517.	3.8	16
462	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catalysis, 2019, 9, 7668-7678.	5.5	58
463	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie, 2019, 131, 12599-12605.	1.6	29
464	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie - International Edition, 2019, 58, 12469-12475.	7.2	307
465	Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 257, 117930.	10.8	113
466	Hierarchically porous carbons as supports for fuel cell electrocatalysts with atomically dispersed Fe–N _x moieties. Chemical Science, 2019, 10, 8236-8240.	3.7	34
467	Si-coordinated nitrogen doped graphene: A robust and highly active catalyst for NOâ€ ⁻ +â€ ⁻ CO reaction. Applied Surface Science, 2019, 494, 659-665.	3.1	9
468	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2019, 131, 15013-15018.	1.6	107
469	A Grapheneâ€Supported Singleâ€Atom FeN ₅ Catalytic Site for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 14871-14876.	7.2	410
470	Active Sites on Heterogeneous Single-Iron-Atom Electrocatalysts in CO ₂ Reduction Reaction. ACS Energy Letters, 2019, 4, 1778-1783.	8.8	158
471	Oxygen reduction reaction mechanism on a phosporus-doped pyrolyzed graphitic Fe/N/C catalyst. New Journal of Chemistry, 2019, 43, 11408-11418.	1.4	19
472	Biogenic precursor to size-controlled synthesis of Fe2P nanoparticles in heteroatom-doped graphene-like carbons and their electrocatalytic reduction of oxygen. Journal of Power Sources, 2019, 435, 226770.	4.0	17
473	Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. Journal of Electroanalytical Chemistry, 2019, 848, 113279.	1.9	56
474	Transition Metal Atoms Embedded in Graphene: How Nitrogen Doping Increases CO Oxidation Activity. ACS Catalysis, 2019, 9, 6864-6868.	5.5	72
475	Two-dimensional MoS ₂ /Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale, 2019, 11, 14266-14275.	2.8	32
476	Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH ₃ catalyst. Energy and Environmental Science, 2019, 12, 3015-3037.	15.6	66
477	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	8.2	68

#	Article	IF	CITATIONS
478	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	11.1	114
479	Atomic‣ocal Environments of Singleâ€Atom Catalysts: Synthesis, Electronic Structure, and Activity. Advanced Energy Materials, 2019, 9, 1900722.	10.2	128
480	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie, 2019, 131, 19147-19156.	1.6	57
481	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18971-18980.	7.2	362
482	Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. Energies, 2019, 12, 3846.	1.6	9
483	Electroreduction of CO ₂ on Singleâ€Site Copperâ€Nitrogenâ€Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angewandte Chemie, 2019, 131, 15242-15247.	1.6	43
484	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	5.2	165
485	Optimization of Glass Edge Sealing Process Using Microwaves for Fabrication of Vacuum Glazing. Applied Sciences (Switzerland), 2019, 9, 874.	1.3	6
486	Basicityâ€Engineered Graphite Fluoride Functionalization and Beyond: An Unusual Reaction between Ultraweak Nucleophile and Ultrastrong CF Bonds. Advanced Functional Materials, 2019, 29, 1906076.	7.8	15
487	O-Doping Boosts the Electrochemical Oxygen Reduction Activity of a Single Fe Site in Hydrophilic Carbon with Deep Mesopores. ACS Applied Materials & Interfaces, 2019, 11, 45825-45831.	4.0	37
488	Waste wine mash-derived doped carbon materials as an efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 31949-31959.	3.8	15
489	Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 2019, 9, 11515-11529.	5.5	245
490	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
491	Rational Generation of Feâ^'N x Active Sites in Feâ^'Nâ^'C Electrocatalysts Facilitated by Feâ^'N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5982-5988.	1.8	19
492	Improving the Activity of Mâ^'N ₄ Catalysts for the Oxygen Reduction Reaction by Electrolyte Adsorption. ChemSusChem, 2019, 12, 5133-5141.	3.6	33
493	Effect of Zn on Size Control and Oxygen Reduction Reaction Activity of Co Nanoparticles Supported on N-Doped Carbon Nanotubes. Chemistry of Materials, 2019, 31, 8864-8874.	3.2	40
494	Coordination Engineering in Cobalt–Nitrogen-Functionalized Materials for CO ₂ Reduction. Journal of Physical Chemistry Letters, 2019, 10, 6551-6557.	2.1	42
495	Editorial: Significance of Peri-implant Keratinized Mucosa Width and Soft Tissue Thickness. International Journal of Periodontics and Restorative Dentistry, 2019, 39, 767-768.	0.4	2

#	Article	IF	CITATIONS
496	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	11.7	216
497	Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media. ACS Applied Energy Materials, 2019, 2, 7952-7962.	2.5	36
498	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	7.8	159
499	Electroreduction of CO ₂ on Single‧ite Copperâ€Nitrogenâ€Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angewandte Chemie - International Edition, 2019, 58, 15098-15103.	7.2	369
500	Electrochemical Reduction of CO 2 on Nitrogenâ€Doped Carbon Catalysts With and Without Iron. ChemElectroChem, 2019, 6, 4626-4636.	1.7	17
501	Self-Adjusting Activity Induced by Intrinsic Reaction Intermediate in Fe–N–C Single-Atom Catalysts. Journal of the American Chemical Society, 2019, 141, 14115-14119.	6.6	261
502	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
503	Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and ⁵⁷ Fe Mössbauer Spectroscopy. ACS Catalysis, 2019, 9, 9359-9371.	5.5	167
504	Synthesis of Fe-C-N Hybrid via Direct Pyrolysis of EDTA Ferric Sodium as Effective Electrocatalyst for Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2019, , 6938-6947.	0.5	4
505	Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 15684-15692.	6.6	102
506	Improving the Oxygen Reduction Reaction Activity of FeN ₄ –Graphene via Tuning Electronic Characteristics. ACS Applied Energy Materials, 2019, 2, 6634-6641.	2.5	37
507	Impacts of Imidazolate Ligand on Performance of Zeolitic-Imidazolate Framework-Derived Oxygen Reduction Catalysts. ACS Energy Letters, 2019, 4, 2500-2507.	8.8	34
508	In-situ growth of NCNT and encapsulation of Co9S8/Co as a sustainable multifunctional electrocatalyst. Journal of Colloid and Interface Science, 2019, 557, 291-300.	5.0	10
509	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	5.5	295
510	Ex-Solution Synthesis of Sub-5-nm FeO _{<i>x</i>} Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 6092-6097.	2.4	30
511	Designing the 3D Architecture of PGM-Free Cathodes for H ₂ /Air Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 7211-7222.	2.5	41
512	Scalable Synthesis of Micromesoporous Iron-Nitrogen-Doped Carbon as Highly Active and Stable Oxygen Reduction Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 39263-39273.	4.0	38
513	Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 39820-39826.	4.0	49

#	Article	IF	CITATIONS
514	Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects. EnergyChem, 2019, 1, 100018.	10.1	50
515	Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. CheM, 2019, 5, 2865-2878.	5.8	346
516	Volcano Trend in Electrocatalytic CO ₂ Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. ACS Catalysis, 2019, 9, 10426-10439.	5.5	142
517	Structure-activity relationships in metal organic framework derived mesoporous nitrogen-doped carbon containing atomically dispersed iron sites for CO2 electrochemical reduction. Journal of Catalysis, 2019, 378, 320-330.	3.1	36
518	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	2.1	10
519	Electrochemical estimation of active site density on a metal-free carbon-based catalyst. RSC Advances, 2019, 9, 466-475.	1.7	16
520	Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1380-1393.	5.2	159
521	Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2019, 7, 1252-1259.	5.2	152
522	Synergistic enhancement of chemical looping-based CO ₂ splitting with biomass cascade utilization using cyclic stabilized Ca ₂ Fe ₂ O ₅ aerogel. Journal of Materials Chemistry A, 2019, 7, 1216-1226.	5.2	43
523	Nitrogen doped porous carbon with iron promotion for oxygen reduction reaction in alkaline and acidic media. International Journal of Hydrogen Energy, 2019, 44, 4090-4101.	3.8	28
524	Effect of nanoparticle composition on oxygen reduction reaction activity of Fe/N–C catalysts: a comparative study. Catalysis Science and Technology, 2019, 9, 711-717.	2.1	23
525	Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell. Advanced Energy Materials, 2019, 9, 1803737.	10.2	148
526	g-C ₃ N ₄ promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030.	5.2	152
527	Nanoparticles and Single Atoms in Commercial Carbon-Supported Platinum-Group Metal Catalysts. Catalysts, 2019, 9, 134.	1.6	28
528	Rational Design of Grapheneâ€Supported Single Atom Catalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2019, 9, 1803689.	10.2	279
529	Iridium Single-Atom Catalyst Performing a Quasi-homogeneous Hydrogenation Transformation of CO2 to Formate. CheM, 2019, 5, 693-705.	5.8	181
530	Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2019, 2, 1675-1682.	2.4	69
531	Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. Journal of Materials Chemistry A, 2019, 7, 3492-3515.	5.2	252

		CITATION R	EPORT	
#	Article		IF	Citations
532	Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. CheM,	2019, 5, 786-804.	5.8	555
533	Catalytic synthesis and simultaneous co-doping of hierarchically porous carbon with in- graphene from biomass tar as efficient catalyst for ORR. Electrochemistry Communicat 52-59.	situ coated ions, 2019, 100,	2.3	23
534	Boosting oxygen reduction activity with low-temperature derived high-loading atomic c nitrogen-doped graphene for efficient Zn–air batteries. Chemical Communications, 2	obalt on 019, 55, 334-337.	2.2	35
535	Unraveling the relationship between the morphologies of metal–organic frameworks properties of their derived carbon materials. Dalton Transactions, 2019, 48, 7211-7217	and the	1.6	23
536	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environment 2019, 12, 250-260.	l from al Science,	15.6	691
537	Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porol degradation of organic pollutants: the synergism between Co and N. Environmental Sci 2019, 6, 399-410.	is carbon for ence: Nano,	2.2	129
538	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixati CO ₂ under solvent-free conditions. Inorganic Chemistry Frontiers, 2019, 6		3.0	41
539	Synergistic interaction of perovskite oxides and N-doped graphene in versatile electroca Journal of Materials Chemistry A, 2019, 7, 2048-2054.	atalyst.	5.2	104
540	PGM-Free ORR Catalysts Designed by Templating PANI-Type Polymers Containing Funct High Affinity to Iron. Journal of the Electrochemical Society, 2019, 166, F3240-F3245.	tional Groups with	1.3	30
541	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angew 131, 9742-9747.	randte Chemie, 2019,	1.6	59
542	The Role of Supported Atomically Distributed Metal Species in Electrochemistry and Ho Them. ChemElectroChem, 2019, 6, 3860-3877.	w to Create	1.7	11
543	Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Advance 6, 1900855.	ed Science, 2019,	5.6	70
544	Construction of Singleâ€Ironâ€Atom Nanocatalysts for Highly Efficient Catalytic Antibi 15, e1901834.	otics. Small, 2019,	5.2	132
545	Unraveling Mechanistic Reaction Pathways of the Electrochemical CO ₂ Re Fe–N–C Single-Site Catalysts. ACS Energy Letters, 2019, 4, 1663-1671.	duction on	8.8	138
546	High OER performance Ni(OH)2 with hierarchical structure. Journal of Solid State Electr 2019, 23, 2051-2060.	ochemistry,	1.2	11
547	Tunable Synthesis of Hollow Metal–Nitrogen–Carbon Capsules for Efficient Oxyger Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano, 2019, 13, 8087-8098.	n Reduction	7.3	106
548	High-performance fuel cell cathodes exclusively containing atomically dispersed iron ac Energy and Environmental Science, 2019, 12, 2548-2558.	tive sites.	15.6	457
549	Physically Close yet Chemically Separate Reduction and Oxidation Sites in Double-Wall for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry Letters, 2019, 10		2.1	9

#	Article	IF	CITATIONS
550	Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications, 2019, 10, 2779.	5.8	89
551	Proving the existence of Mn porphyrin-like complexes hosted in reduced graphene oxide with outstanding performance as oxygen reduction reaction catalysts. 2D Materials, 2019, 6, 045001.	2.0	19
552	Phthalocyanine Precursors To Construct Atomically Dispersed Iron Electrocatalysts. ACS Catalysis, 2019, 9, 6252-6261.	5.5	61
553	Catalysis of Oxygen Reduction Reaction on Atomically Dispersed Copper- and Nitrogen-Codoped Graphene. ACS Applied Energy Materials, 2019, 2, 4755-4762.	2.5	33
554	Atomically Dispersed Metal Catalysts for Oxygen Reduction. ACS Energy Letters, 2019, 4, 1619-1633.	8.8	251
555	Thermodynamic stability of nitrogen functionalities and defects in graphene and graphene name name name is a sum of the set of the s	5.4	22
556	Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries. Carbon, 2019, 152, 325-334.	5.4	48
557	O species-decorated graphene shell encapsulating iridium–nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15079-15088.	5.2	36
558	Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear―and Electronâ€Resonance Techniques. Angewandte Chemie - International Edition, 2019, 58, 10486-10492.	7.2	90
559	Elucidating the Structural Composition of an Fe–N–C Catalyst by Nuclear―and Electronâ€Resonance Techniques. Angewandte Chemie, 2019, 131, 10596-10602.	1.6	13
560	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 9504-9508.	1.6	10
561	Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms. Carbon, 2019, 151, 160-174.	5.4	117
562	Homogenized Bimetallic Catalysts from Metal–Organic Framework Alloys. Chemistry of Materials, 2019, 31, 4205-4212.	3.2	29
563	Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 3967-3973.	3.2	85
564	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	5.2	37
565	Atomic scandium and nitrogen-codoped graphene for oxygen reduction reaction. Journal of Power Sources, 2019, 431, 265-273.	4.0	39
566	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Materials, 2019, 23, 1-7.	9.5	48
567	Fe ₃ O ₄ -Encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn–air batteries. Chemical Communications, 2019, 55, 7538-7541.	2.2	33

#	Article	IF	CITATIONS
568	Nitrogen and iron codoped porous carbon spheres derived from tetrazine-based polyindole as efficient catalyst for oxygen reduction reaction in acidic electrolytes. Journal of Power Sources, 2019, 434, 226738.	4.0	12
569	Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Applied Catalysis B: Environmental, 2019, 256, 117849.	10.8	104
570	Homogenous Meets Heterogenous and Electroâ€Catalysis: Ironâ€Nitrogen Molecular Complexes within Carbon Materials for Catalytic Applications. ChemCatChem, 2019, 11, 3602-3625.	1.8	22
571	N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 14732-14742.	5.2	80
572	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	7.2	312
573	Highly Efficient Fe–N–C Electrocatalyst for Oxygen Reduction Derived from Core–Shell-Structured Fe(OH) ₃ @Zeolitic Imidazolate Framework. ACS Applied Energy Materials, 2019, 2, 3194-3203.	2.5	32
574	Poly(ferrocenedimethano)cyclotriphosphazene to Homogenously Fe, N, P, O Doped Carbon Nanotubes: An Efficient and Tremendous Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, H297-H303.	1.3	18
575	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 9404-9408.	7.2	87
576	Effect of Pyrolysis Atmosphere and Electrolyte pH on the Oxygen Reduction Activity, Stability and Spectroscopic Signature of FeN _x Moieties in Fe-N-C Catalysts. Journal of the Electrochemical Society, 2019, 166, F3311-F3320.	1.3	70
577	Fe ₃ Câ€Co Nanoparticles Encapsulated in a Hierarchical Structure of Nâ€Doped Carbon as a Multifunctional Electrocatalyst for ORR, OER, and HER. Advanced Functional Materials, 2019, 29, 1901949.	7.8	297
578	lron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: Surface engineering and experimental probe into active sites. Applied Catalysis B: Environmental, 2019, 254, 601-611.	10.8	78
579	Poly-phenylenediamine-derived atomically dispersed Ni sites for the electroreduction of CO ₂ to CO. Inorganic Chemistry Frontiers, 2019, 6, 1729-1734.	3.0	11
580	Family-dependent magnetism in atomic boron adsorbed armchair graphene nanoribbons. Journal of Materials Chemistry C, 2019, 7, 6241-6245.	2.7	16
581	Non-PGM Electrocatalysts for PEM Fuel Cells: Thermodynamic Stability and DFT Evaluation of Fluorinated FeN ₄ -Based ORR Catalysts. Journal of the Electrochemical Society, 2019, 166, F3277-F3286.	1.3	25
582	Anion exchange of a cationic Cd(ii)-based metal–organic framework with potassium ferricyanide towards highly active Fe3C-containing Fe/N/C catalysts for oxygen reduction. Chemical Communications, 2019, 55, 6930-6933.	2.2	20
583	High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy, 2019, 61, 245-250.	8.2	205
584	Recent progress in theoretical and computational investigations of structural stability and activity of single-atom electrocatalysts. Progress in Natural Science: Materials International, 2019, 29, 256-264.	1.8	27
585	Pyrolysis of Self-Assembled Iron(III) Porphyrin on Carbon toward Efficient Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2019, 166, F441-F447.	1.3	10

#	Article	IF	Citations
586	Synthesis and third-order nonlinear optical properties of α-MnS and α-MnS/rGO composites. Optical Materials, 2019, 92, 156-162.	1.7	15
587	FeCo-N-C oxygen reduction electrocatalysts: Activity of the different compounds produced during the synthesis via pyrolysis. Applied Catalysis B: Environmental, 2019, 253, 300-308.	10.8	52
588	Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. Journal of Catalysis, 2019, 374, 43-50.	3.1	31
589	Enhancement of peroxymonosulfate activation and utilization efficiency via iron oxychloride nanosheets in visible light. Separation and Purification Technology, 2019, 224, 132-141.	3.9	48
590	MOF-Derived Carbon Networks with Atomically Dispersed Fe–N _{<i>x</i>} Sites for Oxygen Reduction Reaction Catalysis in Acidic Media. , 2019, 1, 37-43.		40
591	A room-temperature interfacial approach towards iron/nitrogen co-doped fibrous porous carbons as electrocatalysts for the oxygen reduction reaction and Zn–Air batteries. Nanoscale, 2019, 11, 10257-10265.	2.8	39
592	Mechanism of Catalytic O ₂ Reduction by Iron Tetraphenylporphyrin. Journal of the American Chemical Society, 2019, 141, 8315-8326.	6.6	99
593	Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption. ACS Catalysis, 2019, 9, 4841-4852.	5.5	79
594	Single Atoms on Graphene for Energy Storage and Conversion. Small Methods, 2019, 3, 1800443.	4.6	64
595	Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N ₄ and Fe ₄ N. Journal of Materials Chemistry A, 2019, 7, 11792-11801.	5.2	84
596	Kinetic Isotopic Effect Studies of Iron–Nitrogen–Carbon Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 11476-11483.	1.5	12
597	Half-Wave Potential or Mass Activity? Characterizing Platinum Group Metal-Free Fuel Cell Catalysts by Rotating Disk Electrodes. ACS Energy Letters, 2019, 4, 1158-1161.	8.8	47
598	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	13.1	119
599	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	4.6	88
600	Adsorption characteristics of Co-anchored different graphene substrates toward O2 and NO molecules. Applied Surface Science, 2019, 480, 779-791.	3.1	29
601	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
602	MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Applied Catalysis B: Environmental, 2019, 250, 143-149.	10.8	176
603	Nanometric Fe-Substituted ZrO ₂ on Carbon Black as PGM-Free ORR Catalyst for PEMFCs. Journal of the Electrochemical Society, 2019, 166, F3032-F3043.	1.3	18

#	Article	IF	CITATIONS
604	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	16.1	958
605	Fabricating Singleâ€Atom Catalysts from Chelating Metal in Open Frameworks. Advanced Materials, 2019, 31, e1808193.	11.1	153
606	Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Applied Catalysis B: Environmental, 2019, 251, 240-246.	10.8	101
607	Effect of nitrogen and iron in carbon nanowalls on oxygen reduction reaction. Electrochimica Acta, 2019, 306, 132-142.	2.6	11
608	Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. Journal of Colloid and Interface Science, 2019, 546, 113-121.	5.0	40
609	Bridging the Homogeneous-Heterogeneous Divide: Modeling Spin for Reactivity in Single Atom Catalysis. Frontiers in Chemistry, 2019, 7, 219.	1.8	34
610	Recent Progress in Defective Carbonâ€Based Oxygen Electrode Materials for Rechargeable Zinkâ€Air Batteries. Batteries and Supercaps, 2019, 2, 509-523.	2.4	41
611	A DFT study on the potential application of Si@C24N24 porous fullerene as an innovative and highly active catalyst for NO reduction. Chemical Physics Letters, 2019, 724, 80-85.	1.2	19
612	Versatile Strategy for Tuning ORR Activity of a Single Fe-N ₄ Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. Journal of the American Chemical Society, 2019, 141, 6254-6262.	6.6	509
613	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	5.8	39
614	Nanocarbon-Edge-Anchored High-Density Pt Atoms for 3-nitrostyrene Hydrogenation: Strong Metal-Carbon Interaction. IScience, 2019, 13, 190-198.	1.9	22
615	Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Science, 2019, 6, 1802066.	5.6	164
616	Surface coordination chemistry on graphene and two-dimensional carbon materials for well-defined single atom supported catalysts. Advances in Organometallic Chemistry, 2019, 71, 53-174.	0.5	33
617	Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization. Nanomaterials, 2019, 9, 425.	1.9	67
618	Diffusion mechanisms of metal atoms in Pd Au bimetallic catalyst under CO atmosphere based on ab initio molecular dynamics. Applied Surface Science, 2019, 483, 991-1005.	3.1	19
619	Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media. Electrochemistry Communications, 2019, 102, 78-82.	2.3	51
620	Atomically Dispersed Iron Cathode Catalysts Derived from Binary Ligand-Based Zeolitic Imidazolate Frameworks with Enhanced Stability for PEM Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F3116-F3122.	1.3	31
621	Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy, 2019, 61, 60-68.	8.2	192

#	Article	IF	CITATIONS
622	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	5.8	544
623	Ni/NiM ₂ O ₄ (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catalysis Science and Technology, 2019, 9, 1595-1601.	2.1	84
624	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	4.6	63
625	The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix. Catalysts, 2019, 9, 144.	1.6	22
626	Polyacrylonitrile-derived nanostructured carbon materials. Progress in Polymer Science, 2019, 92, 89-134.	11.8	92
627	⁵⁷ Fe Mössbauer Spectroscopy Characterization of Electrocatalysts. Advanced Materials, 2019, 31, e1805623.	11.1	116
628	Nitrogen Reduction to Ammonia on Atomicâ€Scale Active Sites under Mild Conditions. Small Methods, 2019, 3, 1800501.	4.6	148
629	Fe-Based O ₂ -Reduction Catalysts Synthesized Using Na ₂ CO ₃ as a Pore-Inducing Agent. ACS Applied Energy Materials, 2019, 2, 1469-1479.	2.5	16
630	Nanomaterials With Different Dimensions for Electrocatalysis. , 2019, , 435-464.		10
631	Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano, 2019, 13, 2643-2653.	7.3	234
631 632	Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano, 2019, 13, 2643-2653. Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631.	7.3 0.9	234 39
	Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and		
632	Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631. Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019,	0.9	39
632 633	 Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631. Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323. Enhanced Oxygen Reduction Reaction on Fe/N/C Catalyst in Acetate Buffer Electrolyte. ACS Catalysis, 	0.9	39 129
632 633 634	 Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631. Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323. Enhanced Oxygen Reduction Reaction on Fe/N/C Catalyst in Acetate Buffer Electrolyte. ACS Catalysis, 2019, 9, 3082-3089. Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 	0.9 11.1 5.5	39 129 32
632 633 634 635	Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631. Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323. Enhanced Oxygen Reduction Reaction on Fe/N/C Catalyst in Acetate Buffer Electrolyte. ACS Catalysis, 2019, 9, 3082-3089. Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2019, 544, 155-163. Bottom-Up Construction of Active Sites in a Cu–N ₄ –C Catalyst for Highly Efficient	0.9 11.1 5.5 5.0	 39 129 32 63
 632 633 634 635 636 	Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure and Applied Chemistry, 2019, 91, 609-631. Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323. Enhanced Oxygen Reduction Reaction on Fe/N/C Catalyst in Acetate Buffer Electrolyte. ACS Catalysis, 2019, 9, 3082-3089. Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2019, 544, 155-163. Bottom-Up Construction of Active Sites in a Cu–N ₄ –C Catalyst for Highly Efficient Oxygen Reduction Reaction. ACS Nano, 2019, 13, 3177-3187. PCMâ€Free Cathode Catalysts for PEM Fuel Cells: A Miniâ€Review on Stability Challenges. Advanced	0.9 11.1 5.5 5.0 7.3	 39 129 32 63 117

#	Article		CITATIONS
640	Progress in the Development of Feâ€Based PGMâ€Free Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 2019, 31, e1806545.	11.1	317
641	Atomic Feâ€Doped MOFâ€Derived Carbon Polyhedrons with High Activeâ€Center Density and Ultraâ€High Performance toward PEM Fuel Cells. Advanced Energy Materials, 2019, 9, 1802856.	10.2	196
642	Alkaline Polymer Membraneâ€Based Ultrathin, Flexible, and Highâ€Performance Solidâ€State Znâ€Air Battery. Advanced Energy Materials, 2019, 9, 1803628.	10.2	57
643	6. Rational Design of Highly Efficient Non-precious Metal Catalysts for Oxygen Reduction in Fuel Cells and Metal–Air Batteries. , 2019, , 161-182.		0
644	Effect of Carbon Support on Fe-N ₃ /C Model Active Site for the Oxygen Reduction Reaction. ECS Transactions, 2019, 92, 523-532.	0.3	3
645	Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2019, 141, 19241-19245.	6.6	154
646	Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catalysis Science and Technology, 2019, 9, 6556-6560.	2.1	10
647	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26231-26237.	5.2	72
648	Boosting the performance of the Fe–N–C catalyst for the oxygen reduction reaction by introducing single-walled carbon nanohorns as branches on carbon fibers. Journal of Materials Chemistry A, 2019, 7, 23182-23190.	5.2	33
649	Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews, 2019, 48, 5207-5241.	18.7	441
650	Facile One-Step Synthesis and Enhanced Optical Nonlinearity of Graphene-Î ³ MnS. Nanomaterials, 2019, 9, 1654.	1.9	8
651	PANI-modified Pt/Na4Ge9O20 with low Pt loadings: Efficient bifunctional electrocatalyst for oxygen reduction and hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 31062-31071.	3.8	17
652	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. Matter, 2019, 1, 1494-1518.	5.0	316
653	Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.	6.6	288
654	On the active site for electrocatalytic water splitting on late transition metals embedded in graphene. Catalysis Science and Technology, 2019, 9, 6793-6799.	2.1	9
655	Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Applied Surface Science, 2019, 464, 344-350.	3.1	38
656	Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Materials, 2019, 18, 246-252.	9.5	203
657	3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2019, 240, 193-200.	10.8	197

#	Article	IF	CITATIONS
658	Interface self-assembly preparation of multi-element doped carbon nanobowls with high electrocatalysis activity for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 533, 569-577.	5.0	8
659	Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells. Chemical Engineering Journal, 2019, 361, 416-427.	6.6	85
660	Mo isolated single atoms on S, N-codoped carbon as efficient catalyst for hydrogen evolution reaction: A theoretical evaluation. Applied Surface Science, 2019, 473, 770-776.	3.1	38
661	Integrating PGMâ€Free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices. Advanced Materials, 2019, 31, e1804846.	11.1	121
662	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie, 2019, 131, 2648-2652.	1.6	116
663	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 2622-2626.	7.2	494
664	Xâ€Ray Absorption Spectroscopy Characterizations on PGMâ€Free Electrocatalysts: Justification, Advantages, and Limitations. Advanced Materials, 2019, 31, e1805157.	11.1	48
665	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	23.0	745
666	Mechanistic insights into CO2 cycloaddition to propylene oxide over a single copper atom incorporated graphene-based materials: A theoretical study. Applied Surface Science, 2019, 470, 755-763.	3.1	17
667	Fe-porphyrin carbon matrix as a bifunctional catalyst for oxygen reduction and CO ₂ reduction from theoretical perspective. Molecular Physics, 2019, 117, 1805-1812.	0.8	12
668	Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. Chinese Journal of Catalysis, 2019, 40, 23-37.	6.9	62
669	Well-dispersed Pt nanoparticles on borane-modified graphene oxide and their electrocatalytic performance for oxygen reduction reaction. Journal of Solid State Chemistry, 2019, 271, 168-174.	1.4	5
670	In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 2019, 9, 1283-1288.	5.5	216
671	Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions. Topics in Current Chemistry, 2019, 377, 4.	3.0	29
672	Design Principle of Fe–N–C Electrocatalysts: How to Optimize Multimodal Porous Structures?. Journal of the American Chemical Society, 2019, 141, 2035-2045.	6.6	383
673	Biomorphic CoNC/CoO <i>_x</i> Composite Derived from Natural Chloroplasts as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2019, 15, e1804855.	5.2	72
674	Transitionâ€Metal Single Atoms Anchored on Graphdiyne as Highâ€Efficiency Electrocatalysts for Water Splitting and Oxygen Reduction. Small Methods, 2019, 3, 1800419.	4.6	192
675	Porous Fe–N–C Catalysts for Rechargeable Zinc–Air Batteries from an Iron-Imidazolate Coordination Polymer. ACS Sustainable Chemistry and Engineering, 2019, 7, 4030-4036.	3.2	20

#	Article	IF	CITATIONS
676	Antimony-doped tin oxide embedding graphene-based aerogel for infrared barriering. Ceramics International, 2019, 45, 7894-7905.	2.3	15
677	Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells. Journal of Applied Electrochemistry, 2019, 49, 119-133.	1.5	6
678	Zn3[Fe(CN)6]2 derived Fe/Fe5C2@N-doped carbon as a highly effective oxygen reduction reaction cation catalyst for zinc-air battery. Applied Catalysis B: Environmental, 2019, 244, 197-205.	10.8	98
679	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	10.8	170
680	Synthesis and Active Site Identification of Feâ^'Nâ^'C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 304-315.	1.7	65
681	Highly conductive doped carbon framework as binder-free cathode for hybrid Li-O2 battery. Carbon, 2019, 142, 177-189.	5.4	13
682	High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. International Journal of Hydrogen Energy, 2019, 44, 12636-12648.	3.8	38
683	Well-defined gradient Fe/Zn bimetal organic framework cylinders derived highly efficient iron- and nitrogen- codoped hierarchically porous carbon electrocatalysts towards oxygen reduction. Nano Energy, 2019, 57, 108-117.	8.2	89
684	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	5.5	278
685	Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 610-619.	5.5	56
686	Solid-state energy storage devices based on two-dimensional nano-materials. Energy Storage Materials, 2019, 20, 269-290.	9.5	50
687	Oxygen Reduction Reaction. Interface Science and Technology, 2019, 27, 203-252.	1.6	15
688	Electrochemical Reduction of Carbon Dioxide to Valueâ€Added Products: The Electrocatalyst and Microbial Electrosynthesis. Chemical Record, 2019, 19, 1272-1282.	2.9	22
689	Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst. Journal of Energy Chemistry, 2019, 35, 17-23.	7.1	53
690	Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon, 2019, 141, 580-607.	5.4	278
691	Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment. Catalysis Today, 2019, 330, 252-258.	2.2	35
692	Active sites for the oxygen reduction reaction in nitrogen-doped carbon nanofibers. Catalysis Today, 2020, 357, 248-258.	2.2	28
693	Overwhelming electrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method. Chinese Chemical Letters, 2020, 31, 1207-1212.	4.8	13

#	Article	IF	CITATIONS
694	Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. Journal of Energy Chemistry, 2020, 41, 185-193.	7.1	48
695	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	23.0	871
696	Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118198.	10.8	216
697	Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Applied Catalysis B: Environmental, 2020, 260, 118207.	10.8	74
698	Intrinsic properties of nitrogen-rich carbon nitride for oxygen reduction reaction. Applied Surface Science, 2020, 500, 144020.	3.1	21
699	Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives. Carbon, 2020, 156, 77-92.	5.4	149
700	Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting. Applied Surface Science, 2020, 502, 144155.	3.1	50
701	Fe/Ni bimetal and nitrogen co-doped porous carbon fibers as electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 560, 330-337.	5.0	26
702	Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 626-634.	4.8	104
703	Anchoring of single-platinum-adatoms on cyanographene: Experiment and theory. Applied Materials Today, 2020, 18, 100462.	2.3	14
704	Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Doped Carbons with Encapsulated Metal Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 1627-1633.	7.2	176
705	Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Applied Catalysis B: Environmental, 2020, 268, 118405.	10.8	80
706	Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Doped Carbons with Encapsulated Metal Nanoparticles. Angewandte Chemie, 2020, 132, 1644-1650.	1.6	138
707	Self-assembled copper/cobalt-containing polypyrrole hydrogels for highly efficient ORR electrocatalysts. Journal of Molecular Liquids, 2020, 298, 112010.	2.3	44
708	Molten Salts–Assisted Fabrication of Fe, S, and N Coâ€Doped Carbon as Efficient Oxygen Reduction Reaction Catalyst. Energy Technology, 2020, 8, 1900896.	1.8	4
709	Rational Molecular Design of Electrocatalysts Based on Single-Atom Modified Covalent Organic Frameworks for Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 1644-1652.	2.5	44
710	Size-dependence of the electrochemical performance of Fe–N–C catalysts for the oxygen reduction reaction and cathodes of direct methanol fuel cells. Nanoscale, 2020, 12, 3418-3423.	2.8	26
711	Magnetic purification of non-precious metal fuel cell catalysts for obtaining atomically dispersed Fe centers. Catalysis Science and Technology, 2020, 10, 493-501.	2.1	11

#	Article	IF	CITATIONS
712	N-Doped porous tremella-like Fe ₃ C/C electrocatalysts derived from metal–organic frameworks for oxygen reduction reaction. Dalton Transactions, 2020, 49, 797-807.	1.6	29
713	High-purity pyrrole-type FeN ₄ sites as a superior oxygen reduction electrocatalyst. Energy and Environmental Science, 2020, 13, 111-118.	15.6	327
714	Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells. Joule, 2020, 4, 33-44.	11.7	264
715	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
716	High-Performance Intraocular Biosensors from Chitosan-Functionalized Nitrogen-Containing Graphene for the Detection of Glucose. ACS Biomaterials Science and Engineering, 2020, 6, 673-679.	2.6	41
717	Evolution Pathway from Iron Compounds to Fe ₁ (II)–N ₄ Sites through Gas-Phase Iron during Pyrolysis. Journal of the American Chemical Society, 2020, 142, 1417-1423.	6.6	185
718	Singleâ€Atom Iron Boosts Electrochemiluminescence. Angewandte Chemie, 2020, 132, 3562-3566.	1.6	20
719	Singleâ€Atom Iron Boosts Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 3534-3538.	7.2	167
720	Atomicâ€Level Feâ€Nâ€C Coupled with Fe ₃ Câ€Fe Nanocomposites in Carbon Matrixes as Highâ€Efficiency Bifunctional Oxygen Catalysts. Small, 2020, 16, e1906057.	5.2	90
721	Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion. Advanced Energy Materials, 2020, 10, 1902844.	10.2	245
722	Recent Progress of Metal Carbides Encapsulated in Carbonâ€Based Materials for Electrocatalysis of Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900575.	4.6	59
723	Nâ€Doped Graphene Supported on Metalâ€Iron Carbide as a Catalyst for the Oxygen Reduction Reaction: Density Functional Theory Study. ChemSusChem, 2020, 13, 996-1005.	3.6	21
724	Nickel/Cobalt-Containing polypyrrole hydrogel-derived approach for efficient ORR electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124221.	2.3	31
725	Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. Journal of the American Chemical Society, 2020, 142, 2404-2412.	6.6	680
726	Recent advances in tuning the electronic structures of atomically dispersed M–N–C materials for efficient gas-involving electrocatalysis. Materials Horizons, 2020, 7, 970-986.	6.4	48
727	The Proportion of Feâ€N X , N Doping Species and Fe 3 C to Oxygen Catalytic Activity in Coreâ€5hell Feâ€N/C Electrocatalyst. Chemistry - an Asian Journal, 2020, 15, 310-318.	1.7	4
728	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€&pecies Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	7.2	167
729	In Situ Anchoring of Zeolite Imidazole Framework-Derived Co, N-Doped Porous Carbon on Multiwalled Carbon Nanotubes toward Efficient Electrocatalytic Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 478-485.	3.2	47

#	Article		CITATIONS
730	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	1.6	20
732	Atomic Fe-N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 1588-1592.	4.8	31
733	ZIF-derived bifunctional Cu@Cu–N–C composite electrocatalysts towards efficient electroreduction of oxygen and carbon dioxide. Electrochimica Acta, 2020, 331, 135273.	2.6	42
734	Fe doped porous triazine as efficient electrocatalysts for the oxygen reduction reaction in acid electrolyte. Applied Catalysis B: Environmental, 2020, 264, 118507.	10.8	27
735	Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Single‧ite Catalysts Made of 3d Transition Metals. Advanced Materials, 2020, 32, e1905548.	11.1	23
736	Coordination structure of Jacobsen catalyst with N-modified graphene and their electrocatalytic properties for reducing oxygen molecules. Applied Catalysis B: Environmental, 2020, 263, 118337.	10.8	13
737	Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions. Journal of Materials Science, 2020, 55, 4780-4791.	1.7	24
738	Local structure engineering for active sites in fuel cell electrocatalysts. Science China Chemistry, 2020, 63, 1543-1556.	4.2	11
739	Controlling active sites of Fe–N–C electrocatalysts for oxygen electrocatalysis. Nano Energy, 2020, 78, 105395.	8.2	34
740	A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Communications, 2020, 11, 5283.	5.8	286
741	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
742	Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8, 24284-24306.	5.2	137
743	Upcycling of polyurethane into iron-nitrogen-carbon electrocatalysts active for oxygen reduction reaction. Electrochimica Acta, 2020, 362, 137200.	2.6	36
744	Noble-metal-free electrocatalysts toward H ₂ O ₂ production. Journal of Materials Chemistry A, 2020, 8, 23123-23141.	5.2	113
745	Identifying the Types and Characterization of the Active Sites on Mâ^'Xâ^'C Singleâ€Atom Catalysts. ChemPhysChem, 2020, 21, 2486-2496.	1.0	12
746	Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress. Electrochemical Energy Reviews, 2020, 3, 793-845.	13.1	92
747	Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Current Opinion in Electrochemistry, 2020, 23, 154-161.	2.5	24
748	Stability of PGM-free fuel cell catalysts: Degradation mechanisms and mitigation strategies. Progress in Natural Science: Materials International, 2020, 30, 721-731.	1.8	34

#	Article	IF	CITATIONS
749	An advantage combined strategy for preparing bi-functional electrocatalyst in rechargeable zinc-air batteries. Chemical Engineering Journal, 2020, 402, 126214.	6.6	21
750	Nitrogenâ€Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 5112-5118.	3.6	48
751	Active Sites in Single-Atom Fe–N _{<i>x</i>} –C Nanosheets for Selective Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene. ACS Nano, 2020, 14, 9929-9937.	7.3	83
752	S/N Co-Doped Hollow Carbon Particles for Oxygen Reduction Electrocatalysts Prepared by Spontaneous Polymerization at Oil–Water Interfaces. ACS Omega, 2020, 5, 18391-18396.	1.6	12
753	Hierarchical Porous Manganese- and Nitrogen-Codoped Carbon Nanosheets Derived from Surface Modified Biomass as Efficient Oxygen Reduction Catalysts for Al-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 110552.	1.3	15
754	Sizeâ€Dependent Nickelâ€Based Electrocatalysts for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 18572-18577.	7.2	100
755	Sizeâ€Dependent Nickelâ€Based Electrocatalysts for Selective CO ₂ Reduction. Angewandte Chemie, 2020, 132, 18731-18736.	1.6	30
756	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	13.3	278
757	Cobalt Nanoparticlesâ€Catalyzed Widely Applicable Successive Câ^'C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie - International Edition, 2020, 59, 19268-19274.	7.2	71
758	Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications, 2020, 11, 5892.	5.8	195
759	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	5.8	231
760	Acid Stability and Demetalation of PGM-Free ORR Electrocatalyst Structures from Density Functional Theory: A Model for "Single-Atom Catalyst―Dissolution. ACS Catalysis, 2020, 10, 14527-14539.	5.5	105
761	Cobalt Nanoparticlesâ€Catalyzed Widely Applicable Successive Câ^'C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie, 2020, 132, 19430-19436.	1.6	7
762	Serendipity for Topological Insulator as Multifunctional Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 8929-8936.	2.5	5
763	Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 24312-24321.	3.8	26
764	Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte. Ionics, 2020, 26, 5685-5696.	1.2	7
765	Catalytic oxidation of CO using a silicon-coordinated carbon nitride fullerene. Molecular Physics, 2020, 118, .	0.8	10
767	Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms. Coordination Chemistry Reviews, 2020, 422, 213469.	9.5	33

#	Article	IF	CITATIONS
768	Cobalt- and iron-coordinated graphitic carbon nitride on reduced graphene oxide: A nonprecious bimetallic M–N –C analogue electrocatalyst for efficient oxygen reduction reaction in acidic media. Applied Surface Science, 2020, 531, 147367.	3.1	32
769	Single atom is not alone: Metal–support interactions in single-atom catalysis. Materials Today, 2020, 40, 173-192.	8.3	174
770	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9363-9419.	23.0	492
771	Fundamentals of Electrochemical CO ₂ Reduction on Single-Metal-Atom Catalysts. ACS Catalysis, 2020, 10, 10068-10095.	5.5	161
772	Durable hybrid electrocatalysts for proton exchange membrane fuel cells. Nano Energy, 2020, 77, 105192.	8.2	21
773	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	5.2	19
774	Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 17136-17149.	5.2	64
775	Recent Advances in MOFâ€Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	10.2	265
776	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
777	Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Catalysis Science and Technology, 2020, 10, 6420-6448.	2.1	33
778	Advances and Trends in Chemically Doped Graphene. Advanced Materials Interfaces, 2020, 7, 2000999.	1.9	58
779	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563
780	Wearable Corneal Biosensors Fabricated from PEDOT Functionalized Sulfurâ€Doped Graphene for Use in the Early Detection of Myopia. Advanced Materials Technologies, 2020, 5, 2000682.	3.0	15
781	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	5.2	71
782	Engineering Fe–N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells. Journal of the American Chemical Society, 2020, 142, 19602-19610.	6.6	59
783	Design of Fe,N co-doped multi-walled carbon nanotubes for efficient oxygen reduction. Chemical Communications, 2020, 56, 14467-14470.	2.2	24
784	Facile Synthesis of the Amorphous Carbon Coated Fe-N-C Nanocatalyst with Efficient Activity for Oxygen Reduction Reaction in Acidic and Alkaline Media. Materials, 2020, 13, 4551.	1.3	8
785	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	1.6	10

#	Article	IF	Citations
786	Self-Organized Single-Atom Tungsten Supported on the N-Doped Carbon Matrix for Durable Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 43586-43595.	4.0	29
787	Functionalized Fe/Ni@g-C ₃ N ₄ nanostructures for enhanced trichloroethylene dechlorination and successive oxygen reduction reaction activity. Environmental Science: Nano, 2020, 7, 3469-3481.	2.2	9
788	Atomically Dispersed MnN ₄ Catalysts <i>via</i> Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 2020, 10, 10523-10534.	5.5	123
789	Nonprecious Bimetallic Sites Coordinated on Nâ€Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction. Small, 2020, 16, e2000742.	5.2	50
790	A general approach for hierarchically porous metal/N/C nanosphere electrocatalysts: nano-confined pyrolysis of <i>in situ</i> -formed amorphous metal–ligand complexes. Journal of Materials Chemistry A, 2020, 8, 21026-21035.	5.2	20
791	Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 23772-23783.	5.2	63
792	Highly active electrocatalysts of iron phthalocyanine by MOFs for oxygen reduction reaction under alkaline solution. RSC Advances, 2020, 10, 27014-27023.	1.7	5
793	Graphite Intercalation Compounds Derived by Green Chemistry as Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 42678-42685.	4.0	18
794	Underestimation of Platinum Electrocatalysis Induced by Carbon Monoxide Evolved from Graphite Counter Electrodes. ACS Catalysis, 2020, 10, 10773-10783.	5.5	26
795	MOF-derived PdNiCo alloys encapsulated in nitrogen-doped graphene for robust hydrogen evolution reactions. CrystEngComm, 2020, 22, 6063-6070.	1.3	10
796	Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14630-14656.	3.2	88
797	Coexisting Singleâ€Atomic Fe and Ni Sites on Hierarchically Ordered Porous Carbon as a Highly Efficient ORR Electrocatalyst. Advanced Materials, 2020, 32, e2004670.	11.1	404
798	Unveiling the Potential of an Fe Bis(terpyridine) Complex for Precise Development of an Fe-N-C Electrocatalyst to Promote the Oxygen Reduction Reaction. Inorganic Chemistry, 2020, 59, 13453-13464.	1.9	17
799	Immobilizing single atom catalytic sites onto highly reduced carbon hosts: Fe–N ₄ /CNT as a durable oxygen reduction catalyst for Na–air batteries. Journal of Materials Chemistry A, 2020, 8, 18891-18902.	5.2	31
800	Thiocyanate Ion Ligand-Induced Atomically Dispersed Fe–N–S Tridoped Hollow Catalyst for High-Performance Zinc–Air Rechargeable Batteries. Energy & Fuels, 2020, 34, 11620-11627.	2.5	10
801	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	7.2	128
802	<i>Operando</i> characterization techniques for electrocatalysis. Energy and Environmental Science, 2020, 13, 3748-3779.	15.6	159
803	Biomassâ€derived nonprecious metal catalysts for oxygen reduction reaction: The demandâ€oriented engineering of active sites and structures. , 2020, 2, 561-581.		83

ARTICLE IF CITATIONS # Fe/Co Containing Nâ€Doped Hierarchical Porous Carbon Microcuboids and Microcylinders as Efficient 804 1.8 2 Catalysts for Oxygen Reduction Reaction. ChemCatChem, 2020, 12, 5780-5788. Anion-Modulated Platinum for High-Performance Multifunctional Electrocatalysis toward HER, HOR, and ORR. IScience, 2020, 23, 101793. Fe-, S-, and N-Doped Carbon Nanotube Networks as Electrocatalysts for the Oxygen Reduction 806 2.4 8 Reaction. ACS Applied Nano Materials, 2020, 3, 12297-12307. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C 16.1 443 catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054. Pyrolysis-driven synthesis of nanoscale carambola-like carbon decorated with atomically dispersed Fe sites toward efficient oxygen reduction reaction. Catalysis Science and Technology, 2020, 10, 808 2.1 13 7160-7164. Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018. 809 10.2 Recent advances in grapheneâ€based materials for fuel cell applications. Energy Science and Engineering, 810 1.9 93 2021, 9, 958-983. Ionic Exchange of Metalâ[°]Organic Frameworks for Constructing Unsaturated Copper Singleâ€Atom 5.2 70 Catalysts for Boosting Oxygen Reduction Reaction. Small, 2020, 16, e2001384. W–N/C@Co9S8@WS2-hollow carbon nanocage as multifunctional electrocatalysts for DSSCS,ORR 812 2.6 29 and OER. Electrochimica Acta, 2020, 351, 136249. Reticular chemistry in electrochemical carbon dioxide reduction. Science China Materials, 2020, 63, 3.5 1113-1141. Role of active sites in N-coordinated Fe-Co dual-metal doped graphene for oxygen reduction and 814 3.175 evolution reactions: A theoretical insight. Applied Surface Science, 2020, 525, 146588. The critical importance of ionomers on the electrochemical activity of platinum and platinum-free 2.5 catalysts for anion-exchange membrane fuel cells. Sustainable Energy and Fuels, 2020, 4, 3300-3307. Oxygen Reduction Reaction on Metal and Nitrogen–Doped Carbon Electrocatalysts in the Presence of 816 1.5 8 Sodium Borohydride. Electrocatalysis, 2020, 11, 365-373. Bridge Bonded Oxygen Ligands between Approximated FeN₄ Sites Confer Catalysts with 1.6 High ORR Performance. Angewandte Chemie, 2020, 132, 14027-14032. Bridge Bonded Oxygen Ligands between Approximated FeN₄ Sites Confer Catalysts with 818 7.2 176 High ORR Performance. Angewandte Chemie - International Edition, 2020, 59, 13923-13928. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & amp; Fuels, 2020, 34, 6634-6695. Probing the Influence of the Carbon Support on the Activity of Fe-N₃/C Model Active Sites 820 1.317 for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2020, 167, 084520. Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells. Chemical Research in Chinese 1.3 Universities, 2020, 36, 320-328.

#	Article	IF	CITATIONS
822	Elucidation of Active Sites on S, N Codoped Carbon Cubes Embedding Co–Fe Carbides toward Reversible Oxygen Conversion in Highâ€Performance Zinc–Air Batteries. Small, 2020, 16, e1907368.	5.2	66
823	Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Applied Catalysis B: Environmental, 2020, 274, 119091.	10.8	130
824	Atomically Dispersed Fe on Nanosheet-linked, Defect-rich, Highly N-Doped 3D Porous Carbon for Efficient Oxygen Reduction. Chemical Research in Chinese Universities, 2020, 36, 453-458.	1.3	12
825	Facile synthesis of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for use as a highly efficient bifunctional catalyst in rechargeable Zn-Air batteries. Journal of Alloys and Compounds, 2020, 842, 155791.	2.8	16
826	Crossâ€Linked Polyphosphazene Hollow Nanosphereâ€Derived N/Pâ€Doped Porous Carbon with Single Nonprecious Metal Atoms for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 14639-14646.	7.2	133
827	Crossâ€Linked Polyphosphazene Hollow Nanosphereâ€Derived N/Pâ€Doped Porous Carbon with Single Nonprecious Metal Atoms for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 14747-14754.	1.6	27
828	Assisting Atomic Dispersion of Fe in N-Doped Carbon by Aerosil for High-Efficiency Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 25832-25842.	4.0	17
829	Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catalysis, 2020, 10, 6579-6586.	5.5	240
830	Microwave-assisted catalytic methane reforming: A review. Applied Catalysis A: General, 2020, 599, 117620.	2.2	51
831	Microwave-assisted synthesis of mesoporous hemispherical graphite promoted with iron and nitrogen doping for reduction of oxygen. Journal of Alloys and Compounds, 2020, 838, 155608.	2.8	5
832	A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 579, 12-20.	5.0	16
833	lridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	6.6	452
834	Highly durable carbon supported <scp>FeN</scp> nanocrystals feature as efficient biâ€functional oxygen electrocatalyst. International Journal of Energy Research, 2020, 44, 8413-8426.	2.2	15
835	Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Research, 2020, 13, 2420-2426.	5.8	41
836	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	5.8	537
837	Cu Nanoclusters/FeN ₄ Amorphous Composites with Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 31340-31350.	4.0	71
838	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	15.6	205
839	Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Metals, 2020, 39, 815-823.	3.6	94

	CITATION	CITATION REPORT	
# 840	ARTICLE Recent Developments for Aluminum–Air Batteries. Electrochemical Energy Reviews, 2020, 3, 344-369.	IF 13.1	Citations 96
841	A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 15752-15759.	5.2	28
842	Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-Journal of Surface Science and Nanotechnology, 2020, 18, 81-93.	0.1	10
843	FeNi alloy nanoparticles embedded in electrospun nitrogen-doped carbon fibers for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 578, 805-813.	5.0	33
844	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
845	Porous Carbon Membraneâ€Supported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	5.2	34
846	Controllable Synthesis of Co@CoO _{<i>x</i>} /Helical Nitrogen-Doped Carbon Nanotubes toward Oxygen Reduction Reaction as Binder-free Cathodes for Al–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16512-16520.	4.0	20
847	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Znâ€ ⁴ air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	5.2	41
848	Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catalysis, 2020, 10, 4313-4318.	5.5	119
849	Hydrogen Evolution Reaction-From Single Crystal to Single Atom Catalysts. Catalysts, 2020, 10, 290.	1.6	46
850	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 7454-7459.	1.6	80
851	Strategies for Engineering Highâ€Performance PGMâ€Free Catalysts toward Oxygen Reduction and Evolution Reactions. Small Methods, 2020, 4, 2000016.	4.6	70
852	Singleâ€Atom Iron Catalysts on Overhangâ€Eave Carbon Cages for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 7384-7389.	7.2	264
853	PGM-Free Fe/N/C and Ultralow Loading Pt/C Hybrid Cathode Catalysts with Enhanced Stability and Activity in PEM Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 13739-13749.	4.0	36
854	Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Materials, 2020, 28, 196-204.	9.5	117
855	Iron―and Nitrogenâ€Ðoped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 7, 1739-1747.	1.7	53
856	Design and Preparation of Fe–N ₅ Catalytic Sites in Single-Atom Catalysts for Enhancing the Oxygen Reduction Reaction in Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 17334-17342.	4.0	76
857	Spontaneous deposition of Ir nanoparticles on 2D siloxene as a high-performance HER electrocatalyst with ultra-low Ir loading. Chemical Communications, 2020, 56, 4824-4827.	2.2	39

		CITATION REPORT		
#	Article		IF	CITATIONS
858	Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 3	7, 93-111.	8.3	71
859	Identifying Iron–Nitrogen/Carbon Active Structures for Oxygen Reduction Reaction ∟ of Electrode Potential. Journal of Physical Chemistry Letters, 2020, 11, 2896-2901.	nder the Effect	2.1	32
860	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanot 2020, 15, 390-397.	echnology,	15.6	420
861	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 119	00-11955.	23.0	806
862	Modulating the local coordination environment of single-atom catalysts for enhanced of performance. Nano Research, 2020, 13, 1842-1855.	atalytic	5.8	532
863	Theoretical study of the strain effect on the oxygen reduction reaction activity and stal catalyst. New Journal of Chemistry, 2020, 44, 6818-6824.	bility of FeNC	1.4	12
864	Co/CoN decorated nitrogen-doped porous carbon derived from melamine sponge as his oxygen electrocatalysts for zinc-air batteries. Journal of Power Sources, 2020, 453, 227	ghly active '900.	4.0	53
865	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidatic Society Reviews, 2020, 49, 2215-2264.	n. Chemical	18.7	582
866	FeN _x and γ-Fe ₂ O ₃ co-functionalized hollow grap nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Ch 2020, 8, 6076-6082.		5.2	40
867	Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 si nitrogen-doped porous carbon. Nano Energy, 2020, 72, 104670.	tes on	8.2	58
868	Boosting Defective Carbon by Anchoring Well-Defined Atomically Dispersed Ni–N <su for Electrocatalytic CO₂ Reduction. ACS Sustainable Chemistry and Engin 10536-10543.</su 	ıb>4 Sites eering, 2020, 8,	3.2	52
869	Formation, Structure, and Function of Hydrogenated and Fluorinated Longâ€Chain Phosphonateâ€Modified Singleâ€Walled Carbon Nanotubes with Bidentate Bonds. Cho 6594-6607.	emistrySelect, 2020, 5,	0.7	6
870	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Do Solutions. ACS Central Science, 2020, 6, 1431-1440.	ped ZnO Solid	5.3	69
871	Single-atom-sized Ni–N ₄ sites anchored in three-dimensional hierarchic: nanostructures for the oxygen reduction reaction. Journal of Materials Chemistry A, 20 15012-15022.		5.2	75
872	Identification of catalytic sites for cerium redox reactions in a metal-organic framework powerful electrocatalyst. Energy Storage Materials, 2020, 32, 11-19.	. derived	9.5	6
873	Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanopa bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Applied Catalysis Environmental, 2020, 278, 119259.		10.8	92
874	Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium–Sulfur Batter Letters, 2020, 20, 5522-5530.	ies. Nano	4.5	111
875	Iron Phthalocyanine-Knitted Polymers as Electrocatalysts for the Oxygen Reduction Rea Applied Materials & Interfaces, 2020, 12, 32681-32688.	action. ACS	4.0	23

#	Article	IF	CITATIONS
876	How Noninnocent Spectator Species Improve the Oxygen Reduction Activity of Single-Atom Catalysts: Microkinetic Models from First-Principles Calculations. ACS Catalysis, 2020, 10, 9129-9135.	5.5	42
877	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129
878	Impact of Surface Functionalization on the Intrinsic Properties of the Resulting Fe–N–C Catalysts for Fuel Cell Applications. Energy Technology, 2020, 8, 2000433.	1.8	14
879	Dispersed iron carbide nanoparticles confined in nitrogen and oxygen co-doped porous carbon framework as efficient electrocatalysts for zinc/air batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114369.	1.9	3
880	Understanding water management in platinum group metal-free electrodes using neutron imaging. Journal of Power Sources, 2020, 472, 228442.	4.0	17
881	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N–C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	1.5	20
882	pH Effect on the H ₂ O ₂ -Induced Deactivation of Fe-N-C Catalysts. ACS Catalysis, 2020, 10, 8485-8495.	5.5	92
883	Unraveling the relationship of the pore structures between the metal-organic frameworks and their derived carbon materials. Inorganic Chemistry Communication, 2020, 114, 107825.	1.8	11
884	Molecular Design of Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2020, 10, 1903815.	10.2	295
885	1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst. Journal of Alloys and Compounds, 2020, 828, 154435.	2.8	25
886	Wiping off oxygen bonding to maximize heteroatom-induced improvement in oxygen reaction activity of metal site for high-performance zinc-air battery. Nanotechnology, 2020, 31, 195403.	1.3	1
887	Pyrolysis-free formamide-derived N-doped carbon supporting atomically dispersed cobalt as high-performance bifunctional oxygen electrocatalyst. Journal of Energy Chemistry, 2020, 49, 283-290.	7.1	35
888	Highâ€Performance, Longâ€Life, Rechargeable Li–CO ₂ Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms. Advanced Materials, 2020, 32, e1907436.	11.1	133
889	Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal. Journal of the American Chemical Society, 2020, 142, 5477-5481.	6.6	110
890	Single atom catalysts: a surface heterocompound perspective. Nanoscale Horizons, 2020, 5, 757-764.	4.1	39
891	Gram-scale synthesis of alkoxide-derived nitrogen-doped carbon foam as a support for Fe–N–C electrocatalysts. Nanotechnology, 2020, 31, 225401.	1.3	4
892	High performance Fe–N–C oxygen reduction electrocatalysts by solid-phase preparation of metal–organic frameworks. Materials Research Express, 2020, 7, 025506.	0.8	2
893	Self-Supported Fe–N–C Electrocatalyst via Pyrolysis of EDTAFeNa Adsorbed on SBA-15 for the Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 3016-3023.	1.8	4

	Сітатіо	CITATION REPORT	
# 894	ARTICLE Into the carbon: A matter of core and shell in advanced electrocatalysis. APL Materials, 2020, 8, .	IF 2.2	Citations
895	Simultaneously Realizing Rapid Electron Transfer and Mass Transport in Jellyfishâ€Like Mott–Schottky Nanoreactors for Oxygen Reduction Reaction. Advanced Functional Materials, 2020, 30, 1910482.	7.8	173
896	Seeded growth of branched iron–nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. Carbon, 2020, 162, 300-307.	5.4	18
897	Exploring Different Synthesis Parameters for the Preparation of Metal-Nitrogen-Carbon Type Oxygen Reduction Catalysts. Journal of the Electrochemical Society, 2020, 167, 054513.	1.3	9
898	Rich heteroatom doping magnetic carbon electrode for flow-capacitive deionization with enhanced salt removal ability. Desalination, 2020, 482, 114374.	4.0	18
899	Multi-ion Modulated Single-Step Synthesis of a Nanocarbon Embedded with a Defect-Rich Nanoparticle Catalyst for a High Loading Sulfur Cathode. ACS Applied Materials & Interfaces, 2020, 12, 12727-12735.	4.0	27
900	NH ₃ -Plasma pre-treated carbon supported active iron–nitrogen catalyst for oxygen reduction in acid and alkaline electrolytes. Catalysis Science and Technology, 2020, 10, 1675-1687.	2.1	24
901	Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nature Materials, 2020, 19, 436-442.	13.3	725
902	Zincâ€Mediated Template Synthesis of Feâ€Nâ€C Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
903	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	5.8	418
904	Tuning morphology and structure of Fe–N–C catalyst for ultra-high oxygen reduction reaction activity. International Journal of Hydrogen Energy, 2020, 45, 6380-6390.	3.8	22
905	One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	11
906	Infrared barriering behavior of reduced graphene oxide aerogel/ antimony tin oxide-polyaniline hybrids. Ceramics International, 2020, 46, 10971-10978.	2.3	3
907	Fe3C nanoparticles decorated Fe/N codoped graphene-like hierarchically carbon nanosheets for effective oxygen electrocatalysis. International Journal of Hydrogen Energy, 2020, 45, 3930-3939.	3.8	12
908	Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano, 2020, 14, 2436-2444.	7.3	130
909	Amidationâ€Dominated Reâ€Assembly Strategy for Singleâ€Atom Design/Nanoâ€Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable Kâ€Storage. Angewandte Chemie - International Edition, 2020, 59, 6459-6465.	7.2	23
910	Constructing High-Loading Single-Atom/Cluster Catalysts via an Electrochemical Potential Window Strategy. Journal of the American Chemical Society, 2020, 142, 3375-3383.	6.6	147
911	Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy, 2020, 71, 104547.	8.2	206

#	Article	IF	CITATIONS
912	Amidationâ€Dominated Reâ€Assembly Strategy for Singleâ€Atom Design/Nanoâ€Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable Kâ€Storage. Angewandte Chemie, 2020, 132, 6521-6527.	1.6	1
913	Revealing of Active Sites and Catalytic Mechanism in N-Coordinated Fe, Ni Dual-Doped Carbon with Superior Acidic Oxygen Reduction than Single-Atom Catalyst. Journal of Physical Chemistry Letters, 2020, 11, 1404-1410.	2.1	131
914	Bottomâ€Up Fabrication of a Sandwichâ€Like Carbon/Graphene Heterostructure with Builtâ€In FeNC Dopants as Nonâ€Noble Electrocatalyst for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2020, 15, 432-439.	1.7	17
915	Iron carbide/nitrogen-doped carbon core-shell nanostrctures: Solution-free synthesis and superior oxygen reduction performance. Journal of Colloid and Interface Science, 2020, 566, 194-201.	5.0	16
916	Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Applied Catalysis B: Environmental, 2020, 267, 118720.	10.8	151
917	Molten-salt/oxalate mediating Fe and N-doped mesoporous carbon sheet nanostructures towards highly efficient and durable oxygen reduction electrocatalysis. Microporous and Mesoporous Materials, 2020, 303, 110281.	2.2	16
918	A Novel Singleâ€Atom Electrocatalyst Ti ₁ /rGO for Efficient Cathodic Reduction in Hybrid Photovoltaics. Advanced Materials, 2020, 32, e2000478.	11.1	31
919	Nitrogenâ€Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem, 2020, 12, 3230-3239.	1.8	18
921	Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Applied Catalysis B: Environmental, 2020, 271, 118929.	10.8	158
922	Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Applied Catalysis B: Environmental, 2020, 272, 118967.	10.8	110
923	Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon, 2020, 164, 121-128.	5.4	48
924	From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy and Environmental Science, 2020, 13, 1658-1693.	15.6	323
925	Optimized Enhancement Effect of Sulfur in Fe–N–S Codoped Carbon Nanosheets for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 23995-24006.	4.0	48
926	Atomically Dispersed Iron–Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO ₂ Reduction. ACS Nano, 2020, 14, 5506-5516.	7.3	125
927	Unveiling the Axial Hydroxyl Ligand on Feï£įN ₄ ï£įC Electrocatalysts and Its Impact on the pHâ€Đependent Oxygen Reduction Activities and Poisoning Kinetics. Advanced Science, 2020, 7, 2000176.	5.6	111
928	Sacrificial carbon nitride-templated hollow FeCo-NC material for highly efficient oxygen reduction reaction and Al-air battery. Electrochimica Acta, 2020, 341, 136066.	2.6	14
929	Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chemical Society Reviews, 2020, 49, 3484-3524.	18.7	453
930	Molten salt "boiling―synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: An oxygen reduction catalyst with dense active sites and high stability. Chemical Engineering Journal, 2020, 395, 125064.	6.6	24

#	Article	IF	CITATIONS
931	Experimental and DFT Investigation into Chloride Poisoning Effects on Nitrogen-Coordinated Iron–Carbon (FeNC) Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 10324-10335.	1.5	23
932	Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. Nanotechnology, 2020, 31, 315401.	1.3	6
933	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	7.3	55
934	Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe-N-C electrocatalysts on oxygen reduction. Journal of Energy Chemistry, 2021, 54, 579-586.	7.1	52
935	Molten salt as ultrastrong polar solvent enables the most straightforward pyrolysis towards highly efficient and stable single-atom electrocatalyst. Journal of Energy Chemistry, 2021, 54, 519-527.	7.1	11
936	Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catalysis Today, 2021, 359, 99-105.	2.2	42
937	Deactivation of Fe-N-C catalysts during catalyst ink preparation process. Catalysis Today, 2021, 359, 9-15.	2.2	9
938	Boosting the oxygen reduction performance of MOF-5-derived Fe-N-C electrocatalysts via a dual strategy of cation-exchange and guest-encapsulation. Electrochimica Acta, 2021, 366, 137408.	2.6	24
939	Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 58, 629-635.	7.1	28
940	Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chemical Engineering Journal, 2021, 403, 126385.	6.6	174
941	Nitrogen-doped carbon supported ZnO as highly stable heterogeneous catalysts for transesterification synthesis of ethyl methyl carbonate. Journal of Colloid and Interface Science, 2021, 581, 126-134.	5.0	19
942	Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction. International Journal of Quantum Chemistry, 2021, 121, e26394.	1.0	20
943	Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. Journal of Energy Chemistry, 2021, 53, 422-432.	7.1	42
944	Understanding the Catalytic Sites of Metal–Nitrogen–Carbon Oxygen Reduction Electrocatalysts. Chemistry - A European Journal, 2021, 27, 145-157.	1.7	27
945	TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. Journal of Energy Chemistry, 2021, 55, 437-443.	7.1	117
946	Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116, 100717.	16.0	216
947	PEDOT functionalized ZIF-67 derived Co-N-S triple-doped porous carbon for high-efficiency oxygen reduction. Applied Surface Science, 2021, 535, 147659.	3.1	29
948	Spinel CoFe2O4 /carbon nanotube composites as efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution reaction. Ceramics International, 2021, 47, 1602-1608.	2.3	19

#	Article	IF	CITATIONS
949	Singleâ€Atom Materials: Small Structures Determine Macroproperties. Small Structures, 2021, 2, 2000051.	6.9	195
950	Highly active sites of low spin FellN4 species: The identification and the ORR performance. Nano Research, 2021, 14, 122-130.	5.8	42
951	<i>In Situ</i> / <i>Operando</i> Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chemical Reviews, 2021, 121, 882-961.	23.0	358
952	Transition Metal and Nitrogen Coâ€Doped Carbonâ€based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. ChemSusChem, 2021, 14, 33-55.	3.6	49
953	Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. Journal of Colloid and Interface Science, 2021, 584, 263-274.	5.0	50
954	Effect of Transition Metals on the Oxygen Reduction Reaction Activity at Metalâ€N 3 /C Active Sites. ChemElectroChem, 2021, 8, 53-61.	1.7	10
955	Coordination Engineering of Singleâ€Atom Catalysts for the Oxygen Reduction Reaction: A Review. Advanced Energy Materials, 2021, 11, 2002473.	10.2	217
956	A comparison of single and double Co sites incorporated in N-doped graphene for the oxygen reduction reaction. Journal of Catalysis, 2021, 393, 230-237.	3.1	26
957	Selfâ€Templated Hierarchically Porous Carbon Nanorods Embedded with Atomic Feâ€N ₄ Active Sites as Efficient Oxygen Reduction Electrocatalysts in Znâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2008085.	7.8	117
958	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solidâ€State Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	4.6	42
959	Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
960	One-Pot Synthesis of Fe-N-Containing Carbon Aerogel for Oxygen Reduction Reaction. Electrocatalysis, 2021, 12, 78-90.	1.5	16
961	Atom migration-trapping towardÂsingle-atom catalysts for energy electrocatalysis. Materials Today Energy, 2021, 19, 100586.	2.5	15
962	Partialâ€Singleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	5.6	85
963	Electroreduction of Carbon Dioxide Driven by the Intrinsic Defects in the Carbon Plane of a Single Fe–N ₄ Site. Advanced Materials, 2021, 33, e2003238.	11.1	202
964	Reconstructing 1D Fe Singleâ€atom Catalytic Structure on 2D Graphene Film for Highâ€Efficiency Oxygen Reduction Reaction. ChemSusChem, 2021, 14, 866-875.	3.6	14
965	Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. Journal of Catalysis, 2021, 393, 313-323.	3.1	43
966	Trimetallic Zeolitic imidazolite framework-derived Co nanoparticles@CoFe-nitrogen-doped porous carbon as bifunctional electrocatalysts for Zn-air battery. Journal of Colloid and Interface Science, 2021, 586, 621-629.	5.0	29

#	Article	IF	CITATIONS
967	Synthesis of an ordered porous carbon with the dual nitrogen-doped interfaces and its ORR catalysis performance. Chinese Chemical Letters, 2021, 32, 140-145.	4.8	27
968	Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sustainable Materials and Technologies, 2021, 27, e00240.	1.7	16
969	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	16.1	368
970	Atomically dispersed Fe in a C ₂ N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003507.	10.2	91
971	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
972	Fe–N–C Electrocatalysts' Durability: Effects of Single Atoms' Mobility and Clustering. ACS Catalysis, 2021, 11, 484-494.	5.5	53
973	Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons. Renewable Energy, 2021, 167, 800-810.	4.3	50
974	Recent Advances in Graphitic Carbon Nitride Supported Singleâ€Atom Catalysts for Energy Conversion. ChemCatChem, 2021, 13, 1250-1270.	1.8	46
975	Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 384-396.	3.7	40
976	Mass production of high-performance single atomic FeNC electrocatalysts via sequenced ultrasonic atomization and pyrolysis process. Science China Materials, 2021, 64, 631-641.	3.5	14
977	Multiple catalytic reaction sites induced non-radical/radical pathway with graphene layers encapsulated Fe-N-C toward highly efficient peroxymonosulfate (PMS) activation. Chemical Engineering Journal, 2021, 413, 127507.	6.6	49
978	Ultrathin Fe–N –C single-atom catalysts with bifunctional active site for simultaneous production of ethylene and aromatic chlorides. Nano Energy, 2021, 80, 105532.	8.2	33
979	A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells. Nano Energy, 2021, 80, 105534.	8.2	35
980	Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn-air battery. Chemical Engineering Journal, 2021, 414, 127569.	6.6	55
981	Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Applied Catalysis B: Environmental, 2021, 282, 119551.	10.8	93
982	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	7.3	58
983	Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions. Journal of Solid State Electrochemistry, 2021, 25, 45-56.	1.2	59
984	Direct transformation of raw biomass into a Fe–N _x –C single-atom catalyst for efficient oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 3093-3098.	3.2	11

#	Article	IF	CITATIONS
985	Effects of Superparamagnetic Iron Nanoparticles on Electrocatalysts for the Reduction of Oxygen. Inorganic Chemistry, 2021, 60, 4236-4242.	1.9	2
986	Efficient utilization of crude bio-oil: the synthesis of nitrogen-doped hierarchically porous carbon as electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2021, 5, 3884-3894.	2.5	11
987	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43
988	Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 2021, 50, 5281-5322.	18.7	502
989	Highly efficient atomically dispersed Co–N active sites in porous carbon for high-performance capacitive desalination of brackish water. Journal of Materials Chemistry A, 2021, 9, 3066-3076.	5.2	33
990	Degradation and regeneration of Fe–N _{<i>x</i>} active sites for the oxygen reduction reaction: the role of surface oxidation, Fe demetallation and local carbon microporosity. Chemical Science, 2021, 12, 11576-11584.	3.7	30
991	Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews, 2021, 50, 2337-2366.	18.7	188
992	Facile synthesis of CNT interconnected PVP-ZIF-8 derived hierarchically porous Zn/N co-doped carbon frameworks for oxygen reduction. Nanoscale, 2021, 13, 6248-6258.	2.8	21
993	A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. New Journal of Chemistry, 2021, 45, 4253-4269.	1.4	5
994	Rational design and solvent-free synthesis of iron-embedded 2D composite materials derived from biomass for efficient oxygen reduction reaction. Sustainable Energy and Fuels, 2021, 5, 3979-3986.	2.5	4
995	Iron-Nanoparticle-Loaded Nitrogen-Doped Carbon Nanotube/Carbon Sheet Composites Derived from MOF as Electrocatalysts for an Oxygen Reduction Reaction. ACS Applied Nano Materials, 2021, 4, 459-477.	2.4	35
996	Carbon-supported catalysts with atomically dispersed metal sites for oxygen electroreduction: present and future perspectives. Journal of Materials Chemistry A, 2021, 9, 15919-15936.	5.2	24
997	Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. Journal of Materials Chemistry A, 2021, 9, 19489-19507.	5.2	104
998	Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Nanoscale, 2021, 13, 4767-4773.	2.8	26
999	Bound oxygen-atom transfer endows peroxidase-mimic M–N–C with high substrate selectivity. Chemical Science, 2021, 12, 8865-8871.	3.7	39
1000	Active Site Identification in FeNC Catalysts and Their Assignment to the Oxygen Reduction Reaction Pathway by In Situ ⁵⁷ Fe M¶ssbauer Spectroscopy. Advanced Energy and Sustainability Research, 2021, 2, 2000064.	2.8	40
1001	Construction of nitrogen-doped porous carbon nanosheets decorated with Fe–N ₄ and iron oxides by a biomass coordination strategy for efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 14570-14579.	1.4	6
1002	Synthesizing Highâ€quality Graphene from Spent Anode Graphite and Further Functionalization Applying in ORR Electrocatalyst. ChemistrySelect, 2021, 6, 90-95.	0.7	8

#	Article	IF	CITATIONS
1003	Graphene-Based Dual-Metal Sites for Oxygen Reduction Reaction: A Theoretical Study. Journal of Physical Chemistry C, 2021, 125, 2334-2344.	1.5	32
1004	Metal-doped carbon nitrides: synthesis, structure and applications. New Journal of Chemistry, 2021, 45, 11876-11892.	1.4	33
1005	Maximizing the Active Site Densities of Single-Atomic Fe–N–C Electrocatalysts for High-Performance Anion Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 1459-1466.	2.5	26
1006	Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms. Journal of Materials Chemistry A, 2021, 9, 20320-20344.	5.2	37
1007	Fe ₁ N ₄ –O ₁ site with axial Fe–O coordination for highly selective CO ₂ reduction over a wide potential range. Energy and Environmental Science, 2021, 14, 3430-3437.	15.6	119
1008	The cooperation of Fe ₃ C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 6831-6840.	5.2	59
1009	Unveiling the role of carbon oxidation in irreversible degradation of atomically-dispersed FeN ₄ moieties for proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 8721-8729.	5.2	11
1010	Bimetallic Fe and Co supported on the Nâ€doped mesoporous carbon frameworks with enhanced oxygen reduction reaction performance via highâ€gravity technology. Journal of the Chinese Chemical Society, 2021, 68, 1047-1054.	0.8	4
1011	Impact of Heterometallic Cooperativity of Iron and Copper Active Sites on Electrocatalytic Oxygen Reduction Kinetics. ACS Catalysis, 2021, 11, 2356-2365.	5.5	40
1012	Green synthesis of iron and nitrogen coâ€doped porous carbon via pyrolysing lotus root as a <scp>highâ€performance</scp> electrocatalyst for oxygen reduction reaction. International Journal of Energy Research, 2021, 45, 10393-10408.	2.2	17
1013	An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports Energy, 2021, 1, 100002.	1.7	12
1014	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 53, 77-81.	7.1	77
1015	Construction of Dualâ€Activeâ€Site Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	5.2	52
1016	Core-shell structured metal organic framework materials derived cobalt/iron–nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction. International Journal of Hydrogen Energy, 2021, 46, 9341-9350.	3.8	12
1017	Synergies of Fe Single Atoms and Clusters on Nâ€Doped Carbon Electrocatalyst for pHâ€Universal Oxygen Reduction. Small Methods, 2021, 5, e2001165.	4.6	90
1018	Non Precious Metal Catalysts: A Fuel Cell and ORR Study of Thermally Synthesized Nickel and Platinum Mixed Nickel Nanotubes for PEMFC. Key Engineering Materials, 0, 875, 193-199.	0.4	4
1019	Recent progress in in situ/operando analysis tools for oxygen electrocatalysis. Journal Physics D: Applied Physics, 2021, 54, 173001.	1.3	11
1020	Oxygen Evolution and Reduction Reaction Activity Investigations on Fe, Co or Ni embedded Tetragonal Graphene by A Thermodynamical Full‣andscape Searching Scheme. ChemistryOpen, 2021, 10, 672-680.	0.9	0

#	Article	IF	CITATIONS
1021	Potassiumâ€lon Activating Formation of Feâ^'Nâ^'C Moiety as Efficient Oxygen Electrocatalyst for Znâ€Air Batteries. ChemElectroChem, 2021, 8, 1298-1306.	1.7	10
1022	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
1023	Molten NaClâ€Assisted Synthesis of Porous Feâ€N Electrocatalysts with a High Density of Catalytically Accessible FeN ₄ ÂActive Sites and Outstanding Oxygen Reduction Reaction Performance. Advanced Energy Materials, 2021, 11, 2100219.	10.2	160
1024	Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO ₂ Electroreduction Activity of Co/N-Doped Carbon Materials. ACS Applied Materials & Interfaces, 2021, 13, 15122-15131.	4.0	13
1025	Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nature Communications, 2021, 12, 1856.	5.8	106
1026	Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Research, 2021, 14, 4541-4547.	5.8	30
1027	Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Science China Materials, 2021, 64, 1868-1875.	3.5	25
1028	Unique Coordination Structure of Cobalt Single-Atom Catalyst Supported on Dopant-Free Carbon. Journal of Physical Chemistry C, 2021, 125, 6735-6742.	1.5	1
1029	Active-N-Dominated Carbon Frameworks Supported CoNC Integrated with Co Nanoparticles as an Enhanced Bifunctional Oxygen Catalyst. Nano, 2021, 16, 2150038.	0.5	2
1030	Thermally Stable Singleâ€Atom Heterogeneous Catalysts. Advanced Materials, 2021, 33, e2004319.	11.1	127
1031	Fe–N–C with Intensified Exposure of Active Sites for Highly Efficient and Stable Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 16279-16288.	4.0	14
1032	Boosting oxygen reduction catalysis with abundant single atom tin active sites in zinc-air battery. Journal of Power Sources, 2021, 490, 229483.	4.0	19
1033	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
1034	Proton Exchange Membrane (PEM) Fuel Cells with Platinum Group Metal (PGM)-Free Cathode. Automotive Innovation, 2021, 4, 131-143.	3.1	22
1035	Quantification of Active Site Density and Turnover Frequency: From Single-Atom Metal to Nanoparticle Electrocatalysts. Jacs Au, 2021, 1, 586-597.	3.6	53
1036	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie, 2021, 133, 11813-11818.	1.6	5
1037	Unveiling the roles of multiple active sites during oxygen reduction reaction in Cr2O3@Cr-N-C composite catalyst. Journal of Catalysis, 2021, 396, 402-408.	3.1	9
1038	Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for Proton Exchange Membrane Fuel Cells. Nano Letters, 2021, 21, 3633-3639.	4.5	32

#	Article	IF	CITATIONS
1039	Potentialâ€Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by In Situ Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 11707-11712.	7.2	36
1040	Review—Current Progress of Non-Precious Metal for ORR Based Electrocatalysts Used for Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 044521.	1.3	15
1041	Influence of the Metal Center in M–N–C Catalysts on the CO ₂ Reduction Reaction on Gas Diffusion Electrodes. ACS Catalysis, 2021, 11, 5850-5864.	5.5	50
1042	Study of the evolution of FeN C and Fe3C species in Fe/N/C catalysts during the oxygen reduction reaction in acid and alkaline electrolyte. Journal of Power Sources, 2021, 490, 229487.	4.0	34
1043	Structural Evolution of Atomically Dispersed Fe Species in Fe–N/C Catalysts Probed by X-ray Absorption and ⁵⁷ Fe MA¶ssbauer Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 11928-11938.	1.5	9
1044	Tuning Charge Distribution of FeN ₄ via External N for Enhanced Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 6304-6315.	5.5	114
1045	Carbonâ€based nonprecious metal electrocatalysts derived from <scp>MOFs</scp> for oxygenâ€reduction reaction. International Journal of Energy Research, 2021, 45, 15676-15738.	2.2	16
1046	Electrocatalysis for Oxygen Reduction Reaction on EDTAFeNa and Melamine co-Derived Self-Supported Fe-N-C Materials. Catalysts, 2021, 11, 623.	1.6	2
1047	Cuprous sulfide derived CuO nanowires as effective electrocatalyst for oxygen evolution. Applied Surface Science, 2021, 547, 149235.	3.1	31
1048	Single Co Atoms Implanted into N-Doped Hollow Carbon Nanoshells with Non-Planar Co-N ₄ -1-O ₂ Sites for Efficient Oxygen Electrochemistry. Inorganic Chemistry, 2021, 60, 7498-7509.	1.9	17
1049	Optimizing Surface Nâ€Doping of Feâ€Nâ€C Catalysts Derived from Fe/Melamineâ€Decorated Polyaniline for Oxygen Reduction Electrocatalysis. Advanced Materials Interfaces, 2021, 8, 2100197.	1.9	10
1050	Applications of single-atom catalysts. Nano Research, 2022, 15, 38-70.	5.8	115
1051	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for Fast K ⁺ Diffusion and Storage. , 2021, 3, 790-798.		10
1052	Beyond Nitrogen in the Oxygen Reduction Reaction on Nitrogen-Doped Carbons: A NEXAFS Investigation. Nanomaterials, 2021, 11, 1198.	1.9	6
1053	Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy, 2021, 83, 105734.	8.2	41
1054	Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. Chinese Chemical Letters, 2022, 33, 1070-1073.	4.8	17
1055	Application of Nonâ€Precious Bifunctional Catalysts for Metalâ€Air Batteries. Energy Technology, 2021, 9, 2001106.	1.8	10
1056	Iron and Nitrogen Co-doped Carbon Spheres as High Efficiency Oxygen Reduction Catalyst. International Journal of Electrochemical Science, 0, , ArticleID:210561.	0.5	Ο

#	Article	IF	CITATIONS
1057	Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chemistry - A European Journal, 2021, 27, 9898-9904.	1.7	24
1058	FeNC Electrocatalysts with Densely Accessible FeN ₄ Sites for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102420.	7.8	110
1059	Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nature Materials, 2021, 20, 1385-1391.	13.3	359
1060	Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.	5.8	35
1061	Structural Design Strategy and Active Site Regulation of Highâ€Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery. Small, 2021, 17, e2006766.	5.2	89
1062	Opportunities and Challenges in Precise Synthesis of Transition Metal Singleâ€Atom Supported by 2D Materials as Catalysts toward Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2103558.	7.8	51
1063	Engineering local coordination environments and site densities for highâ€performance Feâ€Nâ€C oxygen reduction reaction electrocatalysis. SmartMat, 2021, 2, 154-175.	6.4	81
1064	Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy, 2021, 84, 105817.	8.2	59
1065	ORR activity of metalated phenanthroline-strapped porphyrin adsorbed on carbon nanotubes. Comptes Rendus Chimie, 2021, 24, 5-12.	0.2	0
1066	Flash Bottomâ€Up Arc Synthesis of Nanocarbons as a Universal Route for Fabricating Singleâ€Atom Electrocatalysts. Small Methods, 2021, 5, 2100239.	4.6	6
1067	Single-Atom Catalysts: A Perspective toward Application in Electrochemical Energy Conversion. Jacs Au, 2021, 1, 1086-1100.	3.6	43
1068	Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catalysis, 2021, 11, 8645-8677.	5.5	39
1069	Controlled synthesis of metal-organic frameworks with skeletal and pore-filling iron(III) porphyrins for electrochemical oxygen reduction. Journal of Porphyrins and Phthalocyanines, 2021, 25, 878-884.	0.4	0
1070	Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Chemical Research in Chinese Universities, 0, , 1.	1.3	2
1071	Mapping transition metal–nitrogen–carbon catalystÂperformance on the critical descriptorÂdiagram. Current Opinion in Electrochemistry, 2021, 27, 100687.	2.5	34
1072	Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nature Communications, 2021, 12, 3295.	5.8	152
1073	Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Science China Materials, 2021, 64, 2987-2996.	3.5	16
1074	Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Applied Catalysis B: Environmental, 2021, 289, 120028.	10.8	38

#	Article	IF	CITATIONS
1075	An Open Gate for High-Density Metal Ions in N-Doped Carbon Networks: Powering Fe–N–C Catalyst Efficiency in the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 8915-8928.	5.5	20
1076	Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chinese Chemical Letters, 2022, 33, 663-673.	4.8	126
1077	In Silico Design of Covalent Organic Framework-Based Electrocatalysts. Jacs Au, 2021, 1, 1497-1505.	3.6	28
1078	Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Analytical Chemistry, 2021, 93, 9949-9957.	3.2	42
1079	Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials. Materials Today, 2021, 47, 53-68.	8.3	30
1080	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19233-19239.	1.6	149
1081	Recent advances in active sites identification and new Mâ^'Nâ^'C catalysts development towards ORR. JPhys Materials, 2021, 4, 044008.	1.8	7
1082	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
1083	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110
1084	Predicting thermoelectric properties from chemical formula with explicitly identifying dopant effects. Npj Computational Materials, 2021, 7, .	3.5	24
1085	Metal Oxide Clusters on Nitrogen-Doped Carbon are Highly Selective for CO ₂ Electroreduction to CO. ACS Catalysis, 2021, 11, 10028-10042.	5.5	37
1086	Two Types of Single-Atom FeN ₄ and FeN ₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst. Chemistry of Materials, 2021, 33, 5542-5554.	3.2	59
1087	Oxygen Reduction/Evolution Activity of a Mechanochemically Synthesized Multilayer Graphene. Journal of the Electrochemical Society, 2021, 168, 070521.	1.3	3
1088	Metal–Nitrogen–Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. Advanced Materials, 2021, 33, e2100997.	11.1	60
1089	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2021, 33, e2004287.	11.1	170
1090	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19085-19091.	7.2	189
1091	Anchoring Single Copper Atoms to Microporous Carbon Spheres as Highâ€Performance Electrocatalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2104864.	7.8	115
1092	Ammonia assisted regulation of nitrogen-type in carbonaceous support applied for oxygen reduction reaction. Applied Surface Science, 2021, 558, 149958.	3.1	4

#	Article	IF	CITATIONS
1093	Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 2021, 2, e106.	5.2	27
1094	Oxygen Reduction Reaction at Singleâ€Site Catalysts: A Combined Electrochemical Scanning Tunnelling Microscopy and DFT Investigation on Iron Octaethylporphyrin Chloride on HOPG**. ChemElectroChem, 2021, 8, 2825-2835.	1.7	11
1095	Using Magnetometry to Understand the Relative Role of Magnetic Particles in Co-Based Catalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 17709-17717.	1.5	1
1096	Effects of the induced micro- and meso-porosity on the single site density and turn over frequency of Fe-N-C carbon electrodes for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 291, 120068.	10.8	62
1097	Cation-Ï€ induced surface cleavage of organic pollutants with â‹OH formation from H2O for water treatment. IScience, 2021, 24, 102874.	1.9	20
1098	Rational design of platinum-group-metal-free electrocatalysts for oxygen reduction reaction. Current Opinion in Electrochemistry, 2021, 28, 100724.	2.5	3
1099	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cel through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	ls 11.1	94
1100	Biomass waste-derived nitrogen and iron co-doped nanoporous carbons as electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2021, 387, 138490.	2.6	23
1101	Density functional theory studies of oxygen reduction reaction for hydrogen peroxide generation on Graphene-Based catalysts. Journal of Electroanalytical Chemistry, 2021, 895, 115429.	1.9	4
1102	Iron, Nitrogen Coâ€Doped Carbon Spheres as Low Cost, Scalable Electrocatalysts for the Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102974.	7.8	35
1103	Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chemical Engineering Journal, 2021, 418, 129409.	6.6	35
1104	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77
1105	Recent Advances in Waste Plastic Transformation into Valuable Platinumâ€Group Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. ChemSusChem, 2021, 14, 3785-3800.	3.6	24
1106	Nanostructured Fe-N-C pyrolyzed catalyst for the H2O2 electrochemical sensing. Electrochimica Acta, 2021, 387, 138468.	2.6	11
1107	Thermally stable single atom catalysts: From concept to <i>in situ</i> study. Functional Materials Letters, 2021, 14, .	0.7	7
1108	Electrospun One-Dimensional Electrocatalysts for Oxygen Reduction Reaction: Insights into Structure–Activity Relationship. ACS Applied Materials & Interfaces, 2021, 13, 37961-37978.	4.0	43
1109	Applications of Carbon Nanotubes in Oxygen Electrocatalytic Reactions. ACS Applied Materials & Interfaces, 2022, 14, 20455-20462.	4.0	16
1110	Recent advances in carbon-supported iron group electrocatalysts for the oxygen reduction reaction. New Carbon Materials, 2021, 36, 665-682.	2.9	9

#	Article	IF	CITATIONS
1111	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
1112	Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis. Nano Research, 2022, 15, 1926-1933.	5.8	17
1113	Systematic study of precursor effects on structure and oxygen reduction reaction activity of FeNC catalysts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200337.	1.6	1
1114	Unraveling the Origin of Sulfurâ€Doped Feâ€N Singleâ€Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spinâ€State Tuning. Angewandte Chemie, 2021, 133, 25608-25614.	1.6	38
1115	Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Research, 2022, 15, 1753-1778.	5.8	44
1116	Molten-salt-assisted thermal emitting method to transform bulk Fe2O3 into Fe single atom catalysts for oxygen reduction reaction in Zn-air battery. Chemical Engineering Journal, 2021, 420, 129713.	6.6	26
1117	Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews Materials, 2021, 6, 969-985.	23.3	78
1118	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	5.8	396
1119	Single Cobalt Atoms Decorated Nâ€doped Carbon Polyhedron Enabled Dendriteâ€Free Sodium Metal Anode. Small Methods, 2021, 5, e2100833.	4.6	25
1120	Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochimica Acta, 2021, 398, 139263.	2.6	27
1121	Deactivation, reactivation and super-activation of Fe-N/C oxygen reduction electrocatalysts: Gas sorption, physical and electrochemical investigation using NO and O2. Applied Catalysis B: Environmental, 2021, 292, 120169.	10.8	24
1122	Atomically dispersed Co atoms in nitrogen-doped carbon aerogel for efficient and durable oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 36836-36847.	3.8	13
1123	A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction. Chemical Engineering Journal, 2022, 430, 132642.	6.6	43
1124	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
1125	Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy, 2021, 21, 100816.	2.5	45
1126	Microporous Fe–N4 cataysts derived from biomass aerogel for a high-performance Zn–air battery. Materials Today Energy, 2021, 21, 100826.	2.5	19
1127	Formation of Tilted FeN ₄ Configuration as the Origin of Oxygen Reduction Reaction Activity Enhancement on a Pyrolyzed Fe-N-C Catalyst with FeN ₄ -Edge Active Sites. Journal of Physical Chemistry C, 2021, 125, 19682-19696.	1.5	12
1128	Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. Journal of Power Sources, 2021, 506, 230143.	4.0	15

#	Article	IF	CITATIONS
1129	Boosting the activity of non-platinum group metal electrocatalyst for the reduction of oxygen via dual-ligated atomically dispersed precursors immobilized on carbon supports. Nano Energy, 2021, 90, 106547.	8.2	7
1130	Symmetry Breaking in Solution-Phase [Cu(tsc)2(H2O)2]2+: Emergent Asymmetry in Cu–S Distances and in Covalence. Journal of Physical Chemistry B, 2021, 125, 10779-10795.	1.2	0
1131	Vacancy and architecture engineering of porous FeP nanorods for achieving superior Li+ storage. Chemical Engineering Journal, 2022, 429, 132249.	6.6	43
1132	Non-PGM Electrocatalysts for PEM Fuel Cells: Thermodynamic Stability of Potential ORR CoNx-C Electrocatalytic Sites. Journal of the Electrochemical Society, 2021, 168, 094502.	1.3	7
1133	Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Applied Catalysis B: Environmental, 2021, 293, 120176.	10.8	66
1134	Developing Proton-Conductive Metal Coordination Polymer as Highly Efficient Electrocatalyst toward Oxygen Reduction. Journal of Physical Chemistry Letters, 2021, 12, 9197-9204.	2.1	15
1135	Unraveling the Origin of Sulfurâ€Doped Feâ€Nâ€C Singleâ€Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spinâ€State Tuning. Angewandte Chemie - International Edition, 2021, 60, 25404-25410.	7.2	177
1136	Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries. ACS Energy Letters, 2021, 6, 3624-3633.	8.8	103
1137	Integration of Morphology and Electronic Structure Modulation on Atomic Ironâ€Nitrogenâ€Carbon Catalysts for Highly Efficient Oxygen Reduction. Advanced Functional Materials, 2022, 32, 2108345.	7.8	61
1138	CoNi Nanoparticles Supported on N-Doped Bifunctional Hollow Carbon Composites as High-Performance ORR/OER Catalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45394-45405.	4.0	69
1139	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104
1140	Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: Effect of nitrogen-based organic precursor and pyrolysis atmosphere. Electrochimica Acta, 2021, 391, 138899.	2.6	14
1141	High Durability of a 14-Membered Hexaaza Macrocyclic Fe Complex for an Acidic Oxygen Reduction Reaction Revealed by In Situ XAS Analysis. Jacs Au, 2021, 1, 1798-1804.	3.6	17
1142	Effect of Different Iron Sources on In-Situ Growth of Zeolitic Imidazolate Frameworks-8: For Efficient Oxygen Reduction Electrocatalysts. Journal of Nanoscience and Nanotechnology, 2021, 21, 5319-5328.	0.9	2
1143	Platinum group metal-free Fe-based (Fe N C) oxygen reduction electrocatalysts for direct alcohol fuel cells. Current Opinion in Electrochemistry, 2021, 29, 100756.	2.5	17
1144	M-N-C-based single-atom catalysts for H2, O2 & amp; CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects. Fuel, 2021, 304, 121420.	3.4	63
1145	Molecular-MN4 vs atomically dispersed Mâ^'N4â^'C electrocatalysts for oxygen reduction reaction. Coordination Chemistry Reviews, 2021, 446, 214122.	9.5	88
1146	In situ 57Fe mössbauer study of a porphyrin based FeNC catalyst for ORR. Electrochimica Acta, 2021, 395, 139200.	2.6	14

#	Article	IF	CITATIONS
1147	Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Materials and Design, 2021, 209, 109972.	3.3	21
1148	Catalytic CO oxidation reaction over N-substituted graphene nanoribbon with edge defects. Journal of Molecular Graphics and Modelling, 2021, 108, 108006.	1.3	3
1149	Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 297, 120390.	10.8	46
1150	A high-performance nitrogen-rich ZIF-8-derived Fe-NC electrocatalyst for the oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 884, 160980.	2.8	8
1151	Influence of the synthesis parameters on the proton exchange membrane fuel cells performance of Fe–N–C aerogel catalysts. Journal of Power Sources, 2021, 514, 230561.	4.0	17
1152	Nanoscaffold effects on the performance of air-cathodes for microbial fuel cells: Sustainable Fe/N-carbon electrocatalysts for the oxygen reduction reaction under neutral pH conditions. Bioelectrochemistry, 2021, 142, 107937.	2.4	8
1153	Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. Chemical Engineering Journal, 2021, 426, 130758.	6.6	30
1154	Stone-Wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy, 2021, 90, 106488.	8.2	55
1155	Hollow porous nitrogen-doped carbon formed by fe-modified bimetallic organic framework for rechargeable liquid/solid Zn-air batteries. Journal of Alloys and Compounds, 2021, 886, 161227.	2.8	16
1156	Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews, 2021, 449, 214209.	9.5	28
1157	Metal-organic framework-derived carbon nanotubes with multi-active Fe-N/Fe sites as a bifunctional electrocatalyst for zinc-air battery. Journal of Energy Chemistry, 2022, 66, 306-313.	7.1	56
1158	One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. Journal of Energy Chemistry, 2022, 66, 100-106.	7.1	28
1159	In-situ growth of CoNi bimetal anchored on carbon nanoparticle/nanotube hybrid for boosting rechargeable Zn-air battery. Journal of Energy Chemistry, 2022, 66, 348-355.	7.1	32
1160	Direct acupuncture of nitric oxide by an electrochemical microsensor with high time-space resolution. Biosensors and Bioelectronics, 2022, 195, 113667.	5.3	9
1161	Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chemistry, 2021, 23, 6898-6925.	4.6	32
1162	Spectroscopic discernibility of dopants and axial ligands in pyridinic FeN ₄ environments relevant to single-atom catalysts. Chemical Communications, 2021, 57, 859-862.	2.2	10
1163	⁵⁷ Fe-Enrichment effect on the composition and performance of Fe-based O ₂ -reduction electrocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 9147-9157.	1.3	10
1164	The formation and evolution of carbonate species in CO oxidation over mono-dispersed Fe on graphene. Physical Chemistry Chemical Physics, 2021, 23, 10509-10517.	1.3	8

#	Article	IF	CITATIONS
1165	In Situ X-ray Absorption Spectroscopy to Monitor the Degradation of Fe/N/C Cathode Catalyst in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 014513.	1.3	14
1166	3D GBM-supported Transition Metal Oxide Nanocatalysts and Heteroatom-doped 3D Graphene Electrocatalysts for Potential Application in Fuel Cells. Chemistry in the Environment, 2021, , 139-178.	0.2	2
1167	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	15.6	415
1168	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
1169	Controlling the Co–S coordination environment in Co-doped WS ₂ nanosheets for electrochemical oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 19865-19873.	5.2	14
1170	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
1171	Enhanced electrocatalytic oxygen reduction reaction for Fe–N4–C by the incorporation of Co nanoparticles. Nanoscale, 2021, 13, 6521-6530.	2.8	9
1172	Rational design and synthesis of hollow Fe–N/C electrocatalysts for enhanced oxygen reduction reaction. Chemical Communications, 2021, 57, 5258-5261.	2.2	27
1173	Enhancement of Mass Transport for Oxygen Reduction Reaction Using Petal‣ike Porous Feâ€NC Nanosheet. Small, 2021, 17, e2006178.	5.2	42
1174	Synergistic effects of microstructures and active nitrogen content on the oxygen reduction reaction performance of nitrogen-doped carbon nanofibers via KOH activation heat treatment. Journal of Materials Science, 2020, 55, 10725-10739.	1.7	10
1175	Molten salt assisted synthesis of three dimensional FeNx/N,S–C bifunctional catalyst for highly compressible, stretchable and rechargeable Zn-Air battery. Carbon, 2020, 166, 64-73.	5.4	17
1176	A facile sulfur-assisted method to synthesize porous alveolate Fe/g-C3N4 catalysts with ultra-small cluster and atomically dispersed Fe sites. Chinese Journal of Catalysis, 2020, 41, 1198-1207.	6.9	37
1177	Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 137-146.	3.2	35
1178	Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2527-2539.	5.2	214
1179	Two dimensional electrocatalyst engineering <i>via</i> heteroatom doping for electrocatalytic nitrogen reduction. Chemical Communications, 2020, 56, 14154-14162.	2.2	16
1180	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	15.6	129
1181	Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions. Nanoscale, 2020, 12, 20413-20424.	2.8	17
1182	High Performance FeNC and Mn-oxide/FeNC Layers for AEMFC Cathodes. Journal of the Electrochemical Society, 2020, 167, 134505.	1.3	49

#	Article	IF	CITATIONS
1183	Fe ₇ C ₃ –Fe ₃ N/FeN _x C _y Decorated Carbon Material as Highly Efficient Catalyst for Oxygen Reduction Reaction in Al-Air Batteries. Nanoscience and Nanotechnology Letters, 2017, 9, 1909-1918.	0.4	6
1184	lridium Single-Atom Catalyst Laboring a Quasi-Homogeneous Hydrogenation Transformation of CO2 to Formate. SSRN Electronic Journal, 0, , .	0.4	1
1186	Nitrogen Coordinated Single Atomic Metals Supported on Nanocarbons: A New Frontier in Electrocatalytic CO2 Reduction. Engineered Science, 2018, , .	1.2	13
1187	Recent Progress in the Identification of Active Sites in Pyrolyzed Feâ^'N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction. Journal of Electrochemical Science and Technology, 2017, 8, 169-182.	0.9	22
1188	Migration-Prevention Strategy to Fabricate Single-Atom Fe Implanted N-Doped Porous Carbons for Efficient Oxygen Reduction. Research, 2019, 2019, 1768595.	2.8	25
1189	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	2.8	45
1190	Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO ₂ reduction reaction. Chemical Science, 2021, 12, 14065-14073.	3.7	35
1191	Experimental and Dft Studies of Oxygen Reduction Reaction Promoted by Binary Site Fe/Co-N-C Catalyst in Acid. SSRN Electronic Journal, 0, , .	0.4	0
1192	Atomic Fe–N ₅ catalytic sites embedded in N-doped carbon as a highly efficient oxygen electrocatalyst for zinc–air batteries. Materials Chemistry Frontiers, 2021, 5, 8127-8137.	3.2	13
1193	Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 22218-22247.	5.2	66
1194	Electrocatalytic CO ₂ reduction: role of the cross-talk at nano-carbon interfaces. Energy and Environmental Science, 2021, 14, 5816-5833.	15.6	25
1195	Fe-N4 Doped Carbon Nanotube Cathode Catalyst for PEM Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48923-48933.	4.0	18
1196	Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nature Communications, 2021, 12, 5984.	5.8	120
1197	Acid-Stable and Active M–N–C Catalysts for the Oxygen Reduction Reaction: The Role of Local Structure. ACS Catalysis, 2021, 11, 13102-13118.	5.5	59
1198	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
1199	Breaking the Linear Scaling Relationship by a Proton Donor for Improving Electrocatalytic Oxygen Reduction Kinetics. ACS Catalysis, 2021, 11, 12712-12720.	5.5	4
1200	Facile Synthesis of Graphene-like Porous Carbon with Densely Populated Co-N _{<i>x</i>} Sites as Efficient Bifunctional Electrocatalysts for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2021, 4, 11545-11554.	2.5	8
1201	Functionalized Iron–Nitrogen–Carbon Electrocatalyst Provides a Reversible Electron Transfer Platform for Efficient Uranium Extraction from Seawater. Advanced Materials, 2021, 33, e2106621.	11.1	184

#	Article	IF	CITATIONS
1202	Switching the Oxygen Reduction Reaction Pathway via Tailoring the Electronic Structure of FeN ₄ /C Catalysts. ACS Catalysis, 2021, 11, 13020-13027.	5.5	17
1203	Resolving the Dilemma of Fe–N–C Catalysts by the Selective Synthesis of Tetrapyrrolic Active Sites via an Imprinting Strategy. Journal of the American Chemical Society, 2021, 143, 18010-18019.	6.6	68
1204	Degradation: A critical challenge for M–N–C electrocatalysts. Journal of Energy Chemistry, 2021, 63, 667-674.	7.1	21
1205	Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. Journal of the American Chemical Society, 2021, 143, 18150-18158.	6.6	16
1206	Phosphorus-Driven Electron Delocalization on Edge-Type FeN ₄ Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762.	5.5	98
1207	Elucidation of Performance Recovery for Feâ€Based Catalyst Cathodes in Fuel Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100123.	2.8	6
1208	Graphene-Based Advanced Materials: Properties and Their Key Applications. Carbon Nanostructures, 2019, , 31-51.	0.1	2
1209	Synthesis of nanogate structure in GO-ZnS sandwich material. Scientific Reports, 2019, 9, 937.	1.6	2
1210	Studies on the functionalization of carbon materials by pore development and metal inclusion. Tanso, 2019, 2019, 114-120.	0.1	0
1211	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
1212	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	4.6	36
1213	Durable and Selective Electrochemical H ₂ O ₂ Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catalysis, 2021, 11, 13797-13808.	5.5	59
1214	Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 302, 120860.	10.8	42
1215	Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15, 3017-3025.	5.8	29
1216	Nitrogen-modified graphene as a metal-free carbocatalyst for the solvent-free oxidative homo- and heterocoupling of amines. Journal of the Iranian Chemical Society, 2022, 19, 2041-2051.	1.2	1
1217	Sensing nitrite by iron-nitrogen-carbon oxygen reduction electrocatalyst. Electrochimica Acta, 2022, 402, 139514.	2.6	7
1218	Novel joint catalytic properties of Fe and N co-doped graphene for CO oxidation. Physical Chemistry Chemical Physics, 2020, 22, 28376-28382.	1.3	3
1219	Catalytic performance of nanostructured materials recently used for developing fuel cells' electrodes. International Journal of Hydrogen Energy, 2021, 46, 39315-39368.	3.8	20

#	Article	IF	CITATIONS
1220	MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction. Small, 2021, 17, e2104684.	5.2	94
1221	In-Situ Formed Micropores as Footholds Enabling Well-Dispersed High-Density Fe-Nx Active Sites for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 0, , .	1.5	5
1222	Communication—On the Lack of Correlation between the Voltammetric Redox Couple and ORR Activity of Fe-N-C Catalysts. Journal of the Electrochemical Society, 2020, 167, 134510.	1.3	7
1223	Iron and nitrogen-doped double gyroid mesoporous carbons for oxygen reduction in acidic environments. JPhys Energy, 2021, 3, 015001.	2.3	3
1224	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	3.7	28
1225	Size-controlled, hollow and hierarchically porous Co2Ni2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells. Reaction Chemistry and Engineering, 0, , .	1.9	3
1226	Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Materials Horizons, 2022, 9, 417-424.	6.4	39
1227	The role of nitrogen and sulfur dual coordination of cobalt in Co-N _{4â^'<i>x</i>} S _{<i>x</i>} /C single atom catalysts in the oxygen reduction reaction. Sustainable Energy and Fuels, 2021, 6, 179-187.	2.5	10
1228	Mesoporous textured Fe-N-C electrocatalysts as highly efficient cathodes for proton exchange membrane fuel cells. Journal of Power Sources, 2022, 520, 230819.	4.0	46
1229	Facile Method to Synthesize a High-Activity S-Doped Fe/SNC Single-Atom Catalyst by Metal–Organic Frameworks for Oxygen Reduction Reaction in Acidic Medium. Energy & Fuels, 2021, 35, 20243-20249.	2.5	8
1230	Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 26429-26436.	1.5	3
1231	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	23.0	104
1232	Metal–Organic Framework-Derived Tubular In ₂ O ₃ –C/CdIn ₂ S ₄ Heterojunction for Efficient Solar-Driven CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 20375-20384.	4.0	26
1233	Mesoporous Carbon Promoting the Efficiency and Stability of Single Atomic Electrocatalysts for Oxygen Reduction Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1234	Recent advances in electrocatalysis with phthalocyanines. Chemical Society Reviews, 2021, 50, 12985-13011.	18.7	135
1235	Enzyme-like Fe-N5 single atom catalyst for simultaneous electrochemical detection of dopamine and uric acid. Journal of Electroanalytical Chemistry, 2022, 904, 115956.	1.9	17
1236	Boosting the ORR performance of Fe-N/C catalyst via increasing the density and modifying the electronic structure of Fe-NX active sites. Electrochimica Acta, 2022, 403, 139604.	2.6	24
1237	Effect of Support on Oxygen Reduction Reaction Activity of Supported Iron Porphyrins. ACS Catalysis, 2022, 12, 1139-1149.	5.5	18

#	Article	IF	CITATIONS
1238	Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction. Nature Communications, 2022, 13, 57.	5.8	67
1239	Pyrrolic N wrapping strategy to maximize the number of single-atomic Fe-Nx sites for oxygen reduction reaction. Journal of Power Sources, 2022, 520, 230904.	4.0	14
1240	Revealing the key role of bonding states in surface chemisorption. Chemical Engineering Science, 2022, 249, 117345.	1.9	5
1241	Enhanced oxygen reduction with carbon-polyhedron-supported discrete cobalt-nitrogen sites for Zn-air batteries. Chemical Engineering Journal, 2022, 431, 134084.	6.6	16
1242	Clarifying the critical roles of iron in boosting oxygen reduction: Single Fe atoms anchored on carbon vacancies as efficient active sites. Applied Catalysis B: Environmental, 2022, 305, 121035.	10.8	27
1243	Thermodynamic Margin in Carbon Network Modulated Activity Control of Oxygen Reduction Reaction Iron Catalyst. Journal of Physical Chemistry C, 2020, 124, 26982-26989.	1.5	1
1244	RuFe Alloy Nanoparticle-Supported Mesoporous Carbon: Efficient Bifunctional Catalyst for Li-O ₂ and Zn–Air Batteries. ACS Catalysis, 2022, 12, 1718-1731.	5.5	33
1245	Evolution of a solid electrolyte interphase enabled by FeN _{<i>X</i>} /C catalysts for sodium-ion storage. Energy and Environmental Science, 2022, 15, 771-779.	15.6	34
1246	Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles. , 2022, 1, 100031.		31
1247	Inâ€Situ Silica Xerogel Assisted Facile Synthesis of Feâ€N Catalysts with Dense Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, e2104934.	5.2	25
1248	Recent Advances in ZIFâ€Đerived Atomic Metal–N–C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities. Small, 2022, 18, e2105409.	5.2	50
1249	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attaining Ultraâ€Lowâ€Temperature Zincâ€Air Battery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	355
1250	Metal-containing heteroatom doped carbon nanomaterials for ORR, OER, and HER. , 2022, , 169-211.		0
1251	Inducing atomically dispersed Cl–FeN ₄ sites for ORRs in the SiO ₂ -mediated synthesis of highly mesoporous N-enriched C-networks. Journal of Materials Chemistry A, 2022, 10, 6153-6164.	5.2	7
1252	Modeling the roles of rigidity and dopants in single-atom methane-to-methanol catalysts. Journal of Materials Chemistry A, 2022, 10, 6193-6203.	5.2	12
1253	Electrospun Carbon Nanofibers Loaded with Atomic FeN <i>_x</i> /Fe ₂ O ₃ Active Sites for Efficient Oxygen Reduction Reaction in Both Acidic and Alkaline Media. Advanced Materials Interfaces, 2022, 9, .	1.9	7
1254	Altering Ligand Fields in Single-Atom Sites through Second-Shell Anion Modulation Boosts the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 2197-2207.	6.6	183
1255	Nâ€Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
1256	Insights into the Determining Effect of Carbon Support Properties on Anchoring Active Sites in Fe–N–C Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 1601-1613.	5.5	39
1257	Characterization on the formation mechanism of Fe0/Fe3C/C nanostructure and its effect on PMS activation performance towards BPA degradation. Chemical Engineering Journal, 2022, 435, 134709.	6.6	3
1258	Atomic Structure Modification of Fe‒N‒C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
1259	Engineering Dual Singleâ€Atom Sites on 2D Ultrathin Nâ€doped Carbon Nanosheets Attaining Ultra‣owâ€Temperature Zincâ€Air Battery. Angewandte Chemie, 0, , .	1.6	24
1260	Nâ€Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites?. Angewandte Chemie, 2022, 134, .	1.6	7
1261	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	1.6	27
1262	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	127
1263	TMN4 complex embedded graphene as efficient and selective electrocatalysts for chlorine evolution reactions. Journal of Electroanalytical Chemistry, 2022, 907, 116071.	1.9	16
1264	Mesoporous carbon promoting the efficiency and stability of single atomic electrocatalysts for oxygen reduction reaction. Carbon, 2022, 191, 393-402.	5.4	33
1265	Facile Generation of a Stable Bi-Functional Mixed Phase Fe ₃ O ₄ /Fe-N ₄ Electrocatalyst for Rechargeable Zinc-Air Battery. Journal of the Electrochemical Society, 2022, 169, 020516.	1.3	3
1266	A novel sludge pyrolysis and biomass gasification integrated method to enhance hydrogen-rich gas generation. Energy Conversion and Management, 2022, 254, 115205.	4.4	25
1267	Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. Journal of Energy Chemistry, 2022, 69, 466-489.	7.1	27
1268	Ferromagnetic properties of iron-porphyrin-like structurally deformed graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115165.	1.3	1
1269	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
1270	Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Applied Catalysis B: Environmental, 2022, 306, 121029.	10.8	67
1271	Three-dimensional self-supporting superstructured double-sided nanoneedles arrays of iron carbide nanoclusters embedded in manganese, nitrogen co-doped carbon for highly efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2022, 614, 655-665.	5.0	17
1272	Boosting activity toward oxygen reduction reaction of a mesoporous FeCuNC catalyst <i>via</i> heteroatom doping-induced electronic state modulation. Journal of Materials Chemistry A, 2022, 10, 5361-5372.	5.2	14
1273	ZIF-derived metal/N-doped porous carbon nanocomposites: efficient catalysts for organic transformations. Catalysis Science and Technology, 2022, 12, 2106-2121.	2.1	32

#	Article	IF	CITATIONS
1274	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	8.3	34
1275	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
1276	Highly Porous Iron-Doped Nitrogen–Carbon Framework on Reduced Graphene Oxide as an Excellent Oxygen Reduction Catalyst for Proton-Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 1822-1832.	2.5	15
1277	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
1278	Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Research, 2022, 15, 3073-3081.	5.8	58
1279	Atomically Dispersed Iron with Densely Exposed Active Sites as Bifunctional Oxygen Catalysts for Zinc–Air Flow Batteries. Small, 2022, 18, e2105892.	5.2	26
1280	Identification of the Intrinsic Dielectric Properties of Metal Single Atoms for Electromagnetic Wave Absorption. Nano-Micro Letters, 2022, 14, 27.	14.4	86
1281	Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction. Journal of Physical Chemistry Letters, 2022, 13, 168-174.	2.1	22
1282	Surface Diels–Alder adducts on multilayer graphene for the generation of edge-enriched single-atom FeN ₄ sites for ORR and OER electrocatalysis. Sustainable Energy and Fuels, 2022, 6, 1603-1615.	2.5	3
1283	Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. Journal of Materials Chemistry A, 2022, 10, 7764-7772.	5.2	11
1284	Zeolitic Imidazolate Framework-Derived Copper Single Atom Anchored on Nitrogen-Doped Porous Carbon as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1285	A pseudo-boehmite AlOOH supported NGr composite-based air electrode for mechanically rechargeable Zn-air battery applications. Journal of Materials Chemistry A, 2022, 10, 10014-10025.	5.2	11
1286	Scalable Bifunctional Con3 Single-Atom Catalysts Dispersed on N-Doped Carbon Nanosheets for Ultrastable Zn-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1287	Square-pyramidal Fe-N4 with defect-modulated O-coordination: Two-tier electronic structure fine-tuning for enhanced oxygen reduction. Chem Catalysis, 2022, 2, 816-835.	2.9	23
1288	Timeâ€Resolved Potentialâ€Induced Changes in Fe/N/Câ€Catalysts Studied by In Situ Modulation Excitation Xâ€Ray Absorption Spectroscopy. Advanced Energy Materials, 2022, 12, .	10.2	33
1289	Boosting ORR performance by single atomic divacancy Zn–N3C–C8 sites on ultrathin N-doped carbon nanosheets. Chem Catalysis, 2022, 2, 836-852.	2.9	25
1290	Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions. Chinese Chemical Letters, 2023, 34, 107236.	4.8	5
1291	MXene (Ti ₃ C ₂ T _{<i>x</i>})â€5upported Binary Coâ€, Znâ€Doped Carbon as Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. Energy Technology, 2022, 10, .	1.8	8

#	Article	IF	CITATIONS
1292	Gradually Anchoring N and Fe, Zn Atoms on Monodispersed Carbon Nanospheres: Their Contribution to the Oxygen Reduction Reaction under Analogous Structure. Industrial & Engineering Chemistry Research, 2022, 61, 7513-7522.	1.8	2
1295	Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. Advanced Science, 2022, 9, e2106043.	5.6	36
1296	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
1297	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	5.2	25
1298	Effective Approaches for Designing Stable M–N <i>_x</i> /C Oxygenâ€Reduction Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Materials, 2022, 34, e2200595.	11.1	38
1299	Computational Insight into TM–N _{<i>x</i>} Embedded Graphene Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. ACS Physical Chemistry Au, 2022, 2, 305-315.	1.9	10
1300	Copper coordinated with nitrogen in electrospun carbon nanofibers as a high-performance electrocatalyst for ORR. Electrochemistry Communications, 2022, 136, 107245.	2.3	10
1301	Atomically dispersed Zn-Co-N-C catalyst boosting efficient and robust oxygen reduction catalysis in acid via stabilizing Co-N bonds. Fundamental Research, 2023, 3, 909-917.	1.6	4
1302	Single Atoms Anchored in Hexagonal Boron Nitride for Propane Dehydrogenation from First Principles. ChemCatChem, 2022, 14, .	1.8	6
1303	Fe ₃ O ₄ Templated Pyrolyzed Feâ^'Nâ^'C Catalysts. Understanding the role of Nâ€Functions and Fe ₃ C on the ORR Activity and Mechanism. ChemElectroChem, 2022, 9, .	1.7	6
1304	Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. ChemSusChem, 2022, 15, .	3.6	22
1305	Tuning the Spin State of the Iron Center by Bridgeâ€Bonded Feâ€Oâ€Ti Ligands for Enhanced Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	15
1306	Tuning the Spin State of the Iron Center by Bridgeâ€Bonded Feâ€Oâ€Ti Ligands for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
1307	Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Nature Communications, 2022, 13, 1848.	5.8	52
1308	Investigation of Oxygen Reduction Reaction of Graphene Supported Metal-N ₄ Catalysts via Density Functional Theory. Journal of the Electrochemical Society, 2022, 169, 044521.	1.3	1
1309	Highly Loaded Independent Pt ⁰ Atoms on Graphdiyne for pHâ€General Methanol Oxidation Reaction. Advanced Science, 2022, 9, e2104991.	5.6	26
1310	Polyhedral Carbon Anchored on Carbon Nanosheet with Abundant Atomic Feâ€N _x Moieties for Oxygen Reduction. Advanced Materials Interfaces, 2022, 9, .	1.9	1
1311	Surface pourbaix plots of M@N4-graphene single-atom electrocatalysts from density functional theory thermodynamic modeling. Electrochimica Acta, 2022, 412, 140155.	2.6	29

#	Article	IF	Citations
1312	Electrochemical transformation of Fe-N-C catalysts into iron oxides in alkaline medium and its impact on the oxygen reduction reaction activity. Applied Catalysis B: Environmental, 2022, 311, 121366.	10.8	22
1313	Assistance of rearrangement of active sites in Fe/N/C catalyst for harvesting ultra-high power density PEMFCs. Applied Catalysis B: Environmental, 2022, 312, 121365.	10.8	14
1314	Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy and Environment, 2023, 8, 1693-1702.	4.7	15
1315	Half-cell electrode assessments of a crossover-tolerant direct methanol fuel cell with a platinum group metal-free cathode. Electrochimica Acta, 2022, 416, 140262.	2.6	2
1316	Recent trends in application of nanoscale zero-valent metals and metal single atoms in membrane processes. Journal of Environmental Chemical Engineering, 2022, 10, 107457.	3.3	16
1317	In situ confinement of iron-based active sites within high porosity carbon frameworks with enhanced activity for rechargeable Zn–air battery. Materials Today Chemistry, 2022, 24, 100844.	1.7	2
1318	Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy, 2022, 97, 107206.	8.2	17
1319	Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site. Applied Catalysis B: Environmental, 2022, 309, 121290.	10.8	26
1320	A template-free I2-assisted pyrolysis strategy to synthesize coral-like nitrogen-doped carbon with a regulated hierarchical porous structure toward efficient oxygen reduction. Chemical Engineering Journal, 2022, 440, 135852.	6.6	9
1321	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
1322	Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for Urea-assisted rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 310, 121352.	10.8	71
1323	Toward an Understanding of the Reversible Li-CO ₂ Batteries over Metal–N ₄ -Functionalized Graphene Electrocatalysts. ACS Nano, 2022, 16, 1523-1532.	7.3	52
1324	Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. EScience, 2022, 2, 102-109.	25.0	106
1325	Fe C enhancing the catalytic activity of FeN in oxidative dehydration of N-heterocycles. Green Chemical Engineering, 2022, 3, 349-358.	3.3	4
1326	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	10.2	33
1327	Hybrid Supercapacitor Electrode Materials via Molecular Imprinting of Nitrogenous Ligands and Iron Complexes into Carbon Support. Journal of the Electrochemical Society, 2021, 168, 120527.	1.3	0
1328	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	10.2	61
1329	Sulfur Functionalization via Epoxide Ring Opening on a Reduced Graphene Oxide Surface to Form Metal (II) Organo-bis-[1,2]-oxathiin. Inorganic Chemistry, 2022, 61, 279-286.	1.9	3

#	Article	IF	CITATIONS
1330	Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure–Performance Relationship Discovery. Accounts of Chemical Research, 2022, 55, 110-120.	7.6	7
1331	The performance of an atomically dispersed oxygen reduction catalyst prepared by \hat{I}^3 -CD-MOF integration with FePc. Nanoscale Advances, 2022, 4, 2171-2179.	2.2	2
1332	Experimental and DFT studies of oxygen reduction reaction promoted by binary site Fe/Co–N–C catalyst in acid. Journal of Electroanalytical Chemistry, 2022, 914, 116322.	1.9	4
1333	Exploring Durable Single-Atom Catalysts for Proton Exchange Membrane Fuel Cells. ACS Energy Letters, 2022, 7, 1696-1705.	8.8	50
1334	Host-guest interactions promoted formation of Fe-N4 active site toward efficient oxygen reduction reaction catalysis. Journal of Colloid and Interface Science, 2022, 621, 195-204.	5.0	7
1335	Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coordination Chemistry Reviews, 2022, 463, 214554.	9.5	22
1336	Single-atom iron catalysts for biomedical applications. Progress in Materials Science, 2022, 128, 100959.	16.0	17
1337	Bamboo-like N,S-doped carbon nanotubes with encapsulated Co nanoparticles as high-performance electrocatalyst for liquid and flexible all-solid-state rechargeable Zn-air batteries. Applied Surface Science, 2022, 593, 153446.	3.1	14
1340	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
1341	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	15.6	82
1342	Direct Evidence for the Decisive Role of OH* Activation in CO Electro-Oxidation Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1343	Synergistic Modulation of Multiple Active-Sites in Fe-N-C for High-Efficiency Oxygen Reduction Electrocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
1344	Zeolitic Imidazolate Framework-Derived Copper Single Atom Anchored on Nitrogen-Doped Porous Carbon as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction toward Zn–Air Battery. Chemistry of Materials, 2022, 34, 4104-4114.	3.2	17
1345	High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 311-323.	16.1	248
1346	Rugaeâ€like Nâ€doped porous carbon incorporated with <scp> Feâ€N _x </scp> and <scp> Fe ₃ O ₄ </scp> dual active sites as a powerful oxygen reduction catalyst for zincâ€air batteries. International Journal of Energy Research, 2022, 46, 12378-12390.	2.2	2
1347	Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance. Science Bulletin, 2022, 67, 1264-1273.	4.3	36
1348	Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction. Chinese Chemical Letters, 2023, 34, 107455.	4.8	3
1349	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie, 0, , .	1.6	8

# 1350	ARTICLE Core–Shell Structured Fe–N–C Catalysts with Enriched Iron Sites in Surface Layers for Proton-Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 6409-6417.	IF 5.5	Citations
1351	Iron Single Atoms Anchored on Nitrogen-Doped Carbon Matrix/Nanotube Hybrid Supports for Excellent Oxygen Reduction Properties. Nanomaterials, 2022, 12, 1593.	1.9	2
1352	Boron doping induced electronic reconfiguration of Fe-Nx sites in N-doped carbon matrix for efficient oxygen reduction reaction in both alkaline and acidic media. International Journal of Hydrogen Energy, 2022, 47, 18663-18674.	3.8	11
1353	Effects of Porous Structure on Oxygen Mass Transfer in Air Cathodes of Nonaqueous Metal–Air Batteries: A Mini-review. ACS Applied Energy Materials, 2022, 5, 5473-5483.	2.5	10
1354	A Pyrolysisâ€Free Method Toward Largeâ€Scale Synthesis of Ultraâ€Highly Efficient Bifunctional Oxygen Electrocatalyst for Zincâ€Air Flow Batteries. Small, 2022, 18, e2201197.	5.2	10
1355	Direct Visualization of the Evolution of a Singleâ€Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution. Advanced Science, 2022, 9, e2200592.	5.6	15
1356	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	5.8	98
1357	Multilayer Selfâ€Assemblies for Fabricating Grapheneâ€5upported Singleâ€Atomic Metal via Microwaveâ€Assisted Emulsion Micelle. Small, 2022, 18, e2201291.	5.2	5
1358	Understanding electronic configurarions and coordination environment for enhanced ORR process and improved Zn-air battery performance. Energy Storage Materials, 2022, 50, 12-20.	9.5	49
1359	Unraveling the mechanism of ligands regulating electronic structure of MN4 sites with optimized ORR catalytic performance. Applied Surface Science, 2022, 595, 153526.	3.1	20
1360	Seizing gaseous Fe ²⁺ to densify O ₂ -accessible Fe–N ₄ sites for high-performance proton exchange membrane fuel cells. Energy and Environmental Science, 2022, 15, 3033-3040.	15.6	49
1361	Mesoporeâ€Rich Fe–N–C Catalyst with FeN ₄ –O–NC Singleâ€Atom Sites Delivers Remarkab Oxygen Reduction Reaction Performance in Alkaline Media. Advanced Materials, 2022, 34, e2202544.	le 11.1	168
1362	Construction of N, P Coâ€Doped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	11.1	93
1363	Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic Fell-N4 oxygen reduction active sites. Chinese Journal of Catalysis, 2022, 43, 1870-1878.	6.9	9
1364	A Reverse Electrodialysis Cell-Modified Photocatalytic Fuel Cell for Efficient Electricity and Hydrogen Generation from the Degradation of Refractory Organic Pollutants. SSRN Electronic Journal, 0, , .	0.4	0
1365	Oxygen Reduction Reaction in Alkaline Media Causes Iron Leaching from Fe–N–C Electrocatalysts. Journal of the American Chemical Society, 2022, 144, 9753-9763.	6.6	59
1366	Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Research, 2022, 15, 7209-7219.	5.8	42
1367	Tuning the Catalytic Activity of Fe-Phthalocyanine-Based Catalysts for the Oxygen Reduction Reaction by Ligand Functionalization. ACS Catalysis, 2022, 12, 7278-7287.	5.5	30

#	Article	IF	CITATIONS
1368	Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 503-512.	16.1	155
1369	Revealing the optimal configuration for synergy effect of metal nanoparticles and MN4 sites for oxygen reduction reaction. Nano Energy, 2022, 100, 107440.	8.2	8
1370	Single atomic Fe–N ₄ active sites and neighboring graphitic nitrogen for efficient and stable electrochemical CO ₂ reduction. Nanoscale Horizons, 2022, 7, 916-923.	4.1	14
1371	Controlled synthesis of a porous single-atomic Fe–N–C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction. Inorganic Chemistry Frontiers, 2022, 9, 4101-4110.	3.0	8
1372	The impact of overpotential on the enthalpy of activation and pre-exponential factor of electrochemical redox reactions. Physical Chemistry Chemical Physics, 2022, 24, 16031-16040.	1.3	9
1373	Oxygen reduction reaction by metallocorroles and metallophthalocyanines. , 2022, , 79-124.		1
1374	Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O ₂ Electrochemiluminescence Detection of Prostate-Specific Antigen. Analytical Chemistry, 2022, 94, 9758-9765.	3.2	35
1375	Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Research, 2022, 15, 7951-7958.	5.8	15
1376	Identification of a Robust and Durable FeN ₄ C _{<i>x</i>} Catalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand. ACS Catalysis, 2022, 12, 7541-7549.	5.5	30
1377	Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni,) Tj ETÇ)q1_1_0.78	4314 rgBT /O
1377 1378	Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni,) Tj ETQ A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883.	0q1_10.78 6.6	4314 rgBT 10
	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions.		
1378	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883. Atomic Feâ [^] Nâ [^] C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction.	6.6	49
1378 1379	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883. Atomic Feâ ⁻ 'Nâ ⁻ 'C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, . Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catalysis, 2022,	6.6 0.7	49 0
1378 1379 1380	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883. Atomic Feâ ^{-,} Nâ ^{-,} C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, . Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catalysis, 2022, 12, 7811-7820. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nature	6.6 0.7 5.5	49 0 76
1378 1379 1380 1381	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883. Atomic Feâ ² Nâ ² C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, . Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catalysis, 2022, 12, 7811-7820. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nature Catalysis, 2022, 5, 473-484. Comparative density functional theory study for predicting oxygen reduction activity of single-atom	6.6 0.7 5.5 16.1	49 0 76 53
1378 1379 1380 1381 1382	A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. Journal of the American Chemical Society, 2022, 144, 12874-12883. Atomic Feâ ⁻³ Nâ ⁻² C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, . Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catalysis, 2022, 12, 7811-7820. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nature Catalysis, 2022, 5, 473-484. Comparative density functional theory study for predicting oxygen reduction activity of single-atom catalyst. Surface Science, 2022, 724, 122144. Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters,	6.6 0.7 5.5 16.1 0.8	49 0 76 53 3

#	Article	IF	CITATIONS
1386	Theoretical inspection of TM-P4C single-atom electrocatalysts: High performance for oxygen reduction and evolution reactions. Electrochimica Acta, 2022, 427, 140853.	2.6	4
1387	A Singleâ€Atom Feâ€Nâ€C Catalyst with Ultrahigh Utilization of Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, .	5.2	38
1388	Chemical Structure and Distribution in Nickel–Nitrogen–Carbon Catalysts for CO ₂ Electroreduction Identified by Scanning Transmission X-ray Microscopy. ACS Catalysis, 2022, 12, 8746-8760.	5.5	8
1389	Nitrogen-Doped Cobalt–Molybdenum Sulfide Hybrid Heterojunctions as Active Electrocatalysts for Producing Hydrogen in Alkaline Media. Energy & Fuels, 2022, 36, 11591-11600.	2.5	3
1390	Metal-nitrogen co-doped hierarchical porous carbon derived from the bimetallic metal-organic framework as ORR electrocatalyst for passive alkaline direct ethanol fuel cell. Journal of Electroanalytical Chemistry, 2022, 920, 116620.	1.9	7
1391	Using Computational Chemistry To Reveal Nature's Blueprints for Single-Site Catalysis of C–H Activation. ACS Catalysis, 2022, 12, 9281-9306.	5.5	15
1392	Electric Field Polarized Feâ^'N Functionalized Graphene Oxide Nanosheet Catalyst for Efficient Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	0
1393	Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy, 2022, 7, 652-663.	19.8	258
1394	Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 316, 121674.	10.8	48
1395	Embedding isolated iron into biomass-derived porous carbon as efficient electrocatalysts for O2 and CO2 reduction. Journal of Materials Science, 0, , .	1.7	0
1396	Atomically Dispersed Fe–N ₅ Sites Anchored on 3D N-Doped Porous Carbon for Efficient Selective Oxidation of Aromatic Alkanes at Room Temperature. ACS Applied Materials & Interfaces, 0, , .	4.0	2
1397	Assessing and measuring the active site density of PGM-free ORR catalysts. Journal of Solid State Electrochemistry, 2022, 26, 1839-1850.	1.2	7
1398	Creation of densely exposed and cavity-edged single Fe active sites for enhanced oxygen electroreduction. Applied Catalysis B: Environmental, 2022, 317, 121768.	10.8	16
1399	Spin State as a Participator for Demetalation Durability and Activity of Fe–N–C Electrocatalysts. Journal of Physical Chemistry C, 2022, 126, 13168-13181.	1.5	15
1400	Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe–N–C Materials. Journal of the American Chemical Society, 2022, 144, 16524-16534.	6.6	44
1401	Lithium Atom Surface Diffusion and Delocalized Deposition Propelled by Atomic Metal Catalyst toward Ultrahigh-Capacity Dendrite-Free Lithium Anode. Nano Letters, 2022, 22, 8008-8017.	4.5	36
1402	Efficient Electrocatalytic Reduction of CO ₂ to Ethane over Nitrogen-Doped Fe ₂ O ₃ . Journal of the American Chemical Society, 2022, 144, 14769-14777.	6.6	41
1403	Directional Manipulation of Electron Transfer by Energy Level Engineering for Efficient Cathodic Oxygen Reduction. Nano Letters, 2022, 22, 6622-6630.	4.5	14

	Сітатіс	on Report	
#	Article	IF	CITATIONS
1404	In-situ N-defect and single-metal atom synergetic engineering of high-efficiency Ag–N–C electrocatalysts for CO2 reduction. Applied Catalysis B: Environmental, 2022, 318, 121826.	10.8	16
1405	Boosting peroxymonosulfate activation by porous single-atom catalysts with FeN4O1 configuration for efficient organic pollutants degradation. Chemical Engineering Journal, 2022, 450, 138469.	6.6	25
1406	The effect of membrane thickness on AEMFC Performance: An integrated theoretical and experimental study. Energy Conversion and Management, 2022, 270, 116203.	4.4	16
1407	Prediction of the catalytic site of single-atom Ni catalyst using the hydrogen evolution reaction as a model platform. Electrochimica Acta, 2022, 431, 141138.	2.6	5
1408	Gradient-tailored and heterointerface-rich architectures enable superior Li-ion storage performances of GeS2@NiS@N-doped carbon microspheres. Applied Surface Science, 2022, 605, 154782.	3.1	5
1409	Facile synthesis of mesoporous carbon materials with a three-dimensional ordered mesostructure and rich FeNX/C-S-C sites for efficient electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130103.	2.3	2
1410	Multi-sites synergistic modulation in oxygen reduction electrocatalysis. Journal of Colloid and Interface Science, 2023, 629, 697-705.	5.0	11
1411	Effect of local pH change on non-PGM catalysts – a potential-dependent mechanistic analysis of the oxygen reduction reaction. Catalysis Science and Technology, 2022, 12, 6246-6255.	2.1	3
1412	Introducing mesoporous silica-protected calcination for improving the electrochemical performance of Cu@Fe–N–C composites in oxygen reduction reactions and supercapacitor applications. New Journal of Chemistry, 2022, 46, 18351-18365.	1.4	5
1413	From haemoglobin to single-site hydrogenation catalyst. Green Chemistry, 2022, 24, 7574-7583.	4.6	2
1414	Engineering Co and Ru dual-metal atoms on nitrogen-doped carbon as highly efficient bifunctional oxygen electrocatalysts. Catalysis Science and Technology, 2022, 12, 5435-5441.	2.1	6
1415	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	4.1	12
1416	Single atomic Fe-pyridine N catalyst with dense active sites improve bifunctional electrocatalyst activity for rechargeable and flexible Zn-air batteries. Journal of Materials Chemistry A, 2022, 10, 20993-21003.	5.2	28
1417	Identification of the Catalytically Dominant Iron Environment in Iron- and Nitrogen-Doped Carbon Catalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 16827-16840.	6.6	35
1418	Tuning Fe Spin Moment in Fe–N–C Catalysts to Climb the Activity Volcano via a Local Geometric Distortion Strategy. Advanced Science, 2022, 9, .	5.6	23
1419	Bestimmung der spezifischen Aktivitävon Mâ^'Nâ^'Cs und die intrinsische Aktivitävon tetrapyrrolischen FeN ₄ â€Zentren in der Sauerstoffreduktionsreaktion. Angewandte Chemie, 2022, 134, .	1.6	0
1421	Engineering Hollow Core–Shell N–C@Co/N–C Catalysts with Bits of Ni Doping Used as Efficient Electrocatalysts in Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 41912-41923.	4.0	6
1422	Evaluation of the Specific Activity of Mâ^'Nâ^'Cs and the Intrinsic Activity of Tetrapyrrolic FeN ₄ Sites for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15

#	Article	IF	CITATIONS
1423	Metal-organic framework-based single-atom catalysts for efficient electrocatalytic CO2 reduction reactions. Catalysis Today, 2023, 410, 68-84.	2.2	13
1424	Hierarchal Porous Graphene-Structured Electrocatalysts with Fe–N ₅ Active Sites Modified with Fe Clusters for Enhanced Performance Toward Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2022, 14, 42038-42047.	4.0	8
1425	Single-Atom Catalysis: Insights from Model Systems. Chemical Reviews, 2022, 122, 14911-14939.	23.0	26
1426	Doping Effect on Mesoporous Carbon-Supported Single-Site Bifunctional Catalyst for Zinc – Air Batteries. ACS Nano, 2022, 16, 15994-16002.	7.3	61
1427	Insights into atomically dispersed reactive centers on g-C3N4 photocatalysts for water splitting. , 2023, 2, 100094.		18
1428	Fabrication of Nitrogen/Boron Highly Coâ€Đoped Graphene Electrode for Enhanced Electrochemical Performance. ChemistrySelect, 2022, 7, .	0.7	0
1429	Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chemical Reviews, 2023, 123, 6233-6256.	23.0	31
1430	2D siloxene supported NiO/Co3O4 electrocatalyst for the stable and efficient hydrogen evolution reaction. Current Applied Physics, 2022, 44, 102-109.	1.1	2
1431	Metal-organic-framework-derived electrocatalysts for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 2022, 550, 232135.	4.0	15
1432	Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. Journal of Materials Chemistry A, 2022, 10, 23959-23972.	5.2	4
1433	An Fe–N–C electrocatalyst with dense active sites synthesized by expeditious pyrolysis of a natural Fe–N ₄ macrocyclic complex. Journal of Materials Chemistry A, 2022, 10, 23001-23007.	5.2	4
1434	Designing Hierarchically Porous Single Atoms of Fe-N ₅ Catalytic Sites with High Oxidase-like Activity for Sensitive Detection of Organophosphorus Pesticides. Analytical Chemistry, 2022, 94, 15270-15279.	3.2	24
1436	Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction**. Chemistry - A European Journal, 2023, 29, .	1.7	9
1437	Defective nanomaterials for electrocatalysis oxygen reduction reaction. Frontiers in Chemistry, 0, 10,	1.8	4
1438	Ru Single Atoms on One-Dimensional CF@g-C3N4 Hierarchy as Highly Stable Catalysts for Aqueous Levulinic Acid Hydrogenation. Materials, 2022, 15, 7464.	1.3	1
1439	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	5.8	10
1440	Relation between halfâ€cell and fuel cell activity and stability of FeNC catalysts for the oxygen reduction reaction. SusMat, 2022, 2, 630-645.	7.8	11
1441	Single-Atom Yttrium Engineering Janus Electrode for Rechargeable Na–S Batteries. Journal of the American Chemical Society, 2022, 144, 18995-19007.	6.6	68

#	Article	IF	CITATIONS
1442	Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. CheM, 2023, 9, 181-197.	5.8	75
1443	Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells?. ACS Catalysis, 2022, 12, 13853-13875.	5.5	24
1444	Organic carboxylate-assisted engineering for fabricating Fe, N co-doped porous carbon interlinked carbon nanotubes towards boosting the oxygen reduction reaction for Zn-air batteries. Chinese Chemical Letters, 2023, 34, 107886.	4.8	2
1445	Molecular Catalyst Synthesis Strategies to Prepare Atomically Dispersed Fe-N-C Heterogeneous Catalysts. Journal of the American Chemical Society, 2022, 144, 18797-18802.	6.6	12
1446	A Combination of "Push Effect―Strategy with "Triple-Phase-Boundary Engineering―on Iron Porphyrin-Based MOFs: Enhanced Selectivity and Activity for Oxygen Reduction. ACS Applied Materials & Interfaces, 2022, 14, 50751-50761.	4.0	6
1447	Superstructures of Zeolitic Imidazolate Frameworks to Single―and Multiatom Sites for Electrochemical Energy Conversion. Small, 2022, 18, .	5.2	13
1448	Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Science Advances, 2022, 8, .	4.7	33
1449	Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A. Separation and Purification Technology, 2023, 305, 122402.	3.9	19
1450	Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coordination Chemistry Reviews, 2023, 475, 214874.	9.5	44
1451	Efficient electrochemical CO2 reduction to CO by metal and nitrogen co-doped carbon catalysts derived from pharmaceutical wastes adsorbed on commercial carbon nanotubes. Chemical Engineering Journal, 2023, 453, 139712.	6.6	9
1452	Understanding the effects of operating conditions on the water management in anion exchange membrane fuel cells. Journal of Power Sources, 2023, 554, 232343.	4.0	0
1453	Energetics and thermodynamic stability of potential Fe ^(II) â€hexaâ€azaâ€active sites for O ₂ reduction in PEM fuel cells. SusMat, 2022, 2, 731-748.	7.8	8
1454	Fe-N4/Co-N4 active sites engineered porous carbon with encapsulated FeCo alloy as an efficient bifunctional catalyst for rechargeable zinc-air battery. Journal of Alloys and Compounds, 2023, 935, 168107.	2.8	7
1455	Carbon Nanocage with Maximum Utilization of Atomically Dispersed Iron as Efficient Oxygen Electroreduction Nanoreactor. Advanced Materials, 2023, 35, .	11.1	49
1456	Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	17
1457	Axial nitrogen-coordination engineering over Fe-Nx active species for enhancing Fenton-like reaction performance. Chemical Engineering Journal, 2023, 454, 140382.	6.6	5
1458	Defects engineered hierarchical porous iron-nitrogen-enriched carbon derived from pyridyl conjugated microporous polytriphenylamine networks for efficient oxygen reduction reaction. Materials and Design, 2022, 224, 111360.	3.3	4
1459	A reverse electrodialysis cell-modified photocatalytic fuel cell for efficient electricity and hydrogen generation from the degradation of refractory organic pollutants. Journal of Hazardous Materials, 2023, 444, 130443.	6.5	5

#	Article	IF	CITATIONS
1460	Ultrastable Fe–N–C Fuel Cell Electrocatalysts by Eliminating Non oordinating Nitrogen and Regulating Coordination Structures at High Temperatures. Advanced Materials, 2023, 35, .	11.1	24
1461	Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: recent trends and future perspectives. Materials Horizons, 2023, 10, 745-787.	6.4	24
1462	Cation modified Fe–N–C catalyst for the electrochemical reduction of nitrate in solutions of low ionic strength. Inorganic Chemistry Frontiers, 0, , .	3.0	3
1463	Effective adsorption of Pb(II) from wastewater using facile enclosed pyrolysis strategy for defect-rich lignite-based carbon-coated zero-valent iron. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105823.	2.6	3
1464	Metal–organic framework-derived single atom catalysts for electrocatalytic reduction of carbon dioxide to C1 products. Energy Advances, 2023, 2, 252-267.	1.4	1
1465	Enhanced photocatalytic hydrogen evolution with a Mixed-Valence iron Metal-Organic framework. Chemical Engineering Journal, 2023, 456, 140939.	6.6	5
1466	Adjusting OH tolerance of Ni4 clusters supported on ultra-small carbon nanotube with lattice vacancies for hydrogen oxidation catalysts. Materials Today Chemistry, 2023, 27, 101262.	1.7	0
1467	Selectivity of Mo N C sites for electrocatalytic N2 reduction: A function of the single atom position on the surface and local carbon topologies. Applied Surface Science, 2023, 612, 155908.	3.1	3
1468	DFT calculation screened CoCu and CoFe dual-atom catalysts with remarkable hydrogen evolution reaction activity. Applied Catalysis B: Environmental, 2023, 324, 122244.	10.8	5
1469	Tuning Structural and Electronic Configuration of <scp>FeN₄</scp> via External S for Enhanced Oxygen Reduction Reaction. Energy and Environmental Materials, 0, , .	7.3	5
1470	Atomic‣evel Interface Engineering for Boosting Oxygen Electrocatalysis Performance of Singleâ€Atom Catalysts: From Metal Active Center to the First Coordination Sphere. Advanced Science, 2023, 10, .	5.6	25
1471	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	23.0	50
1472	Unprecedented Relay Catalysis of Curved Fe ₁ –N ₄ Single-Atom Site for Remarkably Efficient ¹ O ₂ Generation. ACS Catalysis, 2023, 13, 681-691.	5.5	24
1473	The Local Coordination Effects on the Reactivity and Speciation of Active Sites in Graphene-Embedded Single-Atom Catalysts over Wide pH and Potential Range. Nanomaterials, 2022, 12, 4309.	1.9	3
1474	Single-Atom Iron Catalyst Based on Functionalized Mesophase Pitch Exhibiting Efficient Oxygen Reduction Reaction Activity. Catalysts, 2022, 12, 1608.	1.6	0
1475	Defect-induced dipole polarization engineering of electromagnetic wave absorbers: Insights and perspectives. Composites Part B: Engineering, 2023, 252, 110479.	5.9	12
1476	The Active Sites and Corresponding Stability Challenges of the Mâ€Nâ€C Catalysts for Proton Exchange Membrane Fuel Cell. Chinese Journal of Chemistry, 2023, 41, 710-724.	2.6	6
1477	Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS Omega, 2022, 7, 45935-45961.	1.6	10

#	Article	IF	CITATIONS
1478	Synergistic Effect of Sn and Fe in Fe–N _{<i>x</i>} Site Formation and Activity in Fe–N–C Catalyst for ORR. ACS Applied Materials & Interfaces, 2022, 14, 54635-54648.	4.0	7
1479	How pH Affects the Oxygen Reduction Reactivity of Fe–N–C Materials. ACS Catalysis, 2023, 13, 1717-1725.	5.5	21
1480	Review—Study on Catalyst in Zn-Air Batteries: Bibliometric Method. Journal of the Electrochemical Society, 0, , .	1.3	0
1481	Surface modification strategy for constructing Fe-Nx species and FeF2/Fe3C nanoparticles co-anchored N, F co-doped carbon nanotubes for efficient oxygen reduction. Journal of Alloys and Compounds, 2023, 941, 168922.	2.8	8
1482	Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron–Organic Framework for Sustainable Lithium-Ion Batteries. Journal of the American Chemical Society, 2023, 145, 1564-1571.	6.6	23
1483	Fundamental Understanding of Electronic Structure in FeN ₄ Site on Electrocatalytic Activity via <i>dz</i> ^{<i>2</i>} â€Orbitalâ€Driven Charge Tuning for Acidic Oxygen Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
1485	Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review. Journal of Materials Chemistry A, 2023, 11, 3315-3363.	5.2	28
1486	Modulating the Fe–N ₄ Active Site Content by Nitrogen Source in Fe–N–C Aerogel Catalysts for Proton Exchange Membrane Fuel Cell. ACS Catalysis, 2023, 13, 1149-1163.	5.5	7
1487	Hydrogen-Bond-Promoted ORR Mechanism in P-Doped Fe–N–C Materials. Journal of Physical Chemistry C, 2023, 127, 1023-1031.	1.5	11
1488	Fundamental Understanding of Electronic Structure in FeN ₄ Site on Electrocatalytic Activity via <i>dz</i> ^{<i>2</i>} â€Orbitalâ€Driven Charge Tuning for Acidic Oxygen Reduction. Angewandte Chemie, 2023, 135, .	1.6	3
1489	Enhancing the activity of Fe-N-C oxygen reduction reaction electrocatalysts by high-throughput exploration of synthesis parameters. Electrochimica Acta, 2023, 441, 141850.	2.6	8
1490	Adaptive learning-driven high-throughput synthesis of oxygen reduction reaction Fe–N–C electrocatalysts. Journal of Power Sources, 2023, 559, 232583.	4.0	4
1491	Tin-nitrogen/carbon for superior oxygen reduction reaction at fuel cell cathode. International Journal of Hydrogen Energy, 2022, , .	3.8	0
1492	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	1.9	2
1493	A General Strategy to Remove Metal Aggregates toward Metal–Nitrogen–Carbon Catalysts with Exclusive Atomic Dispersion. Advanced Materials, 0, , 2211398.	11.1	9
1494	Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nature Communications, 2023, 14, .	5.8	42
1495	Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD ⁺ Supplementation in Mammals. Journal of the American Chemical Society, 2023, 145, 3108-3120.	6.6	16
1496	Highly active CoFe alloy nanoparticles encapsulated in N-doped carbon nanostructures for oxygen reduction reaction in both alkaline and acidic media. Journal of Alloys and Compounds, 2023, 944, 169166.	2.8	3

#	Article	IF	CITATIONS
1497	Fe–Nx active sites embedded into metal–organic-framework-derived mesoporous carbon for highly efficient oxygen reduction. Journal of Physics and Chemistry of Solids, 2023, 176, 111256.	1.9	1
1498	FeNC Oxygen Reduction Electrocatalyst with High Utilization Pentaâ€Coordinated Sites. Advanced Materials, 2023, 35, .	11.1	22
1499	Degradation Mechanisms of Platinum Group Metalâ€Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine. ChemElectroChem, 2023, 10, .	1.7	4
1500	Construction of Homogeneous Catalyst Layers at Proton Exchange Membrane Fuel Cell Cathodes. Journal of the Electrochemical Society, 2023, 170, 044511.	1.3	1
1501	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9
1502	The highest oxidation state observed in graphene-supported sub-nanometer iron oxide clusters. Communications Chemistry, 2023, 6, .	2.0	2
1503	Electronically modulated d-band centers of MOF-derived carbon-supported Ru/HfO2 for oxygen reduction and aqueous/flexible zinc-air batteries. Journal of Energy Chemistry, 2023, 80, 247-255.	7.1	7
1504	Precisely optimizing polysulfides adsorption and conversion by local coordination engineering for high-performance Li-S batteries. Nano Energy, 2023, 110, 108353.	8.2	20
1505	Mainâ€Group <i>s</i> â€Block Element Lithium Atoms within Carbon Frameworks as Highâ€Active Sites for Electrocatalytic Reduction Reactions. Advanced Functional Materials, 2023, 33, .	7.8	4
1506	Pyridine N of N/Co-co-doped graphite gas diffusion electrode facilitating the efficient production of hydroxyl radicals in the electro-peroxone process. Journal of Environmental Chemical Engineering, 2023, 11, 109564.	3.3	1
1507	Mâ^'Nâ^'C Materials for Electrochemical Reduction Reactions: Recent Strategies for Improving Electrocatalytic Activity and Stability. ChemCatChem, 2023, 15, .	1.8	1
1508	Iron redox behavior and oxygen reduction activity of Fe-N-C electrocatalysts in different electrolytes. Electrochimica Acta, 2023, 443, 141934.	2.6	4
1509	Nitrogenâ€Doped Multilayer Graphene Microtubes for Highâ€Density Recording of Occipital EEG Signals. Advanced Materials Technologies, 0, , 2201734.	3.0	0
1510	Effects of electrolyte anion adsorption on the activity and stability of single atom electrocatalysts. Chemical Physics Reviews, 2023, 4, .	2.6	1
1511	Evolution of Stabilized 1Tâ€MoS ₂ by Atomicâ€Interface Engineering of 2Hâ€MoS ₂ /Feâ^N _{<i>x</i>} towards Enhanced Sodium Ion Storage. Angewandte Chemie, 2023, 135, .	1.6	19
1512	Evolution of Stabilized 1Tâ€MoS ₂ by Atomicâ€Interface Engineering of 2Hâ€MoS ₂ /Feâ~N _{<i>x</i>} towards Enhanced Sodium Ion Storage. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
1513	Generalized Encapsulations of ZIFâ€Based Fe–N–C Catalysts with Controllable Nitrogenâ€Doped Carbon for Significantlyâ€Improved Stability Toward Oxygen Reduction Reaction. Small, 2023, 19, .	5.2	4
1514	Influence of the addition of nanoparticles on the oxygen reduction reaction characteristics of FeNC catalysts and the impact on the stability. Journal of Power Sources, 2023, 561, 232713.	4.0	1

#	Article	IF	CITATIONS
1515	Boosting Oxygen Electrocatalytic Activity of Fe–N–C Catalysts by Phosphorus Incorporation. Journal of the American Chemical Society, 2023, 145, 3647-3655.	6.6	93
1516	X-ray Absorption Spectroscopy Studies of a Molecular CO ₂ -Reduction Catalyst Deposited on Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2023, 127, 3626-3633.	1.5	1
1517	Tailoring the dâ€Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction. Advanced Materials, 2023, 35, .	11.1	54
1518	The oxygen reduction reaction activity and selectivity of porous-carbon supported transition metals (M-C: M Mn, Fe, Co, Ni, Cu) electrocatalysts. Diamond and Related Materials, 2023, 134, 109776.	1.8	2
1519	Structural, morphological and electrochemical characterization of the degradation processes during the oxygen reduction reaction of iron(II) phthalocyanine supported on carbon nanotubes. Electrochimica Acta, 2023, 446, 142060.	2.6	1
1520	Enhancing the Stability of a Ptâ€Free ORR Catalyst via Reaction Intermediates. Advanced Materials Interfaces, 2023, 10, .	1.9	4
1521	Recent progress in the synthesis, characterization and photocatalytic application of energy conversion over single metal atoms decorated graphitic carbon nitride. International Journal of Hydrogen Energy, 2023, 48, 19459-19485.	3.8	14
1522	The decisive role of adsorbed OH* in lowâ€potential CO electroâ€oxidation on singleâ€atom catalytic sites. , 2023, 5, .		2
1523	Microenvironment modulation of cobalt single-atom catalysts for boosting both radical oxidation and electron-transfer process in Fenton-like system. Applied Catalysis B: Environmental, 2023, 329, 122558.	10.8	43
1524	Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities. Nature Communications, 2023, 14, .	5.8	1
1525	Boost the Utilization of Dense <scp>FeN₄</scp> Sites for Highâ€Performance Proton Exchange Membrane Fuel Cells. Energy and Environmental Materials, 0, , .	7.3	3
1527	Fluorination and its Effects on Electrocatalysts for Lowâ€Temperature Fuel Cells. Advanced Energy Materials, 2023, 13, .	10.2	11
1528	Bioinspired Hydrophobicity Coupled with Single Feâ€N ₄ Sites Promotes Oxygen Diffusion for Efficient Zincâ€Air Batteries. Small, 2023, 19, .	5.2	9
1529	Computational Modelling of Pyrrolic MN4 Motifs Embedded in Graphene for Catalyst Design. Catalysts, 2023, 13, 566.	1.6	1
1530	Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Research, 2023, 16, 4468-4487.	5.8	19
1531	Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobaltâ€Nitrogen Moieties. Angewandte Chemie, 2023, 135, .	1.6	0
1532	Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobaltâ€Nitrogen Moieties. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1533	Effect of Posttreatment on the Catalytic Performances of Fe-N-C for Oxygen Reduction Reactions. International Journal of Energy Research, 2023, 2023, 1-12.	2.2	0

#	Article	IF	CITATIONS
1534	Longitudinally Grafting of Graphene with Iron Phthalocyanineâ€based Porous Organic Polymer to Boost Oxygen Electroreduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
1535	Longitudinally Grafting of Graphene with Iron Phthalocyanineâ€based Porous Organic Polymer to Boost Oxygen Electroreduction. Angewandte Chemie, 0, , .	1.6	0
1536	Central electron-enriched NO-FeN ₄ sites as superior acidic oxygen reduction reaction electrocatalysts for proton exchange membrane fuel cells. , 2023, 53, 0304.		2
1537	Insights into the Oxygen Evolution Reaction on Graphene-Based Single-Atom Catalysts from First-Principles-Informed Microkinetic Modeling. ACS Catalysis, 2023, 13, 5225-5235.	5.5	8
1538	Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochemical Energy Reviews, 2023, 6, .	13.1	19
1539	Single-atom-anchored microsweepers for <i>H. pylori</i> inhibition through dynamically navigated reciprocating locomotion. Chemical Communications, 0, , .	2.2	0
1540	In-situ observation of structural evolution of single-atom catalysts: From synthesis to catalysis. ChemPhysMater, 2024, 3, 24-35.	1.4	1
1541	Potential-Dependent Active Moiety of Fe–N–C Catalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2023, 14, 3749-3756.	2.1	10
1542	Grapheneâ€Encapsulated Bifunctional Catalysts with High Activity and Durability for Zn–Air Battery. Small, 2023, 19, .	5.2	4
1543	Crafting Pyrolysis-Free M–N–C Catalysts. , 0, , .		0
1543 1544		0.8	0 3
	Crafting Pyrolysis-Free M–N–C Catalysts. , 0, , .	0.8	
1544	Crafting Pyrolysis-Free M–N–C Catalysts. , 0, , . Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water		3
1544 1545	Crafting Pyrolysis-Free M–N–C Catalysts. , 0, , . Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16, 10326-10341.	5.8	3
1544 1545 1555	Crafting Pyrolysis-Free M–N–C Catalysts., 0, , . Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16, 10326-10341. STEM High Angle Annular Dark-Field Imaging. Springer Handbooks, 2023, , 409-448.	5.8	3 3 0
1544 1545 1555 1557	Crafting Pyrolysis-Free M–N–C Catalysts. , 0, , . Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16, 10326-10341. STEM High Angle Annular Dark-Field Imaging. Springer Handbooks, 2023, , 409-448. Biological methods for fabricating nanomaterial-based metal–organic frameworks. , 2023, , 75-106.	5.8	3 3 0 0
1544 1545 1555 1557 1565	Crafting Pyrolysis-Free Mâć"Nâć"C Catalysts., 0, , . Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-175. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16, 10326-10341. STEM High Angle Annular Dark-Field Imaging. Springer Handbooks, 2023, , 409-448. Biological methods for fabricating nanomaterial-based metalâć"organic frameworks., 2023, , 75-106. Bio-inspired Cu, Fe-codoped carbon electrocatalysts for the oxygen reduction reaction., 2023, ,. Current progress of electrocatalysts for anion exchange membrane fuel cells. Korean Journal of	5.8	3 3 0 0 0

#	Article	IF	CITATIONS
1642	Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal–organic frameworks. Chemical Society Reviews, 2023, 52, 8059-8076.	18.7	1
1648	Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid. , 0, , .		0
1653	Unified ORR mechanism criteria <i>via</i> charge–spin–coordination of Fe functional units. Energy and Environmental Science, 2024, 17, 27-48.	15.6	1
1664	Low-cost Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction: Operating Conditions from Aqueous Electrolytes to Fuel Cells. Sustainable Energy and Fuels, 0, , .	2.5	0
1667	Advances in Flexible Zinc-air Batteries: Working Principle, Preparation of Key Components, and Electrode Configuration Design. Journal of Materials Chemistry A, 0, , .	5.2	0