Improved surface temperature estimates with MASTER

Remote Sensing of Environment 167, 53-63

DOI: 10.1016/j.rse.2015.05.019

Citation Report

#	Article	IF	CITATIONS
1	Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery. Remote Sensing, 2015, 7, 14276-14291.	4.0	38
2	Special issue on the Hyperspectral Infrared Imager (HyspIRI): Emerging science in terrestrial and aquatic ecology, radiation balance and hazards. Remote Sensing of Environment, 2015, 167, 1-5.	11.0	48
3	Utilizing HysplRI Prototype Data for Geological Exploration Applications: A Southern California Case Study. Geosciences (Switzerland), 2016 , 6 , 11 .	2.2	12
4	Spatial analytical methods for deriving a historical map of physiological equivalent temperature of Hong Kong. Building and Environment, 2016, 99, 22-28.	6.9	17
5	Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model. Remote Sensing of Environment, 2017, 198, 160-172.	11.0	34
6	Megacity-scale analysis of urban vegetation temperatures. Remote Sensing of Environment, 2018, 213, 18-33.	11.0	42
7	Study of Temperature Heterogeneities at Sub-Kilometric Scales and Influence on Surface–Atmosphere Energy Interactions. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 640-654.	6.3	24
8	Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arabian Journal of Geosciences, 2019, 12 , 1 .	1.3	45
9	Estimation of evapotranspiration using the crop canopy temperature at field to regional scales in large irrigation district. Agricultural and Forest Meteorology, 2019, 269-270, 305-322.	4.8	14
10	Influence of land surface parameters on the spatio-seasonal land surface temperature regime in rural West Bengal, India. Advances in Space Research, 2019, 63, 172-189.	2.6	12
11	A Simulation-Based Error Budget of the TES Method for the Design of the Spectral Configuration of the Micro-Bolometer-Based MISTIGRI Thermal Infrared Sensor. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-19.	6.3	3
12	Joint VSWIR-TIR retrievals of earth's surface and atmosphere. Remote Sensing of Environment, 2021, 267, 112727.	11.0	1
13	Field-Based High-Quality Emissivity Spectra Measurement Using a Fourier Transform Thermal Infrared Hyperspectral Imager. Remote Sensing, 2021, 13, 4453.	4.0	5
14	A Practical Temperature and Emissivity Separation Framework With Reanalysis Atmospheric Profiles for Hyper-Cam Airborne Thermal Infrared Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 687-699.	4.9	O
15	Optimizing TRISHNA TIR channels configuration for improved land surface temperature and emissivity measurements. Remote Sensing of Environment, 2022, 272, 112939.	11.0	4
16	Spatial Variations of Urban Heat Island Development in Khulna City, Bangladesh: Implications for Urban Planning and Development. Earth Systems and Environment, 0, , .	6.2	6
17	Spatio-temporal Analysis of Environmental Criticality: Planned Versus Unplanned Urbanization. IOP Conference Series: Earth and Environmental Science, 2023, 1164, 012014.	0.3	3
18	Understanding the linkages between spatio-temporal urban land system changes and land surface temperature in Srinagar City, India, using image archives from Google Earth Engine. Environmental Science and Pollution Research, 2023, 30, 107281-107295.	5.3	1

#	Article	IF	CITATIONS
19	Establishing the relationship between land use land cover, normalized difference vegetation index and land surface temperature: A case of Lower Son River Basin, India. Geography and Sustainability, 2023, , .	4.3	0