The zinc transporter ZIP12 regulates the pulmonary vas

Nature 524, 356-360 DOI: 10.1038/nature14620

Citation Report

#	Article	IF	CITATIONS
1	Regulation of cell proliferation by hypoxia-inducible factors. American Journal of Physiology - Cell Physiology, 2015, 309, C775-C782.	2.1	209
2	Roles of Zinc Signaling in the Immune System. Journal of Immunology Research, 2016, 2016, 1-21.	0.9	177
3	The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. International Journal of Molecular Sciences, 2016, 17, 336.	1.8	314
4	Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2016, 17, 761.	1.8	114
5	Zinc transporters and signaling in physiology and pathogenesis. Archives of Biochemistry and Biophysics, 2016, 611, 43-50.	1.4	63
6	A RATional choice for translational research?. DMM Disease Models and Mechanisms, 2016, 9, 1069-1072.	1.2	49
7	Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn ²⁺ Sensor into a Light-Responsive Zn ²⁺ Binding Protein. ACS Synthetic Biology, 2016, 5, 698-709.	1.9	9
8	Pulmonary hypertension. European Respiratory Review, 2016, 25, 4-11.	3.0	44
9	Phytochelatin Synthesis Promotes Leaf Zn Accumulation of <i>Arabidopsis thaliana</i> Plants Grown in Soil with Adequate Zn Supply and is Essential for Survival on Zn-Contaminated Soil. Plant and Cell Physiology, 2016, 57, 2342-2352.	1.5	47
10	Hypoxic pulmonary hypertension in chronic lung diseases: novel vasoconstrictor pathways. Lancet Respiratory Medicine,the, 2016, 4, 225-236.	5.2	60
11	Monitoring cytosolic and ER Zn ²⁺ in stimulated breast cancer cells using genetically encoded FRET sensors. Metallomics, 2016, 8, 211-217.	1.0	26
12	Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. Journal of Physiological Sciences, 2017, 67, 283-301.	0.9	323
13	Association between sleep apnoea and pulmonary hypertension in Kyrgyz highlanders. European Respiratory Journal, 2017, 49, 1601530.	3.1	25
14	Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage. Journal of Biological Chemistry, 2017, 292, 13361-13373.	1.6	19
15	MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling. Journal of Molecular Medicine, 2017, 95, 977-993.	1.7	33
16	Heterogeneous Stock Populations for Analysis of Complex Traits. Methods in Molecular Biology, 2017, 1488, 31-44.	0.4	47
17	Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends in Molecular Medicine, 2017, 23, 31-45.	3.5	171
18	The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduction and Targeted Therapy, 2017, 2, .	7.1	178

#	Article	IF	CITATIONS
19	Directional Exosome Proteomes Reflect Polarity-Specific Functions in Retinal Pigmented Epithelium Monolayers. Scientific Reports, 2017, 7, 4901.	1.6	73
20	Hypoxia and Pulmonary Hypertension. , 2017, , .		3
21	Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo. International Journal of Molecular Sciences, 2017, 18, 2708.	1.8	68
22	Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2017, 6, 43.	1.0	40
23	Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism. Frontiers in Genetics, 2017, 8, 89.	1.1	27
24	Sensors for measuring subcellular zinc pools. Metallomics, 2018, 10, 229-239.	1.0	34
25	Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. European Respiratory Journal, 2018, 51, 1700745.	3.1	136
26	Crosstalk between MicroRNAs and Peroxisome Proliferator-Activated Receptors and Their Emerging Regulatory Roles in Cardiovascular Pathophysiology. PPAR Research, 2018, 2018, 1-11.	1.1	23
27	Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sciences, 2018, 214, 77-83.	2.0	7
28	Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica, 2018, 39, 1120-1132.	2.8	246
29	Carbonic anhydrase IX is a critical determinant of pulmonary microvascular endothelial cell pH regulation and angiogenesis during acidosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L41-L51.	1.3	19
30	Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Critical Reviews in Food Science and Nutrition, 2019, 59, 3511-3525.	5.4	35
31	CD146-HIF-1Î \pm hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nature Communications, 2019, 10, 3551.	5.8	75
32	Thin Air, Thick Vessels: Historical and Current Perspectives on Hypoxic Pulmonary Hypertension. Frontiers in Medicine, 2019, 6, 93.	1.2	30
33	Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Digestive Diseases and Sciences, 2019, 64, 2404-2415.	1.1	20
34	Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 512-524.	1.4	43
35	Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. Environmental Science and Pollution Research, 2019, 26, 6613-6624.	2.7	38
36	Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 2019, 53, 1801887.	3.1	776

#	Article	IF	CITATIONS
37	Altered Expression of Zinc Transporter ZIP12 in Broilers of Ascites Syndrome Induced by Intravenous Cellulose Microparticle Injection. Biochemical Genetics, 2019, 57, 159-169.	0.8	2
38	The Druggability of Solute Carriers. Journal of Medicinal Chemistry, 2020, 63, 3834-3867.	2.9	59
39	Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. Journal of Biomedical Science, 2020, 27, 84.	2.6	41
40	circAFF1 Aggravates Vascular Endothelial Cell Dysfunction Mediated by miR-516b/SAV1/YAP1 Axis. Frontiers in Physiology, 2020, 11, 899.	1.3	15
41	Role of zinc transporter ZIP12 in susceptibilityâ€weighted brain magnetic resonance imaging (MRI) phenotypes and mitochondrial function. FASEB Journal, 2020, 34, 10702-12725.	0.2	9
42	Slc39a5-mediated zinc homeostasis plays an essential role in venous angiogenesis in zebrafish. Open Biology, 2020, 10, 200281.	1.5	9
43	Cardiac function and pulmonary hypertension in Central Asian highlanders at 3250â€m. European Respiratory Journal, 2020, 56, 1902474.	3.1	22
44	Recent aspects of the effects of zinc on human health. Archives of Toxicology, 2020, 94, 1443-1460.	1.9	293
45	Clarifying the Pulmonary Arterial Hypertension Molecular Landscape Using Functional Genetics. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 488-490.	2.5	6
46	Zinc transporters in physiology and pathophysiology. , 2020, , 55-67.		0
47	Reproductive hormones influence zinc homeostasis in the bovine cumulus-oocyte complex: Impact on intracellular zinc concentration and transporters gene expression. Theriogenology, 2020, 146, 48-57.	0.9	8
48	Growth Modulatory Role of Zinc in Prostate Cancer and Application to Cancer Therapeutics. International Journal of Molecular Sciences, 2020, 21, 2991.	1.8	40
49	A mutation in the essential and widely conserved DAMAGED DNA BINDING1 ullin4 ASSOCIATED FACTOR gene <i>OZS3</i> causes hypersensitivity to zinc excess, cold and UV stress in <i>Arabidopsis thaliana</i> . Plant Journal, 2020, 103, 995-1009.	2.8	7
50	Hypoxiaâ€induced pulmonary hypertension—Utilizing experiments of nature. British Journal of Pharmacology, 2021, 178, 121-131.	2.7	20
51	Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxidants and Redox Signaling, 2021, 34, 891-914.	2.5	49
52	Zinc Homeostasis Alters Zinc Transporter Protein Expression in Vascular Endothelial and Smooth Muscle Cells. Biological Trace Element Research, 2021, 199, 2158-2171.	1.9	17
53	The role of labile Zn2+ and Zn2+–transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Molecular and Cellular Biochemistry, 2021, 476, 971-989.	1.4	10
54	Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1–7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovascular Drugs and Therapy, 2022, 36, 363-370.	1.3	9

#	Article	IF	CITATIONS
55	The Role of Zinc Homeostasis in the Prevention of Diabetes Mellitus and Cardiovascular Diseases. Journal of Atherosclerosis and Thrombosis, 2021, 28, 1109-1122.	0.9	32
56	Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respiratory Research, 2021, 22, 133.	1.4	32
57	The Mononuclear Phagocyte System of the Rat. Journal of Immunology, 2021, 206, 2251-2263.	0.4	15
58	Lessons in Organic Fluorescent Probe Discovery. ChemBioChem, 2021, 22, 3109-3139.	1.3	31
59	Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nature Communications, 2021, 12, 3296.	5.8	25
60	The role of vitamin D, zinc and selenium in the development of noncommunicable diseases (literature) Tj ETQq1	1 0,78431 0.1	.4 rgBT /Over
61	Zinc as a Biomarker of Cardiovascular Health. Frontiers in Nutrition, 2021, 8, 686078.	1.6	27
62	SLC39A5 promotes lung adenocarcinoma cell proliferation by activating PI3K/AKT signaling. Pathology Research and Practice, 2021, 224, 153541.	1.0	3
63	Dysregulated zinc and sphingosineâ€lâ€phosphate signaling in pulmonary hypertension: Potential effects by targeting of bone morphogenetic protein receptor type 2 in pulmonary microvessels. Cell Biology International, 2021, 45, 2368-2379.	1.4	7
64	Peptide Blocking Self-Polymerization of Extracellular Calcium-Sensing Receptor Attenuates Hypoxia-Induced Pulmonary Hypertension. Hypertension, 2021, 78, 1605-1616.	1.3	5
65	A role for zinc transporter gene SLC39A12 in the nervous system and beyond. Gene, 2021, 799, 145824.	1.0	7
66	Pathobiology of Pulmonary Hypertension. , 2022, , 530-541.		0
67	Zinc Transporter Proteins: A Review and aÂNew View from Biochemistry. , 2019, , 23-56.		10
69	Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. Journal of Clinical Investigation, 2016, 126, 3313-3335.	3.9	303
70	Endoplasmic reticulum stress and pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-11.	0.8	11
71	New Drugs, Therapeutic Strategies, and Future Direction for the Treatment of Pulmonary Arterial Hypertension. Current Medicinal Chemistry, 2019, 26, 2844-2864.	1.2	23
72	Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth. Open Cardiovascular Medicine Journal, 2017, 11, 1-13.	0.6	19
73	Emerging role of long non‑coding RNAs in pulmonary hypertension and their molecular mechanisms (Review). Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	4

#	Article	IF	CITATIONS
74	ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2022, 79, 235-243.	0.8	8
75	Zinc-mediated activation of CREB pathway in proliferation of pulmonary artery smooth muscle cells in pulmonary hypertension. Cell Communication and Signaling, 2021, 19, 103.	2.7	12
76	Oxidative Stress and Labile Zinc in Heart Dysfunction Under Hyperglycemia. , 2019, , 397-412.		0
78	Slc39a2-Mediated Zinc Homeostasis Modulates Innate Immune Signaling in Phenylephrine-Induced Cardiomyocyte Hypertrophy. Frontiers in Cardiovascular Medicine, 2021, 8, 736911.	1.1	3
79	The cell biology of zinc. Journal of Experimental Botany, 2022, 73, 1688-1698.	2.4	29
80	Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2022, 41, 100943.	0.4	3
81	Zinc transporters as potential therapeutic targets: An updated review. Journal of Pharmacological Sciences, 2022, 148, 221-228.	1.1	36
82	Zinc transporter ZIP12 maintains zinc homeostasis and protects spermatogonia from oxidative stress during spermatogenesis. Reproductive Biology and Endocrinology, 2022, 20, 17.	1.4	15
83	A narrative review of research advances in hypoxic pulmonary hypertension. Annals of Translational Medicine, 2022, 10, 230-230.	0.7	7
84	The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulmonary Medicine, 2022, 22, 111.	0.8	10
85	The role of hypoxia-inducible factors in cardiovascular diseases. , 2022, 238, 108186.		27
86	Bifurcation- and noise-induced tipping in two-parametric gene transcriptional regulatory system. European Physical Journal Plus, 2022, 137, 1.	1.2	2
88	RPS4XL encoded by Inc-Rps4l inhibits hypoxia-induced pyroptosis by binding HSC70 glycosylation site. Molecular Therapy - Nucleic Acids, 2022, 28, 920-934.	2.3	4
89	The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients, 2022, 14, 2115.	1.7	10
90	Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment. Cardiovascular Research, 2023, 119, 371-380.	1.8	10
91	Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. International Journal of Molecular Sciences, 2022, 23, 6974.	1.8	4
92	Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochemistry and Cell Biology, 2022, 158, 485-496.	0.8	4
93	The changes and potential effects of zinc homeostasis in periodontitis microenvironment. Oral Diseases, 2023, 29, 3063-3077.	1.5	3

#	Article	IF	CITATIONS
95	Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling. JCI Insight, 2022, 7, .	2.3	13
96	In focus in HCB. Histochemistry and Cell Biology, 2022, 158, 411-414.	0.8	0
97	Structural insights into the elevator-type transport mechanism of a bacterial ZIP metal transporter. Nature Communications, 2023, 14, .	5.8	9
98	Zinc: From Biological Functions to Therapeutic Potential. International Journal of Molecular Sciences, 2023, 24, 4822.	1.8	28
100	Transcription factors and potential therapeutic targets for pulmonary hypertension. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
101	Low Zinc Alleviates the Progression of Thoracic Aortic Dissection by Inhibiting Inflammation. Nutrients, 2023, 15, 1640.	1.7	2
102	IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium. Cells, 2023, 12, 1155.	1.8	4
103	Altered zinc homeostasis in a primary cell culture model of the retinal pigment epithelium. Frontiers in Nutrition, 0, 10, .	1.6	1
113	Role of zinc in health and disease. Clinical and Experimental Medicine, 2024, 24, .	1.9	0