Programmable and adaptive mechanics with liquid crys elastomers

Nature Materials

14, 1087-1098

DOI: 10.1038/nmat4433

Citation Report

#	Article	IF	CITATIONS
2	Modeling Defects, Shape Evolution, and Programmed Auto-Origami in Liquid Crystal Elastomers. Frontiers in Materials, 2016, 3, .	1.2	24
3	Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers, 2016, 8, 435.	2.0	32
4	Highâ€Resolution and Highâ€Throughput Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals. Advanced Materials, 2016, 28, 2353-2358.	11.1	132
5	Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chemical Reviews, 2016, 116, 15089-15166.	23.0	671
6	A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nature Communications, 2016, 7, 13981.	5.8	206
7	Fluorinated Azobenzenes for Shapeâ€Persistent Liquid Crystal Polymer Networks. Angewandte Chemie, 2016, 128, 10062-10066.	1.6	21
8	Periodic Surface Undulation in Cholesteric Liquid Crystal Elastomers. Macromolecules, 2016, 49, 9561-9567.	2.2	15
9	Ionic imbalance induced self-propulsion of liquid metals. Nature Communications, 2016, 7, 12402.	5.8	158
10	Reversible shapeâ€shifting in polymeric materials. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1365-1380.	2.4	100
11	A calamitic mesogenic near-infrared absorbing croconaine dye/liquid crystalline elastomer composite. Chemical Science, 2016, 7, 4400-4406.	3.7	61
12	Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , .	0.1	90
13	Near-Infrared Responsive Liquid Crystalline Elastomers Containing Photothermal Conjugated Polymers. Macromolecules, 2016, 49, 4023-4030.	2.2	76
14	Nanomaterials-Based Skin-Like Electronics for the Unconscious and Continuous Monitoring of Body Status. Microsystems and Nanosystems, 2016, , 227-254.	0.1	1
15	Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates. Soft Matter, 2016, 12, 4985-4990.	1.2	72
16	Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. Journal of Materials Science, 2016, 51, 10663-10689.	1.7	109
17	Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 2016, 537, 179-184.	13.7	805
18	Direct induction of molecular alignment in liquid crystal polymer network film by photopolymerization. , 2016, , .		0
19	Initiatorless Photopolymerization of Liquid Crystal Monomers. ACS Applied Materials & Description of Liquid Crystal Monomers. ACS Applied Monome	4.0	27

#	ARTICLE	IF	CITATIONS
20	Recent Progress in Photoswitchable Supramolecular Selfâ€Assembling Systems. Advanced Optical Materials, 2016, 4, 1322-1349.	3.6	149
21	Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation. ACS Macro Letters, 2016, 5, 955-960.	2.3	84
22	Curvature and defects in nematic liquid crystals. Liquid Crystals, 2016, 43, 1920-1936.	0.9	41
23	Deformation of cross-linked liquid crystal polymers by light – from ultraviolet to visible and infrared. Liquid Crystals, 2016, 43, 2114-2135.	0.9	36
24	Preparation of biomimetic photoresponsive polymer springs. Nature Protocols, 2016, 11, 1788-1797.	5 . 5	45
25	Novel cholesteric liquid crystalline elastomers containing dimer type nematic and chiral liquid crystalline side-chains. RSC Advances, 2016, 6, 81902-81912.	1.7	5
26	Molecular Dynamics Study on the Photothermal Actuation of a Glassy Photoresponsive Polymer Reinforced with Gold Nanoparticles with Size Effect. ACS Applied Materials & Effect. ACS Applied Ma	4.0	24
27	Light Propagation and Photoactuation in Densely Cross-Linked Azobenzene-Functionalized Liquid-Crystalline Polymers: Contribution of Host and Concerted Isomerism. Macromolecules, 2016, 49, 6012-6020.	2.2	21
28	High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Scientific Reports, 2016, 6, 26840.	1.6	122
29	Stimulus-active polymer actuators for next-generation microfluidic devices. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	71
30	A self-healing photoinduced-deformable material fabricated by liquid crystalline elastomers using multivalent hydrogen bonds as cross-linkers. Chemical Communications, 2016, 52, 10257-10260.	2.2	56
31	Lightâ€Mediated Manufacture and Manipulation of Actuators. Advanced Materials, 2016, 28, 8328-8343.	11.1	186
32	Photoinduced Topographical Feature Development in Blueprinted Azobenzeneâ€Functionalized Liquid Crystalline Elastomers. Advanced Functional Materials, 2016, 26, 5819-5826.	7.8	145
33	Photomobile Liquidâ€Crystalline Elastomers with Rearrangeable Networks. Advanced Materials, 2016, 28, 8212-8217.	11.1	209
34	Programming complex shapes in thin nematic elastomer and glass sheets. Physical Review E, 2016, 94, 010701.	0.8	43
35	Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites. Nano Letters, 2016, 16, 5176-5182.	4.5	42
36	Fluorinated Azobenzenes for Shapeâ€Persistent Liquid Crystal Polymer Networks. Angewandte Chemie - International Edition, 2016, 55, 9908-9912.	7.2	85
37	General Platform for Remarkably Thermoresponsive Fluorescent Polymers with Memory Function. ACS Macro Letters, 2016, 5, 909-914.	2.3	35

3

#	Article	IF	CITATIONS
38	Photomotility of polymers. Nature Communications, 2016, 7, 13260.	5.8	189
39	Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nature Communications, 2016, 7, 12094.	5. 8	103
40	Localized soft elasticity in liquid crystal elastomers. Nature Communications, 2016, 7, 10781.	5 . 8	132
41	Programming temporal shapeshifting. Nature Communications, 2016, 7, 12919.	5.8	72
42	Reconfigurable antenna using shape memory polymers. , 2016, , .		1
43	Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability. Small, 2016, 12, 3327-3333.	5.2	49
44	Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds. ACS Applied Materials & Ester Bonds. ACS Applied Materials & Ester Bonds. ACS Applied Materials & Ester Bonds. 15750-15757.	4.0	123
45	Highly Elastic Fibers Made from Hydrogen-Bonded Polymer Complex. ACS Macro Letters, 2016, 5, 814-818.	2.3	46
46	A color-changing plasmonic actuator based on silver nanoparticle array/liquid crystalline elastomer nanocomposites. New Journal of Chemistry, 2016, 40, 7311-7319.	1.4	30
47	Effect of an <i>n</i> -Alkoxy-2,4-hexadiene Polymerizable Tail System on the Mesogenic Properties and Cross-Linking of Mono-Imidazolium-Based Ionic Liquid Crystal Monomers. ACS Macro Letters, 2016, 5, 844-848.	2.3	10
48	Multi-Stimuli Responsive Carbon Nanotube Incorporated Polysiloxane Azobenzene Liquid Crystalline Elastomer Composites. Macromolecules, 2016, 49, 663-671.	2.2	112
49	An electrically controllable all-solid-state Au@graphene oxide actuator. Chemical Communications, 2016, 52, 5816-5819.	2.2	7
50	High-Fidelity Replica Molding of Glassy Liquid Crystalline Polymer Microstructures. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 8110-8117.	4.0	18
51	Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 2016, 12, 3196-3201.	1.2	68
52	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softÂmicrorobots. Nature Materials, 2016, 15, 647-653.	13.3	757
53	Reconfiguring Nanocomposite Liquid Crystal Polymer Films with Visible Light. Macromolecules, 2016, 49, 1575-1581.	2.2	55
54	Bioinspired photocontrollable microstructured transport device. Science Robotics, 2017, 2, .	9.9	116
55	A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers. Polymer Chemistry, 2017, 8, 1364-1370.	1.9	43

#	ARTICLE	IF	Citations
56	An Unconventional Approach to Photomobile Composite Polymer Films. Advanced Materials, 2017, 29, 1604800.	11.1	18
57	Molecular engineering of step-growth liquid crystal elastomers. Sensors and Actuators B: Chemical, 2017, 244, 433-440.	4.0	16
58	Single-layer dual-phase nematic elastomer films with bending, accordion-folding, curling and buckling motions. Chemical Communications, 2017, 53, 1844-1847.	2.2	30
59	Templated nanoporous membranes based on hierarchically self-assembled materials. Journal of Materials Chemistry C, 2017, 5, 2033-2042.	2.7	24
60	Arbitrary Beam Steering Enabled by Photomechanically Bendable Cholesteric Liquid Crystal Polymers. Advanced Optical Materials, 2017, 5, 1600824.	3.6	22
61	Liquid crystal elastomer actuators: Synthesis, alignment, and applications. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 395-411.	2.4	257
62	Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics Condensed Matter, 2017, 29, 133003.	0.7	140
63	Diverse macroscopic helical motions of microribbons driven by electrons. Chemical Communications, 2017, 53, 2578-2581.	2.2	4
64	Highâ€Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs. Angewandte Chemie - International Edition, 2017, 56, 3261-3265.	7.2	110
65	Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture. RSC Advances, 2017, 7, 19940-19947.	1.7	51
66	Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. Advanced Materials, 2017, 29, 1606407.	11.1	90
67	Opto-mechanical behavior and interfacial characteristics of crosslinked liquid crystalline polymer composites with carbon nanotube fillers. Carbon, 2017, 121, 181-192.	5.4	16
68	Thermal bending coupled with volume change in liquid crystal gels. Soft Matter, 2017, 13, 4341-4348.	1.2	8
69	Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. Soft Matter, 2017, 13, 4349-4356.	1.2	98
70	A Guide to Design Functional Molecular Liquids with Tailorable Properties using Pyrene-Fluorescence as a Probe. Scientific Reports, 2017, 7, 3416.	1.6	62
71	A light-driven artificial flytrap. Nature Communications, 2017, 8, 15546.	5.8	499
72	Smart shell membrane prepared by microfluidics with reactive nematic liquid crystal mixture. Sensors and Actuators B: Chemical, 2017, 251, 658-666.	4.0	13
77	Liquid crystalline epoxy networks with exchangeable disulfide bonds. Soft Matter, 2017, 13, 5021-5027.	1.2	56

#	ARTICLE	IF	Citations
78	Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology. Scientific Reports, 2017, 7, 45370.	1.6	21
79	Synthesis and characterisation of biodegradable liquid crystal elastomer with the property of shape recovery. Liquid Crystals, 2017, 44, 1701-1708.	0.9	14
80	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, $2017, 2, .$	23.3	463
81	Highâ€Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs. Angewandte Chemie, 2017, 129, 3309-3313.	1.6	26
82	Humidity―and Photoâ€Induced Mechanical Actuation of Crossâ€Linked Liquid Crystal Polymers. Advanced Materials, 2017, 29, 1604792.	11.1	212
83	Soft Actuators for Smallâ€Scale Robotics. Advanced Materials, 2017, 29, 1603483.	11.1	973
84	Multiple-wavelength surface patterns in models of biological chiral liquid crystal membranes. Soft Matter, 2017, 13, 541-545.	1.2	12
85	Visible Light Responsive Liquid Crystal Polymers Containing Reactive Moieties with Good Processability. ACS Applied Materials & Interfaces, 2017, 9, 782-789.	4.0	54
86	A simple and robust way towards reversible mechanochromism: Using liquid crystal elastomer as a mask. Extreme Mechanics Letters, 2017, 11, 42-48.	2.0	35
87	Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization. Physical Chemistry Chemical Physics, 2017, 19, 2353-2358.	1.3	31
88	Photonic Microhand with Autonomous Action. Advanced Materials, 2017, 29, 1704047.	11.1	122
89	<i>>50th Anniversary Perspective</i> : Solid-State Multistimuli, Multiresponsive Polymeric Materials. Macromolecules, 2017, 50, 8845-8870.	2.2	117
90	Photo responsive silver nanoparticles incorporated liquid crystalline elastomer nanocomposites based on surface plasmon resonance. Chemical Research in Chinese Universities, 2017, 33, 839-846.	1.3	12
91	A Fluid Liquid rystal Material with Highly Polar Order. Advanced Materials, 2017, 29, 1702354.	11.1	144
92	Nonâ€Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie - International Edition, 2017, 56, 14202-14206.	7.2	112
93	Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter, 2017, 13, 8006-8022.	1.2	66
94	Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase. Journal of the American Chemical Society, 2017, 139, 15792-15800.	6.6	59
95	A review on self-assembly in microfluidic devices. Journal of Micromechanics and Microengineering, 2017, 27, 113002.	1.5	45

#	Article	IF	CITATIONS
96	Liquid Crystalline Networks toward Regenerative Medicine and Tissue Repair. Small, 2017, 13, 1702677.	5.2	46
97	Thermally-triggered free-standing shape-memory actuators. European Polymer Journal, 2017, 97, 241-252.	2.6	29
98	Humidity-responsive actuators from integrating liquid crystal networks in an orienting scaffold. Soft Matter, 2017, 13, 8070-8075.	1.2	35
99	Nonâ€Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie, 2017, 129, 14390-14394.	1.6	26
100	Liquid crystalline cellulose-based nematogels. Science Advances, 2017, 3, e1700981.	4.7	36
101	Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals. Soft Matter, 2017, 13, 7486-7491.	1.2	26
102	Supramolecular hydrogen-bonded photodriven actuators based on an azobenzene-containing main-chain liquid crystalline poly(ester-amide). Journal of Materials Chemistry C, 2017, 5, 10391-10398.	2.7	28
103	Cooperative deformations of periodically patterned hydrogels. Science Advances, 2017, 3, e1700348.	4.7	100
104	Selfâ€Assembly of Giant Spherical Liquidâ€Crystalline Complexes and Formation of Nanostructured Dynamic Gels that Exhibit Selfâ€Healing Properties. Angewandte Chemie, 2017, 129, 14273-14277.	1.6	25
105	Solvent-responsive floating liquid crystalline-molecularly imprinted polymers for gastroretentive controlled drug release system. International Journal of Pharmaceutics, 2017, 532, 365-373.	2.6	34
106	High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter, 2017, 13, 7537-7547.	1.2	106
107	Theory of liquid crystal elastomers and polymer networks. European Physical Journal E, 2017, 40, 76.	0.7	17
108	Selfâ€Assembly of Giant Spherical Liquidâ€Crystalline Complexes and Formation of Nanostructured Dynamic Gels that Exhibit Selfâ€Healing Properties. Angewandte Chemie - International Edition, 2017, 56, 14085-14089.	7.2	81
109	Kinetic analysis of the swelling behavior of poly(<i>n</i> â€butylacrylateâ€1,6â€hexanedioldiacrylate) networks in 4â€cyanoâ€4′â€ <i>n</i> â€pentylâ€biphenyl (5 <scp>CB</scp>). Journal of Applied Polymer Scienc 134, 45452.	ej .2 017,	1
110	Liquid crystal templating as an approach to spatially and temporally organise soft matter. Chemical Society Reviews, 2017, 46, 5935-5949.	18.7	57
111	Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties. Small, 2017, 13, 1701207.	5.2	32
114	Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds. RSC Advances, 2017, 7, 37248-37254.	1.7	53
115	Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model. Physical Review Letters, 2017, 119, 057801.	2.9	14

#	Article	IF	CITATIONS
116	Interpenetrating polymer networks of liquid-crystalline azobenzene polymers and poly(dimethylsiloxane) as photomobile materials. Soft Matter, 2017, 13, 5820-5823.	1.2	34
117	Multiscale modeling and its validation of the trans-cis-trans reorientation-based photodeformation in azobenzene-doped liquid crystal polymer. International Journal of Solids and Structures, 2017, 128, 36-49.	1.3	7
118	Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property. Journal of the American Chemical Society, 2017, 139, 11333-11336.	6.6	180
119	Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics. Scientific Reports, 2017, 7, 17521.	1.6	39
120	Self-Consistent Field Lattice Model for Polymer Networks. Macromolecules, 2017, 50, 9788-9795.	2.2	7
121	MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. Journal of Materials Chemistry C, 2017, 5, 12635-12644.	2.7	16
122	Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals. Science Advances, 2017, 3, e1701610.	4.7	50
123	Reversible Actuation of Origami Inspired Composites Using Liquid Crystal Elastomers. , 2017, , .		6
124	Synthesis of Elastomeric Liquid Crystalline Polymer Networks via Chain Transfer. ACS Macro Letters, 2017, 6, 1290-1295.	2.3	63
125	Light-induced reversible expansion of individual gold nanoplates. AIP Advances, 2017, 7, .	0.6	3
126	A light-fuelled wave machine. Nature, 2017, 546, 604-606.	13.7	11
127	Shape recovery liquid crystal elastomer synthesized by meltâ€polycondensation. Journal of Polymer Science Part A, 2017, 55, 389-394.	2.5	1
128	Finite-element analysis of the optical-texture-mediated photoresponse in a nematic strip. Computational Mechanics, 2017, 59, 147-160.	2.2	7
129	Thermally Active Liquid Crystal Network Gripper Mimicking the Selfâ€Peeling of Gecko Toe Pads. Advanced Materials, 2017, 29, 1604021.	11.1	145
130	Nearâ€IRâ€Sensitive Upconverting Nanostructured Photonic Cellulose Films. Advanced Optical Materials, 2017, 5, 1600514.	3.6	36
131	Directing block copolymer self-assembly with permanent magnets: photopatterning microdomain alignment and generating oriented nanopores. Molecular Systems Design and Engineering, 2017, 2, 549-559.	1.7	19
132	An electroâ€elastic phaseâ€field model for nematic liquid crystal elastomers based on Landauâ€deâ€Gennes theory. GAMM Mitteilungen, 2017, 40, 102-124.	2.7	3
133	A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control. International Journal of Smart and Nano Materials, 2017, 8, 144-213.	2.0	58

#	Article	IF	CITATIONS
134	Designs of Plasmonic Metamasks for Photopatterning Molecular Orientations in Liquid Crystals. Crystals, 2017, 7, 8.	1.0	28
135	Mechanochemical Regulated Origami with Tough Hydrogels by Ion Transfer Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9077-9084.	4.0	51
136	A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP Advances, $2018, 8, .$	0.6	19
137	Synthesis and characterisation of novel side-chain chiral liquid crystalline elastomers with long dimer mesogens. Liquid Crystals, 2018, 45, 1353-1365.	0.9	9
138	Comparing Photoactuation of an Azobenzene-Doped Nematic Liquid Crystal Polymer through Its Activation Mechanism: Trans–Cis–Trans Reorientation and Photoisomerization. Journal of Physical Chemistry C, 2018, 122, 6310-6317.	1.5	9
139	Azobenzene-based polymers: emerging applications as cell culture platforms. Biomaterials Science, 2018, 6, 990-995.	2.6	46
140	Multitemperature Memory Actuation of a Liquid Crystal Polymer Network over a Broad Nematic–Isotropic Phase Transition Induced by Large Strain. ACS Macro Letters, 2018, 7, 353-357.	2.3	49
141	Instant Locking of Molecular Ordering in Liquid Crystal Elastomers by Oxygenâ€Mediated Thiol–Acrylate Click Reactions. Angewandte Chemie - International Edition, 2018, 57, 5665-5668.	7.2	74
142	Deformation of glassy nematic films due to local illumination. Thin Solid Films, 2018, 655, 41-47.	0.8	0
143	Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. ACS Applied Materials & Driverfaces, 2018, 10, 8307-8316.	4.0	147
144	Controllable and reversible tuning of material rigidity for robot applications. Materials Today, 2018, 21, 563-576.	8.3	158
145	Continuously revolving patterns. Nature Nanotechnology, 2018, 13, 274-275.	15.6	4
146	Topographical changes in photo-responsive liquid crystal films: a computational analysis. Soft Matter, 2018, 14, 2411-2428.	1.2	13
147	Liquid crystal elastomer coatings with programmed response of surface profile. Nature Communications, 2018, 9, 456.	5.8	114
148	Smecticâ€B Liquid Single Crystal Elastomers as Efficient Optical Mechanotransducers. Macromolecular Chemistry and Physics, 2018, 219, 1700550.	1.1	4
149	Surface Aligned Main-Chain Liquid Crystalline Elastomers: Tailored Properties by the Choice of Amine Chain Extenders. Macromolecules, 2018, 51, 1141-1149.	2.2	57
150	Design and Synthesis of Thermal Contracting Polymer with Unique Eight-Membered Carbocycle Unit. Macromolecules, 2018, 51, 1377-1385.	2.2	26
151	Shape control of surface-stabilized disclination loops in nematic liquid crystals. Physical Review E, 2018, 97, 020701.	0.8	16

#	Article	IF	CITATIONS
152	Liquidâ€Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation. Advanced Materials, 2018, 30, e1706597.	11.1	252
153	Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nature Communications, 2018, 9, 568.	5.8	74
154	Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nature Communications, 2018, 9, 590.	5.8	159
155	Photoresponsive Spongeâ€Like Coating for Onâ€Demand Liquid Release. Advanced Functional Materials, 2018, 28, 1705942.	7.8	50
156	Quantification of photoinduced bending of dynamic molecular crystals: from macroscopic strain to kinetic constants and activation energies. Chemical Science, 2018, 9, 2319-2335.	3.7	73
157	A helically-twisted ladder based on 9,9′-bifluorenylidene: synthesis, characterization, and carrier-transport properties. Materials Chemistry Frontiers, 2018, 2, 780-784.	3.2	26
158	Photochromism into nanosystems: towards lighting up the future nanoworld. Chemical Society Reviews, 2018, 47, 1044-1097.	18.7	549
159	3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Advanced Materials, 2018, 30, 1706164.	11.1	467
160	Photomechanical effects in liquid crystalline polymer networks and elastomers. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 695-705.	2.4	94
161	Instant Locking of Molecular Ordering in Liquid Crystal Elastomers by Oxygenâ€Mediated Thiol–Acrylate Click Reactions. Angewandte Chemie, 2018, 130, 5767-5770.	1.6	26
162	Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring. Nature Communications, 2018, 9, 1717.	5.8	42
163	Multiscale modeling of photomechanical behavior of photo-responsive nanocomposite with carbon nanotubes. Composites Science and Technology, 2018, 166, 27-35.	3.8	15
164	Soft Micro- and Nanorobotics. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 53-75.	7.5	145
165	Patterning nonisometric origami in nematic elastomer sheets. Soft Matter, 2018, 14, 3127-3134.	1.2	39
166	A Luminescent Dicyanodistyrylbenzene-based Liquid Crystal Polymer Network for Photochemically Patterned Photonic Composite Film. Chinese Journal of Polymer Science (English Edition), 2018, 36, 776-782.	2.0	23
167	Multiscale multiphysical analysis of photo-mechanical properties of interphase in light-responsive polymer nanocomposites. Composites Science and Technology, 2018, 160, 32-41.	3.8	16
168	Functional Liquid Crystals towards the Next Generation of Materials. Angewandte Chemie - International Edition, 2018, 57, 4355-4371.	7.2	363
169	Lightâ€Driven, Caterpillarâ€Inspired Miniature Inching Robot. Macromolecular Rapid Communications, 2018, 39, 1700224.	2.0	180

#	ARTICLE	IF	CITATIONS
170	Photoâ€Induced Bending Behavior of Postâ€Crosslinked Liquid Crystalline Polymer/Polyurethane Blend Films. Macromolecular Rapid Communications, 2018, 39, 1700237.	2.0	27
171	Shapeâ€Shifting Azo Dye Polymers: Towards Sunlightâ€Driven Molecular Devices. Macromolecular Rapid Communications, 2018, 39, 1700253.	2.0	70
172	Programmed shape of glassy nematic sheets with varying in-plane director fields: A kinetics approach. International Journal of Solids and Structures, 2018, 130-131, 183-189.	1.3	8
173	Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials. Advanced Materials, 2018, 30, e1703554.	11.1	270
174	Photo-controlled patterned wrinkling of liquid crystalline polymer films on compliant substrates. International Journal of Solids and Structures, 2018, 132-133, 264-277.	1.3	27
175	Functional liquid-crystalline polymers and supramolecular liquid crystals. Polymer Journal, 2018, 50, 149-166.	1.3	82
176	Longâ€Lived Supramolecular Helices Promoted by Fluorinated Photoswitches. Macromolecular Rapid Communications, 2018, 39, 1700387.	2.0	24
177	Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1187-1194.	4.0	43
178	First order shear strain beam theory for spontaneous bending of liquid crystal polymer strips. International Journal of Solids and Structures, 2018, 136-137, 168-185.	1.3	14
179	Easily Processable and Programmable Responsive Semiâ€Interpenetrating Liquid Crystalline Polymer Network Coatings with Changing Reflectivities and Surface Topographies. Advanced Functional Materials, 2018, 28, 1704756.	7.8	63
180	Programming Photoresponse in Liquid Crystal Polymer Actuators with Laser Projector. Advanced Optical Materials, 2018, 6, 1700949.	3.6	62
181	Simulation-based design of thermally-driven actuators using liquid crystal elastomers. Liquid Crystals, 2018, 45, 1010-1022.	0.9	13
182	Entropy-driven self-assembly of chiral nematic liquid crystalline phases of AgNR@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition. Nano Research, 2018, 11, 1018-1028.	5.8	6
184	A NIR light-triggered pyroelectric-dominated generator based on a liquid crystal elastomer composite actuator for photoelectric conversion and self-powered sensing. RSC Advances, 2018, 8, 40856-40865.	1.7	22
185	Von funktionellen Flüssigkristallen zur nÃøhsten Generation von Materialien. Angewandte Chemie, 2018, 130, 4438-4455.	1.6	31
187	Variational modelling of nematic elastomer foundations. Mathematical Models and Methods in Applied Sciences, 2018, 28, 2863-2904.	1.7	1
188	Supramolecular Packing and Macroscopic Alignment Controls Actuation Speed in Macroscopic Strings of Molecular Motor Amphiphiles. Journal of the American Chemical Society, 2018, 140, 17724-17733.	6.6	46
189	Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science, 2018, 362, 804-808.	6.0	57

#	Article	IF	CITATIONS
190	Selfâ€Regulating Capabilities in Photonic Robotics. Advanced Materials Technologies, 2019, 4, 1800571.	3.0	57
191	Phase behavior of main-chain liquid crystalline polymer networks synthesized by alkyne–azide cycloaddition chemistry. Soft Matter, 2018, 14, 9885-9900.	1.2	6
192	Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12950-12955.	3.3	91
193	Fast-Tunable Terahertz Metamaterial Absorber Based on Polymer Network Liquid Crystal. Applied Sciences (Switzerland), 2018, 8, 2454.	1.3	20
194	Mosaics of topological defects in micropatterned liquid crystal textures. Science Advances, 2018, 4, eaau8064.	4.7	50
195	Driving a Liquid Crystal Phase Transition Using a Photochromic Hydrazone. Journal of the American Chemical Society, 2018, 140, 13623-13627.	6.6	73
196	Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nature Communications, 2018, 9, 4148.	5.8	233
197	Localized Selfâ€Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shapeâ€Memory Polymer. Advanced Materials, 2018, 30, e1803072.	11.1	55
198	Double network hydrogels with controlled shape deformation: A mini review. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1351-1362.	2.4	35
199	Nanoid Canyons On-Demand: Electrically Switchable Surface Topography in Liquid Crystal Networks. ACS Applied Materials & Diterfaces, 2018, 10, 37743-37748.	4.0	9
200	Tunable Optical Vortices Generated by Self-Assembled Defect Structures in Nematics. Physical Review Applied, 2018, 10, .	1.5	14
201	Liquid crystal elastomers: an introduction and review of emerging technologies. Liquid Crystals Reviews, 2018, 6, 78-107.	1.1	190
202	Re―and Preconfigurable Multistable Visible Light Responsive Surface Topographies. Small, 2018, 14, e1803274.	5.2	28
203	Mechanical Manipulation of Diffractive Properties of Optical Holographic Gratings from Liquid Crystalline Elastomers. Applied Sciences (Switzerland), 2018, 8, 1330.	1.3	3
204	Photothermocapillary Oscillators. Physical Review Letters, 2018, 121, 158001.	2.9	27
205	Photomodulated Tricolor-Changing Artificial Flowers. Chemistry of Materials, 2018, 30, 8079-8088.	3.2	71
206	Photothermally driven liquid crystal polymer actuators. Materials Chemistry Frontiers, 2018, 2, 1932-1943.	3.2	144
207	Liquid Crystal-Templated Synthesis of Mesoporous Membranes with Predetermined Pore Alignment. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33484-33492.	4.0	25

#	Article	IF	Citations
208	Bioinspired 3D structures with programmable morphologies and motions. Nature Communications, 2018, 9, 3705.	5.8	151
209	Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling. Sensors, 2018, 18, 2973.	2.1	39
210	Multiple-beam optical interferometry of anisotropic soft materials nanoconfined with the surface force apparatus. Review of Scientific Instruments, 2018, 89, 085112.	0.6	7
211	Liquid Crystal Elastomer-Based Microelectrode Array for In Vitro Neuronal Recordings. Micromachines, 2018, 9, 416.	1.4	24
212	Fabrication of photomobile polymer materials with phase-separated structure of crosslinked azobenzene liquid-crystalline polymer and poly(dimethylsiloxane). Liquid Crystals, 2018, 45, 2269-2273.	0.9	14
213	Different Geometric Information Integrated within a Single Polydopamine Pattern to Yield Dual Shape Transformations. Macromolecular Materials and Engineering, 2018, 303, 1800319.	1.7	3
214	Functional fibers for robotic fabrics. Multifunctional Materials, 2018, 1, 012001.	2.4	32
215	3Dâ€Structured Stretchable Strain Sensors for Outâ€ofâ€Plane Force Detection. Advanced Materials, 2018, 30, e1707285.	11.1	86
216	Phototriggered Selective Actuation and Selfâ€Oscillating in Dualâ€Phase Liquid Crystal Photonic Actuators. Advanced Optical Materials, 2018, 6, 1800131.	3.6	65
217	Liquid crystal polymers with motile surfaces. Soft Matter, 2018, 14, 4898-4912.	1.2	24
218	Microfluidic Preparation of Liquid Crystalline Elastomer Actuators. Journal of Visualized Experiments, 2018, , .	0.2	2
219	Selfâ€sustained actuation from heat dissipation in liquid crystal polymer networks. Journal of Polymer Science Part A, 2018, 56, 1331-1336.	2.5	33
220	Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. Npj Flexible Electronics, 2018, 2, .	5.1	31
221	Photocontrol of Drug Release from Supramolecular Hydrogels with Green Light. Chemistry - A European Journal, 2018, 24, 11605-11610.	1.7	41
222	Prepatterned liquid crystal elastomers as a step toward artificial morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7171-7173.	3.3	11
223	Layered liquid crystal elastomer actuators. Nature Communications, 2018, 9, 2531.	5.8	203
224	Polymer stabilized cholesteric liquid crystal particles with high thermal stability. Optical Materials Express, 2018, 8, 1536.	1.6	22
225	A blister-like soft nano-textured thermo-pneumatic actuator as an artificial muscle. Nanoscale, 2018, 10, 16591-16600.	2.8	26

#	Article	IF	CITATIONS
226	From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics, 2018, 7, 1387-1422.	2.9	143
227	Reconfigurable LC Elastomers: Using a Thermally Programmable Monodomain To Access Two-Way Free-Standing Multiple Shape Memory Polymers. Macromolecules, 2018, 51, 5812-5819.	2.2	92
228	Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. Advanced Functional Materials, 2018, 28, 1802809.	7.8	60
229	Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207.	3.6	111
230	Grafting Polymers <i>from</i> Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules, 2018, 51, 6157-6189.	2.2	175
231	Novel Techniques for Observing Structural Dynamics of Photoresponsive Liquid Crystals. Journal of Visualized Experiments, 2018, , .	0.2	2
233	Three-Dimensional Photonic Circuits in Rigid and Soft Polymers Tunable by Light. ACS Photonics, 2018, 5, 3222-3230.	3.2	53
234	Development of Coarse-Grained Liquid-Crystal Polymer Model with Efficient Electrostatic Interaction: Toward Molecular Dynamics Simulations of Electroactive Materials. Materials, 2018, 11, 83.	1.3	10
235	Electrospun Composite Liquid Crystal Elastomer Fibers. Materials, 2018, 11, 393.	1.3	22
236	Improvement of Image Sticking in Liquid Crystal Display Doped with \hat{I}^3 -Fe2O3 Nanoparticles. Nanomaterials, 2018, 8, 5.	1.9	15
237	Kinetics of Ordering and Deformation in Photosensitive Azobenzene LC Networks. Polymers, 2018, 10, 531.	2.0	7
238	A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing. Journal of Materials Chemistry C, 2018, 6, 8251-8257.	2.7	38
239	Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers. Advanced Materials, 2018, 30, e1802438.	11.1	31
240	Acoustic actuators based on the resonance of an acoustic-film system applied to the actuation of soft robots. Journal of Sound and Vibration, 2018, 432, 310-326.	2.1	1
241	Mechanics of polymer brush based soft active materials– theory and experiments. Journal of the Mechanics and Physics of Solids, 2018, 121, 296-312.	2.3	16
242	Spontaneous buckling of contractile poroelastic actomyosin sheets. Nature Communications, 2018, 9, 2461.	5.8	37
243	Liquid Metal Enabled Injectable Biomedical Electronics. Springer Series in Biomaterials Science and Engineering, 2018, , 149-186.	0.7	1
244	Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. Journal of Materials Chemistry C, 2018, 6, 9093-9101.	2.7	34

#	Article	IF	CITATIONS
245	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195
246	4D Printed Actuators with Softâ€Robotic Functions. Macromolecular Rapid Communications, 2018, 39, 1700710.	2.0	268
247	Coolingâ€Triggered Shapeshifting Hydrogels with Multiâ€Shape Memory Performance. Advanced Materials, 2018, 30, e1707461.	11.1	51
248	Structured Optical Materials Controlled by Light. Advanced Optical Materials, 2018, 6, 1800167.	3.6	50
249	Unpolarized light-induced alignment of azobenzene by scanning wave photopolymerization. Polymer Journal, 2018, 50, 753-759.	1.3	14
250	Self-reporting and self-regulating liquid crystals. Nature, 2018, 557, 539-544.	13.7	93
251	Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics, 2018, 3, 15.	1.5	164
252	Carbonâ€Based Photothermal Actuators. Advanced Functional Materials, 2018, 28, 1802235.	7.8	297
253	A readily programmable, fully reversible shape-switching material. Science Advances, 2018, 4, eaat4634.	4.7	146
254	Visible light driven catalytic gold decorated soft-oxometalate (SOM) based nanomotors for organic pollutant remediation. Nanoscale, 2018, 10, 12713-12722.	2.8	31
255	Micrometerâ€Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018, 28, 1801209.	7.8	39
256	Aggregation-Induced Emission Luminogen-Functionalized Liquid Crystal Elastomer Soft Actuators. Macromolecules, 2018, 51, 4516-4524.	2.2	54
257	High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: The molecular design, microstructures, and macroscopic properties. Polymer, 2018, 148, 127-137.	1.8	48
258	Two-wavelength wrinkling patterns in helicoidal plywood surfaces: imprinting energy landscapes onto geometric landscapes. Soft Matter, 2018, 14, 5180-5185.	1.2	8
259	Solvent-Dependent Light-Induced Structures in <i>Gem</i> -Dichlorocyclopropanated Polybutadiene Solutions. Journal of Physical Chemistry B, 2018, 122, 6995-7001.	1.2	0
260	Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers. Soft Matter, 2018, 14, 6024-6036.	1.2	53
261	Coupling of Photoinduced Mass Immigration with Polymer Networks to Produce Nanostructured Materials Capable of Reversibly Creating Arbitrary Deformations. Macromolecular Chemistry and Physics, 2018, 219, 1800113.	1.1	3
262	Molecular-weight dependence of phase structure and viscosity in a liquid crystalline polyester with strong π–π interaction. Liquid Crystals, 2019, 46, 422-429.	0.9	2

#	Article	IF	CITATIONS
263	Interpenetrating Liquid-Crystal Polyurethane/Polyacrylate Elastomer with Ultrastrong Mechanical Property. Journal of the American Chemical Society, 2019, 141, 14364-14369.	6.6	178
264	Soft matter from liquid crystals. Soft Matter, 2019, 15, 6913-6929.	1.2	53
265	Untethered microgripper-the dexterous hand at microscale. Biomedical Microdevices, 2019, 21, 82.	1.4	14
266	Life-like motion driven by artificial molecular machines. Nature Reviews Chemistry, 2019, 3, 536-551.	13.8	220
267	A Nearâ€Infrared Photoactuator Based on Shape Memory Semicrystalline Polymers toward Lightâ€Fueled Crane, Grasper, and Walker. Advanced Optical Materials, 2019, 7, 1900784.	3.6	34
268	Morphing of liquid crystal surfaces by emergent collectivity. Nature Communications, 2019, 10, 3501.	5.8	19
269	Tunable wrinkling of thin nematic liquid crystal elastomer sheets. Physical Review E, 2019, 100, 022701.	0.8	13
270	Advances in biomimetic stimuli responsive soft grippers. Nano Convergence, 2019, 6, 20.	6.3	55
271	Microstructured Photopolymerization of Liquid Crystalline Elastomers in Oxygenâ€Rich Environments. Advanced Functional Materials, 2019, 29, 1903761.	7.8	29
272	Voxelated Molecular Patterning in Three-Dimensional Freeforms. ACS Applied Materials & Discrete Section 11, 28236-28245.	4.0	67
273	Biomimetic Locomotion of Electrically Powered "Janus―Soft Robots Using a Liquid Crystal Polymer. Advanced Materials, 2019, 31, e1903452.	11.1	183
274	Poly[(side-on mesogen)- <i>alt</i> -(end-on mesogen)]: A Compromised Molecular Arrangement. Macromolecules, 2019, 52, 5791-5800.	2.2	15
275	A Millimeterâ€Scale Snail Robot Based on a Lightâ€Powered Liquid Crystal Elastomer Continuous Actuator. Macromolecular Rapid Communications, 2019, 40, e1900279.	2.0	59
276	Electroresponsive Ionic Liquid Crystal Elastomers. Macromolecular Rapid Communications, 2019, 40, e1900299.	2.0	45
277	Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science, 2019, 97, 101144.	11.8	169
278	Functional liquid crystalline particles and beyond. Liquid Crystals, 2019, 46, 2023-2041.	0.9	22
279	Electrospinning of Tough and Elastic Liquid Crystalline Polymer–Polyurethane Composite Fibers: Mechanical Properties and Fiber Alignment. Macromolecular Materials and Engineering, 2019, 304, 1900186.	1.7	13
280	Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces. Extreme Mechanics Letters, 2019, 30, 100504.	2.0	30

#	Article	IF	Citations
281	Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators. Physical Review Applied, 2019, 11, .	1.5	90
282	Photoresponsive polymers with multi-azobenzene groups. Polymer Chemistry, 2019, 10, 4389-4401.	1.9	78
283	Sequencing of Side-Chain Liquid Crystalline Copolymers by Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry. Polymers, 2019, 11, 1118.	2.0	5
284	Conductivity and dielectric properties of cholesteryl tridecylate with nanosized fragments of fluorinated graphene. Journal of Molecular Liquids, 2019, 291, 111259.	2.3	17
285	Mechanotropic Elastomers. Angewandte Chemie, 2019, 131, 13882-13886.	1.6	3
286	Mechanical adaptability of artificial muscles from nanoscale molecular action. Nature Communications, 2019, 10, 4819.	5.8	57
287	Travelling waves on photo-switchable patterned liquid crystal polymer films directed by rotating polarized light. Soft Matter, 2019, 15, 8040-8050.	1.2	12
288	Endowing Soft Photoâ€Actuators with Intelligence. Advanced Intelligent Systems, 2019, 1, 1900050.	3.3	24
289	Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Science Advances, 2019, 5, eaax5746.	4.7	312
290	Modulation of Optical Properties in Liquid Crystalline Networks across Different Length Scales. Journal of Physical Chemistry C, 2019, 123, 26522-26527.	1.5	8
291	Non-reciprocal robotic metamaterials. Nature Communications, 2019, 10, 4608.	5.8	248
292	Deformation and Elastic Recovery of Acrylate-Based Liquid Crystalline Elastomers. Macromolecules, 2019, 52, 8248-8255.	2.2	22
293	A Highâ€Performing, Visibleâ€Lightâ€Driven Actuating Material Responsive to Ultralow Light Intensities. Advanced Materials Technologies, 2019, 4, 1900746.	3.0	16
294	Photocontrollable Deformations of Polymer Particles in Elastic Matrix. Advanced Optical Materials, 2019, 7, 1901486.	3.6	13
295	Thermo- and photo-responsive composite hydrogels with programmed deformations. Journal of Materials Chemistry B, 2019, 7, 1674-1678.	2.9	55
296	Light-fuelled freestyle self-oscillators. Nature Communications, 2019, 10, 5057.	5.8	142
297	Artificial phototropism for omnidirectional tracking and harvesting of light. Nature Nanotechnology, 2019, 14, 1048-1055.	15.6	191
298	Actuating smart. Nature Nanotechnology, 2019, 14, 1003-1004.	15.6	8

#	Article	IF	Citations
299	Machine learning-aided analysis for complex local structure of liquid crystal polymers. Scientific Reports, 2019, 9, 16370.	1.6	27
300	Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS Omega, 2019, 4, 20558-20563.	1.6	17
301	4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44774-44782.	4.0	116
302	Intelligently Actuating Liquid Crystal Elastomerâ€Carbon Nanotube Composites. Advanced Functional Materials, 2019, 29, 1905063.	7.8	135
303	Biasing Buckling Direction in Shapeâ€Programmable Hydrogel Sheets with Throughâ€Thickness Gradients. Advanced Functional Materials, 2019, 29, 1905273.	7.8	39
304	Mechanical deformations of a liquid crystal elastomer at director angles between 0° and 90°: Deducing an empirical model encompassing anisotropic nonlinearity. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1367-1377.	2.4	20
305	Semi-implicit methods for the dynamics of elastic sheets. Journal of Computational Physics, 2019, 399, 108952.	1.9	6
306	Opposite Self-Folding Behavior of Polymeric Photoresponsive Actuators Enabled by a Molecular Approach. Polymers, 2019, 11, 1644.	2.0	8
307	Programming the Shape Transformation of a Composite Hydrogel Sheet via Erasable and Rewritable Nanoparticle Patterns. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42654-42660.	4.0	19
309	Photodeformable Azobenzeneâ€Containing Liquid Crystal Polymers and Soft Actuators. Advanced Materials, 2019, 31, e1904224.	11.1	314
310	Directed Pinning of Moving Water Droplets on Photoresponsive Liquid Crystal Mats. Advanced Materials Interfaces, 2019, 6, 1901158.	1.9	11
311	Modern Problems of the Physics of Liquid Systems. Springer Proceedings in Physics, 2019, , .	0.1	2
312	Decoding Liquid Crystal Oligomer Phase Transitions: Toward Molecularly Engineered Shape Changing Materials. Macromolecules, 2019, 52, 6878-6888.	2.2	12
313	Artificial colloidal liquid metacrystals by shearing microlithography. Nature Communications, 2019, 10, 4111.	5.8	29
314	Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065.	1.3	34
315	Architected lattices with adaptive energy absorption. Extreme Mechanics Letters, 2019, 33, 100557.	2.0	52
316	Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions. Journal of Colloid and Interface Science, 2019, 555, 702-713.	5.0	21
317	Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: A review. European Polymer Journal, 2019, 121, 109287.	2.6	25

#	ARTICLE	IF	CITATIONS
318	Visible and infrared three-wavelength modulated multi-directional actuators. Nature Communications, 2019, 10, 4539.	5.8	155
319	A multifunctional shape-morphing elastomer with liquid metal inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21438-21444.	3.3	203
320	Direct shape programming of liquid crystal elastomers. Soft Matter, 2019, 15, 870-879.	1.2	85
321	Liquid crystal hydroglass formed <i>via</i> phase separation of nanocellulose colloidal rods. Soft Matter, 2019, 15, 1716-1720.	1.2	25
322	Constructing stable ordered ion channels for a solid electrolyte membrane with high ionic conductivity by combining the advantages of liquid crystal and ionic liquid. Journal of Materials Chemistry A, 2019, 7, 1069-1075.	5.2	47
323	An Untethered Magnetic―and Lightâ€Responsive Rotary Gripper: Shedding Light on Photoresponsive Liquid Crystal Actuators. Advanced Optical Materials, 2019, 7, 1801643.	3.6	76
324	Gel-based soft actuators driven by light. Journal of Materials Chemistry B, 2019, 7, 4234-4242.	2.9	40
325	A trigonal molecular assembly system with the dual light-driven functions of phase transition and fluorescence switching. Journal of Materials Chemistry C, 2019, 7, 2276-2282.	2.7	15
326	Air-Curable, High-Resolution Patternable Oxetane-Based Liquid Crystalline Photonic Films via Flexographic Printing. ACS Applied Materials & Interfaces, 2019, 11, 7423-7430.	4.0	44
327	Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks. Soft Matter, 2019, 15, 2190-2203.	1.2	23
328	Synthesis and characterization of a supported ionic-liquid phase catalyst with a dual-mesoporous structure derived from poly(ionic liquids) and P123. New Journal of Chemistry, 2019, 43, 2899-2907.	1.4	2
329	Photoresponsive Structural Color in Liquid Crystalline Materials. Advanced Optical Materials, 2019, 7, 1900429.	3.6	34
330	Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications. Chemical Engineering Journal, 2019, 374, 706-720.	6.6	200
331	Photomobile Polymer Materials with Complex 3D Deformation, Continuous Motions, Selfâ€Regulation, and Enhanced Processability. Advanced Optical Materials, 2019, 7, 1900380.	3.6	59
332	Mechanotropic Elastomers. Angewandte Chemie - International Edition, 2019, 58, 13744-13748.	7.2	14
333	Controllable wrinkling patterns on liquid crystal polymer film/substrate systems by laser illumination. Extreme Mechanics Letters, 2019, 30, 100502.	2.0	14
334	Development of novel network structures in crosslinked liquid-crystalline polymers. Polymer Journal, 2019, 51, 983-988.	1.3	13
335	Chirality invertible superstructure mediated active planar optics. Nature Communications, 2019, 10, 2518.	5.8	106

#	Article	IF	CITATIONS
336	Dualâ€Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie, 2019, 131, 11101-11105.	1.6	6
337	Tensile Stress Generation on Crystallization of Polymer Networks. ACS Applied Polymer Materials, 2019, 1, 1829-1836.	2.0	3
338	Enhanced Dynamic Adhesion in Nematic Liquid Crystal Elastomers. Advanced Materials, 2019, 31, e1902642.	11.1	48
339	Liquid Crystal Templates Combined with Photolithography Enable Synthesis of Chiral Twisted Polymeric Microparticles. Macromolecular Rapid Communications, 2019, 40, e1900160.	2.0	7
341	Preparation of liquid crystalline polymer networks containing a cinnamyl group in the main chain with tunable thermal actuation behavior. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 904-911.	2.4	3
342	Photoswitchable chevron topographies of glassy nematic coatings. Physical Review E, 2019, 99, 052702.	0.8	3
343	59â€2: <i>Distinguished Student Paper:</i> Stretchable, flexible and adherable polarization volume grating film for waveguideâ€based AR displays. Digest of Technical Papers SID International Symposium, 2019, 50, 830-833.	0.1	1
344	Dualâ€Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles. Angewandte Chemie - International Edition, 2019, 58, 10985-10989.	7.2	38
345	A Reusable Battery-Free RFID Temperature Sensor. IEEE Transactions on Antennas and Propagation, 2019, 67, 6612-6626.	3.1	36
346	Climbing droplets driven by mechanowetting on transverse waves. Science Advances, 2019, 5, eaaw0914.	4.7	26
347	Light-regulated molecular diffusion in a liquid crystal network. Soft Matter, 2019, 15, 4737-4742.	1.2	6
348	Distortion-controlled isotropic swelling: numerical study of free boundary swelling patterns. Soft Matter, 2019, 15, 4890-4897.	1.2	1
349	Temperature―and Lightâ€Regulated Gas Transport in a Liquid Crystal Polymer Network. Advanced Functional Materials, 2019, 29, 1900857.	7.8	12
350	Lightâ€Directed Liquid Manipulation in Flexible Bilayer Microtubes. Small, 2019, 15, e1901847.	5. 2	58
351	Responsive, 3D Electronics Enabled by Liquid Crystal Elastomer Substrates. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19506-19513.	4.0	38
352	Photo Actuation Performance of Nanotube Sheet Incorporated Azobenzene Crosslinked Liquid Crystalline Polymer Nanocomposite. Polymers, 2019, 11, 735.	2.0	14
353	Lightâ€Responsive Polymer Membranes. Advanced Optical Materials, 2019, 7, 1900252.	3.6	45
354	Lightâ€Driven Shape Morphing, Assembly, and Motion of Nanocomposite Gel Surfers. Advanced Materials, 2019, 31, e1900932.	11.1	57

#	Article	IF	CITATIONS
355	Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers. Applied Mathematics and Mechanics (English Edition), 2019, 40, 943-952.	1.9	12
356	Simultaneous formation behaviour of surface structures and molecular alignment by patterned photopolymerisation. Liquid Crystals, 2019, 46, 1995-2002.	0.9	7
357	Shining Light on Liquid Crystal Polymer Networks: Preparing, Reconfiguring, and Driving Soft Actuators. Advanced Optical Materials, 2019, 7, 1900262.	3.6	75
358	3D Printed Photoresponsive Materials for Photonics. Advanced Optical Materials, 2019, 7, 1900156.	3.6	41
359	Enabling Applications of Covalent Adaptable Networks. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 175-198.	3.3	134
360	Lightâ€Responsive Shapeâ€Changing Polymers. Advanced Optical Materials, 2019, 7, 1900067.	3.6	126
361	Shapeable Material Technologies for 3D Selfâ€Assembly of Mesoscale Electronics. Advanced Materials Technologies, 2019, 4, 1800692.	3.0	44
362	Self-organization of cholesterol-side-chain liquid crystalline polymers by tailoring the main chain structure and flexible spacer length. New Journal of Chemistry, 2019, 43, 5429-5440.	1.4	7
363	Light-triggered thermal conductivity switching in azobenzene polymers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5973-5978.	3.3	99
364	Multiscale Study of the Relationship between Photoisomerization and Mechanical Behavior of Azo-Polymer Based on the Coarse-Grained Molecular Dynamics Simulation. Macromolecules, 2019, 52, 2033-2049.	2.2	21
365	Plasmonic Metasurfaces with High UV–Vis Transmittance for Photopatterning of Designer Molecular Orientations. Advanced Optical Materials, 2019, 7, 1900117.	3.6	17
366	A Cutâ€andâ€Weld Process to 3D Architectures from Multiresponsive Crosslinked Liquid Crystalline Polymers. Small, 2019, 15, e1900110.	5.2	12
367	Effect of surface treatment on molecular alignment behavior by scanning wave photopolymerization. Applied Physics Express, 2019, 12, 041004.	1.1	7
368	Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chemical Engineering Journal, 2019, 370, 831-854.	6.6	220
369	Emerging Material Technologies for Haptics. Advanced Materials Technologies, 2019, 4, 1900042.	3.0	91
370	Programmable actuation of liquid crystal elastomers <i>via</i> "living―exchange reaction. Soft Matter, 2019, 15, 2811-2816.	1.2	63
371	Reversibly and Irreversibly Humidityâ∈Responsive Motion of Liquid Crystalline Network Gated by SO ₂ Gas. Advanced Functional Materials, 2019, 29, 1900013.	7.8	40
372	Tailoring surface patterns to direct the assembly of liquid crystalline materials. Liquid Crystals Reviews, 2019, 7, 30-59.	1.1	20

#	Article	IF	Citations
373	Liquid crystal elastomer shell actuators with negative order parameter. Science Advances, 2019, 5, eaaw2476.	4.7	45
374	Bioinspired Actuators Based on Stimuliâ€Responsive Polymers. Chemistry - an Asian Journal, 2019, 14, 2369-2387.	1.7	60
375	Low <i>f</i> àâ€Number Diffractionâ€Limited Pancharatnam–Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers. Advanced Materials, 2019, 31, e1808028.	11.1	42
376	Stretchable, flexible, and adherable polarization volume grating film for waveguideâ€based augmented reality displays. Journal of the Society for Information Display, 2019, 27, 232-237.	0.8	12
377	The Pathway to Intelligence: Using Stimuliâ€Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 2019, 31, e1804540.	11.1	169
378	Photoinduced Reversible Solidâ€ŧo‣iquid Transitions for Photoswitchable Materials. Angewandte Chemie - International Edition, 2019, 58, 9712-9740.	7.2	208
379	Development of Light-Responsive Liquid Crystalline Elastomers to Assist Cardiac Contraction. Circulation Research, 2019, 124, e44-e54.	2.0	44
380	Photoinduzierte, reversible Festâ€flýssigâ€Ãœbergäge unter Verwendung photoschaltbarer Materialien. Angewandte Chemie, 2019, 131, 9814-9843.	1.6	22
381	On Untethered, Dual Magneto―and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion. Advanced Optical Materials, 2019, 7, 1801604.	3.6	34
382	Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Lightâ€Fueled Locomotion. Angewandte Chemie, 2019, 131, 5386-5391.	1.6	42
383	Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Lightâ€Fueled Locomotion. Angewandte Chemie - International Edition, 2019, 58, 5332-5337.	7.2	152
384	Dynamic Diffractive Patterns in Helix-Inverting Cholesteric Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10895-10904.	4.0	24
385	Endowing Soft Photoâ€Actuators with Intelligence. Advanced Intelligent Systems, 2019, 1, 1970081.	3.3	2
386	Programmable 3D Shape-Change Liquid Crystalline Elastomer Based on a Vertically Aligned Monodomain with Cross-link Gradient. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48393-48401.	4.0	18
387	Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Science Advances, 2019, 5, eaay0855.	4.7	126
388	Modeling of the photo-induced stress in azobenzene polymers by combining theory and computer simulations. Soft Matter, 2019, 15, 9894-9908.	1.2	15
389	All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nanoscale Advances, 2019, 1, 4615-4643.	2.2	49
390	A shape-shifting composite hydrogel sheet with spatially patterned plasmonic nanoparticles. Journal of Materials Chemistry B, 2019, 7, 1679-1683.	2.9	13

#	Article	IF	CITATIONS
391	Highly Efficient Luminescent Liquid Crystal with Aggregation-Induced Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3516-3523.	4.0	30
392	Liquid Crystalâ€Induced Myoblast Alignment. Advanced Healthcare Materials, 2019, 8, e1801489.	3.9	36
393	A Lightâ€Powered Ultralight Tensegrity Robot with High Deformability and Load Capacity. Advanced Materials, 2019, 31, e1806849.	11.1	133
394	Molecularlyâ€Engineered, 4Dâ€Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019, 29, 1806412.	7.8	234
395	Photocontrol of helix handedness in curled liquid crystal elastomers. Liquid Crystals, 2019, 46, 1231-1240.	0.9	29
396	Allâ€Optical Control of Shape. Advanced Materials, 2019, 31, e1805750.	11.1	56
397	An Artificial Nocturnal Flower via Humidityâ€Cated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019, 31, e1805985.	11.1	154
399	Nematic-to-columnar mesophase transition by in situ supramolecular polymerization. Science, 2019, 363, 161-165.	6.0	69
400	Lightâ€Driven Continuous Twist Movements of Microribbons. Small, 2019, 15, e1804102.	5.2	11
401	Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800626.	3.0	221
402	Shape-Persistent Actuators from Hydrazone Photoswitches. Journal of the American Chemical Society, 2019, 141, 1196-1200.	6.6	135
403	Bifurcation-based embodied logic and autonomous actuation. Nature Communications, 2019, 10, 128.	5.8	106
404	Light Control with Liquid Crystalline Elastomers. Advanced Optical Materials, 2019, 7, 1801683.	3.6	83
405	Making shapes of glassy nematic sheets with three-dimensional director fields. International Journal of Solids and Structures, 2019, 159, 232-238.	1.3	4
406	Smart helical structures inspired by the pellicle of euglenids. Journal of the Mechanics and Physics of Solids, 2019, 123, 234-246.	2.3	16
407	Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290.	7.8	633
408	Embossing Reactive Mesogens: A Facile Approach to Polarizationâ€Independent Liquid Crystal Devices. Advanced Optical Materials, 2019, 7, 1801261.	3.6	18
409	Phototunable Morpho Butterfly Microstructures Modified by Liquid Crystal Polymers. Advanced Optical Materials, 2019, 7, 1801494.	3.6	28

#	Article	IF	Citations
410	Photolithographically Patterned Hydrogels with Programmed Deformations. Chemistry - an Asian Journal, 2019, 14, 94-104.	1.7	25
411	Grapheneâ€Based Lightâ€Driven Soft Robot with Snakeâ€Inspired Concertina and Serpentine Locomotion. Advanced Materials Technologies, 2019, 4, 1800366.	3.0	37
412	Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. Journal of the Mechanics and Physics of Solids, 2019, 123, 247-266.	2.3	5
413	Effect of doping nanoparticles on the output force performance of chitosan-based nanocomposite gel actuator. Polymer-Plastics Technology and Materials, 2019, 58, 967-977.	0.6	3
414	Natureâ€Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Selfâ€Assembly to DNA Mesophase and Nanocolloids. Advanced Materials, 2020, 32, e1801335.	11.1	263
415	Liquid Crystalline Vitrimers with Full or Partial Boronicâ€Ester Bond Exchange. Advanced Functional Materials, 2020, 30, 1906458.	7.8	99
416	Flexible Actuators for Soft Robotics. Advanced Intelligent Systems, 2020, 2, 1900077.	3.3	79
417	Inorganic Stimuliâ€Responsive Nanomembranes for Smallâ€Scale Actuators and Robots. Advanced Intelligent Systems, 2020, 2, 1900092.	3.3	7
418	Influences of Orthoâ€Fluoroazobenzenes on Liquid Crystalline Phase Stability and 2D (Planar) Actuation Properties of Liquid Crystalline Elastomers. Macromolecular Chemistry and Physics, 2020, 221, 1900265.	1.1	11
419	Macroscopic and microscopic shape memory effects of block copolymers prepared via ATRP. Journal of Polymer Science, 2020, 58, 20-24.	2.0	4
420	Synthesis and characterization of two series of pressure-sensitive cholesteric liquid crystal elastomers with optical properties. Liquid Crystals, 2020, 47, 143-153.	0.9	10
421	Predicting molecular ordering in a binary liquid crystal using machine learning. Liquid Crystals, 2020, 47, 438-448.	0.9	11
422	Matching Magnetic Heating and Thermal Actuation for Sequential Coupling in Hybrid Composites by Design. Macromolecular Rapid Communications, 2020, 41, 1900440.	2.0	4
423	Entangled Azobenzeneâ€Containing Polymers with Photoinduced Reversible Solidâ€toâ€Liquid Transitions for Healable and Reprocessable Photoactuators. Advanced Functional Materials, 2020, 30, 1906752.	7.8	82
424	Topographic Mechanics and Applications of Liquid Crystalline Solids. Annual Review of Condensed Matter Physics, 2020, 11, 125-145.	5,2	58
425	Synthesis of an Azobenzene-containing Main-chain Crystalline Polymer and Photodeformation Behaviors of Its Supramolecular Hydrogen-bonded Fibers. Chinese Journal of Polymer Science (English) Tj ETQq1	1 07 8431	4 1g BT /Ονer
426	3D Selfâ€Assembled Microelectronic Devices: Concepts, Materials, Applications. Advanced Materials, 2020, 32, e1902994.	11.1	67
427	Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes. Inorganics, 2020, 8, 2.	1,2	5

#	Article	IF	CITATIONS
428	Viewpoint: Homeostasis as Inspirationâ€"Toward Interactive Materials. Advanced Materials, 2020, 32, e1905554.	11.1	35
429	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie, 2020, 132, 4808-4814.	1.6	14
430	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie - International Edition, 2020, 59, 4778-4784.	7.2	102
431	Recent progress in 4D printing of stimuli-responsive polymeric materials. Science China Technological Sciences, 2020, 63, 532-544.	2.0	61
432	Liquid crystalline networks based on photo-initiated thiol–ene click chemistry. Soft Matter, 2020, 16, 1760-1770.	1.2	12
433	Localizing genesis in polydomain liquid crystal elastomers. Soft Matter, 2020, 16, 330-336.	1.2	7
434	Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chemical Reviews, 2020, 120, 310-433.	23.0	325
435	Macroscopic Selfâ€Evolution of Dynamic Hydrogels to Create Hollow Interiors. Angewandte Chemie, 2020, 132, 5660-5664.	1.6	3
437	Nanoimprint lithography: Emergent materials and methods of actuation. Nano Today, 2020, 31, 100838.	6.2	81
438	Tunable Photonic Materials via Monitoring Stepâ€Growth Polymerization Kinetics by Structural Colors. Advanced Functional Materials, 2020, 30, 1906833.	7.8	40
440	4D Printing at the Microscale. Advanced Functional Materials, 2020, 30, 1907615.	7.8	141
441	Shape-Memory Effect by Sequential Coupling of Functions over Different Length Scales in an Architectured Hydrogel. Biomacromolecules, 2020, 21, 680-687.	2.6	5
442	Kirigamiâ€Based Lightâ€Induced Shapeâ€Morphing and Locomotion. Advanced Materials, 2020, 32, e1906233.	11.1	147
443	Macroscopic Selfâ€Evolution of Dynamic Hydrogels to Create Hollow Interiors. Angewandte Chemie - International Edition, 2020, 59, 5611-5615.	7.2	14
445	Associative Learning by Classical Conditioning in Liquid Crystal Network Actuators. Matter, 2020, 2, 194-206.	5.0	51
448	Responsive and Foldable Soft Materials. Trends in Chemistry, 2020, 2, 107-122.	4.4	46
449	Hydrogen bond driven self-supporting organogels from main-chain liquid crystalline polymers. Polymer, 2020, 188, 122148.	1.8	11
450	Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer. Crystals, 2020, 10, 882.	1.0	9

#	Article	IF	CITATIONS
451	Liquid Crystal Polymerâ€Based Soft Robots. Advanced Intelligent Systems, 2020, 2, 2000148.	3.3	67
452	Review: Recent advancement and research possibilities in 4D printing technology. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1332-1340.	0.5	10
453	Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals. Advanced Materials, 2020, 32, e2004420.	11.1	48
454	Tunable Photomechanics in Diarylethene-Driven Liquid Crystal Network Actuators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47939-47947.	4.0	23
455	On a consistent finite-strain plate model of nematic liquid crystal elastomers. Journal of the Mechanics and Physics of Solids, 2020, 145, 104169.	2.3	15
456	Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations. Advanced Materials, 2020, 32, e2005567.	11.1	89
457	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
458	Dynamical Landau–de Gennes theory for electrically-responsive liquid crystal networks. Physical Review E, 2020, 102, 042703.	0.8	4
459	Processing advances in liquid crystal elastomers provide a path to biomedical applications. Journal of Applied Physics, 2020, 128, 140901.	1.1	59
460	Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2004270.	11.1	109
461	Deuteron NMR investigation on orientational order parameter in polymer dispersed liquid crystal elastomers. Physical Chemistry Chemical Physics, 2020, 22, 23064-23072.	1.3	17
462	Influences of Central Units and Terminal Chains on the Banana-Shaped Liquid Crystals. Crystals, 2020, 10, 857.	1.0	13
463	Controlling the alignment of 1D nanochannel arrays in oriented metal–organic framework films for host–guest materials design. Chemical Science, 2020, 11, 8005-8012.	3.7	31
464	Supersoft elasticity and slow dynamics of isotropic-genesis polydomain liquid crystal elastomers investigated by loading- and strain-rate-controlled tests. Physical Review E, 2020, 102, 012701.	0.8	4
465	A bifacial colour-tunable system <i>via</i> combination of a cholesteric liquid crystal network and hydrogel. Journal of Materials Chemistry C, 2020, 8, 10191-10196.	2.7	11
466	Photo-Mechanical Response Dynamics of Liquid Crystal Elastomer Linear Actuators. Materials, 2020, 13, 2933.	1.3	8
467	Effect of Isomeric Amine Chain Extenders and Crosslink Density on the Properties of Liquid Crystal Elastomers. Materials, 2020, 13, 3094.	1.3	11
468	A Battery-Free Temperature Sensor With Liquid Crystal Elastomer Switching Between RFID Chips. IEEE Access, 2020, 8, 87870-87883.	2.6	3

#	Article	IF	CITATIONS
469	Reconfigurable and Spatially Programmable Chameleon Skin‣ike Material Utilizing Light Responsive Covalent Adaptable Cholesteric Liquid Crystal Elastomers. Advanced Functional Materials, 2020, 30, 2003150.	7.8	66
470	Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid Crystalline Gels. Frontiers in Chemistry, 2020, 8, 583165.	1.8	0
471	Dynamically morphing microchannels in liquid crystal elastomer coatings containing disclinations. Journal of Applied Physics, 2020, 128, .	1.1	5
472	Advances in Stimuli-Responsive Soft Robots with Integrated Hybrid Materials. Actuators, 2020, 9, 115.	1.2	18
473	Design and applications of light responsive liquid crystal polymer thin films. Applied Physics Reviews, 2020, 7, .	5.5	44
474	Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators. Nature Communications, 2020, $11,5780$.	5.8	23
475	3D Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields. Advanced Materials, 2020, 32, e2002753.	11.1	58
476	Controlling the S ₁ Energy Profile by Tuning Excited-State Aromaticity. Journal of the American Chemical Society, 2020, 142, 14985-14992.	6.6	48
477	Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38829-38844.	4.0	39
478	Scaling law of Brownian rotation in dense hard-rod suspensions. Physical Review E, 2020, 102, 012608.	0.8	2
479	Geometry of Bend: Singular Lines and Defects in Twist-Bend Nematics. Physical Review Letters, 2020, 125, 047801.	2.9	6
480	Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Science China Materials, 2020, 63, 2590-2598.	3.5	20
481	Reconfiguring Gaussian Curvature of Hydrogel Sheets with Photoswitchable Host–Guest Interactions. ACS Macro Letters, 2020, 9, 1172-1177.	2.3	24
482	Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discussions, 2020, 223, 216-232.	1.6	19
483	Effect of gold and graphene oxide nanoparticles on the thermo- and photo-actuation of monodomain liquid crystal elastomers. Polymer, 2020, 205, 122837.	1.8	4
484	A blend of stretching and bending in nematic polymer networks. Soft Matter, 2020, 16, 8877-8892.	1.2	10
485	Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Frontiers in Materials, 2020, 7, .	1.2	40
486	A plate theory for nematic liquid crystalline solids. Journal of the Mechanics and Physics of Solids, 2020, 144, 104101.	2.3	25

#	Article	IF	Citations
487	Manipulating small water droplets on a photo-switchable mat of fluorinated linear liquid crystal polymers. Giant, 2020, 2, 100019.	2.5	6
488	Evolving, complex topography from combining centers of Gaussian curvature. Physical Review E, 2020, 102, 013003.	0.8	12
489	Highâ€Definition Optophysical Image Construction Using Mosaics of Pixelated Wrinkles. Advanced Science, 2020, 7, 2002134.	5.6	15
490	A Flexible Bilayer Actuator Based on Liquid Crystal Network and PVDF–TrFE for Lowâ€Grade Waste Heat Harvesting. Energy Technology, 2020, 8, 2000612.	1.8	3
491	Arene Substitution Design for Controlled Conformational Changes of Dibenzocycloocta-1,5-dienes. Journal of the American Chemical Society, 2020, 142, 16651-16660.	6.6	11
492	Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44195-44204.	4.0	77
493	Shape morphing smart 3D actuator materials for micro soft robot. Materials Today, 2020, 41, 243-269.	8.3	130
494	An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots. Soft Robotics, 2021, 8, 485-505.	4.6	27
495	Introduction to Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 1-26.	0.6	1
496	Azopolymerâ€Based Nanoimprint Lithography: Recent Developments in Methodology and Applications. ChemPlusChem, 2020, 85, 2166-2176.	1.3	24
497	Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers. Journal of the American Chemical Society, 2020, 142, 16814-16824.	6.6	33
498	Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B, 2020, 8, 8972-8991.	2.9	118
499	Inflationary routes to Gaussian curved topography. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200047.	1.0	10
500	A pseudo-anelastic model for stress softening in liquid crystal elastomers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200558.	1.0	9
501	Likely striping in stochastic nematic elastomers. Mathematics and Mechanics of Solids, 2020, 25, 1851-1872.	1.5	14
502	Polymer actuators based on covalent adaptable networks. Polymer Chemistry, 2020, 11, 5297-5320.	1.9	39
503	Controlled Dynamics of Neural Tumor Cells by Templated Liquid Crystalline Polymer Networks. Advanced Healthcare Materials, 2020, 9, e2000487.	3.9	17
504	Main-Chain Liquid Crystalline Hydrogels that Support 3D Stem Cell Culture. Biomacromolecules, 2020, 21, 2365-2375.	2.6	3

#	Article	IF	CITATIONS
505	Dynamic Assemblies of Molecular Motor Amphiphiles Control Macroscopic Foam Properties. Journal of the American Chemical Society, 2020, 142, 10163-10172.	6.6	38
506	Liquid crystal elastomer actuator with serpentine locomotion. Chemical Communications, 2020, 56, 7597-7600.	2.2	34
507	A copper(i)-catalyzed azide–alkyne click chemistry approach towards multifunctional two-way shape-memory actuators. Polymer Chemistry, 2020, 11, 3747-3755.	1.9	13
508	A biocompatible artificial tendril with a spontaneous 3D Janus multi-helix-perversion configuration. Materials Chemistry Frontiers, 2020, 4, 2149-2156.	3.2	12
509	Microscale Polarization Color Pixels from Liquid Crystal Elastomers. Advanced Optical Materials, 2020, 8, 1902098.	3.6	29
510	A Novel Sideâ€Chain Liquid Crystal Elastomer Exhibiting Anomalous Reversible Shape Change. Angewandte Chemie, 2020, 132, 15241-15246.	1.6	6
511	Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Scientific Reports, 2020, 10, 6609.	1.6	69
512	Liquid Crystal Elastomer Electric Locomotives. ACS Macro Letters, 2020, 9, 860-865.	2.3	55
513	Swelling mechanism in smart polymers responsive to mechano-chemical stimuli. Journal of the Mechanics and Physics of Solids, 2020, 143, 104011.	2.3	20
514	Color Modulation in <i>Morpho</i> Butterfly Wings Using Liquid Crystalline Elastomers. Advanced Intelligent Systems, 2020, 2, 2000035.	3.3	13
515	Spontaneous photo-deformation of a liquid crystal network membrane. International Journal of Mechanical Sciences, 2020, 184, 105842.	3.6	9
516	Reversible Actuation via Photoisomerization-Induced Melting of a Semicrystalline Poly(Azobenzene). ACS Macro Letters, 2020, 9, 902-909.	2.3	46
517	Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28692-28699.	4.0	61
518	Allyl sulfide-based visible light-induced dynamically reshaped liquid crystalline elastomer/SWCNT nanocomposites capable of multimode NIR photomechanical actuations. New Journal of Chemistry, 2020, 44, 10902-10910.	1.4	19
519	Visible-Light-Driven, Nickel-Doped Cobalt Oxides/Hydroxides Actuators with High Stability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30557-30564.	4.0	10
520	Light-Driven Dynamic Adhesion on Photosensitized Nematic Liquid Crystalline Elastomers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31992-31997.	4.0	28
521	Degradation-Induced Actuation in Oxidation-Responsive Liquid Crystal Elastomers. Crystals, 2020, 10, 420.	1.0	10
522	Photoinduced Strainâ€Assisted Synthesis of a Stiffâ€Stilbene Polymer by Ringâ€Opening Metathesis Polymerization. Chemistry - A European Journal, 2020, 26, 14828-14832.	1.7	7

#	Article	IF	CITATIONS
523	Giant photostriction of CaCu3Ti4O12 ceramics under visible light illumination. Applied Physics Letters, 2020, 116 , .	1.5	12
524	Tunable Electromechanical Liquid Crystal Elastomer Actuators. Advanced Intelligent Systems, 2020, 2, 2000022.	3.3	27
525	Structural design of soft robotics using a joint structure of photoresponsive polymers. Smart Materials and Structures, 2020, 29, 055032.	1.8	4
526	Liquidâ€Crystalâ€Mediated Active Waveguides toward Programmable Integrated Optics. Advanced Optical Materials, 2020, 8, 1902033.	3.6	12
527	Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020, 8, 5517-5524.	2.7	40
528	A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials. Molecules, 2020, 25, 1241.	1.7	41
529	Lightâ€Driven Liquid Crystalline Networks and Soft Actuators with Degreeâ€ofâ€Freedomâ€Controlled Molecular Motors. Advanced Functional Materials, 2020, 30, 2000252.	7.8	49
530	Photodynamic Control of the Chain Length in Supramolecular Polymers: Switching an Intercalator into a Chain Capper. Journal of the American Chemical Society, 2020, 142, 6295-6303.	6.6	47
531	The relationship between hole size and the voltage-driven formation of surface structures in an ITO/liquid crystal polymer/perforated metal electrode system. Journal of Physics and Chemistry of Solids, 2020, 141, 109418.	1.9	2
532	Blueprinting Photothermal Shapeâ€Morphing of Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2000609.	11.1	110
533	Chiral Photonic Liquid Crystalline Polyethers with Widely Tunable Helical Superstructures. Langmuir, 2020, 36, 3072-3079.	1.6	12
534	Materials as Machines. Advanced Materials, 2020, 32, e1906564.	11.1	213
535	Electric-field induced deformation and bending in nematic elastomer strips with orientation gradient. International Journal of Solids and Structures, 2020, 202, 243-259.	1.3	7
536	Liquid crystalline polymers: Discovery, development, and the future. Polymer, 2020, 202, 122740.	1.8	31
537	Thermal wrinkling of liquid crystal polymer shell/core spheres. Extreme Mechanics Letters, 2020, 40, 100860.	2.0	11
538	Derivation of a Homogenized Bending–Torsion Theory for Rods with Micro-Heterogeneous Prestrain. Journal of Elasticity, 2020, 141, 109-145.	0.9	4
539	Chemically controlled shape-morphing of elastic sheets. Materials Horizons, 2020, 7, 2314-2327.	6.4	13
540	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17

#	Article	IF	CITATIONS
541	Large, Tunable Liquid Crystal Pretilt Achieved by Enhanced Out-of-Plane Reorientation of Azodye Thin Films. Langmuir, 2020, 36, 8554-8559.	1.6	3
542	Planar Terahertz Photonics Mediated by Liquid Crystal Polymers. Advanced Optical Materials, 2020, 8, 1902124.	3.6	31
543	Enhanced Conductivity and Thermochromic Luminescence in Hydrogen Bond-Stabilized Columnar Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9637-9645.	4.0	42
544	Amplified photo-responses in sequentially polymerized azobenzene-containing polymer networks: the role of isomer interconnection. Polymer Chemistry, 2020, 11, 1998-2005.	1.9	5
545	Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking. Soft Matter, 2020, 16, 2695-2705.	1.2	23
546	Light-Mediated Shape Transformation of a Self-Rolling Nanocomposite Hydrogel Tube. ACS Applied Materials & Description (1988) amp; Interfaces, 2020, 12, 13521-13528.	4.0	11
547	Bioinspired underwater locomotion of light-driven liquid crystal gels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5125-5133.	3.3	237
548	Dynamic Manipulation of Friction in Smart Textile Composites of Liquid rystal Elastomers. Advanced Materials Interfaces, 2020, 7, 1901996.	1.9	22
549	Self-Assembly of Aqueous Soft Matter Patterned by Liquid-Crystal Polymer Networks for Controlling the Dynamics of Bacteria. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13680-13685.	4.0	20
550	Pros and Cons: Magnetic versus Optical Microrobots. Advanced Materials, 2020, 32, e1906766.	11.1	206
551	An analytical model for shape morphing through combined bending and twisting in piezo composites. Mechanics of Materials, 2020, 144, 103350.	1.7	10
552	Continuum soft actuators based on reprogrammable geometric constraints. Extreme Mechanics Letters, 2020, 36, 100649.	2.0	3
553	Computational design of shape-programmable gel plates. Mechanics of Materials, 2020, 144, 103313.	1.7	5
554	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites. Advanced Intelligent Systems, 2020, 2, 1900163.	3.3	80
555	"Self‣ockable―Liquid Crystalline Diels–Alder Dynamic Network Actuators with Room Temperature Programmability and Solution Reprocessability. Angewandte Chemie - International Edition, 2020, 59, 4925-4931.	7.2	83
556	Digital Programming Graphene Oxide Liquid Crystalline Hybrid Hydrogel by Shearing Microlithography. ACS Nano, 2020, 14, 2336-2344.	7.3	19
557	Effects of network structure on the mechanical and thermal responses of liquid crystal elastomers. Multifunctional Materials, 2020, 3, 015002.	2.4	4
558	"Self‣ockable―Liquid Crystalline Diels–Alder Dynamic Network Actuators with Room Temperature Programmability and Solution Reprocessability. Angewandte Chemie, 2020, 132, 4955-4961.	1.6	41

#	Article	IF	CITATIONS
559	Multifunctional liquid crystal polymer network soft actuators. Journal of Materials Chemistry A, 2020, 8, 3390-3396.	5.2	26
561	Solventâ€Free Plasticity and Programmable Mechanical Behaviors of Engineered Proteins. Advanced Materials, 2020, 32, e1907697.	11.1	23
562	A Passive RFID Temperature Sensing Antenna With Liquid Crystal Elastomer Switching. IEEE Access, 2020, 8, 24443-24456.	2.6	18
563	Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer. RSC Advances, 2020, 10, 3726-3733.	1.7	27
564	Monitoring H ₂ O ₂ on the Surface of Single Cells with Liquid Crystal Elastomer Microspheres. Angewandte Chemie - International Edition, 2020, 59, 9282-9287.	7.2	47
565	Twist again: Dynamically and reversibly controllable chirality in liquid crystalline elastomer microposts. Science Advances, 2020, 6, eaay5349.	4.7	24
566	Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 2020, 142, 8447-8453.	6.6	190
567	Shape memory materials for electrically-powered soft machines. Journal of Materials Chemistry B, 2020, 8, 4539-4551.	2.9	52
568	Modeling of Stripe Patterns in Photosensitive Azopolymers. Polymers, 2020, 12, 735.	2.0	10
569	Kirigamiâ€Designâ€Enabled Hydrogel Multimorphs with Application as a Multistate Switch. Advanced Materials, 2020, 32, e2000781.	11.1	93
570	Monitoring H 2 O 2 on the Surface of Single Cells with Liquid Crystal Elastomer Microspheres. Angewandte Chemie, 2020, 132, 9368-9373.	1.6	12
571	Liquid crystal elastomers as substrates for 3D, robust, implantable electronics. Journal of Materials Chemistry B, 2020, 8, 6286-6295.	2.9	16
572	Reactive mesogens for ultraviolet-transparent liquid crystal polymer networks. Liquid Crystals, 2020, 47, 1569-1581.	0.9	2
573	Electroplasticization of Liquid Crystal Polymer Networks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19927-19937.	4.0	15
574	Measuring the five elastic constants of a nematic liquid crystal elastomer. Liquid Crystals, 2021, 48, 511-520.	0.9	9
575	Light-driven bimorph soft actuators: design, fabrication, and properties. Materials Horizons, 2021, 8, 728-757.	6.4	135
576	Stretchable Freestanding Films of 3D Nanocrystalline Blue Phase Elastomer and Their Tunable Applications. Advanced Optical Materials, 2021, 9, .	3.6	20
577	Light-deformable dynamic surface fabricated by ink-jet printing. Soft Matter, 2021, 17, 748-757.	1.2	1

#	Article	IF	Citations
578	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	11.1	131
579	Can Polyelectrolyte Mechanical Properties be Directly Modulated by an Electric Field? A Molecular Dynamics Study. Advanced Functional Materials, 2021, 31, 2006969.	7.8	6
580	Functional Liquid Crystal Polymer Surfaces with Switchable Topographies. Small Structures, 2021, 2, 2000107.	6.9	14
581	Reversibly Photoâ€Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angewandte Chemie, 2021, 133, 3259-3265.	1.6	8
582	Torque-dense photomechanical actuation. Soft Matter, 2021, 17, 1258-1266.	1.2	5
583	Synthesis, characterization, and photoinduced deformation properties of a series of azobenzene-containing poly(arylene ether)s. Dyes and Pigments, 2021, 186, 109018.	2.0	8
584	Consequences of Chirality in Directing the Pathway of Cholesteric Helix Inversion of π onjugated Polymers by Light. Advanced Materials, 2021, 33, e2005720.	11.1	32
585	Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 3390-3396.	7.2	213
586	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie, 2021, 133, 5596-5603.	1.6	18
587	Oblique wrinkling patterns on liquid crystal polymer core–shell cylinders under thermal load. International Journal of Solids and Structures, 2021, 208-209, 181-193.	1.3	7
588	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie - International Edition, 2021, 60, 5536-5543.	7.2	104
589	Nearâ€Infrared Lightâ€Driven Shapeâ€Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angewandte Chemie, 2021, 133, 3432-3438.	1.6	20
590	Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 2021, 33, e2003139.	11.1	209
591	Polarization Dependent Lightâ€Driven Liquid Crystal Elastomer Actuators Based on Photothermal Effect. Advanced Optical Materials, 2021, 9, 2001861.	3 . 6	49
592	Reversibly Photoâ€Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angewandte Chemie - International Edition, 2021, 60, 3222-3228.	7.2	25
593	Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis. Nano Research, 2021, 14, 255-259.	5.8	6
594	Introduction to 4D printing., 2021,, 303-342.		6
595	Ultralong cycling and wide temperature range of lithium metal batteries enabled by solid polymer electrolytes interpenetrated with a poly(liquid crystal) network. Journal of Materials Chemistry A, 2021, 9, 6232-6241.	5.2	33

#	Article	IF	CITATIONS
596	An Untethered Soft Robot Based on Liquid Crystal Elastomers. Soft Robotics, 2022, 9, 154-162.	4.6	28
597	Soft microrobotics. Advances in Chemical Engineering, 2021, 57, 1-44.	0.5	3
598	Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices. Nature Communications, 2021, 12, 509.	5.8	19
599	Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Materials Horizons, 2021, 8, 2475-2484.	6.4	142
600	Numerical analysis and design of a light-driven liquid crystal polymer-based motorless miniature cart. Soft Matter, 2021, 17, 7714-7728.	1.2	2
601	Effects of polarized light on the optical and self-oscillation behaviors of liquid crystal network polymers. Journal of Materials Chemistry C, 2021, 9, 14908-14915.	2.7	8
602	Photostriction of NBT-BNT Ceramics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 277.	0.6	2
603	Combined coarse-grained molecular dynamics and finite-element study of light-activated deformation of photoresponsive polymers. Physical Review E, 2021, 103, 012703.	0.8	4
604	Thermal- and light-responsive programmable shape-memory behavior of liquid crystalline polyurethanes with pendant photosensitive groups. Journal of Materials Chemistry A, 2021, 9, 15087-15094.	5.2	23
605	Fast and self-recoverable photoinduced deformation behavior of azobenzene-containing poly(arylene) Tj ETQq1	1 0,78431 2.7	4 rgBT /Over
606	Bio-Inspired Soft Robotics: Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers. Applied Sciences (Switzerland), 2021, 11, 1233.	1.3	9
607	Responsive organoboranes with dynamic conformation of octacyclophane-type scaffolds: synthesis, AIE and temperature-dependent dual emissions. Journal of Materials Chemistry C, 2021, 9, 13851-13859.	2.7	8
608	Liquid Crystal Elastomerâ€Based Magnetic Composite Films for Reconfigurable Shapeâ€Morphing Soft Miniature Machines. Advanced Materials, 2021, 33, e2006191.	11.1	101
609	Selection rules and a new model for stable topological defect arrays in nematic liquid crystal. Liquid Crystals, 2021, 48, 1295-1308.	0.9	6
610	Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces. Neuromodulation, 2022, 25, 1259-1267.	0.4	8
611	Ridge energy for thin nematic polymer networks. European Physical Journal E, 2021, 44, 7.	0.7	4
612	Photoreversible Loading and Unloading of Q–Silsesquioxane Dynamic Network Sponges. Advanced Functional Materials, 2021, 31, 2010114.	7.8	4
613	Nanoscale Analysis of Surface Bending Strain in Film Substrates for Preventing Fracture in Flexible Electronic Devices. Advanced Materials Interfaces, 2021, 8, 2001662.	1.9	20

#	Article	IF	CITATIONS
614	Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification. Materials Chemistry Frontiers, 2021, 5, 4821-4832.	3.2	74
615	4D printing in biomedical applications: emerging trends and technologies. Journal of Materials Chemistry B, 2021, 9, 7608-7632.	2.9	65
616	Light-driven autonomous self-oscillation of a liquid-crystalline polymer bimorph actuator. Journal of Materials Chemistry C, 2021, 9, 12573-12580.	2.7	19
617	Effect of stretching angle on the stress plateau behavior of main-chain liquid crystal elastomers. Soft Matter, 2021, 17, 3128-3136.	1.2	15
618	Self-healing and shape memory functions exhibited by supramolecular liquid-crystalline networks formed by combination of hydrogen bonding interactions and coordination bonding. Chemical Science, 2021, 12, 6091-6098.	3.7	27
619	Micellar Lyotropic Nematic Gels. Advanced Materials, 2021, 33, e2007340.	11.1	9
620	Magnetic Printing of Liquid Metal for Perceptive Soft Actuators with Embodied Intelligence. ACS Applied Materials & Diterfaces, 2021, 13, 5574-5582.	4.0	50
621	Permanent and reversibly programmable shapes in liquid crystal elastomer microparticles capable of shape switching. Soft Matter, 2021, 17, 467-474.	1.2	12
622	Thermo- and chemical-triggered overhand and reef knots based on liquid crystal gels. Journal of Materials Chemistry C, 0, , .	2.7	0
623	A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. Materials Chemistry Frontiers, 2021, 5, 3192-3200.	3.2	22
624	Bending Behaviors of Azobenzene-containing Liquid Crystalline Polymers (AZ-LCP): Factors Influencing Bending Direction, Frequency and Degree. E3S Web of Conferences, 2021, 294, 05004.	0.2	1
625	On the Kirchhoff-Love Hypothesis (Revised and Vindicated). Journal of Elasticity, 2021, 143, 359-384.	0.9	13
626	Lightâ€Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems, 2021, 3, 2000256.	3.3	64
627	Photoswitching between Waterâ€Tolerant Adhesion and Swift Release by Inverting Liquid Crystal Fingerprint Topography. Advanced Science, 2021, 8, 2004051.	5.6	18
628	Soft Actuators of Liquid Crystal Polymers Fueled by Light from Ultraviolet to Near Infrared. Advanced Optical Materials, 2021, 9, 2001743.	3.6	48
629	Photoalignment in Polysiloxane Liquidâ€Crystalline Elastomers with Rearrangeable Networks. Advanced Optical Materials, 2021, 9, 2100053.	3.6	27
630	Multiple hydrogen-bonded cross-linked photo-responsive liquid crystal elastomers with photo-responsive fluorescence. Polymer, 2021, 215, 123420.	1.8	7
631	Humidityâ€Responsive Liquid Crystalline Network Actuator Showing Synergistic Fluorescence Color Change Enabled by Aggregation Induced Emission Luminogen. Advanced Functional Materials, 2021, 31, 2010578.	7.8	64

#	Article	IF	CITATIONS
632	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021, 33, e2004754.	11.1	201
633	Exchangeable Liquid Crystalline Elastomers and Their Applications. Chemical Reviews, 2022, 122, 4927-4945.	23.0	91
634	A foldable compact actuator based on an oxetane liquid crystal network. Journal of Applied Physics, 2021, 129, 075101.	1.1	5
635	Liquid Crystal Soft Actuators and Robots toward Mixed Reality. Advanced Functional Materials, 2021, 31, 2009835.	7.8	57
636	Internal constraints and arrested relaxation in main-chain nematic elastomers. Nature Communications, 2021, 12, 787.	5.8	30
637	Autonomous materials systems from active liquid crystals. Nature Reviews Materials, 2021, 6, 437-453.	23.3	53
638	Coupled liquid crystalline oscillators in Huygens' synchrony. Nature Materials, 2021, 20, 1702-1706.	13.3	44
639	The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nature Reviews Chemistry, 2021, 5, 148-167.	13.8	176
640	Euclidean Frustrated Ribbons. Physical Review X, 2021, 11, .	2.8	5
641	Novel Stimuliâ€Responsive Turbostratic Oxides/Hydroxides for Materialâ€Driven Robots. Advanced Intelligent Systems, 2021, 3, 2000215.	3.3	5
642	Real-time molecular-level visualization of mass flow during patterned photopolymerization of liquid-crystalline monomers. NPG Asia Materials, 2021, 13, .	3.8	3
643	Bioâ€Inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 2021, 8, 2002017.	5.6	68
644	Thermoelectromechanical instability of dielectric elastomer undergoes polarization saturation and temperature variation. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 414-421.	1.5	4
645	Swaying gel: chemo-mechanical self-oscillation based on dynamic buckling. Matter, 2021, 4, 1029-1041.	5.0	44
646	Temperature dependent features of polymer stabilized cholesteric liquid crystals based on selected liquid crystal characteristics. Optik, 2021, 230, 166354.	1.4	6
647	Photopolymerization-enforced stratification in liquid crystal materials. Progress in Polymer Science, 2021, 114, 101365.	11.8	18
648	Modeling the combined photo-chemo/thermo-mechanical actuation in azobenzene-doped liquid crystal thin films. Journal of Applied Physics, 2021, 129, .	1.1	6
649	Light-driven continuous rotating Möbius strip actuators. Nature Communications, 2021, 12, 2334.	5.8	69

#	Article	IF	Citations
650	Highly sensitive humidity-responsive actuator comprising aligned electrospun fibers containing metal–organic framework nanoparticles. Sensors and Actuators B: Chemical, 2021, 332, 129520.	4.0	14
651	Liquid-induced topological transformations of cellular microstructures. Nature, 2021, 592, 386-391.	13.7	82
652	Processing and reprocessing liquid crystal elastomer actuators. Journal of Applied Physics, 2021, 129, .	1.1	30
653	Large-Size Honeycomb-Shaped and Iris-Like Liquid Crystal Elastomer Actuators. CCS Chemistry, 2022, 4, 847-854.	4.6	10
654	Bioinspired Synergistic Photochromic Luminescence and Programmable Liquid Crystal Actuators. Angewandte Chemie, 2021, 133, 11347-11351.	1.6	28
655	From Chaos to Control: Programmable Crack Patterning with Molecular Order in Polymer Substrates. Advanced Materials, 2021, 33, e2008434.	11.1	13
656	A comparative study of force fields for predicting shape memory properties of liquid crystalline elastomers using molecular dynamic simulations. Journal of Applied Physics, 2021, 129, .	1.1	14
657	Bioinspired Synergistic Photochromic Luminescence and Programmable Liquid Crystal Actuators. Angewandte Chemie - International Edition, 2021, 60, 11247-11251.	7.2	125
658	Microscopy of Diffuse Nematic–Isotropic Transition in Main-Chain Nematic Liquid-Crystal Elastomers. Macromolecules, 2021, 54, 3678-3688.	2.2	7
659	Influence of Orientational Genesis on the Actuation of Monodomain Liquid Crystalline Elastomers. Macromolecules, 2021, 54, 4023-4029.	2.2	15
660	Ionic Elastomers for Electric Actuators and Sensors. Engineering, 2021, 7, 581-602.	3.2	44
661	Ridge approximation for thin nematic polymer networks. Journal of Applied Physics, 2021, 129, 184701.	1.1	2
662	Topics in the mathematical design of materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200108.	1.6	1
663	4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. Small, 2021, 17, e2100910.	5.2	82
664	Reprogrammable 3D Liquidâ€Crystalline Actuators with Precisely Controllable Stepwise Actuation. Advanced Intelligent Systems, 2021, 3, 2000249.	3.3	18
665	Chiral Liquid Crystalline Elastomer for Twisting Motion without Preset Alignment of Mesogens. ACS Macro Letters, 2021, 10, 690-696.	2.3	28
666	Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 725-745.	1.5	6
667	Light-Driven Crystal–Polymer Hybrid Actuators. Frontiers in Robotics and Al, 2021, 8, 684287.	2.0	5

#	Article	IF	CITATIONS
668	Continuous and programmable photomechanical jumping of polymer monoliths. Materials Today, 2021, 49, 97-106.	8.3	55
669	Liquid crystal elastomer shells with topological defect-defined actuation: Complex shape morphing, opening/closing, and unidirectional rotation. Journal of Applied Physics, 2021, 129, 174701.	1.1	8
670	Liquidâ€Crystalâ€Elastomerâ€Actuated Reconfigurable Microscale Kirigami Metastructures. Advanced Materials, 2021, 33, e2008605.	11.1	48
671	Photoâ€Triggered Shape Reconfiguration in Stretchable Reduced Graphene Oxideâ€Patterned Azobenzeneâ€Functionalized Liquid Crystalline Polymer Networks. Advanced Functional Materials, 2021, 31, 2102106.	7.8	14
672	Thermomechanically Triggered Reversible Multiâ€Transformability of a Single Material System by Energy Swapping and Shape Memory Effects. Advanced Functional Materials, 2021, 31, 2101395.	7.8	17
673	Mechano-Actuated Light-Responsive Main-Chain Liquid Crystal Elastomers. Macromolecules, 2021, 54, 5397-5409.	2.2	19
674	Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces. Advanced Materials, 2021, 33, e2004655.	11.1	6
675	Innervated, Selfâ€Sensing Liquid Crystal Elastomer Actuators with Closed Loop Control. Advanced Materials, 2021, 33, e2101814.	11.1	128
676	Triple-Shape-Memory Soft Actuators from an Interpenetrating Network of Hybrid Liquid Crystals. Macromolecules, 2021, 54, 5410-5416.	2.2	18
677	Twoâ€Photon Laser Writing of Soft Responsive Polymers via Temperatureâ€Controlled Polymerization. Laser and Photonics Reviews, 2021, 15, 2100090.	4.4	12
678	Anomalous thermally expanded polymer networks for flexible perceptual devices. Matter, 2021, 4, 1832-1862.	5.0	10
679	Inverse Design of Axisymmetric Shapes in Glassy Nematic Bilayers. Journal of Applied Mechanics, Transactions ASME, 0, , 1-17.	1.1	1
680	Mechanowetting drives droplet and fluid transport on traveling surface waves generated by light-responsive liquid crystal polymers. Physics of Fluids, 2021, 33, .	1.6	5
681	Continuum modeling of the nonlinear electro-opto-mechanical coupling and solid Fréedericksz transition in dielectric liquid crystal elastomers. International Journal of Solids and Structures, 2021, 219-220, 198-212.	1.3	2
682	Instabilities in liquid crystal elastomers. MRS Bulletin, 2021, 46, 784-794.	1.7	12
683	Putting a spin on metamaterials: Mechanical incompatibility as magnetic frustration. SciPost Physics, 2021, 10, .	1.5	6
684	Numerical simulation and experimental validation of bending and curling behaviors of liquid crystal elastomer beams under thermal actuation. Applied Physics Letters, 2021, 118, .	1.5	7
685	Functional liquid crystalline epoxy networks and composites: from materials design to applications. International Materials Reviews, 2022, 67, 201-229.	9.4	11

#	Article	IF	CITATIONS
686	Random Liquid Crystalline Copolymers Consisting of Prolate and Oblate Liquid Crystal Monomers. Macromolecules, 2021, 54, 5376-5387.	2.2	11
687	Fabrication and applications of stimuliâ€responsive micro/nanopillar arrays. Journal of Polymer Science, 2021, 59, 1491-1517.	2.0	17
688	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
689	Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers, 2021, 13, 1889.	2.0	37
690	Amineâ€Acrylate Liquid Single Crystal Elastomers Reinforced by Hydrogen Bonding. Advanced Materials, 2021, 33, e2101955.	11.1	33
691	Probing the in-plane liquid-like behavior of liquid crystal elastomers. Science Advances, 2021, 7, .	4.7	23
692	Unlocking Entropic Elasticity of Nematic Elastomers Through Light and Dynamic Adhesion. Advanced Materials Interfaces, 2021, 8, 2100672.	1.9	13
693	Soft Actuator Materials for Electrically Driven Haptic Interfaces. Advanced Intelligent Systems, 2022, 4, 2100061.	3.3	29
694	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie, 2021, 133, 19555-19561.	1.6	0
695	100th Anniversary of Macromolecular Science Viewpoint: Opportunities for Liquid Crystal Polymers in Nanopatterning and Beyond. ACS Macro Letters, 2021, 10, 945-957.	2.3	9
696	Liquid crystal elastomers wrinkling. Nonlinearity, 2021, 34, 5599-5629.	0.6	12
697	Programmable Mechanical Energy Absorption and Dissipation of Liquid Crystal Elastomers: Modeling and Simulations. Advanced Engineering Materials, 2022, 24, 2100590.	1.6	7
698	Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 2021, 3, 2000282.	3.3	111
699	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie - International Edition, 2021, 60, 19406-19412.	7.2	24
700	Intelligent Surfaces Thermally Switchable between the Highly Rough and Entirely Smooth States. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1609-1616.	2.0	8
701	Reprocessable Photodeformable Azobenzene Polymers. Molecules, 2021, 26, 4455.	1.7	11
702	Programmable Liquid Crystal Defect Arrays via Electric Field Modulation for Mechanically Functional Liquid Crystal Networks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36253-36261.	4.0	15
703	Heliotracking Device using Liquid Crystalline Elastomer Actuators. Advanced Materials Technologies, 2021, 6, 2100681.	3.0	17

#	Article	IF	CITATIONS
704	Mechanoâ€Optical Sensors Fabricated with Multilayered Liquid Crystal Elastomers Exhibiting Tunable Deformation Recovery. Advanced Functional Materials, 2021, 31, 2104702.	7.8	25
705	Autonomous Offâ€Equilibrium Morphing Pathways of a Supramolecular Shapeâ€Memory Polymer. Advanced Materials, 2021, 33, e2102473.	11.1	47
706	Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews, 2022, 122, 4946-4975.	23.0	161
707	Wearable Actuators: An Overview. Textiles, 2021, 1, 283-321.	1.8	27
708	Molecular architecture dependence of mesogen rotation during uniaxial elongation of liquid crystal elastomers. Polymer, 2021, 229, 123970.	1.8	7
709	Electrospun liquid crystal elastomer microfiber actuator. Science Robotics, 2021, 6, .	9.9	157
710	Tunable coupling of chip-scale photonic molecules via thermal actuation. Optical Materials Express, 2021, 11, 3194.	1.6	5
711	Collective Behavior Induced Highly Sensitive Magneto-Optic Effect in 2D Inorganic Liquid Crystals. Journal of the American Chemical Society, 2021, 143, 12886-12893.	6.6	12
712	Structured fabrics with tunable mechanical properties. Nature, 2021, 596, 238-243.	13.7	155
713	Programmable self-propelling actuators enabled by a dynamic helical medium. Science Advances, 2021, 7, .	4.7	21
714	Azobenzene-containing liquid crystalline composites for robust ultraviolet detectors based on conversion of illuminance-mechanical stress-electric signals. Nature Communications, 2021, 12, 4875.	5.8	37
715	Review of Fiber-Based Three-Dimensional Printing for Applications Ranging from Nanoscale Nanoparticle Alignment to Macroscale Patterning. ACS Applied Nano Materials, 2021, 4, 7538-7562.	2.4	21
716	Microâ€Lifting Jack: Heat―and Lightâ€Fueled 3D Symmetric Deformation of Braggâ€Onionâ€Like Beads with Fu Polymerized Chiral Networks. Advanced Optical Materials, 2021, 9, 2100667.	lly 3.6	7
717	Thermal Conducting Thermosets Driven by Molecular Structurally Enhanced Mesogen Interactions. ACS Applied Polymer Materials, 2021, 3, 4147-4155.	2.0	12
718	Dynamic Liquid Crystalline Networks for Twisted Fiber and Spring Actuators Capable of Fast Light-Driven Movement with Enhanced Environment Adaptability. Chemistry of Materials, 2021, 33, 6541-6552.	3.2	41
719	Chiral Nematic Cellulose Nanocrystals-Magnetite Nanocomposite Films Displaying Magnet-modulated Circular Dichroism Activity. Chemical Research in Chinese Universities, 2021, 37, 1067.	1.3	2
720	Reversible Curvature Reversal of Monolithic Liquid Crystal Elastomer Film and Its Smart Valve Application. Macromolecular Rapid Communications, 2021, 42, e2100404.	2.0	6
721	Biomimetic 4Dâ€Printed Breathing Hydrogel Actuators by Nanothylakoid and Thermoresponsive Polymer Networks. Advanced Functional Materials, 2021, 31, 2105544.	7.8	45

#	Article	IF	CITATIONS
722	Nanodancing with Moisture: Humidityâ€Sensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide. Advanced Intelligent Systems, 2022, 4, 2100084.	3.3	15
723	Nematic liquid crystalline elastomers are aeolotropic materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210259.	1.0	12
724	Synthesis and alignment of liquid crystalline elastomers. Nature Reviews Materials, 2022, 7, 23-38.	23.3	205
725	Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures. Advanced Materials, 2021, 33, e2105024.	11.1	22
726	Crystal-like topological defect arrays in nematic liquid crystal. Applied Physics Letters, 2021, 119, .	1.5	4
727	Mechanically Responsive Organic Crystals by Light. Israel Journal of Chemistry, 2021, 61, 683-696.	1.0	18
728	Unconstrained 3D Shape Programming with Lightâ€Induced Stress Gradient. Advanced Materials, 2021, 33, e2105194.	11.1	44
729	Multiâ€Photon 4D Printing of Complex Liquid Crystalline Microstructures by In Situ Alignment Using Electric Fields. Advanced Materials Technologies, 2022, 7, 2100944.	3.0	29
730	Unveiling electron transfer in a supramolecular aggregate for adaptive and autonomous photochromic response. IScience, 2021, 24, 102956.	1.9	5
731	Impact of Crystallites in Nematic Elastomers on Dynamic Mechanical Properties and Adhesion. Macromolecules, 2021, 54, 8987-8995.	2.2	12
732	Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration. Advanced Materials, 2021, 33, e2106175.	11.1	60
733	Latest Advances in Development of Smart Phase Change Material for Soft Actuators. Advanced Engineering Materials, 2022, 24, 2100863.	1.6	13
734	Thermal- and photo-responsive liquid crystalline elastomers fabricated using tung oil-based azobenzene. Materials Today Communications, 2021, 28, 102490.	0.9	2
735	Ultrafast, Highâ€Contractile Electrothermalâ€Driven Liquid Crystal Elastomer Fibers towards Artificial Muscles. Small, 2021, 17, e2103700.	5. 2	52
736	Cell instructive Liquid Crystalline Networks for myotube formation. IScience, 2021, 24, 103077.	1.9	8
737	Chemically Triggered Changes in Mechanical Properties of Responsive Liquid Crystal Polymer Networks with Immobilized Urease. Journal of the American Chemical Society, 2021, 143, 16740-16749.	6.6	13
738	Liquid Crystal Elastomers with Enhanced Directional Actuation to Electric Fields. Advanced Materials, 2021, 33, e2103806.	11.1	49
739	Reconfiguration of multistable 3D ferromagnetic mesostructures guided by energy landscape surveys. Extreme Mechanics Letters, 2021, 48, 101428.	2.0	8

#	Article	IF	Citations
740	Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface. TrAC - Trends in Analytical Chemistry, 2021, 144, 116434.	5.8	23
741	Thermomechanically active electrodes power work-dense soft actuators. Soft Matter, 2021, 17, 1521-1529.	1.2	7
742	Elastomeric nematic colloids, colloidal crystals and microstructures with complex topology. Soft Matter, 2021, 17, 3037-3046.	1.2	3
743	Photochemically and Photothermally Controllable Liquid Crystalline Network and Soft Walkers. ACS Applied Materials & Description (2011), 13, 3221-3227.	4.0	22
744	Boundary effect on the spontaneous deformation of a liquid crystal elastomer plate with arbitrary director orientation. Physical Review E, 2021, 103, 012701.	0.8	4
745	Mechanochemical induction of wrinkling morphogenesis on elastic shells. Soft Matter, 2021, 17, 4738-4750.	1.2	9
746	The contribution of intermolecular forces to phototropic actuation of liquid crystalline elastomers. Polymer Chemistry, 2021, 12, 1581-1587.	1.9	24
747	Light-Fueled Nanoscale Surface Waving in Chiral Liquid Crystal Networks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4777-4784.	4.0	16
748	Reprocessable and healable room temperature photoactuators based on a main-chain azobenzene liquid crystalline poly(ester-urea). Journal of Materials Chemistry C, 0, , .	2.7	10
749	3D printing of functional microrobots. Chemical Society Reviews, 2021, 50, 2794-2838.	18.7	178
750	Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators. Advanced Materials, 2017, 29, 1606467.	11.1	305
751	Viewpoint: Pavlovian Materialsâ€"Functional Biomimetics Inspired by Classical Conditioning. Advanced Materials, 2020, 32, e1906619.	11.1	21
752	Fluidic and Mechanical Thermal Control Devices. Advanced Electronic Materials, 2021, 7, 2000623.	2.6	20
753	A Novel Sideâ€Chain Liquid Crystal Elastomer Exhibiting Anomalous Reversible Shape Change. Angewandte Chemie - International Edition, 2020, 59, 15129-15134.	7.2	33
754	Cell Motility and Locomotion by Shape Control. Lecture Notes in Mathematics, 2020, , 1-41.	0.1	3
755	Photonic applications of azobenzene molecules embedded in amorphous polymer. Rivista Del Nuovo Cimento, 2020, 43, 599-629.	2.0	25
756	Deployable, liquid crystal elastomer-based intracortical probes. Acta Biomaterialia, 2020, 111, 54-64.	4.1	11
757	Pavlovian Polymers. Matter, 2020, 2, 19-20.	5.0	1

#	ARTICLE	IF	CITATIONS
758	Dynamic Interfacial Regulation by Photodeformable Azobenzene-Containing Liquid Crystal Polymer Micro/Nanostructures. Langmuir, 2020, 36, 6611-6625.	1.6	25
759	Tough, Shape-Changing Materials: Crystallized Liquid Crystal Elastomers. Macromolecules, 2017, 50, 4267-4275.	2.2	74
760	Synthesis and properties of chiral azo-liquid crystalline terpolymer containing cyano mesogenic units. Liquid Crystals, 2017, 44, 2379-2390.	0.9	24
761	Design of nematic liquid crystals to control microscale dynamics. Liquid Crystals Reviews, 2020, 8, 59-129.	1.1	22
762	Shape-programmable and healable materials and devices using thermo- and photo-responsive vitrimer. Multifunctional Materials, 2020, 3, 045001.	2.4	19
763	Microfluidic slug transport on traveling-wave surface topographies by mechanowetting. Physical Review Fluids, 2020, 5, .	1.0	5
764	Increasing the interlayer distance in layered microribbons enhances the electrically driven twisting response. Physical Review Materials, 2017, 1 , .	0.9	1
765	Dynamic tuning of the director field in liquid crystal shells using block copolymers. Physical Review Research, 2020, 2, .	1.3	20
766	The Shape of a Photo-Actuated Pyramidal Cone. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	2
767	Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	34
768	Fabrication and Characterization of Highly Deformable Artificial Muscle Fibers Based on Liquid Crystal Elastomers. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	6
769	Photonic arms, legs, and skin. , 2017, , .		1
770	Oscillatory dynamic surface structures in patterned liquid crystal network coatings. , 2018, , .		1
771	Surface structures of hybrid aligned liquid crystal network coatings containing reverse tilt domain. , 2019, , .		1
772	Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Science Advances, 2020, 6, eaax1464.	4.7	139
773	Stretchable, flexible, rollable, and adherable polarization volume grating film. Optics Express, 2019, 27, 5814.	1.7	47
774	Novel liquid crystal photonic devices enabled by two-photon polymerization [Invited]. Optics Express, 2019, 27, 11472.	1.7	44
775	Tunable photonic devices by 3D laser printing of liquid crystal elastomers. Optical Materials Express, 2020, 10, 2928.	1.6	25

#	ARTICLE	IF	CITATIONS
777	Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications. Nanotechnology Reviews, 2020, 9, 1118-1136.	2.6	69
778	Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators, 2020, 9, 10.	1.2	104
779	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	18.7	15
780	Large rewritable liquid crystal pretilt angle by <i>in situ</i> photoalignment of brilliant yellow films. Applied Physics Letters, 2021, 119, .	1.5	6
781	Director Deformations, Geometric Frustration, and Modulated Phases in Liquid Crystals. Annual Review of Condensed Matter Physics, 2022, 13, 49-71.	5.2	32
782	Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nature Communications, 2021, 12, 5936.	5.8	42
783	Novel chiral multi-arm liquid crystal polymers containing azobenzene mesogens and cholic acid. Liquid Crystals, 0 , $1-14$.	0.9	0
784	Cholesteric Liquid Crystalline Polyether with Broad Tunable Circularly Polarized Luminescence. Langmuir, 2021, 37, 11922-11930.	1.6	10
785	Lightâ€Fueled Climbing of Monolithic Torsional Soft Robots via Molecular Engineering. Advanced Intelligent Systems, 2022, 4, 2100148.	3.3	13
786	Electroâ€Active and Photoâ€Active Vanadium Oxide Nanowire Thermoâ€Hygroscopic Actuators for Kirigami Popâ€up. Advanced Science, 2021, 8, e2102064.	5.6	10
787	Largely enhanced water responsive sensitivity of ENR composites by simultaneously introducing cellulose nanocrystals and fibrillar silicate. Composites Communications, 2021, 28, 100972.	3.3	0
789	Electric field switched surface topography of fingerprint liquid-crystal network polymer coating. , 2018, , .		0
790	Thermal and Electrical Actuation of Liquid Crystal Elastomers/Gels., 2019,, 289-306.		0
791	The Techniques of Surface Alignment of Liquid Crystals. Springer Proceedings in Physics, 2019, , 165-197.	0.1	4
792	Photodeformable Liquid Crystalline Polymers (LCPs). Polymers and Polymeric Composites, 2020, , 361-390.	0.6	0
793	4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials, 2022, 34, e2104390.	11.1	75
794	Lightâ€Fueled Polymer Film Capable of Directional Crawling, Friction ontrolled Climbing, and Selfâ€Sustained Motion on a Human Hair. Advanced Science, 2022, 9, e2103090.	5.6	26
795	Multiscale Structural Characterization of a Smectic Liquid Crystalline Elastomer upon Mechanical Deformation Using Neutron Scattering. Macromolecules, 2021, 54, 10574-10582.	2,2	3

#	Article	IF	CITATIONS
796	Smart actuation of liquid crystal elastomer elements: cross-link density-controlled response. Smart Materials and Structures, 2022, 31, 015012.	1.8	5
797	Photopatterning Crystal Orientation in Shape-Morphing Polymers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22762-22770.	4.0	5
798	Macroscopic Regulation of Hierarchical Nanostructures in Liquid-crystalline Block Copolymers towards Functional Materials. Chinese Journal of Polymer Science (English Edition), 2021, 39, 397-416.	2.0	12
799	Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.	5.3	50
800	Cooperative Molecular Alignment Process Enabled by Scanning Wave Photopolymerization. , 2020, , 375-387.		0
801	Photomechanical Effects in Crosslinked Liquid-Crystalline Polymers with Photosynergetic Processes. , 2020, , 479-492.		0
802	Introduction to Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 1-26.	0.6	1
803	Varied Alignment Methods and Versatile Actuations for Liquid Crystal Elastomers: A Review. Advanced Intelligent Systems, 2022, 4, 2100065.	3.3	21
804	Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Selfâ∈Healing, and Magnetic Response Behaviors. Advanced Materials, 2022, 34, e2106208.	11.1	19
805	Customizable Sophisticated Three-Dimensional Shape Changes of Large-Size Liquid Crystal Elastomer Actuators. ACS Applied Materials & Elastomer (2021, 13, 54439-54446).	4.0	13
806	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
807	Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting. Materials, 2021, 14, 6688.	1.3	4
808	The Integration of Sensing and Actuating based on a Simple Design Fiber Actuator towards Intelligent Soft Robots. Advanced Materials Technologies, 2022, 7, 2101260.	3.0	23
809	Effect of the Concentration Gradient on Molecular Alignment by Scanning Wave Photopolymerization. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 291-294.	0.1	1
810	Macroscopic and microscopic shape memory effects of block copolymers prepared via ATRP. Journal of Polymer Science, 2020, 58, 20-24.	2.0	0
811	Liquid crystal polymer networks directed by scanning wave photopolymerization of oxetane monomer and crosslinker. Molecular Crystals and Liquid Crystals, 2020, 713, 37-45.	0.4	1
812	Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 192-194.	1.4	2
813	Propagating wave in a fluid by coherent motion of 2D colloids. Nature Communications, 2021, 12, 6771.	5.8	10

#	Article	IF	Citations
814	Stimuli-Responsive Polymers for Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 515-545.	7.5	21
815	Synchronized dancing under light. Nature Materials, 2021, 20, 1594-1595.	13.3	4
816	Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds. Advanced Functional Materials, 2022, 32, 2110360.	7.8	49
817	Controlling permeation in electrically deforming liquid crystal network films: A dynamical Landau theory. Physical Review E, 2021, 104, 054701.	0.8	1
818	Light-Actuated Liquid Crystal Elastomer Prepared by Projection Display. Materials, 2021, 14, 7245.	1.3	7
819	Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced Materials, 2022, 34, e2106787.	11.1	44
820	Harnessing the power of chemically active sheets in solution. Nature Reviews Physics, 2022, 4, 125-137.	11.9	13
821	Threeâ€state Structural Switching and Selective Molecular Interactions of Cylindrical Concentric Monodomain Liquid Crystal Elastomer. ChemistrySelect, 2021, 6, 12604-12609.	0.7	0
822	Unconventional Approaches to Light-Promoted Dynamic Surface Morphing on Polymer Films. Bulletin of the Chemical Society of Japan, 2022, 95, 138-162.	2.0	19
823	Multifunctional sensors based on liquid crystals scaffolded in nematic polymer networks. RSC Advances, 2021, 11, 38694-38702.	1.7	6
824	Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning. Materials Horizons, 2022, 9, 942-951.	6.4	9
825	Fully Room-Temperature Reprogrammable, Reprocessable, and Photomobile Soft Actuators from a High-Molecular-Weight Main-Chain Azobenzene Crystalline Poly(ester-amide). ACS Applied Materials & Amp; Interfaces, 2022, 14, 3264-3273.	4.0	14
826	Highly Durable and Tough Liquid Crystal Elastomers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2006-2014.	4.0	13
827	Multi-functional liquid crystal elastomer composites. Applied Physics Reviews, 2022, 9, .	5.5	87
828	Electromechanical deformation of dielectric nematic elastomers accompanied by the rotation of mesogens. International Journal of Mechanical Sciences, 2022, 218, 107061.	3.6	3
829	Photoinduced Motions of Thermoplastic Polyurethanes Containing Azobenzene Moieties in Main Chains. Macromolecules, 2022, 55, 413-420.	2.2	19
830	Polymorph-Derived Diversification of Crystal Actuation by Photoisomerization and the Photothermal Effect. Chemistry of Materials, 2022, 34, 1315-1324.	3.2	30
831	Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications. Journal of Materials Chemistry C, 2022, 10, 1808-1815.	2.7	7

#	Article	IF	CITATIONS
832	Characterization of novel spacecraft materials under high energy electron and atomic oxygen exposure. , 2022, , .		6
833	3D printing of functional polymers for miniature machines. Multifunctional Materials, 2022, 5, 012001.	2.4	3
834	Smart Film Actuators for Biomedical Applications. Small, 2022, 18, e2105116.	5.2	15
835	Enhancement of molecular mobility in solid polymers by light: fundamentals and applications. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	9
836	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	5.6	29
837	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
838	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie, 0, , .	1.6	1
839	Mechanochromic, Shapeâ€Programmable and Selfâ€Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angewandte Chemie, 2022, 134, .	1.6	6
840	Electro-optical property of polymerized liquid crystal devices using linearly polarized UV irradiation. Japanese Journal of Applied Physics, 2022, 61, 012004.	0.8	1
841	The photoinduced back-and-forth deformation behavior of poly(arylene ether)s containing bis-azobenzene groups in the main chain. Polymer Chemistry, 2022, 13, 569-576.	1.9	4
842	A Rod Theory for Liquid Crystalline Elastomers. Journal of Elasticity, 2023, 153, 509-532.	0.9	6
843	Development in liquid crystal microcapsules: fabrication, optimization and applications. Journal of Materials Chemistry C, 2022, 10, 413-432.	2.7	16
844	Multifunctional Liquid Crystal Device for Grayscale Pattern Display and Holography with Tunable Spectralâ€Response. Laser and Photonics Reviews, 2022, 16, .	4.4	29
845	Catalystâ€free reprocessable crosslinked biobased <scp>polybenzoxazineâ€polyurethane</scp> based on dynamic carbamate chemistry. Journal of Applied Polymer Science, 2022, 139, .	1.3	20
846	Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Selfâ€Healing, Shape Memory, and Liquid Crystal Polymers. Macromolecular Rapid Communications, 2022, 43, e2100768.	2.0	18
847	Porous Liquidâ€Crystalline Networks with Hydrogelâ€Like Actuation and Reconfigurable Function. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
848	Mechanochromic, Shapeâ€Programmable and Selfâ€Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	136
849	Porous Liquidâ€Crystalline Networks with Hydrogelâ€Like Actuation and Reconfigurable Function. Angewandte Chemie, 2022, 134, .	1.6	3

#	Article	IF	CITATIONS
850	Advanced Functional Liquid Crystals. Advanced Materials, 2022, 34, e2109063.	11.1	106
851	Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications. ACS Applied Polymer Materials, 2022, 4, 3153-3168.	2.0	20
852	Messy or Ordered? Multiscale Mechanics Dictates Shapeâ€Morphing of 2D Networks Hierarchically Assembled of Responsive Microfibers. Advanced Functional Materials, 2022, 32, .	7.8	3
853	Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today, 2022, 43, 101419.	6.2	85
854	A Miniaturized Light-Driven Soft Crawler Based On Liquid Crystal Elastomer with High-Efficient Photothermal Thin-Film. , 2022, , .		2
855	Photoâ€Imprinting of the Helical Organization in Liquidâ€Crystal Networks Using Achiral Monomers and Circularly Polarized Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
856	Highly flexible and electrically controlled grating enabled by polymer dispersed liquid crystal. Journal of Molecular Liquids, 2022, 353, 118664.	2.3	5
857	Photoâ€imprinting of the helical organization in liquid crystal networks using achiral monomers and circularly polarized light. Angewandte Chemie, 0, , .	1.6	2
858	Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars. Molecules, 2021, 26, 7674.	1.7	5
859	Dynamics of the photo-thermo-mechanical actuations in NIR-dye doped liquid crystal polymer networks. Soft Matter, 2022, 18, 3358-3368.	1.2	8
860	Liquid Crystal-Based Organosilicone Elastomers with Supreme Mechanical Adaptability. Polymers, 2022, 14, 789.	2.0	4
861	An ultrahigh fatigue resistant liquid crystal elastomer-based material enabled by liquid metal. Science China Materials, 2022, 65, 1679-1686.	3.5	6
862	Recent advances in materials and applications for bioelectronic and biorobotic systems. View, 2022, 3, .	2.7	18
863	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
864	The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers, 2022, 14, 903.	2.0	3
865	Chiral Photomechanical Behavior of Achiral Azobenzene-based Molecular Glass Particles Fixed in Agar Gel. Chemistry Letters, 2022, 51, 493-496.	0.7	2
866	Thermally Driven Self-Rotation of a Hollow Torus Motor. Micromachines, 2022, 13, 434.	1.4	5
867	Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15632-15640.	4.0	28

#	Article	IF	CITATIONS
868	Fluorescent Polymers Conspectus. Polymers, 2022, 14, 1118.	2.0	16
869	Directional droplet transport on switchable ratchets by mechanowetting. Microfluidics and Nanofluidics, 2022, 26, $1.$	1.0	1
870	Three-Dimensional Printing of Liquid Crystals with Thermal Sensing Capability via Multimaterial Vat Photopolymerization. ACS Applied Polymer Materials, 2022, 4, 2951-2959.	2.0	16
871	Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. Advanced Materials, 2022, 34, e2110384.	11.1	133
872	Bioinspired Phototropic MXeneâ€Reinforced Soft Tubular Actuators for Omnidirectional Lightâ€Tracking and Adaptive Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	127
873	Phototactic Miniature Soft Robots with Terrain Adaptability. Advanced Materials Technologies, 2022, 7, .	3.0	10
874	Programmable Lightâ€Driven Liquid Crystal Elastomer Kirigami with Controlled Molecular Orientations. Advanced Intelligent Systems, 2022, 4, .	3.3	9
875	Liquid Crystalline Elastomers Based on Click Chemistry. ACS Applied Materials & Diterfaces, 2022, 14, 14842-14858.	4.0	20
876	Optically controlled grasping-slipping robot moving on tubular surfaces. Multifunctional Materials, 2022, 5, 024001.	2.4	5
877	Superfast-Expanding Porous Hydrogels: Pushing New Frontiers in Converting Chemical Potential into Useful Mechanical Work. ACS Applied Materials & Interfaces, 2022, 14, 13733-13742.	4.0	7
878	Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications. Advanced Materials Technologies, 2022, 7, .	3.0	37
879	Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. Journal of the American Chemical Society, 2022, 144, 6851-6860.	6.6	15
880	A Light-Powered Liquid Crystal Elastomer Spring Oscillator with Self-Shading Coatings. Polymers, 2022, 14, 1525.	2.0	10
881	Controlled morphing of architected liquid crystal elastomer elements: modeling and simulations. Mechanics Research Communications, 2022, 121, 103858.	1.0	8
882	Bioinspired multimodal soft robot driven by a single dielectric elastomer actuator and two flexible electroadhesive feet. Extreme Mechanics Letters, 2022, 53, 101720.	2.0	20
883	Self-oscillating buckling and postbuckling of a liquid crystal elastomer disk under steady illumination. International Journal of Mechanical Sciences, 2022, 221, 107233.	3.6	24
884	Bio-Mimetic Actuators of a Photothermal-Responsive Vitrimer Liquid Crystal Elastomer with Robust, Self-Healing, Shape Memory, and Reconfigurable Properties. ACS Applied Materials & Diterfaces, 2022, 14, 1929-1939.	4.0	31
885	Materials for Smart Soft Actuator Systems. Chemical Reviews, 2022, 122, 1349-1415.	23.0	131

#	Article	IF	CITATIONS
886	Reprogrammable Soft Robot Actuation by Synergistic Magnetic and Light Fields. Advanced Functional Materials, 2022, 32, .	7.8	31
887	Patterned Actuators via Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing of Liquid Crystals. ACS Applied Materials & Direct Ink Writing Of Liquid Crystals & Direct Ink Writing Of Liquid	4.0	19
888	Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chemical Reviews, 2022, 122, 4887-4926.	23.0	288
889	Optically Controlled Latching and Launching in Soft Actuators. Advanced Functional Materials, 2022, 32, .	7.8	24
890	Introduction to Special Topic: Programmable liquid crystal elastomers. Journal of Applied Physics, 2021, 130, 220401.	1,1	3
891	The richness of liquid crystal elastomer mechanics keeps growing. Liquid Crystals Today, 2021, 30, 59-66.	2.3	4
892	Trade-off effect between the stress and strain range in the soft elasticity of liquid crystalline elastomers. Polymer Journal, 2022, 54, 1017-1027.	1.3	3
893	Gamma-convergence results for nematic elastomer bilayers: relaxation and actuation. ESAIM - Control, Optimisation and Calculus of Variations, 0, , .	0.7	0
894	Sharing of Strain Between Nanofiber Forests and Liquid Crystals Leads to Programmable Responses to Electric Fields. Advanced Functional Materials, 2022, 32, .	7.8	5
896	CHAPTER 4. Materials Design Principles for Mechanochemical Transduction. RSC Polymer Chemistry Series, 0, , 76-118.	0.1	0
898	Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Materials Horizons, 2022, 9, 1825-1849.	6.4	59
899	Liquid crystalline aggregation-induced emission luminogens for optical displays. , 2022, , 373-395.		0
900	Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angewandte Chemie - International Edition, 2022, 61, e202202577.	7.2	39
901	Light-triggered autonomous shape-reconfigurable and locomotive rechargeable power sources. Materials Today, 2022, 55, 56-65.	8.3	6
902	Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angewandte Chemie, 0, , .	1.6	1
903	Dynamic Robotic Fibers: Liquid Crystal Elastomers for Programmable and Reversible Shape-Changing Behaviors. , 2022, , .		1
904	Self-regulated non-reciprocal motions in single-material microstructures. Nature, 2022, 605, 76-83.	13.7	63
905	Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light: Science and Applications, 2022, 11, 135.	7.7	28

#	Article	IF	CITATIONS
906	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010 \hat{a} e"2021). Frontiers in Robotics and Al, 2022, 9, .	2.0	12
907	Optical properties of broadband reflection ofcholesteric liquid crystal by thermal diffusion ofbenzotriazoles. Applied Optics, 0, , .	0.9	2
908	Formation of rolls from liquid crystal elastomer bistrips. Soft Matter, 2022, 18, 4077-4089.	1.2	2
909	Helical Liquid Crystal Elastomer Miniature Robot with Photocontrolled Locomotion. Advanced Materials Technologies, 2022, 7, .	3.0	7
910	Liquid Crystal Elastomer Based Thermal Microactuators and Photothermal Microgrippers Using Lateral Bending Beams. Advanced Materials Technologies, 0, , 2101732.	3.0	3
911	Enhancing the performances of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s <i>via</i> chemical structure engineering. Polymer Chemistry, 2022, 13, 3713-3725.	1.9	2
912	Electrically driven liquid crystal network actuators. Soft Matter, 2022, 18, 4850-4867.	1.2	17
913	Thiol–acrylate side-chain liquid crystal elastomers. Soft Matter, 2022, 18, 4803-4809.	1.2	2
914	A High-Fidelity Preparation Method for Liquid Crystal Elastomer Actuators. Langmuir, 2022, 38, 7190-7197.	1.6	9
915	Hysteresis Phenomena and the Effect of Reorientation in a Polymer-Liquid Crystal System Under the Influence of Laser Radiation and Uniaxial Deformation. Journal of Physics: Conference Series, 2022, 2270, 012011.	0.3	0
916	Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26480-26488.	4.0	11
917	Thermally induced self-rupture of a constrained liquid crystal elastomer. Engineering Fracture Mechanics, 2022, 269, 108584.	2.0	5
918	Photoresponsive Polymerâ€Based Biomimetic Contractile Units as Building Block for Artificial Muscles. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
919	Mesogenic polymer composites for temperature-programmable thermoelectric ionogels. Journal of Materials Chemistry A, 2022, 10, 13958-13968.	5.2	6
920	Liquid crystal elastomers for soft actuators. , 0, 1, .		3
921	Amplifying Molecular Scale Rotary Motion: The Marriage of Overcrowded Alkene Molecular Motor with Liquid Crystals. Advanced Materials, 2022, 34, .	11.1	10
922	A Ribbon Model for Nematic Polymer Networks. Journal of Elasticity, 0, , .	0.9	3
923	Optoâ€regulation for the 2D to 3D transformation of a liquid crystal network membrane. Journal of Applied Polymer Science, 0, , .	1.3	0

#	ARTICLE	IF	CITATIONS
924	Synthesis and characterization of cholesteric liquid crystal elastomer films. Molecular Crystals and Liquid Crystals, 2023, 753, 1-17.	0.4	1
925	Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Science Advances, 2022, 8, .	4.7	57
926	Monolithically Assembled 3D Soft Transformable Robot. Advanced Intelligent Systems, 2022, 4, .	3.3	2
927	4D-printed light-responsive structures. , 2022, , 55-105.		0
928	4D Microprinting., 2022,, 231-263.		1
929	Interfacial metric mechanics: stitching patterns of shape change in active sheets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	4
930	Research Progress of Cholesteric Liquid Crystals with Broadband Reflection. Molecules, 2022, 27, 4427.	1.7	14
931	Light―and Fieldâ€Controlled Diffusion, Ejection, Flow and Collection of Liquid at a Nanoporous Liquid Crystal Membrane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
932	Self-Jumping of a Liquid Crystal Elastomer Balloon under Steady Illumination. Polymers, 2022, 14, 2770.	2.0	10
933	Photothermal Diol for NIR-Responsive Liquid Crystal Elastomers. ACS Applied Polymer Materials, 2022, 4, 6202-6210.	2.0	10
934	Light―and Field ontrolled Diffusion, Ejection, Flow and Collection of Liquid at a Nanoporous Liquid Crystal Membrane. Angewandte Chemie, 0, , .	1.6	2
935	Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33746-33755.	4.0	6
936	Slidable Cross-Linking Effect on Liquid Crystal Elastomers: Enhancement of Toughness, Shape-Memory, and Self-Healing Properties. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32486-32496.	4.0	6
937	Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules, 2022, 27, 4330.	1.7	10
938	Bendingâ€Insensitive Intrinsically Flexible Ultraviolet Encoding Devices Based on Piezoelectric Nanogeneratorâ€Supplied Liquid Crystalline Polymer Fabrics. Small, 2022, 18, .	5.2	6
939	The simultaneous control over the alternating sequence and the inner-core position of the mesogenic segments in side-chain liquid crystal polymers. Journal of Molecular Liquids, 2022, 363, 119916.	2.3	1
940	Compositional optimization of high-solid-loading ceramic cores via 3D printing. Additive Manufacturing, 2022, 58, 103054.	1.7	1
941	Annealing effect of thermotropic liquid crystalline copolyester fibers on thermo-mechanical properties and morphology. Scientific Reports, 2022, 12, .	1.6	1

#	Article	IF	CITATIONS
942	Synchronization of a Passive Oscillator and a Liquid Crystal Elastomer Self-Oscillator Powered by Steady Illumination. Polymers, 2022, 14, 3058.	2.0	0
943	Programmable Shape Change in Semicrystalline Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 2022, 14, 35087-35096.	4.0	10
944	Semiâ€Crystalline Rubber as a Lightâ€Responsive, Programmable, Resilient Robotic Material. Advanced Functional Materials, 2022, 32, .	7.8	4
946	Remarkable visible-light activated photostriction in Bi0.5(Na0.77K0.18Li0.05)0.5TiO3–Sr(Nb0.5Ni0.5)O3 relaxor ferroelectrics. Ceramics International, 2022, 48, 35176-35184.	2.3	3
947	Rapidly reprogrammable actuation of liquid crystal elastomers. Matter, 2022, 5, 2409-2413.	5.0	4
948	Liquid crystal-based structural color actuators. Light: Science and Applications, 2022, 11, .	7.7	39
949	Pulsating self-snapping of a liquid crystal elastomer bilayer spherical shell under steady illumination. International Journal of Mechanical Sciences, 2022, 233, 107646.	3.6	12
950	Surfaceâ€Enforced Alignment of Reprogrammable Liquid Crystalline Elastomers. Advanced Science, 2022, 9, .	5.6	17
951	Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angewandte Chemie, 2022, 134, .	1.6	4
952	Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices. Soft Matter, 2022, 18, 8063-8070.	1.2	4
953	Crystal actuation switching by crystal thickness and light wavelength. Materials Advances, 2022, 3, 7098-7106.	2.6	7
954	Liquid Crystal Elastomers. Interdisciplinary Applied Mathematics, 2022, , 183-215.	0.2	0
955	Sunlight-driven smart windows with polymer/liquid crystal composites for autonomous control of optical properties. Journal of Materials Chemistry C, 2022, 10, 12789-12794.	2.7	6
956	Bio-chemo-mechanical coupling models of soft biological materials: A review. Advances in Applied Mechanics, 2022, , 309-392.	1.4	5
957	Arbitrarily and repeatedly programmable multi-layer soft actuators via "stress-caching― Chemical Engineering Journal, 2023, 451, 139054.	6.6	5
958	Functional Liquid Crystal Elastomers Based on Dynamic Covalent Chemistry. Chemistry - A European Journal, 2022, 28, .	1.7	18
959	Electroactive Soft Actuators Based on Columnar Ionic Liquid Crystal/Polymer Composite Membrane Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels. ACS Applied Materials & Electrolytes Forming 3D Continuous Ionic Channels & Electrolytes Form	4.0	9
960	A mathematical model for the auxetic response of liquid crystal elastomers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	10

#	Article	IF	CITATIONS
961	Confinement-Induced Fabrication of Liquid Crystalline Polymeric Fibers. Molecules, 2022, 27, 5639.	1.7	1
962	Photoâ€Programmed Deformations in Rigid Liquid Crystalline Polymers Triggered by Body Temperature. Small, 2022, 18, .	5.2	2
963	Contactless manipulation of mixed phase fluids in liquid crystal polymer microtubes assisted with light-driven vortex. NPG Asia Materials, 2022, 14, .	3.8	1
964	4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 2022, 265, 111874.	1.1	15
965	Bending Behaviors in Photoresponsive Liquid Crystalline Polymer Films Derived from a Hockey Stick-Shaped Reactive Mesogen. Macromolecular Research, 2022, 30, 799-810.	1.0	2
966	Morphing of stiffness-heterogeneous liquid crystal elastomers via mechanical training and locally controlled photopolymerization. Matter, 2022, 5, 4332-4346.	5.0	5
967	Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nature Materials, 2022, 21, 1441-1447.	13.3	58
968	3D optomechanical metamaterials. Materials Today, 2022, 59, 9-17.	8.3	18
969	Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
970	Multistable Conventional Azobenzene Liquid Crystal Actuators Using Only Visible Light: The Decisive Role of Small Amounts of Unpolymerized Monomers. ACS Applied Polymer Materials, 2022, 4, 7751-7758.	2.0	5
971	Light Modulated Reversible "Onâ€Off―Transformation of Arylazoheteroarene Based Discotics in Nematic Organization. Chemistry - A European Journal, 2023, 29, .	1.7	3
972	Functional Poly(ionic liquid) Porous Membranes: From Fabrications to Advanced Applications < sup > â € < /sup > . Chinese Journal of Chemistry, 2023, 41, 225-236.	2.6	3
973	Alignment Control of Smectic Layer Structures in Liquid-Crystalline Polymers by Photopolymerization with Scanned Slit Light. ACS Applied Materials & Diterfaces, 2022, 14, 48143-48149.	4.0	4
974	New luminescent ordered liquid crystalline molecules with a 3-cyano-2-pyridone core unit. Soft Matter, 2022, 18, 8320-8330.	1.2	3
975	Thermodynamics of Hygroresponsive Soft Engines: Cycle Analysis and Work Ratio. Physical Review Applied, 2022, 18, .	1.5	3
976	MEMS-compatible structuring of liquid crystal network actuators using maskless photolithography. Smart Materials and Structures, 2022, 31, 115014.	1.8	3
977	Curvature arising in shape memory polymer sheets via light absorption. Acta Mechanica, 0, , .	1.1	0
978	Self-Folding Liquid Crystal Network Filaments Patterned with Vertically Aligned Mesogens. ACS Applied Materials & Diterfaces, 2022, 14, 50171-50179.	4.0	7

#	Article	IF	CITATIONS
979	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
980	Rapid Prototyping Dynamic Robotic Fibers for Tunable Movement. , 2022, , .		1
981	Human-muscle-inspired single fibre actuator with reversible percolation. Nature Nanotechnology, 2022, 17, 1198-1205.	15.6	53
982	Artificial Muscles and Soft Robotic Devices for Treatment of Endâ€Stage Heart Failure. Advanced Materials, 2023, 35, .	11.1	9
983	Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation. Polymers, 2022, 14, 4588.	2.0	6
984	4D Multiscale Origami Soft Robots: A Review. Polymers, 2022, 14, 4235.	2.0	10
985	Merging the Interfaces of Different Shapeâ€Shifting Polymers Using Hybrid Exchange Reactions. Advanced Materials, 2023, 35, .	11.1	11
986	Embedding intelligence in materials for responsive built environment: A topical review on Liquid Crystal Elastomer actuators and sensors. Building and Environment, 2022, 226, 109714.	3.0	11
987	Programmable deformation of liquid crystal elastomer plates subjected to concentrated light illumination. Mechanics of Materials, 2022, 175, 104501.	1.7	4
988	Light-powered microrobots: Recent progress and future challenges. Optics and Lasers in Engineering, 2023, 161, 107380.	2.0	7
989	4D Printing of Seed Capsuleâ€Inspired Hygroâ€Responsive Structures via Liquid Crystal Templatingâ€Assisted Vat Photopolymerization. Advanced Functional Materials, 2023, 33, .	7.8	7
990	Odd–even effect on the thermal conductivity of liquid crystalline epoxy resins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
991	Calla Lily flower inspired morphing of flat films to conical tubes. Journal of Polymer Science, 2023, 61, 1065-1073.	2.0	2
992	Shape Morphing Directed by Spatially Encoded, Dually Responsive Liquid Crystalline Elastomer Microâ€Actuators. Advanced Materials, 2023, 35, .	11.1	11
993	Magnetoâ€Thermomechanically Reprogrammable Mechanical Metamaterials. Advanced Materials, 2023, 35, .	11.1	14
994	Liquid crystal elastomers containing azobenzene homologues as crosslinkers—synthesis and characterization. Liquid Crystals, 2023, 50, 519-533.	0.9	0
995	LC-elastomers: structure -property relations and concepts to improve applicability. Liquid Crystals, 2023, 50, 1129-1142.	0.9	0
996	Photomechanical Rolling Motions of Azobenzene-based Molecular Glass Microspheres on a Substrate upon Grazing-angle Irradiation. Chemistry Letters, 2022, 51, 1150-1153.	0.7	O

#	Article	IF	CITATIONS
997	Liquid crystal elastomer based dynamic device for urethral support: Potential treatment for stress urinary incontinence. Biomaterials, 2023, 292, 121912.	5.7	5
998	Regression analysis for predicting the elasticity of liquid crystal elastomers. Scientific Reports, 2022, 12, .	1.6	3
999	3D printing programmable liquid crystal elastomer soft pneumatic actuators. Materials Horizons, 2023, 10, 576-584.	6.4	15
1000	Shape programming and photoactuation of interpenetrating polymer networks containing azobenzene moieties. Journal of Materials Chemistry C, 0, , .	2.7	2
1001	Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. European Polymer Journal, 2023, 184, 111778.	2.6	8
1002	Selfâ€Steering Lasing System Enabled by Flexible Photoâ€Actuators with Sandwich Structure. Advanced Functional Materials, 0, , 2210657.	7.8	0
1003	Melt Electrowriting of Liquid Crystal Elastomer Scaffolds with Programmed Mechanical Response. Advanced Materials, 2023, 35, .	11.1	11
1004	Recent Advances in 4D Printing of Liquid Crystal Elastomers. Advanced Materials, 2023, 35, .	11.1	28
1005	Topological steering of light by nematic vortices and analogy to cosmic strings. Nature Materials, 2023, 22, 64-72.	13.3	18
1006	Design of Surface-Aligned Main-Chain Liquid-Crystal Networks Prepared under Ambient, Light-Free Conditions Using the Diels–Alder Cycloaddition. ACS Macro Letters, 0, , 33-39.	2.3	2
1007	Liquid crystal elastomer composite-based photo-oscillator for microrobots. Journal of Composite Materials, 2023, 57, 633-643.	1.2	3
1008	A Semicrystalline Poly(azobenzene) Exhibiting Room Temperature Light-Induced Melting, Crystallization, and Alignment. Macromolecules, 2022, 55, 10330-10340.	2.2	3
1009	Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS Applied Materials & Samp; Interfaces, 2023, 15, 4538-4548.	4.0	4
1010	Self-Sustained Euler Buckling of an Optically Responsive Rod with Different Boundary Constraints. Polymers, 2023, 15, 316.	2.0	21
1011	Perspiring Soft Robotics Skin Constituted by Dynamic Polarity witching Porous Liquid Crystal Membrane. Advanced Materials, 2023, 35, .	11.1	9
1012	Operational Procedure for Handling of Spacecraft Materials Sensitive to Atmospheric Exposure. Journal of Spacecraft and Rockets, 2023, 60, 685-688.	1.3	4
1013	Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell Reports Physical Science, 2023, 4, 101241.	2.8	8
1015	Reentrant 2D Nanostructured Liquid Crystals by Competition between Molecular Packing and Conformation: Potential Design for Multistep Switching of Ionic Conductivity. ChemPhysChem, 2023, 24, .	1.0	2

#	Article	IF	CITATIONS
1016	Bending and Stretching in a Narrow Ribbon of Nematic Polymer Networks. Journal of Elasticity, 2023, 154, 531-553.	0.9	1
1017	Springtailâ€inspired Lightâ€driven Soft Jumping Robots Based on Liquid Crystal Elastomers with Monolithic Threeâ€leaf Panel Fold Structure. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
1018	Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light: Science and Applications, 2023, 12, .	7.7	31
1019	Fast photo- and electro-optical switching of the polymer- stabilised cholesteric liquid crystal composite prepared by the template method. Liquid Crystals, 2023, 50, 1563-1572.	0.9	3
1020	Springtailâ€inspired Lightâ€driven Soft Jumping Robots Based on Liquid Crystal Elastomers with Monolithic Threeâ€leaf Panel Fold Structure. Angewandte Chemie, 2023, 135, .	1.6	1
1021	Photo-Ordering and Deformation in Azobenzene-Containing Polymer Networks under Irradiation with Elliptically Polarized Light. Processes, 2023, 11, 129.	1.3	2
1022	Programming Thermochromic Liquid Crystal Hetero-Oligomers for Near-Infrared Reflectors: Unequal Incorporation of Similar Reactive Mesogens in Thiol-ene Oligomers. Macromolecules, 2023, 56, 59-68.	2.2	5
1023	Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics, 2023, 15, 116.	2.0	6
1024	Programming Shape-Morphing Behavior of Zwitterionic Polymer/Liquid Crystal Composite with Humidity-responsive Self-healing Performance. Chinese Journal of Polymer Science (English Edition), 2023, 41, 212-221.	2.0	1
1025	Bioinspired shape shifting of liquid-infused ribbed sheets. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
1026	Photomechanical Solid Polymers: Model for Pressure and Strain Induced by Photoisomerization and Photo-Orientation. Applied Sciences (Switzerland), 2023, 13, 321.	1.3	2
1027	Charge transport and low-frequency conductance noise in metal-nanoparticle embedded one-dimensional conducting polymer nanotubes: multiple resistive switching phenomena. Materials Today Nano, 2023, 22, 100312.	2.3	0
1028	Soft Optomechanical Systems for Sensing, Modulation, and Actuation. Advanced Functional Materials, 2023, 33, .	7.8	11
1029	Mainâ€Chain Nematic Sideâ€Chain Smectic Composite Liquid Crystalline Elastomers. Advanced Functional Materials, 2023, 33, .	7.8	2
1030	The Contribution of Oligomerization Reaction Chemistry to the Thermomechanical Properties of Surface-Aligned Liquid Crystalline Elastomers. Macromolecules, 2023, 56, 974-979.	2.2	3
1031	Leaping liquid crystal elastomers. Science Advances, 2023, 9, .	4.7	13
1032	Harnessing Soft Elasticity of Liquid Crystal Elastomers to Achieve Low Voltage Driven Actuation. Advanced Materials Technologies, 2023, 8, .	3.0	7
1033	Photothermal responsive composites of graphene oxide/liquid crystal networks with different mesogenic arrangements towards flexible and bionic devices. Journal of Materials Chemistry C, 2023, 11, 5110-5115.	2.7	3

#	ARTICLE	IF	Citations
1034	Temperature Tunable 4D Polymeric Photonic Crystals. Advanced Functional Materials, 2023, 33, .	7.8	6
1035	Liquid Metal Smart Materials toward Soft Robotics. Advanced Intelligent Systems, 2023, 5, .	3.3	13
1036	Lightâ€Responsive Springs from Electropatterned Liquid Crystal Polymer Networks. Advanced Optical Materials, 0, , .	3.6	0
1037	Understanding Photomechanical Behavior of Liquid Crystallineâ€Based Actuators. Macromolecular Materials and Engineering, 2023, 308, .	1.7	1
1038	A constitutive model of liquid crystal elastomers with loading-history dependence. Journal of the Mechanics and Physics of Solids, 2023, 174, 105258.	2.3	4
1039	Progress in radiations induced engineering of liquid crystals properties for high-performance applications. Physics Reports, 2023, 1015, 1-23.	10.3	2
1040	Integrating deformation technology with visualization technology: A new roadmap for the future of smart actuator. Reactive and Functional Polymers, 2023, 186, 105573.	2.0	0
1041	Fiber-reinforced liquid crystalline elastomer composite actuators with multi-stimulus response properties and multi-directional morphing capabilities. Composites Part B: Engineering, 2023, 256, 110640.	5.9	2
1042	Programmable electric-field-induced bending shapes of dielectric liquid crystal elastomer sheets. Extreme Mechanics Letters, 2023, 60, 101982.	2.0	5
1043	Liquid crystalline elastomer actuators with dynamic covalent bonding: Synthesis, alignment, reprogrammability, and self-healing. Current Opinion in Solid State and Materials Science, 2023, 27, 101076.	5. 6	8
1044	Lyotropic liquid crystal elastomers for drug delivery. Colloids and Surfaces B: Biointerfaces, 2023, 226, 113304.	2.5	2
1045	Repairable Macroscopic Monodomain Arrays from Block Copolymers Enabled by Photoplastic and Photodielectric Effects. ACS Nano, 2023, 17, 8367-8375.	7.3	2
1046	Recent Trends in Continuum Modeling of Liquid Crystal Networks: A Mini-Review. Polymers, 2023, 15, 1904.	2.0	6
1047	Dynamically Tunable Optical Cavities with Embedded Nematic Liquid Crystalline Networks. Advanced Materials, 2023, 35, .	11.1	3
1048	Reversible Perspiring Artificial "Fingertips― Advanced Materials, 2023, 35, .	11.1	5
1049	Emergence of Structural Phosphorescence in Free-Standing, Laterally Organized Polymer Nanofiber Membranes. ACS Applied Polymer Materials, 2023, 5, 1670-1680.	2.0	2
1050	Ultrafast, Programmable, and Electronicsâ€Free Soft Robots Enabled by Snapping Metacaps. Advanced Intelligent Systems, 2023, 5, .	3.3	7
1051	Research of nanofibres loaded with ultraviolet absorber to increase the wavewidth of cholesteric liquid crystals. Optical Materials, 2023, 137, 113545.	1.7	2

#	Article	IF	CITATIONS
1052	Milky translucent haze of a large-scale topological defect array in nematic liquid crystal. Liquid Crystals, 0, , 1-12.	0.9	0
1053	Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Metric Programming in Liquid Crystalline Elastomers. ACS Applied Metric Programming in Liquid Crystalline Elastomers. ACS Applied Metric Programmin	4.0	3
1054	Impact of molecular architectures on mesogen reorientation relaxation and post-relaxation stress of liquid crystal elastomers under electric fields. Polymer, 2023, 271, 125789.	1.8	0
1055	Fiber-Shaped Soft Actuators: Fabrication, Actuation Mechanism and Application. Advanced Fiber Materials, 2023, 5, 868-895.	7.9	14
1056	A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges. Actuators, 2023, 12, 101.	1.2	9
1057	A replacement model to simulate the nonlinear dynamics of electro-responsive liquid crystal coatings. AIP Advances, 2023, 13, 035203.	0.6	0
1058	Ultrasonic-Excited Ultrafast Seamless Integration of Heterostructured Liquid Crystalline Elastomers for Multi-responsive Soft Actuators. ACS Applied Materials & Elastomers, 2023, 15, 13609-13617.	4.0	1
1059	Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale, 2023, 15, 6105-6120.	2.8	3
1060	Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter, 2023, 6, 1278-1294.	5.0	38
1061	Self-sustained chaotic floating of a liquid crystal elastomer balloon under steady illumination. Heliyon, 2023, 9, e14447.	1.4	15
1062	The Role of Crosslinker Molecular Structure on Mechanical and Lightâ€Actuation Properties in Liquid Crystalline Networks. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
1065	lonic liquid crystal elastomers for actuators, sensors, and organic transistors. Liquid Crystals, 2023, 50, 1151-1161.	0.9	2
1066	Massive, soft, and tunable chiral photonic crystals for optical polarization manipulation and pulse modulation. Applied Physics Reviews, 2023, 10, 011413.	5.5	2
1067	A nonlinear bending theory for nematic LCE plates. Mathematical Models and Methods in Applied Sciences, 0, , .	1.7	1
1068	埰䰎光和湿尦åŒé‡é©±åЍè½⁻体朰器䰰的è§å…‰å¢žå¼°æ€§æ°´æ£€æμ‹å™¨. Science China N	√late rials, 2	2023, 66, 24
1069	Research on imminent enlargements of smart materials and structures towards novel 4D printing (4DP: SMs-SSs). International Journal of Advanced Manufacturing Technology, 2023, 126, 2803-2823.	1.5	3
1070	Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback. ACS Applied Materials & Samp; Interfaces, 2023, 15, 18362-18371.	4.0	5
1071	Actuator Materials for Environmentally Powered Engines. Advanced Materials Technologies, 2023, 8, .	3.0	2

#	Article	IF	Citations
1072	Structural Design and Research Progress of Thermally Conductive Polyimide Film – A Review. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
1073	A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease. Materials Horizons, 2023, 10, 2649-2655.	6.4	2
1074	Exploration of molecular machines in supramolecular soft robotic systems. Advances in Colloid and Interface Science, 2023, 315, 102892.	7.0	6
1075	The Interplay between Different Stimuli in a 4D Printed Photoâ€, Thermalâ€, and Waterâ€Responsive Liquid Crystal Elastomer Actuator. Chemistry - A European Journal, 2023, 29, .	1.7	4
1076	Facile fabrication of patternable and large-area elastic liquid crystal polymer films. Liquid Crystals, 2023, 50, 1025-1034.	0.9	2
1077	Photothermalâ€Responsive Crosslinked Liquid Crystal Polymers. Macromolecular Materials and Engineering, 2023, 308, .	1.7	8
1078	Controlling the Structure and Morphology of Organic Nanofilaments Using External Stimuli. ACS Nanoscience Au, 2023, 3, 295-309.	2.0	2
1079	Multimodal Selfâ€sustainable Autonomous Locomotions of Lightâ€driven Seifert Ribbon Actuators based on Liquid Crystal Elastomers. Angewandte Chemie, 0, , .	1.6	O
1080	Multimodal Selfâ€sustainable Autonomous Locomotions of Lightâ€driven Seifert Ribbon Actuators based on Liquid Crystal Elastomers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
1117	基于共价至é€,应网络的液晶弹性体: 从å^†å设计å^°åº"甓. Science China Materials, 202	233666, 300	0423021.
1173	Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human–machine interaction. Materials Horizons, 2024, 11, 217-226.	6.4	5
1181	Colloid and Interface Science of Liquid Crystals. ACS Symposium Series, 0, , 349-380.	0.5	0
1231	Femtosecond Laser Direct Writing for Cross-Linked Liquid Crystal Polymer Microactuator Construction. , 2024, , .		0
1237	Introduction to Liquid Crystals. , 2024, , 1-57.		0