Plant phenology and climate change

Progress in Physical Geography 39, 460-482

DOI: 10.1177/0309133315578940

Citation Report

#	Article	IF	Citations
1	Plants and climate change: complexities and surprises. Annals of Botany, 2015, 116, 849-864.	1.4	381
2	No two are the same: Assessing variability in broad-leaved savanna tree phenology, with watering, from 2012 to 2014 at Nylsvley, South Africa. South African Journal of Botany, 2016, 105, 123-132.	1.2	11
3	Disjunct perceptions? Climate change threats in two-low lying South African coastal towns. Bulletin of Geography, 2016, 31, 59-71.	0.2	29
4	An agro-climatic approach to determine citrus postbloom fruit drop risk in Southern Brazil. International Journal of Biometeorology, 2016, 60, 891-905.	1.3	8
5	Delayed chilling appears to counteract flowering advances of apricot in southern UK. Agricultural and Forest Meteorology, 2017, 237-238, 209-218.	1.9	34
6	Divergent shifts and responses of plant autumn phenology to climate change on the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2017, 239, 166-175.	1.9	36
7	A global evaluation of apple flowering phenology models for climate adaptation. Agricultural and Forest Meteorology, 2017, 240-241, 67-77.	1.9	34
8	A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series. Remote Sensing of Environment, 2017, 194, 155-160.	4.6	50
9	Phenological growth stages of Indian gooseberry (Phyllanthus emblica L.) according to the extended BBCH scale. Scientia Horticulturae, 2017, 225, 607-614.	1.7	6
10	Assessing the frequency and drivers of earlyâ€greening in broadâ€leaved woodlands along a latitudinal gradient in southern Africa. Austral Ecology, 2017, 42, 341-353.	0.7	10
11	Time and heat for sexual reproduction: comparing the phenology of Chara hispida of two populations at different latitudes. Aquatic Botany, 2017, 136, 71-81.	0.8	16
12	Savanna tree-grass interactions: A phenological investigation of green-up in relation to water availability over three seasons. South African Journal of Botany, 2017, 108, 29-40.	1.2	18
13	Using herbarium specimens to select indicator species for climate change monitoring. Biodiversity and Conservation, 2018, 27, 1487-1501.	1.2	12
14	Phenological cues intrinsic in indigenous knowledge systems for forecasting seasonal climate in the Delta State of Nigeria. International Journal of Biometeorology, 2018, 62, 1115-1119.	1.3	19
15	Tourism and climate change: a review of threats and adaptation strategies for Africa. Current Issues in Tourism, 2018, 21, 742-759.	4.6	121
16	Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sensing of Environment, 2018, 210, 508-518.	4.6	101
17	Robust Model Predicts Shoot Phenology of Fraser Fir under Extreme Conditions. Forests, 2018, 9, 193.	0.9	0
18	Simulated warming enhances biological invasion of Solidago canadensis and Bidens frondosa by increasing reproductive investment and altering flowering phenology pattern. Scientific Reports, 2018, 8, 16073.	1.6	15

#	Article	IF	Citations
19	Does climate change and plant phenology research neglect the Arctic tundra?. Ecosphere, 2018, 9, e02362.	1.0	15
20	Identifying phenological functional types in savanna trees. African Journal of Range and Forage Science, 2018, 35, 81-88.	0.6	5
21	Changes in urban plant phenology in the Pacific Northwest from 1959 to 2016: anthropogenic warming and natural oscillation. International Journal of Biometeorology, 2018, 62, 1675-1684.	1.3	10
22	Progressive delays in the timing of sardine migration in the southwest Indian Ocean. South African Journal of Science, 2019, 115, .	0.3	3
23	Time to branch out? Application of hierarchical survival models in plant phenology. Agricultural and Forest Meteorology, 2019, 279, 107694.	1.9	18
24	The walnut genetic resources of INRA: chronological phenotypic data and ontology. BMC Research Notes, 2019, 12, 662.	0.6	3
25	Asymmetric Behavior of Vegetation Seasonal Growth and the Climatic Cause: Evidence from Long-Term NDVI Dataset in Northeast China. Remote Sensing, 2019, 11, 2107.	1.8	10
26	Multi-year sampling provides insight into the bet-hedging capacity of the soil-stored seed reserve of a threatened Acacia species from Western Australia. Plant Ecology, 2019, 220, 241-253.	0.7	10
27	Phenological growth stages of "Pero de CehegÃn―(Malus domestica Borkh): Codification and description according to the BBCH scale. Scientia Horticulturae, 2019, 246, 826-834.	1.7	16
28	Climate change and potential impacts on tourism: evidence from the Zimbabwean side of the Victoria Falls. Environment, Development and Sustainability, 2019, 21, 2025-2041.	2.7	41
29	Exploring Spring Onset at Continental Scales: Mapping Phenoregions and Correlating Temperature and Satellite-Based Phenometrics. IEEE Transactions on Big Data, 2020, 6, 583-593.	4.4	3
30	Deduction of a meteorological phenology indicator from reconstructed MODIS LST imagery. Journal of Forestry Research, 2020, 31, 2205-2216.	1.7	2
31	Evaluating the role of phenology in managing urban invasions: A case study of Broussonetia papyrifera. Urban Forestry and Urban Greening, 2020, 48, 126583.	2.3	8
32	Leaf Shedding Phenology of Ficus Glauca, Terminalia Catappa, and Cassia Fistula. IOP Conference Series: Earth and Environmental Science, 2020, 501, 012039.	0.2	0
33	Gene flow between diploid and tetraploid junipers - two contrasting evolutionary pathways in two Juniperus populations. BMC Evolutionary Biology, 2020, 20, 148.	3.2	7
34	Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 1-16.	4.9	35
35	Foliar and flowering phenology of three rubber (Hevea brasiliensis) clones in the eastern plains of Colombia. Revista Brasileira De Botanica, 2020, 43, 813-821.	0.5	5
36	Savannah Phenological Dynamics Reveal Spatio-Temporal Landscape Heterogeneity in Karamoja Sub-region, Uganda. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	1

3

#	Article	IF	CITATIONS
37	Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests. Land, 2020, 9, 325.	1.2	18
38	Monitoring for Changes in Spring Phenology at Both Temporal and Spatial Scales Based on MODIS LST Data in South Korea. Remote Sensing, 2020, 12, 3282.	1.8	7
39	Plant blindness: a faddish research interest or a substantive impediment to achieve sustainable development goals?. Environmental Education Research, 2020, 26, 1065-1087.	1.6	41
40	PhenoWin – An R Shiny application for visualization and extraction of phenological windows in Germany. Computers and Electronics in Agriculture, 2020, 175, 105534.	3.7	10
41	Lowâ€cost observations and experiments return a high value in plant phenology research. Applications in Plant Sciences, 2020, 8, e11338.	0.8	30
42	Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. Forest Ecology and Management, 2021, 480, 118663.	1.4	54
43	Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production. Ecological Indicators, 2021, 121, 107139.	2.6	8
44	Phenological responses to climate change based on a hundred years of herbarium collections of tropical Melastomataceae. PLoS ONE, 2021, 16, e0251360.	1.1	16
45	Phenological Changes of Mongolian Oak Depending on the Micro-Climate Changes Due to Urbanization. Remote Sensing, 2021, 13, 1890.	1.8	2
46	Regional and Species Variations in Spring and Autumn Phenology of 25 Temperate Species in South Korea. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 181-195.	1.3	0
47	Phenological advance of blossoming over the past century in one of the world's largest urban forests, Gauteng City-Region, South Africa. Urban Forestry and Urban Greening, 2021, 63, 127238.	2.3	9
48	Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture and Food Security, 2021, 10, .	1.6	82
49	The rise of Vulpia myuros (Poaceae) and the impact of cultivation-timing on plant community structure British & Irish Botany, 2021, 3, .	0.1	0
50	Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Science of the Total Environment, 2021, 796, 149055.	3.9	67
51	Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology. Remote Sensing, 2020, 12, 1522.	1.8	14
52	Fenologi Perubahan Warna Daun pada <i>Terminalia catappa, Ficus glauca</i> , dan <i>Cassia fistula </i> . Jurnal Lanskap Indonesia, 2019, 11, 17-25.	0.3	2
53	Climate change threats to a floral wedding: Threats of shifting phenology to the emerging South African wedding industry. Bulletin of Geography, 2019, 45, 7-23.	0.2	1
54	Climate Change and Vegetation Phenology. , 2020, , 25-39.		1

#	Article	IF	CITATIONS
55	Phenology of the Alien Invasive Plant Species Prosopis juliflora in Arid and Semi-Arid Areas in Response to Climate Variability and Some Perspectives for Its Control in Ethiopia. Polish Journal of Ecology, 2020, 68, 37.	0.2	1
56	The Way to Know the Chinese Past According to the Climate-Related Records., 2021,, 157-189.		0
57	A Review on the Root System of Argania spinosa. Current Agriculture Research Journal, 2020, 8, 07-17.	0.3	2
58	Leaf Phenology of Tree Species in Response to the Seasonality of Water Availabilityin Caatinga, Northeast Brazil. E-journal GEO, 2020, 15, 307-318.	0.0	0
59	Mapping Phenological Functional Types (PhFT) in the Indian Eastern Himalayas using machine learning algorithm in Google Earth Engine. Computers and Geosciences, 2022, 158, 104982.	2.0	17
60	Phenological advance in the South African Namaqualand Daisy First and Peak Bloom: 1935–2018. International Journal of Biometeorology, 2022, 66, 699.	1.3	2
61	Prediction of vegetation phenology with atmospheric reanalysis over semiarid grasslands in Inner Mongolia. Science of the Total Environment, 2022, 812, 152462.	3.9	8
62	Detection of Multidecadal Changes in Vegetation Dynamics and Association with Intra-Annual Climate Variability in the Columbia River Basin. Remote Sensing, 2022, 14, 569.	1.8	3
63	Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania. Sustainability, 2022, 14, 2776.	1.6	4
64	Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. Horticulturae, 2022, 8, 273.	1.2	22
65	FENOFASE BUNGA Sarcotheca macrophylla Blume (Oxalidaceae) DAN INTERAKSINYA DENGAN FAKTOR LINGKUNGAN DI KEBUN RAYA BOGOR. Buletin Kebun Raya, 2021, 24, 152-162.	0.2	0
66	PHENOLOGICAL TRENDS IN THE CALIFORNIA POPPY (ESCHSCHOLZIA CALIFORNICA): DIGITIZED HERBARIUM SPECIMENS REVEAL INTRASPECIFIC VARIATION IN THE SENSITIVITY OF FLOWERING DATE TO CLIMATE CHANGE. Madroñ0, 2021, 68, .	0.3	14
67	Applications of computer vision and machine learning techniques for digitized herbarium specimens: A systematic literature review. Ecological Informatics, 2022, 69, 101641.	2.3	13
72	Influences of Seasonal Soil Moisture and Temperature on Vegetation Phenology in the Qilian Mountains. Remote Sensing, 2022, 14, 3645.	1.8	9
73	Advance in the timing of the annual migration of the brown-veined white butterfly through Johannesburg, South Africa, over the period 1914–2020. International Journal of Biometeorology, 2022, 66, 2251-2258.	1.3	2
74	LAI-Based Phenological Changes and Climate Sensitivity Analysis in the Three-River Headwaters Region. Remote Sensing, 2022, 14, 3748.	1.8	13
75	Citizen science and expert opinion working together to understand the impacts of climate change. PLoS ONE, 2022, 17, e0273822.	1.1	1
76	Matching land surface phenology with the phenology of net ecosystem exchange (NEE) in the Kruger National Park, South Africa. Remote Sensing Applications: Society and Environment, 2022, 28, 100840.	0.8	0

#	Article	IF	CITATIONS
77	Review of vegetation phenology trends in China in a changing climate. Progress in Physical Geography, 2022, 46, 829-845.	1.4	10
78	Development of an innovative smart-farming and decision-support service to improve clingstone peach cultivation. Acta Horticulturae, 2022, , 583-592.	0.1	O
79	The Entangled Phenology of the Olive Tree: A Compiled Ecological Calendar of <i>Olea Europaea < /i>L. Over the Last Three Millennia With Sicily as a Case Study. GeoHealth, 2023, 7, .</i>	1.9	4
80	Are subtle phenophasic differences in Solanum americanum Mill.Âbetween years indicative of climate change?. Vegetos, 2024, 37, 412-420.	0.8	0
81	Advances in spring leaf phenology are mainly triggered by elevated temperature along the rural-urban gradient in Beijing, China. International Journal of Biometeorology, 0, , .	1.3	0
84	Plant phenology shifts under climate warming: a systematic review of recent scientific literature. Environmental Monitoring and Assessment, 2024, 196, .	1.3	1