Loophole-free Bell inequality violation using electron sp

Nature

526, 682-686

DOI: 10.1038/nature15759

Citation Report

#	Article	IF	CITATIONS
2	Strong Loophole-Free Test of Local Realism. Physical Review Letters, 2015, 115, 250402.	2.9	910
3	Bell inequalities violated using detectors of low efficiency. Physical Review A, 2015, 92, .	1.0	5
4	Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. Physical Review Letters, 2015, 115, 210401.	2.9	96
5	Generation of Fresh and Pure Random Numbers for Loophole-Free Bell Tests. Physical Review Letters, 2015, 115, 250403.	2.9	88
6	Closing the Door on Einstein and Bohr's Quantum Debate. Physics Magazine, 0, 8, .	0.1	107
7	Exploring the Limits of Quantum Nonlocality with Entangled Photons. Physical Review X, 2015, 5, .	2.8	40
8	A new horizon for quantum information. Npj Quantum Information, 2015, 1, .	2.8	2
9	Quantum memory for photons. Physics Today, 2015, 68, 42-47.	0.3	75
10	Endspiel fýr den lokalen Realismus. Physik in Unserer Zeit, 2015, 46, 288-295.	0.0	1
11	Mental, Behavioural and Physiological Nonlocal Correlations within the Generalized Quantum Theory Framework: A Review. SSRN Electronic Journal, 2015, , .	0.4	1
12	Entanglement beyond identical ions. Nature, 2015, 528, 337-338.	13.7	1
13	2015 Editors' choice. Nature, 2015, 528, 490-491.	13.7	1
14	Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes. Nature, 2015, 528, 384-386.	13.7	81
15	Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. Physical Review Letters, 2015, 115, 250401.	2.9	932
16	Death by experiment for local realism. Nature, 2015, 526, 649-650.	13.7	37
17	Getting the measure of entanglement. Nature, 2015, 528, 48-49.	13.7	2
18	Spinorial Regge trajectories and Hagedorn-like temperatures. Spinorial space-time and preons as an alternative to strings. EPJ Web of Conferences, 2016, 126, 05005.	0.1	0
19	Spinorial space-time and the origin of Quantum Mechanics. The dynamical role of the physical vacuum. EPJ Web of Conferences, 2016, 126, 05006.	0.1	2

#	ARTICLE	IF	Citations
21	Bipartite Bell inequalities with three ternary-outcome measurementsâ€"from theory to experiments. New Journal of Physics, 2016, 18, 035001.	1.2	11
22	EPR paradox, quantum nonlocality and physical reality. Journal of Physics: Conference Series, 2016, 701, 012021.	0.3	14
23	Optical scheme for simulating post-quantum nonlocality distillation. Optics Express, 2016, 24, 27319.	1.7	1
24	Nonclassical correlations between a C-band telecom photon and a stored spin-wave. Optica, 2016, 3, 1019.	4.8	29
25	Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection. Optica, 2016, 3, 1279.	4.8	20
26	Randomness and Non-Locality. Fluctuation and Noise Letters, 2016, 15, 1640005.	1.0	1
27	Control of Spin Defects in Wide-Bandgap Semiconductors for Quantum Technologies. Proceedings of the IEEE, 2016, 104, 2009-2023.	16.4	48
29	Randomness in post-selected events. New Journal of Physics, 2016, 18, 035007.	1.2	14
30	Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser and Photonics Reviews, 2016, 10, 451-457.	4.4	63
31	How a single photon can mediate entanglement between two others. Annals of Physics, 2016, 373, 80-86.	1.0	5
32	Randomness: Quantum versus classical. International Journal of Quantum Information, 2016, 14, 1640009.	0.6	9
33	An explicit classical strategy for winning a ${\rm GHSH}_{q}\$ game. New Journal of Physics, 2016, 18, 025013.	1.2	6
34	Momentum exchange in the electron double-slit experiment. Journal of Physics: Conference Series, 2016, 701, 012007.	0.3	12
35	Reducing the number of questions in nonlocal games. Journal of Mathematical Physics, 2016, 57, .	0.5	7
36	Experimental test of nonlocal causality. Science Advances, 2016, 2, e1600162.	4.7	41
37	Signifying the nonlocality of NOON states using Einstein-Podolsky-Rosen steering inequalities. Physical Review A, 2016, 94, .	1.0	13
38	Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis. Scientific Reports, 2016, 6, 30289.	1.6	63
39	Tight detection efficiency bounds of Bell tests in no-signaling theories. Physical Review A, 2016, 94, .	1.0	5

#	Article	IF	CITATIONS
40	Bell's Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality. Scientific Reports, 2016, 6, 39063.	1.6	31
41	Implementations of two-photon four-qubit Toffoli and Fredkin gates assisted by nitrogen-vacancy centers. Scientific Reports, 2016, 6, 35529.	1.6	8
42	Experimental Tests of Bell Inequalities. , 0, , 124-140.		1
43	Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nature Communications, 2016, 7, 11526.	5.8	174
44	Three groups close the loopholes in tests of Bell's theorem. Physics Today, 2016, 69, 14-16.	0.3	5
45	Quantum entanglement: facts and fiction – how wrong was Einstein after all?. Quarterly Reviews of Biophysics, 2016, 49, e17.	2.4	12
46	Ghostly action at a distance: A non-technical explanation of the Bell inequality. American Journal of Physics, 2016, 84, 448-457.	0.3	4
47	Measurement-dependent locality beyond independent and identically distributed runs. Physical Review A, 2016, 94, .	1.0	4
48	Open-system many-body dynamics through interferometric measurements and feedback. Physical Review A, 2016, 94, .	1.0	10
49	Recent advances on integrated quantum communications. Journal of Optics (United Kingdom), 2016, 18, 083002.	1.0	103
50	Quantum random number generation. Npj Quantum Information, 2016, 2, .	2.8	233
51	Survey on nonlocal games and operator space theory. Journal of Mathematical Physics, 2016, 57, .	0.5	38
52	(Nearly) optimal P values for all Bell inequalities. Npj Quantum Information, 2016, 2, .	2.8	23
54	On the phase uncertainty of Fock states and "nonlocal realism― Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2016, 71, 487-491.	0.1	4
55	Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits. Physical Review X, 2016, 6, .	2.8	32
56	Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photonics, $2016,1,.$	3.0	33
57	Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement. Applied Physics Reviews, 2016, 3, 041301.	5.5	2
58	Certified randomness in quantum physics. Nature, 2016, 540, 213-219.	13.7	160

#	Article	IF	CITATIONS
59	Large-scale quantum technology based on luminescent centers in crystals. , 2016, , .		1
60	Violation of Bell's inequality in Si. Nature Nanotechnology, 2016, 11, 216-217.	15.6	1
61	Reflections on Zeilinger–Brukner Information Interpretation of Quantum Mechanics. Foundations of Physics, 2016, 46, 836-844.	0.6	2
62	Links between fluid mechanics and quantum mechanics: a model for information in economics?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150237.	1.6	1
63	Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. Physical Review Letters, 2016, 116, 150502.	2.9	428
64	Implementations for device-independent quantum key distribution. Physica Scripta, 2016, 91, 043003.	1.2	4
65	Mental, behavioural and physiological nonlocal correlations within the Generalized Quantum Theory framework. Axiomathes, 2016, 26, 313-328.	0.3	11
66	At the Frontier of Spacetime. Fundamental Theories of Physics, 2016, , .	0.1	14
67	High-Pressure Synthesis and Characterization of Ge-Doped Single Crystal Diamond. Crystal Growth and Design, 2016, 16, 3510-3518.	1.4	68
68	Operational approach to Bell inequalities: Application to qutrits. Physical Review A, 2016, 94, .	1.0	17
69	Quantum photonics at telecom wavelengths based on lithium niobate waveguides. Journal of Optics (United Kingdom), 2016, 18, 104001.	1.0	132
70	Robust Concurrent Remote Entanglement Between Two Superconducting Qubits. Physical Review X, 2016, 6, .	2.8	82
71	Necessary and sufficient conditions for multipartite Bell violations with only one trusted device. Physical Review A, 2016, 94, .	1.0	8
72	All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal. Physical Review A, 2016, 94, .	1.0	37
73	An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, 847-850.	6.0	570
74	The Principles of Quantum Theory, From Planck's Quanta to the Higgs Boson. , 2016, , .		38
75	Designing spin-channel geometries for entanglement distribution. Physical Review A, 2016, 94, .	1.0	2
76	Bright sponges. Nature Photonics, 2016, 10, 625-625.	15.6	1

#	Article	IF	CITATIONS
77	From Chemistry to Consciousness. , 2016, , .		1
78	Quantum nonlocality and the end of classical spacetime. International Journal of Modern Physics D, 2016, 25, 1644005.	0.9	3
79	Quantum Correlations Are Stronger Than All Nonsignaling Correlations Produced by <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -Outcome Measurements. Physical Review Letters, 2016, 117, 150401.	2.9	22
80	Nonlocal correlations: Fair and unfair strategies in Bayesian games. Physical Review A, 2016, 94, .	1.0	25
81	Quantum nanophotonics in diamond [Invited]. Journal of the Optical Society of America B: Optical Physics, 2016, 33, B65.	0.9	178
82	Minimum Dimension of a Hilbert Space Needed to Generate a Quantum Correlation. Physical Review Letters, 2016, 117, 060401.	2.9	33
83	Bell inequalities for quantum optical fields. Physical Review A, 2016, 94, .	1.0	15
84	Experimental investigation of the no-signalling principle in parity–time symmetric theory using an open quantum system. Nature Photonics, 2016, 10, 642-646.	15.6	70
85	Efficient measurement-device-independent detection of multipartite entanglement structure. Physical Review A, $2016, 94, .$	1.0	13
86	Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. Optics Express, 2016, 24, 10869.	1.7	56
87	Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride. Nano Letters, 2016, 16, 6052-6057.	4.5	212
88	Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection. Physical Review Letters, 2016, 117, 070404.	2.9	37
89	Analytic and Nearly Optimal Self-Testing Bounds for the Clauser-Horne-Shimony-Holt and Mermin Inequalities. Physical Review Letters, 2016, 117, 070402.	2.9	92
90	Monogamy relation in no-disturbance theories. Physical Review A, 2016, 94, .	1.0	9
91	Nonlocality from Local Contextuality. Physical Review Letters, 2016, 117, 220402.	2.9	26
92	Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect. Nature Communications, 2016, 7, 11925.	5.8	46
93	Tunable entanglement resource in elastic electron-exchange collisions out of chaotic spin systems. Physical Review A, 2016, 94, .	1.0	6
94	Photonic Quantum Networks formed from NVâ^' centers. Scientific Reports, 2016, 6, 26284.	1.6	59

#	ARTICLE	IF	CITATIONS
95	Violation of Bell's inequalities in a quantum realistic framework. International Journal of Quantum Information, 2016, 14, 1640002.	0.6	14
96	Quantum teleportation across a metropolitan fibre network. Nature Photonics, 2016, 10, 676-680.	15.6	184
97	Teleportation becomes streetwise. Nature Photonics, 2016, 10, 623-625.	15.6	5
98	Decoy-state quantum key distribution with a leaky source. New Journal of Physics, 2016, 18, 065008.	1.2	69
99	Backaction-driven, robust, steady-state long-distance qubit entanglement over lossy channels. Physical Review A, 2016, 94, .	1.0	18
100	NV-based quantum memories coupled to photonic integrated circuits. Proceedings of SPIE, 2016, , .	0.8	0
101	Single-shot optical readout of a quantum bit using cavity quantum electrodynamics. Physical Review A, 2016, 94, .	1.0	22
102	Hiding a Quantum Cache in Diamonds. Physics Magazine, 2016, 9, .	0.1	O
103	Violation of the Leggett-Garg Inequality in Neutrino Oscillations. Physical Review Letters, 2016, 117, 050402.	2.9	99
104	Experimental single-photon exchange along a space link of 7000 km. Physical Review A, 2016, 93, .	1.0	55
105	Nonlocality with ultracold atoms in a lattice. Physical Review A, 2016, 93, .	1.0	11
106	Enhanced violation of the Collins-Gisin-Linden-Massar-Popescu inequality with optimized time-bin-entangled ququarts. Physical Review A, 2016, 93, .	1.0	19
107	Simple method for experimentally testing any form of quantum contextuality. Physical Review A, 2016, 93, .	1.0	21
108	Analytic quantification of the singlet nonlocality for the first Bell inequality. Physical Review A, 2016, 93, .	1.0	4
109	Quantum resource control for noisy Einstein-Podolsky-Rosen steering with qubit measurements. Physical Review A, 2016, 93, .	1.0	6
110	Requirements for a loophole-free photonic Bell test using imperfect setting generators. Physical Review A, 2016, 93, .	1.0	52
111	Higher-dimensional Bell inequalities with noisy qudits. Physical Review A, 2016, 93, .	1.0	5
112	Information complementarity in multipartite quantum states and security in cryptography. Physical Review A, 2016, 93, .	1.0	6

#	Article	IF	CITATIONS
113	Experimental measurement-device-independent quantum key distribution with imperfect sources. Physical Review A, 2016, 93, .	1.0	70
114	Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on-off photodetectors, and entanglement swapping. Physical Review A, 2016, 93, .	1.0	14
115	Entanglement dynamics of the ultrastrong-coupling three-qubit Dicke model. Physical Review A, 2016, 93, .	1.0	13
116	Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter. Physical Review A, 2016, 93, .	1.0	12
117	Unifying Brillouin scattering and cavity optomechanics. Physical Review A, 2016, 93, .	1.0	50
118	Device-independent parallel self-testing of two singlets. Physical Review A, 2016, 93, .	1.0	47
119	Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules. Physical Review A, 2016, 93, .	1.0	6
120	Reply to "Comment on  Device-independent entanglement-based Bennett 1992 protocol' ― Physical Review A, 2016, 93, .	1.0	0
121	Maximizing device-independent randomness from a Bell experiment by optimizing the measurement settings. Physical Review A, 2016, 94, .	1.0	4
122	Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation. Physical Review Applied, 2016, 5, .	1.5	131
123	Nonlocal quantum state engineering with the Cooper pair splitter beyond the Coulomb blockade regime. Physical Review B, 2016, 93, .	1.1	10
124	Quantum Nonlocality with Arbitrary Limited Detection Efficiency. Physical Review Letters, 2016, 116, 010401.	2.9	8
125	Certifying the Presence of a Photonic Qubit by Splitting It in Two. Physical Review Letters, 2016, 116, 070501.	2.9	13
126	Algorithmic Pseudorandomness in Quantum Setups. Physical Review Letters, 2016, 116, 230402.	2.9	6
127	Natural Framework for Device-Independent Quantification of Quantum Steerability, Measurement Incompatibility, and Self-Testing. Physical Review Letters, 2016, 116, 240401.	2.9	68
128	Robust Quantum-Network Memory Using Decoherence-Protected Subspaces of Nuclear Spins. Physical Review X, 2016, 6, .	2.8	92
129	Mathematical and physical meaning of the Bell inequalities. European Journal of Physics, 2016, 37, 055402.	0.3	4
130	Bounding the persistency of the nonlocality ofWstates. Physical Review A, 2016, 93, .	1.0	8

#	ARTICLE	IF	CITATIONS
131	Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Physical Review A, 2016, 93, .	1.0	69
132	Bell inequalities for continuous-variable systems in generic squeezed states. Physical Review A, 2016, 93, .	1.0	28
133	Experimental test of Mermin inequalities on a five-qubit quantum computer. Physical Review A, 2016, 94, .	1.0	85
134	Diamond defects cooperate via light. Science, 2016, 354, 835-836.	6.0	3
135	On Nonlocality of Quantum Objects. Journal of Russian Laser Research, 2016, 37, 521-532.	0.3	4
136	Spin-photon entanglement interfaces in silicon carbide defect centers. Nanotechnology, 2016, 27, 504001.	1.3	36
137	Towards a Room-Temperature Spin Quantum Bus in Diamond via Electron Photoionization, Transport, and Capture. Physical Review X , 2016 , 6 , $.$	2.8	24
138	Practical challenges in quantum key distribution. Npj Quantum Information, 2016, 2, .	2.8	489
139	Quantum key distribution with prepare-and-measure Bell test. Scientific Reports, 2016, 6, 35032.	1.6	1
140	Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits. Physical Review Letters, 2016, 117, 170403.	2.9	53
141	Measures and applications of quantum correlations. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 473001.	0.7	286
142	Two-dimensional quantum repeaters. Physical Review A, 2016, 94, .	1.0	48
143	Effective production of orbital quantum entanglement in chaotic quantum dots with nonideal contacts. Physical Review B, 2016, 94, .	1.1	2
144	Diamond photonics platform enabled by femtosecond laser writing. Scientific Reports, 2016, 6, 35566.	1.6	96
145	Objective realism and freedom of choice in relativistic quantum field theory. Physical Review D, 2016, 94, .	1.6	8
146	Experimental realization of robust dynamical decoupling with bounded controls in a solid-state spin system. Physical Review B, 2016, 94, .	1.1	5
147	General immunity and superadditivity of two-way Gaussian quantum cryptography. Scientific Reports, 2016, 6, 22225.	1.6	34
148	Quantum probability assignment limited by relativistic causality. Scientific Reports, 2016, 6, 22986.	1.6	3

#	ARTICLE	IF	CITATIONS
149	Optical simulation of a Popescu-Rohrlich Box. Scientific Reports, 2016, 6, 28351.	1.6	7
150	On-chip generation of heralded photon-number states. Scientific Reports, 2016, 6, 35975.	1.6	28
151	Preface of the special issue quantum foundations: information approach. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150244.	1.6	8
152	Creating arbitrary 2D arrays of single atoms for the simulation of spin systems with Rydberg states. European Physical Journal: Special Topics, 2016, 225, 2817-2838.	1.2	2
153	A Classical Network Protocol to Support Distributed Quantum State Tomography. , 2016, , .		3
154	Entanglement without hidden nonlocality. New Journal of Physics, 2016, 18, 113019.	1.2	16
155	The Significance of Measurement Independence for Bell Inequalities and Locality. Fundamental Theories of Physics, 2016, , 189-204.	0.1	20
156	Large-scale quantum networks based on graphs. New Journal of Physics, 2016, 18, 053036.	1.2	38
157	An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	38
158	A local hidden-variable model for experimental tests of the GHZ puzzle. Quantum Studies: Mathematics and Foundations, 2016, 3, 221-229.	0.4	2
159	Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 2016, 3, 634.	4.8	136
160	Duffin–Kemmer–Petiau Particles are Bosons. Foundations of Physics, 2016, 46, 1090-1108.	0.6	2
161	The Interface Theory of Perception. Current Directions in Psychological Science, 2016, 25, 157-161.	2.8	19
162	Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature, 2016, 530, 313-316.	13.7	348
163	Creation and control of entanglement by time-delayed quantum-coherent feedback. Proceedings of SPIE, 2016, , .	0.8	1
164	Delayed-choice gedanken experiments and their realizations. Reviews of Modern Physics, 2016, 88, .	16.4	123
165	Realization of the Contextuality-Nonlocality Tradeoff with a Qubit-Qutrit Photon Pair. Physical Review Letters, 2016, 116, 090401.	2.9	49
166	Quantum memories: emerging applications and recent advances. Journal of Modern Optics, 2016, 63, 2005-2028.	0.6	294

#	ARTICLE	IF	CITATIONS
167	Thermal entanglement and teleportation in a dipolar interacting system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1571-1576.	0.9	17
168	The time is right for multiphoton entangled states. Science, 2016, 351, 1152-1153.	6.0	8
169	Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation. Chinese Physics Letters, 2016, 33, 026105.	1.3	1
170	Cryptography in a Quantum World. Lecture Notes in Computer Science, 2016, , 3-16.	1.0	1
171	Statistical and subjective interpretations of probability in quantum-like models of cognition and decision making. Journal of Mathematical Psychology, 2016, 74, 82-91.	1.0	24
172	Franson Interference Generated by a Two-Level System. Physical Review Letters, 2017, 118, 030501.	2.9	29
173	Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields. Annals of Physics, 2017, 377, 147-163.	1.0	17
174	Quantum entanglement for systems of identical bosons: I. General features. Physica Scripta, 2017, 92, 023004.	1.2	27
175	Bell scenarios with communication. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 094001.	0.7	24
176	Towards optimal experimental tests on the reality of the quantum state. New Journal of Physics, 2017, 19, 023004.	1.2	5
177	Genuine multipartite nonlocality of permutationally invariant Gaussian states. Physical Review A, 2017, 95, .	1.0	6
178	Assessing the quantumness of a damped two-level system. Physical Review A, 2017, 95, .	1.0	25
179	Quantum random number generators. Reviews of Modern Physics, 2017, 89, .	16.4	412
180	Almost-quantum correlations and their refinements in a tripartite Bell scenario. Physical Review A, 2017, 95, .	1.0	9
181	Cosmic Bell Test: Measurement Settings from MilkyÂWay Stars. Physical Review Letters, 2017, 118, 060401.	2.9	111
182	Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth. Nano Letters, 2017, 17, 1489-1495.	4.5	68
183	Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble. Physical Review Letters, 2017, 118, 093601.	2.9	86
184	Recovering the quantum formalism from physically realist axioms. Scientific Reports, 2017, 7, 43365.	1.6	17

#	Article	IF	CITATIONS
185	Entanglement swapping with independent sources over an optical-fiber network. Physical Review A, 2017, 95, .	1.0	16
186	Emergence of Quantum Mechanics from Theory of Random Fields. Journal of Russian Laser Research, 2017, 38, 9-26.	0.3	2
187	Source-Device-Independent Ultrafast Quantum Random Number Generation. Physical Review Letters, 2017, 118, 060503.	2.9	99
188	Topical review: spins and mechanics in diamond. Journal of Optics (United Kingdom), 2017, 19, 033001.	1.0	126
189	Single-photon test of hyper-complex quantum theories using a metamaterial. Nature Communications, 2017, 8, 15044.	5.8	27
190	Quantum networks: where should we be heading?. Quantum Science and Technology, 2017, 2, 020501.	2.6	26
192	Mid-infrared coincidence measurements on twin photons at room temperature. Nature Communications, 2017, 8, 15184.	5.8	58
194	Squeezed states of light and their applications in laser interferometers. Physics Reports, 2017, 684, 1-51.	10.3	292
195	Towards a quantum internet. European Journal of Physics, 2017, 38, 043001.	0.3	35
197	Experimental demonstration of nonbilocal quantum correlations. Science Advances, 2017, 3, e1602743.	4.7	62
198	Measuring correlations in non-separable vector beams using projective measurements. Optics Communications, 2017, 399, 45-51.	1.0	2
199	Coupling of Quantum Emitters to Plasmonic Nanoguides. Springer Series in Solid-state Sciences, 2017, , 47-71.	0.3	1
200	Characterizing Entanglement and Quantum Correlations Constrained by Symmetry. Springer Theses, 2017, , .	0.0	6
201	Laser writing of coherent colour centres in diamond. Nature Photonics, 2017, 11, 77-80.	15.6	203
202	From quantum optics to quantum technologies. Progress in Quantum Electronics, 2017, 54, 2-18.	3.5	30
203	Nonlinear silicon photonics. Journal of Optics (United Kingdom), 2017, 19, 093002.	1.0	85
204	Coherent control of the silicon-vacancy spin in diamond. Nature Communications, 2017, 8, 15579.	5.8	131
205	Heralded amplification of path entangled quantum states. Quantum Science and Technology, 2017, 2, 024008.	2.6	21

#	Article	IF	CITATIONS
206	Obtaining tight bounds on higher-order interferences with a 5-path interferometer. New Journal of Physics, 2017, 19, 033017.	1.2	37
207	Local hidden-variable model for a recent experimental test of quantum nonlocality and local contextuality. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2230-2234.	0.9	4
208	Quantum Photonics. Graduate Texts in Physics, 2017, , .	0.1	1
209	Diamond photonics for distributed quantum networks. Progress in Quantum Electronics, 2017, 55, 129-165.	3.5	23
210	On the inequivalence of the CH and CHSH inequalities due to finite statistics. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 255301.	0.7	11
211	Nitrogen-vacancy centers created by N+ ion implantation through screening SiO2 layers on diamond. Applied Physics Letters, 2017, 110, .	1.5	10
212	Entanglement distillation between solid-state quantum network nodes. Science, 2017, 356, 928-932.	6.0	277
213	Bell Correlations in Spin-Squeezed States of 500 000 Atoms. Physical Review Letters, 2017, 118, 140401.	2.9	49
214	Efficient quantum communications with coherent state fingerprints over multiple channels. Physical Review A, 2017, 95, .	1.0	19
215	A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters. APL Photonics, 2017, 2, 046103.	3.0	11
216	Exact algebraic separability criterion for two-qubit systems. Modern Physics Letters A, 2017, 32, 1750070.	0.5	0
217	Advanced analysis of quantum contextuality in a psychophysical double-detection experiment. Journal of Mathematical Psychology, 2017, 79, 77-84.	1.0	6
218	Chained Bell Inequality Experiment with High-Efficiency Measurements. Physical Review Letters, 2017, 118, 130403.	2.9	15
219	Experimental violation of local causality in a quantum network. Nature Communications, 2017, 8, 14775.	5.8	57
220	Semiconductor devices for entangled photon pair generation: a review. Reports on Progress in Physics, 2017, 80, 076001.	8.1	117
221	Resonant optical spectroscopy and coherent control of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="normal">r</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn><mml:mo>+</mml:mo><!--</td--><td>1.1 mml:mrow</td><td>59 > </td></mml:mrow></mml:msup></mml:mrow>	1.1 mml:mrow	59 >
222	ensembles in SiC and GaM. Physical Review B, 2017, 95, . Diamond micro-lenses with variable height using self-assembly silica-microsphere-monolayer as etching mask. Materials Today Communications, 2017, 11, 119-122.	0.9	7
223	Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Physical Review A, 2017, 95, .	1.0	21

#	Article	IF	CITATIONS
224	Experimental test of Born's rule by inspecting third-order quantum interference on a single spin in solids. Physical Review A, 2017, 95, .	1.0	19
225	Nonlocality in Multipartite Quantum States. Springer Theses, 2017, , 73-137.	0.0	O
226	Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 98-99, 50-62.	3.9	75
227	Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe. Contemporary Physics, 2017, 58, 119-139.	0.8	15
228	Fiber-Coupled Diamond Micro-Waveguides toward an Efficient Quantum Interface for Spin Defect Centers. ACS Omega, 2017, 2, 7194-7202.	1.6	13
229	Towards a global quantum network. Nature Photonics, 2017, 11, 678-680.	15.6	208
230	Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks. Physical Review Letters, 2017, 119, 130505.	2.9	30
231	Can we close the Bohr–Einstein quantum debate?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160392.	1.6	28
232	Holonomic Quantum Control by Coherent Optical Excitation in Diamond. Physical Review Letters, 2017, 119, 140503.	2.9	123
233	Quantum uncertainty and a counterexample of nonlocal classical "realism― Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 123, 419-424.	0.2	0
234	Bell Correlations in a Many-Body System with Finite Statistics. Physical Review Letters, 2017, 119, 170403.	2.9	18
235	Conditional Hybrid Nonclassicality. Physical Review Letters, 2017, 119, 120403.	2.9	22
236	Selective addressing of solid-state spins at the nanoscale via magnetic resonance frequency encoding. Npj Quantum Information, 2017, 3, .	2.8	27
237	Characterizing nonlocal correlations via universal uncertainty relations. Physical Review A, 2017, 96,	1.0	14
238	Experimental test of entangled histories. Annals of Physics, 2017, 387, 334-347.	1.0	10
239	Entanglement of photons in their dual wave-particle nature. Nature Communications, 2017, 8, 915.	5.8	63
240	Ubiquitous Nonlocal Entanglement with Majorana Zero Modes. Physical Review Letters, 2017, 119, 157702.	2.9	10
241	Extinction of light and coherent scattering by a single nitrogen-vacancy center in diamond. Physical Review A, 2017, 95, .	1.0	3

#	Article	IF	CITATIONS
242	High-fidelity spin measurement on the nitrogen-vacancy center. New Journal of Physics, 2017, 19, 103002.	1.2	16
243	Quantum spin correlations in Møller scattering of relativistic electron beams. Physical Review A, 2017, 95, .	1.0	5
244	Composing decoherence functionals. Physical Review A, 2017, 95, .	1.0	1
245	Analysis of assumptions of recent tests of local realism. Physical Review A, 2017, 95, .	1.0	19
246	Test of a hypothesis of realism in quantum theory using a Bayesian approach. Physical Review A, 2017, 95, .	1.0	2
247	New Bell inequalities for three-qubit pure states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3928-3933.	0.9	12
248	Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission. Nanoscale, 2017, 9, 17902-17908.	2.8	34
250	Quantum Information and Locality. , 0, , 93-112.		4
251	Self-testing of binary observables based on commutation. Physical Review A, 2017, 95, .	1.0	50
252	Fiber-Coupled Diamond Quantum Nanophotonic Interface. Physical Review Applied, 2017, 8, .	1.5	115
254	Recommendations and illustrations for the evaluation of photonic random number generators. APL Photonics, 2017, 2, .	3.0	49
255	Strain broadening of the 1042-nm zero phonon line of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>NV</mml:mi><td>mrow><m< td=""><td> mlt:no>â^'< </td></m<></td></mml:mrow></mml:msup></mml:math>	mr ow > <m< td=""><td> mlt:no>â^'< </td></m<>	 m lt :no>â^ ' <
257	Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole. Physical Review A, 2017, 95, .	1.0	41
258	Causality in a Quantum World. Springer Theses, 2017, , 137-171.	0.0	0
260	Optimal quantum operations at zero energy cost. Physical Review A, 2017, 96, .	1.0	19
261	Interpreting the macroscopic pointer by analysing the elements of reality of a Schrödinger cat. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 41LT01.	0.7	12
262	Arbitrary nuclear-spin gates in diamond mediated by a nitrogen-vacancy-center electron spin. Physical Review A, 2017, 96, .	1.0	21
263	Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond. Physical Review X, 2017, 7, .	2.8	108

#	Article	IF	CITATIONS
264	Symmetry in the open-system dynamics of quantum correlations. Scientific Reports, 2017, 7, 8367.	1.6	4
265	A photonic platform for donor spin qubits in silicon. Science Advances, 2017, 3, e1700930.	4.7	75
266	Experimental multipartite entanglement and randomness certification of the W state in the quantum steering scenario. Quantum Science and Technology, 2017, 2, 015011.	2.6	18
267	Experimental test of the irreducible four-qubit Greenberger-Horne-Zeilinger paradox. Physical Review A, 2017, 95, .	1.0	10
268	A cost-effective measurement-device-independent quantum key distribution system for quantum networks. Quantum Science and Technology, 2017, 2, 04LT01.	2.6	25
269	Proposed experiment to test fundamentally binary theories. Physical Review A, 2017, 96, .	1.0	9
270	Quantum delocalization in photon-pair generation. Physical Review A, 2017, 96, .	1.0	4
271	Interpretations of Quantum Theory: A Map of Madness. , 2017, , 138-144.		18
272	Obstructions to Bell CMB experiments. Physical Review D, 2017, 96, .	1.6	49
273	Energy as a Detector of Nonlocality of Many-Body Spin Systems. Physical Review X, 2017, 7, .	2.8	27
274	Explaining quantum correlations through evolution of causal models. Physical Review A, 2017, 95, .	1.0	3
275	Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis. Physical Review Letters, 2017, 119, 023601.	2.9	38
276	Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter. Journal of Optics (United Kingdom), 2017, 19, 065203.	1.0	5
277	Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits. Physical Review Applied, 2017, 7, .	1.5	200
278	Remote preparation of single-plasmon states. Physical Review B, 2017, 96, .	1.1	10
279	Quantum Common Causes and Quantum Causal Models. Physical Review X, 2017, 7, .	2.8	124
280	Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride. Physical Review Letters, 2017, 119, 057401.	2.9	106
281	Quantum Correlations between Single Telecom Photons and a Multimode On-Demand Solid-State Quantum Memory. Physical Review X, 2017, 7, .	2.8	56

#	Article	IF	CITATIONS
282	Test of the noâ€signaling principle in the Hensen loopholeâ€free CHSH experiment. Fortschritte Der Physik, 2017, 65, 1600096.	1.5	25
283	The Present Situation in Quantum Theory and its Merging with General Relativity. Foundations of Physics, 2017, 47, 1077-1099.	0.6	9
284	Universal Security for Randomness Expansion from the Spot-Checking Protocol. SIAM Journal on Computing, 2017, 46, 1304-1335.	0.8	45
285	Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70-73.	13.7	524
286	Multiplexed entanglement generation over quantum networks using multi-qubit nodes. Quantum Science and Technology, 2017, 2, 034002.	2.6	30
287	Family of Bell inequalities violated by higher-dimensional bound entangled states. Physical Review A, 2017, 96, .	1.0	7
288	Greenberger-Horne-Zeilinger test for multi-dimension and arbitrary time nodes entangled histories. Science Bulletin, 2017, 62, 1235-1238.	4.3	3
289	Coherent Perfect Absorption in Metamaterials with Entangled Photons. ACS Photonics, 2017, 4, 2124-2128.	3.2	31
290	Wonders and tremors in the aftershocks of high energy physics. Journal of Religious and Political Practice, 2017, 3, 120-135.	0.4	0
291	Isolated Forearm Test: Replicated, Relevant, and Unexplained. Anesthesiology, 2017, 126, 202-204.	1.3	3
292	Quantum entanglement reaches new heights. Physics Today, 2017, 70, 14-17.	0.3	3
293	Einstein-Podolsky-Rosen steering and Bell nonlocality of two macroscopic mechanical oscillators in optomechanical systems. Physical Review A, 2017, 96, .	1.0	11
294	Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters. Physical Review X, 2017, 7, .	2.8	67
295	Light interference and the absence of definite values of measured quantities a priori. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2017, 72, 224-235.	0.1	2
296	Buonomano against Bell: Nonergodicity or nonlocality?. International Journal of Quantum Information, 2017, 15, 1740010.	0.6	5
297	The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170596.	1.0	11
298	Infinite violation of Bell inequalities in inflation. Physical Review D, 2017, 96, .	1.6	26
299	Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10Âms with Single-Shot State Readout. Physical Review Letters, 2017, 119, 223602.	2.9	300

#	Article	IF	CITATIONS
300	Synthesis meets theory: Past, present and future of rational chemistry. Physical Sciences Reviews, $2017, 2, .$	0.8	3
301	Demonstration of entanglement assisted invariance on IBM's quantum experience. Heliyon, 2017, 3, e00444.	1.4	26
302	On the Einstein-Podolsky-Rosen paradox using discrete time physics. Journal of Physics: Conference Series, 2017, 880, 012029.	0.3	1
303	On-Demand Microwave Generator of Shaped Single Photons. Physical Review Applied, 2017, 8, .	1.5	45
304	Conversion from Single Photon to Single Electron Spin Using Electrically Controllable Quantum Dots. Journal of the Physical Society of Japan, 2017, 86, 011008.	0.7	14
305	True randomness from an incoherent source. Review of Scientific Instruments, 2017, 88, 113101.	0.6	19
306	Randomness in quantum mechanics: philosophy, physics and technology. Reports on Progress in Physics, 2017, 80, 124001.	8.1	72
307	Direct laser written polymer waveguides with out of plane couplers for optical chips. APL Photonics, 2017, 2, .	3.0	22
308	Tighter bound of quantum randomness certification for independent-devices scenario. Scientific Reports, 2017, 7, 14666.	1.6	4
309	Coherence Properties and Quantum Control of Silicon Vacancy Color Centers in Diamond. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700586.	0.8	49
310	Practical repeaters for ultra-long distance quantum communication., 2017,,.		0
311	Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits. Semiconductor Science and Technology, 2017, 32, 093001.	1.0	17
312	Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature. New Journal of Physics, 2017, 19, 053008.	1.2	22
313	Designing a cavity-mediated quantum cphase gate between NV spin qubits in diamond. Physical Review B, 2017, 95, .	1.1	10
314	Coherent Coupling of Remote Spin Ensembles via a Cavity Bus. Physical Review Letters, 2017, 118, 140502.	2.9	53
315	Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics, 2017, 80, 106001.	8.1	628
316	Practical repeaters for ultralong-distance quantum communication. Physical Review A, 2017, 95, .	1.0	29
317	Absorption spectrum of a two-level system subjected to a periodic pulse sequence. Physical Review B, 2017, 95, .	1.1	8

#	Article	IF	CITATIONS
318	Measurement-device-independent randomness generation with arbitrary quantum states. Physical Review A, 2017, 95, .	1.0	9
319	Experimental bilocality violation without shared reference frames. Physical Review A, 2017, 95, .	1.0	33
320	Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. Physical Review Letters, 2017, 119, 010402.	2.9	278
321	Phase-Tuned Entangled State Generation between Distant Spin Qubits. Physical Review Letters, 2017, 119, 010503.	2.9	123
322	Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface. Physical Review X, 2017, 7, .	2.8	125
323	A Possible Origin of Quantum Correlations. Journal of Russian Laser Research, 2017, 38, 230-240.	0.3	3
324	Random Number Generation with Cosmic Photons. Physical Review Letters, 2017, 118, 140402.	2.9	18
325	Bell violation in the sky. European Physical Journal C, 2017, 77, 1.	1.4	51
326	A new method for quantifying entanglement of multipartite entangled states. Quantum Information Processing, 2017, 16, 1.	1.0	2
327	Entanglement in macroscopic systems. Physical Review A, 2017, 95, .	1.0	19
328	Device-Independent Bounds on Detection Efficiency. Physical Review Letters, 2017, 118, 260401.	2.9	7
329	Light for the quantum. Entangled photons and their applications: a very personal perspective. Physica Scripta, 2017, 92, 072501.	1.2	50
330	Classical-hidden-variable description for entanglement dynamics of two-qubit pure states. Physical Review A, 2017, 95, .	1.0	4
331	<i>Colloquium $\langle i \rangle$: Strongly interacting photons in one-dimensional continuum. Reviews of Modern Physics, 2017, 89, .</i>	16.4	313
332	The Transporter: Are We There yet?., 2017,, 233-277.		0
333	After Bell. Fortschritte Der Physik, 2017, 65, 1600044.	1.5	17
334	Deterministic quantum state transfer between remote qubits in cavities. Quantum Science and Technology, 2017, 2, 045003.	2.6	22
335	Stark tuning and electrical charge state control of single divacancies in silicon carbide. Applied Physics Letters, 2017, 111, .	1.5	62

#	Article	IF	Citations
336	Testing violation of the Leggett–Garg-type inequality in neutrino oscillations of the Daya Bay experiment. European Physical Journal C, 2017, 77, 1.	1.4	26
337	Three-observer Bell inequality violation on a two-qubit entangled state. Quantum Science and Technology, 2017, 2, 015010.	2.6	51
338	The photon identification loophole in EPRB experiments: computer models with single-wing selection. Open Physics, 2017, 15, 713-733.	0.8	21
339	Bohr against Bell: complementarity versus nonlocality. Open Physics, 2017, 15, 734-738.	0.8	27
340	Experimental test of nonlocal causality. , 2017, , .		1
341	Relativity, anomalies and objectivity loophole in recent tests of local realism. Open Physics, 2017, 15, 692-696.	0.8	0
342	Is Einsteinian no-signalling violated in Bell tests?. Open Physics, 2017, 15, 739-753.	0.8	16
343	Rhetoric, logic, and experiment in the quantum nonlocality debate. Open Physics, 2017, 15, 586-597.	0.8	2
344	Random Quantum Correlations are Generically Non-classical. Annales Henri Poincare, 2017, 18, 3793-3813.	0.8	4
345	What If Quantum Theory Violates All Mathematics?. Open Physics, 2017, 15, 598-602.	0.8	0
346	Cosmic test backs 'quantum spookiness'. Nature, 2017, , .	13.7	0
347	LA REALTÃ f â,¬ FISICA, MON BEAU SOUCI. Istituto Lombardo - Accademia Di Scienze E Lettere - Incontri Di Studio, 0 , , .	0.0	0
348	Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies. EPJ Web of Conferences, 2017, 164, 08010.	0.1	0
349	Optimizing single-mode collection from pointlike sources of single photons with adaptive optics. Optics Express, 2017, 25, 18629.	1.7	0
350	Demonstration of diamond microlens structures by a three-dimensional (3D) dual-mask method. Optics Express, 2017, 25, 15572.	1.7	11
351	Entanglement dynamics for two spins in an optical cavity – field interaction induced decoherence and coherence revival. Optics Express, 2017, 25, 17051.	1.7	5
352	Chirped circular dielectric gratings for near-unity collection efficiency from quantum emitters in bulk diamond. Optics Express, 2017, 25, 32420.	1.7	24
353	Material platforms for integrated quantum photonics. Optical Materials Express, 2017, 7, 111.	1.6	109

#	Article	IF	CITATIONS
354	Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. Optical Materials Express, 2017, 7, 1514.	1.6	25
355	Excitation of nanowire surface plasmons by silicon vacancy centers in nanodiamonds. Optical Materials Express, 2017, 7, 2586.	1.6	16
356	Entanglement swapping over 100  km optical fiber with independent entangled photon-pair sources. Optica, 2017, 4, 1214.	4.8	39
357	Random bit generation using coherent state and threshold detectors at 1550 nanometers. Applied Optics, 2017, 56, 6855.	0.9	2
358	lon–photon entanglement and quantum frequency conversion with trapped Ba^+ ions. Applied Optics, 2017, 56, B222.	2.1	17
359	Using Measured Values in Bell's Inequalities Entails at Least One Hypothesis in Addition to Local Realism. Entropy, 2017, 19, 180.	1.1	4
360	Not Its Own Meaning: A Hermeneutic of the World. Humanities, 2017, 6, 55.	0.1	1
361	Quantum Mechanics, vacuum, particles, \tilde{GAq} del-Cohen incompleteness and the Universe. EPJ Web of Conferences, 2017, 164, 01023.	0.1	0
362	Loophole-Free Bell Tests and the Falsification of Local Realism. Canadian Young Scientist Journal, 2017, 10, .	0.0	0
363	The dawn of quantum networks. , 2017, , .		0
364	Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks. Applied Physics Letters, 2017, 110, .	1.5	41
365	The Role of Distance in the Gravity Model: From the View of Newton, International Economics and Quantum Mechanics. NeuroQuantology, 2017, 15, .	0.1	2
366	Force in Physics and in Metaphysics: A Brief History. The Frontiers Collection, 2018, , 199-231.	0.1	0
367	Parameter regimes for a single sequential quantum repeater. Quantum Science and Technology, 2018, 3, 034002.	2.6	44
368	Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation. Physical Review Letters, 2018, 120, 100501.	2.9	27
369	Protecting nonlocality of multipartite states by feed-forward control. Quantum Information Processing, 2018, 17, 1.	1.0	1
370	Optimal and secure measurement protocols for quantum sensor networks. Physical Review A, 2018, 97,	1.0	95
371	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477.	13.7	408

#	Article	IF	CITATIONS
372	Stabilized entanglement of massive mechanical oscillators. Nature, 2018, 556, 478-482.	13.7	388
373	Light, the universe and everything – 12 Herculean tasks for quantum cowboys and black diamond skiers. Journal of Modern Optics, 2018, 65, 1261-1308.	0.6	6
374	Astronomical random numbers for quantum foundations experiments. Physical Review A, 2018, 97, .	1.0	9
375	Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator. Physical Review Letters, 2018, 120, 167401.	2.9	43
376	Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator. Physical Review X, 2018, 8, .	2.8	40
377	Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates. Physical Review Letters, 2018, 120, 140406.	2.9	17
378	Experimentally generated randomness certified by the impossibility of superluminal signals. Nature, 2018, 556, 223-226.	13.7	126
379	Nonlinear unitary quantum collapse model with self-generated noise. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 175308.	0.7	0
380	Information-reality complementarity: The role of measurements and quantum reference frames. Physical Review A, 2018, 97, .	1.0	28
381	Coherent exchange correlation in quantum systems. Physics of the Solid State, 2018, 60, 1-9.	0.2	4
382	Role of Particle Entanglement in the Violation of Bell Inequalities. Scientific Reports, 2018, 8, 1777.	1.6	5
383	Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond. Nano Letters, 2018, 18, 1360-1365.	4.5	112
384	Robust quantum network architectures and topologies for entanglement distribution. Physical Review A, 2018, 97, .	1.0	40
385	Generalized Hardy's Paradox. Physical Review Letters, 2018, 120, 050403.	2.9	32
386	Practical device-independent quantum cryptography via entropy accumulation. Nature Communications, 2018, 9, 459.	5.8	146
387	One-sided measurement-device-independent quantum key distribution. Physical Review A, 2018, 97, .	1.0	12
388	Geometry of the set of quantum correlations. Physical Review A, 2018, 97, .	1.0	71
389	Crystallographic Orientation Dependent Reactive Ion Etching in Single Crystal Diamond. Advanced Materials, 2018, 30, 1705501.	11.1	41

#	Article	IF	CITATIONS
390	Nonanomalous measure of realism-based nonlocality. Physical Review A, 2018, 97, .	1.0	27
391	Violation of Bell's Inequality Using Continuous Variable Measurements. Physical Review Letters, 2018, 120, 040406.	2.9	22
392	Mediation of entanglement and nonlocality of a single fermion. Quantum Information Processing, $2018, 17, 1.$	1.0	2
393	Two methods for measuring Bell nonlocality via local unitary invariants of two-qubit systems in Hong-Ou-Mandel interferometers. Physical Review A, 2018, 97, .	1.0	4
394	Quantum Bit Commitment and the Reality of the Quantum State. Foundations of Physics, 2018, 48, 92-109.	0.6	4
395	High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole. Physical Review Letters, 2018, 120, 010503.	2.9	85
396	Heralded quantum steering over a high-loss channel. Science Advances, 2018, 4, e1701230.	4.7	27
397	Bell's inequality tests via correlated diffraction of high-dimensional position-entangled two-photon states. Scientific Reports, 2018, 8, 4812.	1.6	4
398	Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings. Applied Physics Letters, 2018, 112, .	1.5	9
399	Entanglement, nonlocality and multi-particle quantum correlations. AIP Conference Proceedings, 2018, , .	0.3	1
400	Material platforms for spin-based photonic quantum technologies. Nature Reviews Materials, 2018, 3, 38-51.	23.3	453
401	Indistinguishability as nonlocality constraint. Scientific Reports, 2018, 8, 6091.	1.6	2
402	Entanglement loss in molecular quantum-dot qubits due to interaction with the environment. Journal of Physics Condensed Matter, 2018, 30, 195602.	0.7	5
403	Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector. Nano Letters, 2018, 18, 2787-2793.	4.5	66
404	Quantum information processing with nitrogen–vacancy centers in diamond. Chinese Physics B, 2018, 27, 020304.	0.7	25
405	Twisted photons: new quantum perspectives in high dimensions. Light: Science and Applications, 2018, 7, 17146-17146.	7.7	412
406	Device-independent point estimation from finite data and its application to device-independent property estimation. Physical Review A, 2018, 97, .	1.0	25
407	Spin and Wind Directions I: Identifying Entanglement in Nature and Cognition. Foundations of Science, 2018, 23, 323-335.	0.4	18

#	Article	IF	CITATIONS
408	Spin and Wind Directions II: A Bell State Quantum Model. Foundations of Science, 2018, 23, 337-365.	0.4	17
409	Conscious agent networks: Formal analysis and application to cognition. Cognitive Systems Research, 2018, 47, 186-213.	1.9	17
410	Parameter estimation in plasmonic QED. Optics Communications, 2018, 411, 119-125.	1.0	13
411	Long distance quantum teleportation. Quantum Science and Technology, 2018, 3, 014012.	2.6	19
412	Review and suggested resolution of the problem of Schrodinger's cat. Contemporary Physics, 2018, 59, 16-30.	0.8	10
413	Extended Bell inequality and maximum violation. Chinese Physics B, 2018, 27, 100303.	0.7	2
414	Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting Perfect Correlations/Anticorrelations. Entropy, 2018, 20, 829.	1.1	8
415	Sciences of Observation. Philosophies, 2018, 3, 29.	0.4	4
416	Some Consequences of the Thermodynamic Cost of System Identification. Entropy, 2018, 20, 797.	1,1	15
417	Quantum correlations are weaved by the spinors of the Euclidean primitives. Royal Society Open Science, 2018, 5, 180526.	1.1	16
418	Testing causal quantum theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180501.	1.0	4
419	Projecting onto any two-photon polarization state using linear optics. New Journal of Physics, 2018, 20, 083033.	1.2	3
420	A channel-based framework for steering, non-locality and beyond. New Journal of Physics, 2018, 20, 053048.	1.2	26
421	Quantum contextuality of a single neutrino under interactions with matter. New Journal of Physics, 2018, 20, 063040.	1.2	10
422	Optimal design of diamond-air microcavities for quantum networks using an analytical approach. New Journal of Physics, 2018, 20, 115004.	1,2	17
423	On the Role of Unitary-Symmetry for the Foundation of Probability and Time in a Realist Approach to Quantum Physics. Symmetry, 2018, 10, 737.	1.1	2
424	Postselection-Loophole-Free Bell Violation with Genuine Time-Bin Entanglement. Physical Review Letters, 2018, 121, 190401.	2.9	32
425	Probing the limits of correlations in an indivisible quantum system. Physical Review A, 2018, 98, .	1.0	15

#	Article	IF	CITATIONS
426	Does the PBR Theorem Rule out a Statistical Understanding of QM?. Foundations of Physics, 2018, 48, 1770-1793.	0.6	4
427	Logical paradoxes in quantum computation. , 2018, , .		1
428	Closing the Door on Quantum Nonlocality. Entropy, 2018, 20, 877.	1.1	21
429	Subtleties of witnessing quantum coherence in nonisolated systems. Physical Review A, 2018, 98, .	1.0	17
430	Strongly anisotropic spin relaxation in the neutral silicon vacancy center in diamond. Physical Review B, 2018, 98, .	1.1	17
431	Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence. Physical Review Letters, 2018, 121, 263601.	2.9	35
432	Geometric extension of Clauser–Horne inequality to more qubits. New Journal of Physics, 2018, 20, 093006.	1.2	4
433	Concentration phenomena in the geometry of Bell correlations. Physical Review A, 2018, 98, .	1.0	9
434	Experimentally Robust Self-testing for Bipartite and Tripartite Entangled States. Physical Review Letters, 2018, 121, 240402.	2.9	19
435	First principles calculation of spin-related quantities for point defect qubit research. Npj Computational Materials, $2018, 4, .$	3.5	56
436	Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. Npj Quantum Information, 2018, 4, .	2.8	58
437	Optomechanical Bell Test. Physical Review Letters, 2018, 121, 220404.	2.9	125
438	Single-photon heralded two-qubit unitary gates for pairs of nitrogen-vacancy centers in diamond. Physical Review A, 2018, 98, .	1.0	3
439	Extended quantum Maxwell demon acting over macroscopic distances. Physical Review B, 2018, 98, .	1.1	8
440	Imaging the Local Charge Environment of Nitrogen-Vacancy Centers in Diamond. Physical Review Letters, 2018, 121, 246402.	2.9	84
441	Survey on the Bell nonlocality of a pair of entangled qudits. Physical Review A, 2018, 98, .	1.0	13
442	Identification and tunable optical coherent control of transition-metal spins in silicon carbide. Npj Quantum Information, 2018, 4, .	2.8	53
443	Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond. Micromachines, 2018, 9, 437.	1.4	85

#	ARTICLE	IF	Citations
444	Randomness Extraction from Bell Violation with Continuous Parametric Down-Conversion. Physical Review Letters, 2018, 121, 150402.	2.9	39
445	Kolmogorov complexity of sequences of random numbers generated in Bell's experiments. Physical Review A, 2018, 98, .	1.0	10
446	Quantum Mechanics Between Ontology and Epistemology. European Studies in Philosophy of Science, 2018, , .	0.4	12
447	Just a Matter of Knowledge?. European Studies in Philosophy of Science, 2018, , 117-203.	0.4	0
448	Optical simulation of adaptive nonlocality distillation. Physical Review A, 2018, 98, .	1.0	1
449	Exploring the framework of assemblage moment matrices and its applications in device-independent characterizations. Physical Review A, 2018, 98, .	1.0	12
450	An Ontology of Nature with Local Causality, Parallel Lives, and Many Relative Worlds. Foundations of Physics, 2018, 48, 1698-1730.	0.6	5
451	Is David Bohm's Quantum Mechanics Interpretation Irrefutable?. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2018, 73, 351-363.	0.1	4
452	Diamond as a Platform for Integrated Quantum Photonics. Advanced Quantum Technologies, 2018, 1, 1800061.	1.8	49
453	Steering is an essential feature of non-locality in quantum theory. Nature Communications, 2018, 9, 4244.	5.8	11
454	Clauser-Horne-Shimony-Holt Bell inequality test in an optomechanical device. Physical Review A, 2018, 98, .	1.0	9
455	Device-independent quantum random-number generation. Nature, 2018, 562, 548-551.	13.7	154
456	Spatial Bunching of Same-Index Polarization Singularities in Two-Dimensional Random Vector Waves. Physical Review X, 2018, 8, .	2.8	5
457	Quantum internet: A vision for the road ahead. Science, 2018, 362, .	6.0	1,098
458	Certifying quantum randomness by probability estimation. Physical Review A, 2018, 98, .	1.0	19
459	Shaped Pulses for Energy-Efficient High-Field NMR at the Nanoscale. Physical Review Applied, 2018, 10, .	1.5	12
460	All-electric single-electron spin-to-charge conversion. Physical Review B, 2018, 98, .	1.1	1
461	Modification of relaxation dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Tb</mml:mi>Y<mml:mn>3</mml:mn><mml:msub><mml:mi>Al</mml:mi><mml:mi>Al</mml:mi><mml:msub></mml:msub></mml:msub></mml:mrow></mml:msup></mml:math> nathvariant="normal">O <mml:mi><mml:mn>12</mml:mn></mml:mi>	mrow> <m ıml:mn>5<</m 	ml:mrow> <n /m@nl:mn><!--</td--></n

26

#	Article	IF	CITATIONS
462	Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics, 2018, $90, .$	16.4	852
464	Screening and engineering of colour centres in diamond. Journal Physics D: Applied Physics, 2018, 51, 483002.	1.3	66
465	Quantum technologies with optically interfaced solid-state spins. Nature Photonics, 2018, 12, 516-527.	15.6	581
466	Interfacing quantum emitters with propagating surface acoustic waves. Journal Physics D: Applied Physics, 2018, 51, 373001.	1.3	41
467	Spectral Alignment of Single-Photon Emitters in Diamond using Strain Gradient. Physical Review Applied, 2018, 10, .	1.5	30
468	Extracontextuality and extravalence in quantum mechanics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170311.	1.6	20
469	Foundations of quantum mechanics and their impact on contemporary society. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180112.	1.6	8
470	All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles. Nature Communications, 2018, 9, 2127.	5.8	45
471	The quantum theory of time, the block universe, and human experience. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170316.	1.6	8
472	What is quantum in quantum randomness?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170322.	1.6	23
473	From quantum foundations to applications and back. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170326.	1.6	6
474	Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. Nano Letters, 2018, 18, 3956-3961.	4.5	52
475	Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber. Japanese Journal of Applied Physics, 2018, 57, 062801.	0.8	11
476	Coherent Raman spectroscopy of solidâ€state broadband quantum memories. Journal of Raman Spectroscopy, 2018, 49, 1128-1135.	1.2	2
477	Small violations of Bell inequalities for multipartite pure random states. Journal of Mathematical Physics, 2018, 59, 052202.	0.5	2
478	Improved lower bound on superluminal quantum communication. Physical Review A, 2018, 97, .	1.0	7
479	Water-Related Mechanisms Proposed for Storing and Transmitting Homeopathic Information: Putative Links with Biological Responses. Homeopathy, 2018, 107, 172-180.	0.5	11
480	Quantum entanglement with Freedman's inequality. American Journal of Physics, 2018, 86, 412-416.	0.3	4

#	Article	IF	CITATIONS
481	Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system. New Journal of Physics, 2018, 20, 053029.	1.2	7
482	Identification of nickel-vacancy defects by combining experimental and <i>ab initio</i> simulated photocurrent spectra. Physical Review B, 2018, 97, .	1.1	18
483	Observation of an environmentally insensitive solid-state spin defect in diamond. Science, 2018, 361, 60-63.	6.0	173
484	Entanglement and Non-locality: EPR, Bell and Their Consequences. , 2018, , 103-178.		1
485	Influence of the choice of postprocessing method on Bell inequalities. Physical Review A, 2018, 97, .	1.0	3
486	Quantum Frequency Conversion of Single Photons from a Nitrogen-Vacancy Center in Diamond to Telecommunication Wavelengths. Physical Review Applied, 2018, 9, .	1.5	90
487	Gravity is not a pairwise local classical channel. Classical and Quantum Gravity, 2018, 35, 145005.	1.5	31
488	One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nature Communications, 2018, 9, 2552.	5.8	176
489	The Nature of Reality. Undergraduate Lecture Notes in Physics, 2018, , 195-224.	0.1	0
490	In situ bias current monitoring of nucleation for epitaxial diamonds on 3C-SiC/Si substrates. Diamond and Related Materials, 2018, 88, 158-162.	1.8	13
491	Quantum frequency conversion of memory-compatible single photons from 606  nm to the telecom C-band. Optica, 2018, 5, 507.	4.8	46
493	Spin-strain interaction in nitrogen-vacancy centers in diamond. Physical Review B, 2018, 98, .	1.1	77
494	Experimental simulation of monogamy relation between contextuality and nonlocality in classical light. Optics Express, 2018, 26, 11959.	1.7	9
495	The quantum internet has arrived (and it hasn't). Nature, 2018, 554, 289-292.	13.7	64
496	Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing. Optics Letters, 2018, 43, 3586.	1.7	59
497	Perspectives and Outline. Springer Theses, 2018, , 3-19.	0.0	0
498	Essentials of Quantum Theory. Springer Theses, 2018, , 21-49.	0.0	0
499	Nonclassical mixed states that generate zero entanglement with a beam splitter. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 385303.	0.7	6

#	Article	IF	CITATIONS
500	Closing the detection loophole in multipartite Bell experiments with a limited number of efficient detectors. Physical Review A, $2018, 98, .$	1.0	4
501	Objective Realism and Joint Measurability in Quantum Many Copies. Annalen Der Physik, 2018, 530, 1800002.	0.9	4
502	On Graph Approaches to Contextuality and their Role in Quantum Theory. Springer Briefs in Mathematics, $2018, \ldots$	0.2	30
503	Transforming Bell's inequalities into state classifiers with machine learning. Npj Quantum Information, 2018, 4, .	2.8	45
504	On the Violation of Causality in Quantum Experiments. Moscow University Physics Bulletin (English) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf 5
505	Coherence Properties of Molecular Single Photons for Quantum Networks. Physical Review X, 2018, 8,	2.8	27
506	Quantum Theory and the Structure of Space-Time. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 733-739.	0.7	6
507	Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica, 2018, 5, 902.	4.8	43
508	Entanglement in composite systems due to external influences. International Journal of Modern Physics A, 2018, 33, 1850128.	0.5	1
509	The Many Facets of Diamond Crystals. Crystals, 2018, 8, 72.	1.0	1
510	Spooky Action at a Temporal Distance. Entropy, 2018, 20, 41.	1.1	35
511	Tsirelson's Bound Prohibits Communication through a Disconnected Channel. Entropy, 2018, 20, 151.	1.1	5
512	Towards Experiments to Test Violation of the Original Bell Inequality. Entropy, 2018, 20, 280.	1.1	10
513	Of Local Operations and Physical Wires. Physical Review X, 2018, 8, .	2.8	18
514	Witnessing Optomechanical Entanglement with Photon Counting. Physical Review Letters, 2018, 121, 023602.	2.9	16
515	Philosophie der Quantenphysik. , 2018, , .		9
516	Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond. Nano Letters, 2018, 18, 4046-4052.	4.5	46
517	Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids. Physical Review Letters, 2018, 120, 197401.	2.9	24

#	Article	IF	CITATIONS
518	Challenging local realism with human choices. Nature, 2018, 557, 212-216.	13.7	136
519	Einstein-Podolsky-Rosen steering, depth of steering, and planar spin squeezing in two-mode Bose-Einstein condensates. Physical Review A, 2018, 98, .	1.0	10
520	Multilayer test masses to enhance the collapse noise. Physical Review A, 2018, 98, .	1.0	16
521	Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars. Physical Review Letters, 2018, 121, 080403.	2.9	89
522	Test of Local Realism into the Past without Detection and Locality Loopholes. Physical Review Letters, 2018, 121, 080404.	2.9	58
523	Mirrors made of a single atomic layer. Nature, 2018, 556, 177-178.	13.7	5
524	Cross-entangling electronic and nuclear spins of distant nitrogen-vacancy centers in noisy environments by means of quantum microwave radiation. Physical Review B, 2018, 98, .	1.1	2
525	A Stochastic Process Model for Free Agency under Indeterminism. Dialectica, 2018, 72, 219-252.	0.3	8
526	Photonic graph state generation from quantum dots and color centers for quantum communications. Physical Review B, 2018, 98, .	1.1	24
527	Interesting Examples of Violation of the Classical Equivalence Principle but Not of the Weak One. Advances in High Energy Physics, 2018, 2018, 1-13.	0.5	0
528	Ab initio description of highly correlated states in defects for realizing quantum bits. Npj Quantum Materials, $2018, 3, .$	1.8	60
529	The certainty of quantum randomness. Nature, 2018, 556, 176-177.	13.7	8
530	Probing the origins of inhomogeneous broadening in nitrogen-vacancy centers with Doppler-free-type spectroscopy. Physical Review B, 2018, 98, .	1.1	10
531	Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems. Physical Review Letters, 2018, 120, 240402.	2.9	51
533	Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558, 264-267.	13.7	175
534	Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558, 268-273.	13.7	348
535	Are Hidden-Variable Theories for Pilot-Wave Systems Possible?. Foundations of Physics, 2018, 48, 803-826.	0.6	8
536	Tripartite entanglement and non-locality in three-qubit Greenberger–Horne–Zeilinger states with bit-flip noise. Canadian Journal of Physics, 2019, 97, 248-251.	0.4	3

#	Article	IF	CITATIONS
537	Nonlocal uncertainty and its implications in quantum mechanics at ultramicroscopic scales. Quantum Studies: Mathematics and Foundations, 2019, 6, 123-133.	0.4	13
538	Generation of arbitrary all-photonic graph states from quantum emitters. New Journal of Physics, 2019, 21, 055002.	1.2	24
539	Entanglement between a Diamond Spin Qubit and a Photonic Time-Bin Qubit at Telecom Wavelength. Physical Review Letters, 2019, 123, 063601.	2.9	59
540	Experimental comparison of tomography and self-testing in certifying entanglement. Physical Review A, 2019, 100, .	1.0	8
541	Mode-dependent-loss model for multimode photon-subtracted states. Physical Review A, 2019, 100, .	1.0	9
542	Metasurface interferometry toward quantum sensors. Light: Science and Applications, 2019, 8, 70.	7.7	93
543	Quantifying continuous-variable realism. Physical Review A, 2019, 100, .	1.0	11
544	Bell inequalities from no-signaling distributions. Physical Review A, 2019, 100, .	1.0	17
545	Quantum Teleportation in High Dimensions. Physical Review Letters, 2019, 123, 070505.	2.9	228
546	Optically pumped dynamic nuclear hyperpolarization in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">C</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>13</mml:mn></mml:mmultiscripts>-enriched diamond. Physical Review B, 2019,</mmi:math>	1.1	14
547	Additive-Manufactured and Topology-Optimized Permanent-Magnet Spin Rotator for Neutron Interferometry. Physical Review Applied, 2019, 12, .	1.5	4
548	Multipartite Entanglement Generation and Contextuality Tests Using Nondestructive Three-Qubit Parity Measurements. Physical Review Letters, 2019, 123, 050401.	2.9	27
549	Violation of space–time Bell-CHSH inequality beyond the Tsirelson bound and quantum cryptography. Pramana - Journal of Physics, 2019, 93, 1.	0.9	0
550	Bell's theorem for temporal order. Nature Communications, 2019, 10, 3772.	5.8	86
551	Imaging Bell-type nonlocal behavior. Science Advances, 2019, 5, eaaw2563.	4.7	42
552	Generating Maximal Entanglement between Spectrally Distinct Solid-State Emitters. Physical Review Letters, 2019, 123, 023603.	2.9	9
553	Inverse-designed diamond photonics. Nature Communications, 2019, 10, 3309.	5.8	109
554	Towards a realization of device-independent quantum key distribution. Quantum Science and Technology, 2019, 4, 035011.	2.6	34

#	ARTICLE	IF	CITATIONS
555	Optimal quantum optical control of spin in diamond. Physical Review A, 2019, 100, .	1.0	15
556	Towards long-distance quantum networks with superconducting processors and optical links. Quantum Science and Technology, 2019, 4, 045003.	2.6	16
557	Timelike entanglement for delayed-choice entanglement swapping. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2019, 68, 16-22.	1.4	3
558	Nonlocality distillation and quantum voids. Physical Review A, 2019, 100, .	1.0	5
559	Quantum operator entropies under unitary evolution. Physical Review E, 2019, 100, 012101.	0.8	13
560	Realism, Non-Contextuality, Local Causality, Entanglement. , 2019, , 187-212.		O
561	Nonlinear deterministic-chaotic collapse model - preliminaries, philosophy, locality. Journal of Physics: Conference Series, 2019, 1275, 012014.	0.3	0
562	Photonic quantum information processing: A concise review. Applied Physics Reviews, 2019, 6, .	5.5	299
563	Bell correlations between spatially separated pairs of atoms. Nature Communications, 2019, 10, 4447.	5.8	30
564	Tripartite Entanglement: Foundations and Applications. Universe, 2019, 5, 209.	0.9	32
565	Towards Large-Scale Quantum Networks. , 2019, , .		59
566	Spin coherent quantum transport of electrons between defects in diamond. Nanophotonics, 2019, 8, 1975-1984.	2.9	11
568	Get Rid of Nonlocality from Quantum Physics. Entropy, 2019, 21, 806.	1.1	41
569	Quantum entanglement in physical and cognitive systems: A conceptual analysis and a general representation. European Physical Journal Plus, 2019, 134, 1.	1.2	28
570	Entanglement in a 20-Qubit Superconducting Quantum Computer. Scientific Reports, 2019, 9, 13465.	1.6	77
571	Bell's Theorem Versus Local Realism in a Quaternionic Model of Physical Space. IEEE Access, 2019, 7, 133388-133409.	2.6	11
572	Fast measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: final results. Journal of Physics: Conference Series, 2019, 1275, 012035.	0.3	1
573	Highâ€Dimensional Quantum Communication: Benefits, Progress, and Future Challenges. Advanced Quantum Technologies, 2019, 2, 1900038.	1.8	195

#	Article	IF	CITATIONS
574	A Single Trapped Rydberg Ion. Springer Theses, 2019, , .	0.0	2
575	Higher amounts of loophole-free Bell violation using a heralded entangled source. New Journal of Physics, 2019, 21, 103008.	1.2	3
576	Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nature Communications, 2019, 10, 4956.	5 . 8	81
577	Colour centre generation in diamond for quantum technologies. Nanophotonics, 2019, 8, 1889-1906.	2.9	56
578	Dynamical Decoupling of a Geometric Qubit. Physical Review Applied, 2019, 12, .	1.5	12
579	An instrument-free demonstration of quantum key distribution for high-school students. Physics Education, 2019, 54, 065006.	0.3	0
580	Correlations and How to Interpret Them. Information (Switzerland), 2019, 10, 272.	1.7	4
581	Quantum Communication with Time-Bin Encoded Microwave Photons. Physical Review Applied, 2019, 12,	1.5	29
582	Twenty Years of Quantum State Teleportation at the Sapienza University in Rome. Entropy, 2019, 21, 768.	1.1	3
583	A Physically-Motivated Quantisation of the Electromagnetic Field on Curved Spacetimes. Entropy, 2019, 21, 844.	1.1	6
584	Light-matter entanglement over 50 km of optical fibre. Npj Quantum Information, 2019, 5, .	2.8	80
586	A link layer protocol for quantum networks. , 2019, , .		124
587	Experimental demonstration of non-bilocality with truly independent sources and strict locality constraints. Nature Photonics, 2019, 13, 687-691.	15.6	40
588	The ontological basis of quantum theory, nonlocality and local realism. Journal of Physics: Conference Series, 2019, 1251, 012042.	0.3	1
589	Bell correlation depth in many-body systems. Physical Review A, 2019, 100, .	1.0	24
590	Optimization of device-independent witnesses of entanglement depth from two-body correlators. Physical Review A, 2019, 100, .	1.0	13
591	High-fidelity Greenberger-Horne-Zeilinger state generation within nearby nodes. Physical Review A, 2019, 100, .	1.0	3
592	Experimental test of the collapse time of a delocalized photon state. Scientific Reports, 2019, 9, 11897.	1.6	2

#	Article	IF	Citations
593	A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute. Physical Review X, 2019, 9, .	2.8	267
594	Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device. Nano Letters, 2019, 19, 7173-7180.	4.5	61
595	Quantifying the Mesoscopic Nature of Einstein-Podolsky-Rosen Nonlocality. Physical Review Letters, 2019, 123, 120402.	2.9	11
596	Relating causal and probabilistic approaches to contextuality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190133.	1.6	7
597	Experimental demonstration of quantum advantage for one-way communication complexity surpassing best-known classical protocol. Nature Communications, 2019, 10, 4152.	5.8	12
598	Tsirelson's problem and an embedding theorem for groups arising from non-local games. Journal of the American Mathematical Society, 2020, 33, 1-56.	1.9	37
599	Contextuality, memory cost and non-classicality for sequential measurements. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190141.	1.6	3
600	Understanding quantum mechanics: a review and synthesis in precise language. Open Physics, 2019, 17, 390-437.	0.8	13
601	Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics, 2019, 8, 2003-2015.	2.9	123
602	Genuine Quantum Nonlocality in the Triangle Network. Physical Review Letters, 2019, 123, 140401.	2.9	106
603	Semideterministic Entanglement between a Single Photon and an Atomic Ensemble. Physical Review Letters, 2019, 123, 140504.	2.9	18
604	Pulse-enhanced two-photon interference with solid state quantum emitters. Physical Review B, 2019, 100, .	1.1	4
605	Violation of bilocality in quantum networks. Nature Photonics, 2019, 13, 662-663.	15.6	5
606	Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nature Physics, 2019, 15, 373-381.	6.5	148
607	Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states. Scientific Reports, 2019, 9, 687.	1.6	4
608	A Survey on quantum computing technology. Computer Science Review, 2019, 31, 51-71.	10.2	287
609	Strong Quantum Nonlocality without Entanglement. Physical Review Letters, 2019, 122, 040403.	2.9	83
610	Relaxed Bell inequalities with arbitrary measurement dependence for each observer. Physical Review A, 2019, 99, .	1.0	24

#	ARTICLE	IF	Citations
611	Wide dynamic range magnetic field cycler: Harnessing quantum control at low and high fields. Review of Scientific Instruments, 2019, 90, 013112.	0.6	11
616	Present Situation, Remaining Conceptual Difficulties. , 2019, , 21-48.		0
617	The Theorem of Einstein, Podolsky, and Rosen. , 2019, , 49-72.		0
618	Bell Theorem. , 2019, , 73-116.		0
619	Other Inequalities, Cirelson's Limit, Signaling. , 2019, , 117-152.		0
620	More Theorems. , 2019, , 153-188.		0
621	Quantum Entanglement., 2019,, 189-222.		0
622	Applications of Quantum Entanglement. , 2019, , 223-242.		0
623	Quantum Measurement., 2019,, 243-274.		0
624	Experiments: Quantum Reduction Seen in Real Time. , 2019, , 275-292.		0
625	Various Interpretations and Reconstructions of Quantum Mechanics. , 2019, , 293-404.		0
627	Annex: Basic Mathematical Tools of Quantum Mechanics. , 2019, , 409-432.		0
641	Pauli-based fermionic teleportation with free massive particles by electron-exchange collisions. New Journal of Physics, 2019, 21, 033025.	1.2	0
642	Fundamental Mathematical Structures of Quantum Theory. , 2019, , .		10
643	Ontological Enigmas: What is the True Nature of Reality?. The Frontiers Collection, 2019, , 345-394.	0.1	0
644	Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes. Nano Letters, 2019, 19, 3987-3992.	4.5	59
645	A monolithic immersion metalens for imaging solid-state quantum emitters. Nature Communications, 2019, 10, 2392.	5.8	75
646	Experimental demonstration of the violations of Mermin's and Svetlichny's inequalities for W and GHZ states. Quantum Information Processing, 2019, 18, 1.	1.0	21

#	Article	IF	CITATIONS
647	Continuous-Variable Entanglement Test in Driven Quantum Contacts. Physical Review Letters, 2019, 122, 236801.	2.9	2
648	Individual control and readout of qubits in a sub-diffraction volume. Npj Quantum Information, 2019, 5, .	2.8	21
649	Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation. Advanced Quantum Technologies, 2019, 2, 1900006.	1.8	31
650	Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Physical Review A, 2019, 99, .	1.0	88
651	The Einstein–Podolsky–Rosen Steering and Its Certification. Entropy, 2019, 21, 422.	1.1	8
652	Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica, 2019, 6, 662.	4.8	89
653	Geometric structure of quantum correlators via semidefinite programming. Physical Review A, 2019, 99, .	1.0	5
654	Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics. Physical Review A, 2019, 99, .	1.0	7
655	Roadmap on all-optical processing. Journal of Optics (United Kingdom), 2019, 21, 063001.	1.0	128
656	Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature. Diamond and Related Materials, 2019, 96, 85-89.	1.8	6
657	The relativistic causality versus no-signaling paradigm for multi-party correlations. Nature Communications, 2019, 10, 1701.	5.8	14
658	Perspective on experimental quantum causality. Europhysics Letters, 2019, 125, 30001.	0.7	12
659	Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing. Physical Review B, 2019, 99, .	1.1	75
660	On the Reality of Quantum Collapse and the Emergence of Space-Time. Entropy, 2019, 21, 323.	1.1	3
661	Electronic structure of the neutral silicon-vacancy center in diamond. Physical Review B, 2019, 99, .	1.1	34
662	High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nature Communications, 2019, 10, 1954.	5.8	167
663	Quantum Information Processing with Superconducting Nanowire Single-Photon Detectors. IEICE Transactions on Electronics, 2019, E102.C, 224-229.	0.3	2
664	Routing entanglement in the quantum internet. Npj Quantum Information, 2019, 5, .	2.8	169

#	Article	IF	Citations
665	Stronger Hardy-type paradox based on the Bell inequality and its experimental test. Physical Review A, 2019, 99, .	1.0	16
666	Femtosecond laser written photonic and microfluidic circuits in diamond. JPhys Photonics, 2019, 1, 022001.	2.2	40
667	The critical detection efficiency for closing the detection loophole of some modified Bell inequalities. Quantum Information Processing, 2019, 18, 1.	1.0	0
668	Bounding the Plausibility of Physical Theories in a Device-Independent Setting via Hypothesis Testing. Entropy, 2019, 21, 185.	1.1	13
669	Envelope solitons in a nonlinear string with mirror nonlocality. Nonlinear Dynamics, 2019, 96, 1939-1946.	2.7	4
670	Geometry of the quantum set on no-signaling faces. Physical Review A, 2019, 99, .	1.0	13
671	Bell inequality violation in the framework of a Darwinian approach to quantum mechanics. European Physical Journal: Special Topics, 2019, 227, 2119-2132.	1.2	1
672	Experimental investigation of partially entangled states for device-independent randomness generation and self-testing protocols. Physical Review A, 2019, 99, .	1.0	21
673	Can europium atoms form luminescent centres in diamond: A combined theoretical–experimental study. Diamond and Related Materials, 2019, 94, 233-241.	1.8	27
674	Simple and Tight Device-Independent Security Proofs. SIAM Journal on Computing, 2019, 48, 181-225.	0.8	61
675	Simultaneous measurement of non-commuting observables in entangled systems. European Physical Journal: Special Topics, 2019, 227, 2209-2219.	1.2	2
676	Bell violations with entangled and non-entangled optical fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 115403.	0.6	1
677	Entangling distant spin qubits via a magnetic domain wall. Physical Review B, 2019, 99, .	1.1	21
678	Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling as Independence of Random Variables. Entropy, 2019, 21, 157.	1.1	43
679	Bellâ \in TM s inequality, generalized concurrence and entanglement in qubits. International Journal of Modern Physics A, 2019, 34, 1950032.	0.5	5
680	Quantum resource theories. Reviews of Modern Physics, 2019, 91, .	16.4	614
681	Bell-state correlations of quasiparticle pairs in the nonlinear current of a local Fermi liquid. Physical Review B, 2019, 99, . Resonant Ontical Spin Initialization and Readout of Single Silicon Vacancies in commitment	1.1	0
682	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mm>4</mml:mm> <mml:mi>H</mml:mi> - <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Si</mml:mi><mml:mi mathvariant="normal">C</mml:mi></mml:math> . Physical Review Applied, 2019, 11, .	1.5	47

#	Article	IF	CITATIONS
683	Foiling covert channels and malicious classical post-processing units in quantum key distribution. Npj Quantum Information, 2019, 5, .	2.8	20
684	Facets of bipartite nonlocality sharing by multiple observers via sequential measurements. Physical Review A, 2019, 99, .	1.0	38
685	Suppressed antibunching via spectral filtering: An analytical study in the two-photon Mollow regime. Physical Review A, 2019, 99, .	1.0	4
686	Classical versus quantum probability: Comments on the paper "On universality of classical probability with contextually labeled random variables―by E. Dzhafarov and M. Kon. Journal of Mathematical Psychology, 2019, 89, 87-92.	1.0	7
687	Field dynamics in atrioventricular activation. Clinical evidence of a specific field-to-protein interaction. Medical Hypotheses, 2019, 124, 56-59.	0.8	2
688	Coherence as a resource for source-independent quantum random-number generation. Physical Review A, 2019, 99, .	1.0	20
689	Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Physical Review A, 2019, 99, .	1.0	13
690	Generating randomness: making the most out of disordering a false order into a real one. Journal of Translational Medicine, 2019, 17, 49.	1.8	51
691	Very strong evidence in favor of quantum mechanics and against local hidden variables from a Bayesian analysis. Physical Review A, 2019, 99, .	1.0	5
692	Neutral-Atom Wavelength-Compatible 780 nm Single Photons from a Trapped Ion via Quantum Frequency Conversion. Physical Review Applied, 2019, 11 , .	1.5	18
693	Experimental measurement-dependent local Bell test with human free will. Physical Review A, 2019, 99, .	1.0	2
694	Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Applied Sciences (Switzerland), 2019, 9, 5406.	1.3	19
695	Certified Randomness From Steering Using Sequential Measurements. Cryptography, 2019, 3, 27.	1.4	1
696	On David Bohm's 'pilot-wave' concept. Physics-Uspekhi, 2019, 62, 1268-1278.	0.8	8
697	Perspectives on deterministic control of quantum point defects by scanned probes. Nanophotonics, 2019, 8, 2033-2040.	2.9	8
698	Scalable repeater architectures for multi-party states. Npj Quantum Information, 2019, 5, .	2.8	14
699	SAGE: A proposal for a space atomic gravity explorer. European Physical Journal D, 2019, 73, 1.	0.6	75
700	Measuring outcome correlation for Bell cat state and geometric phase induced spin parity effect. International Journal of Quantum Information, 2019, 17, 1950039.	0.6	1

#	Article	IF	Citations
701	<i>Ab initio</i> theory of the nitrogen-vacancy center in diamond. Nanophotonics, 2019, 8, 1907-1943.	2.9	140
702	Experimental Violation of Bell's Inequality for Temporal Orders. , 2019, , .		0
703	Geometry of joint reality: Device-independent steering and operational completeness. Physical Review A, 2019, 100, .	1.0	6
704	Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks. Physical Review A, 2019, 100, .	1.0	39
705	Optical experiment to test negative probability in context of quantum-measurement selection. Scientific Reports, 2019, 9, 19021.	1.6	2
706	Measurement Induced Synthesis of Coherent Quantum Batteries. Scientific Reports, 2019, 9, 19628.	1.6	7
707	Spin measurements of NV centers coupled to a photonic crystal cavity. APL Photonics, 2019, 4, .	3.0	15
708	Quantum link bootstrapping using a RuleSet-based communication protocol. Physical Review A, 2019, 100, .	1.0	23
709	Passive and active nonlocality sharing for a two-qubit system via weak measurements. Physical Review A, 2019, 100 , .	1.0	18
710	Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories. Npj Quantum Information, 2019, 5, .	2.8	33
711	Long-distance device-independent quantum key distribution. Scientific Reports, 2019, 9, 17749.	1.6	15
712	Tripartite realism-based quantum nonlocality. Physical Review A, 2019, 100, .	1.0	12
713	Closing the detection loophole in nonlinear entanglement witnesses. Physical Review A, 2019, 100, .	1.0	8
714	Generalized Hardy-type tests for hierarchy of multipartite non-locality*. Chinese Physics B, 2019, 28, 120306.	0.7	0
715	Characterizing and quantifying extended contextuality. Physical Review A, 2019, 100, .	1.0	2
716	Entanglement certification from theory to experiment. Nature Reviews Physics, 2019, 1, 72-87.	11.9	186
717	Photonic quantum information processing: a review. Reports on Progress in Physics, 2019, 82, 016001.	8.1	402
718	Resilience of realism-based nonlocality to local disturbance. Physical Review A, 2019, 99, .	1.0	15

#	Article	IF	CITATIONS
719	Modulated Continuous Wave Control for Energy-Efficient Electron-Nuclear Spin Coupling. Physical Review Letters, 2019, 122, 010407.	2.9	11
720	Realizing Q> 300 000 in diamond microdisks for optomechanics via etch optimization. APL Photonics, 2019, 4, .	3.0	40
721	Controlling the emission and absorption spectrum of a quantum emitter in a dynamic environment. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 025501.	0.6	5
722	Extremely Confined Gap-Plasmon Waveguide Modes Excited by Nitrogen-Vacancy Centers in Diamonds. ACS Photonics, 2019, 6, 23-29.	3.2	31
723	Black hole entropy, the black hole information paradox, and time travel paradoxes from a new perspective. Journal of Modern Optics, 2020, 67, 35-40.	0.6	2
724	Defining a Relativity-Proof Notion of the Present via Spatio-temporal Indeterminism. Foundations of Physics, 2020, 50, 644-664.	0.6	1
725	Advanced Tailored Randomness: A Novel Approach for Improving the Efficacy of Biological Systems. Journal of Computational Biology, 2020, 27, 20-29.	0.8	38
726	Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices. Scientific Reports, 2020, 10, 135.	1.6	30
727	Generation of Nonâ€Classical Light Using Semiconductor Quantum Dots. Advanced Quantum Technologies, 2020, 3, 1900007.	1.8	38
728	A Quantum Router For The Entangled Web. Information Systems Frontiers, 2020, 22, 37-43.	4.1	7
729	Spectroscopic investigations of negatively charged tin-vacancy centres in diamond. New Journal of Physics, 2020, 22, 013048.	1.2	62
730	Coherent remote control of quantum emitters embedded in polymer waveguides. APL Photonics, 2020, 5, .	3.0	9
731	Experimentally Verified Approach to Nonentanglement-Breaking Channel Certification. Physical Review Letters, 2020, 124, 010502.	2.9	8
732	Stark Tuning of the Silicon Vacancy in Silicon Carbide. Nano Letters, 2020, 20, 658-663.	4.5	25
733	Bell-type polarization experiment with pairs of uncorrelated optical photons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126200.	0.9	9
734	Electron-Induced State Conversion in Diamond NV Centers Measured with Pump–Probe Cathodoluminescence Spectroscopy. ACS Photonics, 2020, 7, 232-240.	3.2	29
735	Statistical and strict momentum conservation. International Journal of Theoretical Physics, 2020, 59, 229-235.	0.5	4
736	Nonlocality Versus Modified Realism. Foundations of Physics, 2020, 50, 1-26.	0.6	10

#	Article	IF	CITATIONS
737	Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity*. Chinese Physics B, 2020, 29, 010305.	0.7	6
738	Observation of nonlocality sharing via not-so-weak measurements. Physical Review A, 2020, 102, .	1.0	23
739	Practical source-independent quantum random number generation with detector efficiency mismatch. Quantum Information Processing, 2020, 19, 1.	1.0	6
740	Decoherence of ensembles of nitrogen-vacancy centers in diamond. Physical Review B, 2020, 102, .	1.1	102
741	Locality Is Dead! Long Live Locality!. Frontiers in Physics, 2020, 8, .	1.0	11
742	Particle physics violating crypto-nonlocal realism. European Physical Journal C, 2020, 80, 1.	1.4	0
743	Is the Moon There If Nobody Looks: Bell Inequalities and Physical Reality. Frontiers in Physics, 2020, 8, .	1.0	22
744	Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. Npj Quantum Information, 2020, 6, .	2.8	38
745	Robust-fidelity hyperparallel controlled-phase-flip gate through microcavities. Applied Physics Express, 2020, 13, 082007.	1.1	9
746	Direct Structural Identification and Quantification of the Split-Vacancy Configuration for Implanted Sn in Diamond. Physical Review Letters, 2020, 125, 045301.	2.9	13
747	Photonic quantum metrology. AVS Quantum Science, 2020, 2, .	1.8	226
748	In-situ measurements of fabrication induced strain in diamond photonic-structures using intrinsic colour centres. Npj Quantum Information, 2020, 6, .	2.8	25
749	The Experiment Paradox in Physics. Foundations of Science, 2022, 27, 1-15.	0.4	3
7 50	Trigonal Bipyramidal V ³⁺ Complex as an Optically Addressable Molecular Qubit Candidate. Journal of the American Chemical Society, 2020, 142, 20400-20408.	6.6	46
751	Compact Greenberger—Horne—Zeilinger state generation via frequency combs and graph theory. Frontiers of Physics, 2020, 15, 1.	2.4	0
752	Generalizing Optimal Bell Inequalities. Physical Review Letters, 2020, 125, 200401.	2.9	5
753	Single artificial atoms in silicon emitting at telecom wavelengths. Nature Electronics, 2020, 3, 738-743.	13.1	72
7 54	Quantum integrated photonic circuits. Semiconductors and Semimetals, 2020, 105, 153-234.	0.4	3

#	Article	IF	CITATIONS
755	Masking quantum information on hyperdisks. Physical Review A, 2020, 102, .	1.0	13
756	Truncated Metallo-Dielectric Omnidirectional Reflector: Collecting Single Photons in the Fundamental Gaussian Mode with 95% Efficiency. ACS Photonics, 2020, 7, 2474-2481.	3 . 2	9
757	Bell's theorem for trajectories. Physical Review A, 2020, 102, .	1.0	3
758	Cost of Quantum Entanglement Simplified. Physical Review Letters, 2020, 125, 040502.	2.9	29
760	The GHSZ Argument: A Gedankenexperiment Requiring More Denken. Entropy, 2020, 22, 759.	1.1	4
761	Blind Witnesses Quench Quantum Interference without Transfer of Which-Path Information. Entropy, 2020, 22, 776.	1.1	0
762	Dynamics of entangled networks of the quantum Internet. Scientific Reports, 2020, 10, 12909.	1.6	13
763	Optically Detected Magnetic Resonance Study of 3D Arrayed Silicon Vacancies in SiC pn Diodes. Materials Science Forum, 0, 1004, 343-348.	0.3	2
764	Bright-light detector control emulates the local bounds of Bell-type inequalities. Scientific Reports, 2020, 10, 13205.	1.6	1
765	Interference in between the acts of pre- and postselection. Quantum Electronics, 2020, 50, 595-599.	0.3	0
766	Entanglement concentration service for the quantum Internet. Quantum Information Processing, 2020, 19, 1.	1.0	9
767	Integration of Diamond-Based Quantum Emitters with Nanophotonic Circuits. Nano Letters, 2020, 20, 8170-8177.	4. 5	35
768	The nonlocal universe. Communicative and Integrative Biology, 2020, 13, 147-159.	0.6	3
769	Device-Independent Quantum Information Processing. Springer Theses, 2020, , .	0.0	5
770	Dr. Bertlmann's Socks in a Quaternionic World of Ambidextral Reality. IEEE Access, 2020, 8, 191028-191048.	2.6	7
771	A stronger Bell argument for (some kind of) parameter dependence. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2020, 72, 1-28.	1.4	0
772	Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics. Physical Review A, 2020, 102, .	1.0	13
773	Device-independent certification of multipartite entanglement using measurements performed in randomly chosen triads. Physical Review A, 2020, 102, .	1.0	6

#	Article	IF	Citations
774	Bell nonlocality with intensity information only. Physical Review A, 2020, 102, .	1.0	2
775	Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nature Materials, 2020, 19, 1319-1325.	13.3	98
776	Real or not real that is the question European Physical Journal H, 2020, 45, 205-236.	0.5	5
777	First-principles studies of strongly correlated states in defect spin qubits in diamond. Physical Chemistry Chemical Physics, 2020, 22, 25522-25527.	1.3	22
778	Device-Independent Randomness Amplification and Privatization. IEEE Journal on Selected Areas in Information Theory, 2020, 1, 568-584.	1.9	15
779	Identifying candidate hosts for quantum defects via data mining. Npj Computational Materials, 2020, 6,	3.5	28
780	Algorithmic decomposition for efficient multiple nuclear spin detection in diamond. Scientific Reports, 2020, 10, 14884.	1.6	3
781	Entanglement-Assisted Data Transmission as an Enabling Technology: A Link-Layer Perspective. , 2020, , .		7
782	Experimental test of nonclassicality with arbitrarily low detection efficiency. Physical Review A, 2020, 102, .	1.0	3
783	Arbitrarily Many Independent Observers can Share the Nonlocality of a Single Maximally Entangled Qubit Pair. Physical Review Letters, 2020, 125, 090401.	2.9	57
784	Integrated single photon emitters. AVS Quantum Science, 2020, 2, .	1.8	40
785	Generation of distributed steady entangled state between two solid-state spins. Quantum Information Processing, 2020, 19, 1.	1.0	0
786	Coherence Time Extension by Large-Scale Optical Spin Polarization in a Rare-Earth Doped Crystal. Physical Review X, 2020, 10, .	2.8	11
787	Replication and the Establishment of Scientific Truth. Frontiers in Psychology, 2020, 11, 2183.	1.1	9
788	Electrical control of coherent spin rotation of a single-spin qubit. Npj Quantum Information, 2020, 6,	2.8	19
789	Singleâ€Particle Entanglement. Advanced Quantum Technologies, 2020, 3, 2000014.	1.8	23
790	A strong no-go theorem on the Wigner's friend paradox. Nature Physics, 2020, 16, 1199-1205.	6.5	75
791	Measurement-dependence cost for Bell nonlocality: Causal versus retrocausal models. Physical Review A, 2020, 102, .	1.0	15

#	Article	IF	CITATIONS
792	Bell correlations between light and vibration at ambient conditions. Science Advances, 2020, 6, .	4.7	12
793	Method of full polarization control of microwave fields in a scalable transparent structure for spin manipulation. Journal of Applied Physics, 2020, 128, .	1.1	4
794	Optically Detected Magnetic Resonance in Neutral Silicon Vacancy Centers in Diamond via Bound Exciton States. Physical Review Letters, 2020, 125, 237402.	2.9	36
7 95	Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging. Physical Review Applied, 2020, 14, .	1.5	27
796	Analysis of quantum coherence for localized fermionic systems in an accelerated motion. Results in Physics, 2020, 19, 103302.	2.0	2
797	Irrealism from fringe visibility in matter-wave double-slit interference with initial contractive states. Physical Review A, 2020, 102, .	1.0	8
798	Long-Term Spin State Storage Using Ancilla Charge Memories. Physical Review Letters, 2020, 125, 236601.	2.9	8
799	Analysis of Assumptions in BIG Bell Test Experiments. Annalen Der Physik, 2020, 532, 2000333.	0.9	O
800	Spatial and temporal characterization of polarization entanglement. International Journal of Quantum Information, 2020, 18, 1941027.	0.6	14
801	The Bell Theorem Revisited: Geometric Phases in Gauge Theories. Frontiers in Physics, 2020, 8, .	1.0	8
802	Inconsistency of a Realistic Interpretation of Quantum Measurements: a Simple Example. Brazilian Journal of Physics, 2020, 50, 438-441.	0.7	2
803	Locality and entanglement in table-top testing of the quantum nature of linearized gravity. Physical Review A, 2020, 101, .	1.0	104
804	<i>Colloquium</i> : Bell's theorem and locally mediated reformulations of quantum mechanics. Reviews of Modern Physics, 2020, 92, .	16.4	44
805	Experimental violation of n-locality in a star quantum network. Nature Communications, 2020, 11, 2467.	5.8	41
806	Modeling of measurement-based quantum network coding on a superconducting quantum processor. Physical Review A, 2020, 101, .	1.0	29
807	Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Physical Review Letters, 2020, 124, 223601.	2.9	102
808	Developing silicon carbide for quantum spintronics. Applied Physics Letters, 2020, 116, .	1.5	101
809	Discrete-Event Simulation of an Extended Einstein-Podolsky-Rosen-Bohm Experiment. Frontiers in Physics, 2020, 8, .	1.0	6

#	Article	IF	CITATIONS
810	Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nature Communications, 2020, 11, 2516.	5.8	56
811	Room-temperature coherent control of implanted defect spins in silicon carbide. Npj Quantum Information, 2020, 6, .	2.8	25
812	Device-independent secret sharing and a stronger form of Bell nonlocality. Physical Review A, 2020, 101, .	1.0	13
813	Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields. Physical Review Letters, 2020, 124, 213604.	2.9	97
814	Cavity-Enhanced Photon Emission from a Single Germanium-Vacancy Center in a Diamond Membrane. Physical Review Applied, 2020, 13, .	1.5	22
815	Sub-picosecond electron dynamics in polycrystalline diamond films. Diamond and Related Materials, 2020, 108, 107935.	1.8	2
816	Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond. AVS Quantum Science, 2020, 2, .	1.8	69
817	Implementing a Twoâ€Photon Threeâ€Degreesâ€ofâ€Freedom Hyperâ€Parallel Controlled Phase Flip Gate Througl Cavityâ€Assisted Interactions. Annalen Der Physik, 2020, 532, 1900578.	¹ 0.9	9
818	Experimental Optical Properties of Single Nitrogen Vacancy Centers in Silicon Carbide at Room Temperature. ACS Photonics, 2020, 7, 1611-1616.	3.2	21
819	Characterizing spin-bath parameters using conventional and time-asymmetric Hahn-echo sequences. Physical Review B, 2020, 101, .	1.1	3
820	High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network. Physical Review Letters, 2020, 124, 110501.	2.9	121
821	Deterministically fabricated solid-state quantum-light sources. Journal of Physics Condensed Matter, 2020, 32, 153003.	0.7	41
822	Genuine tripartite nonlocality of GHZ state in noninertial frames. Quantum Information Processing, 2020, 19, 1.	1.0	4
824	Entanglement accessibility measures for the quantum Internet. Quantum Information Processing, 2020, 19, 1.	1.0	28
825	Quantum State Optimization and Computational Pathway Evaluation for Gate-Model Quantum Computers. Scientific Reports, 2020, 10, 4543.	1.6	20
826	Cavity-Enhanced Raman Scattering for $\langle i \rangle$ In Situ $\langle i \rangle$ Alignment and Characterization of Solid-State Microcavities. Physical Review Applied, 2020, 13, .	1.5	17
827	Reconfigurable Hexapartite Entanglement by Spatially Multiplexed Four-Wave Mixing Processes. Physical Review Letters, 2020, 124, 090501.	2.9	65
828	A Framework for Quantum-Secure Device-Independent Randomness Expansion. IEEE Transactions on Information Theory, 2020, 66, 2964-2987.	1.5	21

#	Article	IF	CITATIONS
829	Quantum Bounds on Detector Efficiencies for Violating Bell Inequalities Using Semidefinite Programming. Cryptography, 2020, 4, 2.	1.4	1
830	Reformulating Bell's theorem: The search for a truly local quantum theory. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2020, 70, 39-50.	1.4	3
831	Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal Physics D: Applied Physics, 2020, 53, 313001.	1.3	59
832	Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580, 60-64.	13.7	325
833	Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature, 2020, 580, 201-204.	13.7	138
834	Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics, 2020, 92, .	16.4	496
835	Randomness Expansion Secured by Quantum Contextuality. Physical Review Applied, 2020, 13, .	1.5	10
836	The Amazing World of Quantum Computing. Undergraduate Lecture Notes in Physics, 2020, , .	0.1	9
837	Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots. Japanese Journal of Applied Physics, 2020, 59, SGGI05.	0.8	6
838	Are models of local hidden variables for the singlet polarization state necessarily constrained by the Bell inequality?. Modern Physics Letters A, 2020, 35, 2050229.	0.5	3
839	Unsupervised Quantum Gate Control for Gate-Model Quantum Computers. Scientific Reports, 2020, 10, 10701.	1.6	12
840	Advances in high-dimensional quantum entanglement. Nature Reviews Physics, 2020, 2, 365-381.	11.9	234
841	Noise-adaptive test of quantum correlations with quasiprobability functions. Physical Review A, 2020, 102, .	1.0	2
842	Experimental investigations of the problem of the quantum jump with the help of superconductor nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126669.	0.9	7
843	Experimental test of Leggett's inequalities with solid-state spins. Physical Review A, 2020, 102, .	1.0	0
844	Randomness? What Randomness?. Foundations of Physics, 2020, 50, 61-104.	0.6	13
845	A Crystallization Robot for Generating True Random Numbers Based on Stochastic Chemical Processes. Matter, 2020, 2, 649-657.	5.0	11
846	Quantum Random Number Generation. Quantum Science and Technology, 2020, , .	1.5	10

#	ARTICLE	IF	CITATIONS
847	Theory of Noise-Scaled Stability Bounds and Entanglement Rate Maximization in the Quantum Internet. Scientific Reports, 2020, 10, 2745.	1.6	13
848	"Quantum Weirdness―in Exploitation by the International Gravitationalâ€Wave Observatory Network. Annalen Der Physik, 2020, 532, 1900508.	0.9	6
849	Silicon carbide color centers for quantum applications. JPhys Photonics, 2020, 2, 022001.	2.2	129
850	Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. Physical Review A, 2020, 101, .	1.0	32
851	Reproducibility of High-Performance Quantum Dot Single-Photon Sources. ACS Photonics, 2020, 7, 1050-1059.	3.2	44
852	Real-Time Charge Initialization of Diamond Nitrogen-Vacancy Centers for Enhanced Spin Readout. Physical Review Applied, 2020, 13, .	1.5	29
853	Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 2020, 578, 240-245.	13.7	198
854	Nitrogen in Diamond. Chemical Reviews, 2020, 120, 5745-5794.	23.0	133
855	Tuning entanglement by squeezing magnons in anisotropic magnets. Physical Review B, 2020, 101, .	1.1	32
856	Identical Quantum Particles, Entanglement, and Individuality. Entropy, 2020, 22, 134.	1.1	10
857	Hardy's Paradox as a Demonstration of Quantum Irrealism. Foundations of Physics, 2020, 50, 105-119.	0.6	9
858	Stronger tests of the collapse-locality loophole in Bell experiments. Physical Review A, 2020, 101, .	1.0	5
859	Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide. Npj Quantum Information, 2020, 6, .	2.8	42
860	System-Aufstellungen und ihre naturwissenschaftliche Begr $\tilde{A}^{1}\!\!/\!\!4$ ndung. Systemaufstellungen in Wissenschaft Und Praxis, 2020, , .	0.0	4
861	Entanglement: quantum or classical?. Reports on Progress in Physics, 2020, 83, 064001.	8.1	32
862	Spin mechanics with levitating ferromagnetic particles. Physical Review B, 2020, 101, .	1.1	24
863	Single-Spin Magnetomechanics with Levitated Micromagnets. Physical Review Letters, 2020, 124, 163604.	2.9	60
864	Photoelectric Detection and Quantum Readout of Nitrogenâ€Vacancy Center Spin States in Diamond. Advanced Optical Materials, 2020, 8, 1902132.	3.6	28

#	Article	IF	Citations
865	All-microwave holonomic control of an electron-nuclear two-qubit register in diamond. Physical Review B, 2020, 101, .	1.1	8
866	Weak gravitational field effects on large-scale optical interferometric Bell tests. Classical and Quantum Gravity, 2020, 37, 195001.	1.5	7
867	Quantum secure direct communication based on single-photon Bell-state measurement. New Journal of Physics, 2020, 22, 063017.	1.2	77
868	Fast camera spatial characterization of photonic polarization entanglement. Scientific Reports, 2020, 10, 6181.	1.6	23
869	Novel color center platforms enabling fundamental scientific discovery. InformaÄnÃ-Materiály, 2021, 3, 869-890.	8.5	29
870	Influence of thermal annealing on the properties of proton implanted diamond waveguides. Carbon, 2021, 171, 560-567.	5.4	1
871	Advances in Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-24.	1.9	41
872	Fundaments of photoelectric readout of spin states in diamond. Semiconductors and Semimetals, 2021, , 105-147.	0.4	2
873	Secondâ€Second Moments and Two Observers Testing Quantum Nonlocality. Annalen Der Physik, 2021, 533, 2000456.	0.9	1
874	Diamond quantum nanophotonics and optomechanics. Semiconductors and Semimetals, 2021, 104, 219-251.	0.4	2
875	The Ontology of Organizational Paradox: A Quantum Approach. Academy of Management Review, 2021, 46, 362-384.	7.4	74
876	Comment on "Dr. Bertlmann's Socks in a Quaternionic World of Ambidextral Reality― IEEE Access, 2021, 9, 44592-44598.	2.6	5
877	Closed Timelike Curves, Singularities and Causality: A Survey from Gödel to Chronological Protection. Universe, 2021, 7, 12.	0.9	8
878	Preparations and applications of single color centers in diamond. Advances in Physics: X, 2021, 6, .	1.5	8
879	Composite Systems and Entanglement. Graduate Texts in Physics, 2021, , 97-121.	0.1	0
880	Key Device and Materials Specifications for a Repeater Enabled Quantum Internet. IEEE Transactions on Quantum Engineering, 2021, 2, 1-9.	2.9	6
881	Bell inequalities for entangled qubits: quantitative tests of quantum character and nonlocality on quantum computers. Physical Chemistry Chemical Physics, 2021, 23, 6370-6387.	1.3	1
882	Basics of quantum communication. , 2021, , 1-36.		1

#	Article	IF	CITATIONS
883	Quantum Internetâ€"Applications, Functionalities, Enabling Technologies, Challenges, and Research Directions. IEEE Communications Surveys and Tutorials, 2021, 23, 2218-2247.	24.8	41
884	Diamond with nitrogen: states, control, and applications. Functional Diamond, 2021, 1, 63-82.	1.7	30
885	A Sufficient Clarification of "Super-Quantum Correlations: A Necessary Clarification―by Pierre Uzan. Journal of Quantum Information Science, 2021, 11, 65-70.	0.2	1
886	Coherent Dynamics in Quantum Emitters under Dichromatic Excitation. Physical Review Letters, 2021, 126, 047403.	2.9	25
887	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i>). IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	2.9	69
888	Experimental observation of quantum nonlocality in general networks with different topologies. Fundamental Research, 2021, 1, 22-26.	1.6	6
889	Deterministic Actions on Stochastic Ensembles of Particles Can Replicate Wavelike Behaviour of Quantum Mechanics: Does It Matter?. Studies in Fuzziness and Soft Computing, 2021, , 293-304.	0.6	0
890	Device-Independent QKD. Lecture Notes in Physics, 2021, , 159-182.	0.3	0
891	Recent Developments in Practical QKD. Lecture Notes in Physics, 2021, , 183-217.	0.3	0
892	Wave packet shaping for a single-photon source. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 783.	0.9	2
893	Arrays of Si vacancies in 4H-SiC produced by focused Li ion beam implantation. Scientific Reports, 2021, 11, 3561.	1.6	16
894	Two-Particle Interference with Double Twin-Atom Beams. Physical Review Letters, 2021, 126, 083603.	2.9	21
895	Roadmap on quantum nanotechnologies. Nanotechnology, 2021, 32, 162003.	1.3	45
896	Device-independent randomness expansion against quantum side information. Nature Physics, 2021, 17, 448-451.	6.5	58
898	Six Reasons to Discard Wave Particle Duality: Thereby Opening New Territory for Young Scientists to Explore. Journal of Advances in Chemistry, 0, 18, 1-29.	0.1	0
899	A simple low-latency real-time certifiable quantum random number generator. Nature Communications, 2021, 12, 1056.	5.8	13
900	Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bell's argument. Foundations of Physics, 2021, 51, 1.	0.6	13
901	Semiconductor qubits in practice. Nature Reviews Physics, 2021, 3, 157-177.	11.9	164

#	Article	IF	CITATIONS
902	Deterministic multi-qubit entanglement in a quantum network. Nature, 2021, 590, 571-575.	13.7	77
903	Correlations for computation and computation for correlations. Npj Quantum Information, 2021, 7, .	2.8	10
904	Fraudulent white noise: Flat power spectra belie arbitrarily complex processes. Physical Review Research, 2021, 3, .	1.3	10
905	Experimental Realization of Device-Independent Quantum Randomness Expansion. Physical Review Letters, 2021, 126, 050503.	2.9	29
906	Quantum network is step towards ultrasecure internet. Nature, 2021, 590, 540-541.	13.7	6
907	Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits. Communications in Mathematical Physics, 2021, 382, 49-86.	1.0	6
908	Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy Centers Coupled to a Fabry-Perot Microcavity. Physical Review Applied, 2021, 15, .	1.5	39
909	Preparation and verification of two-mode mechanical entanglement through pulsed optomechanical measurements. New Journal of Physics, 2021, 23, 023026.	1.2	8
910	Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments. Science Advances, 2021, 7 , .	4.7	38
911	Scalable distributed gate-model quantum computers. Scientific Reports, 2021, 11, 5172.	1.6	22
912	Non-Contextual and Local Hidden-Variable Model for the Peres–Mermin and Greenberger–Horne–Zeilinger Systems. Foundations of Physics, 2021, 51, 1.	0.6	3
913	Semi-device-independent randomness certification using Mermin's proof of Kochen–Specker contextuality. European Physical Journal D, 2021, 75, 1.	0.6	3
914	Simulation of the Bell inequality violation based on quantum steering concept. Scientific Reports, 2021, 11, 5647.	1.6	3
915	Detection loophole in measurement-device-independent entanglement witnesses. Physical Review A, 2021, 103, .	1.0	5
916	Sharing quantum nonlocality and genuine nonlocality with independent observables. Physical Review A, 2021, 103, .	1.0	30
917	Self-testing with finite statistics enabling the certification of a quantum network link. Quantum - the Open Journal for Quantum Science, 0, 5, 401.	0.0	12
918	Continuous variable quantum entanglement in optomechanical systems: A short review. AVS Quantum Science, 2021, 3, .	1.8	8
919	Quantum computer based on color centers in diamond. Applied Physics Reviews, 2021, 8, .	5.5	141

#	Article	IF	Citations
920	Overcoming the rate–distance limit of device-independent quantum key distribution. Optics Letters, 2021, 46, 1632.	1.7	16
921	Compact energy–time entanglement source using cascaded nonlinear interactions. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1380.	0.9	5
922	Spontaneous Parametric Downâ€Conversion Sources forÂMultiphoton Experiments. Advanced Quantum Technologies, 2021, 4, 2000132.	1.8	27
923	Photoluminescence line shapes for color centers in silicon carbide from density functional theory calculations. Physical Review B, 2021, 103, .	1.1	16
924	Semi-device-independent random number generation with flexible assumptions. Npj Quantum Information, 2021, 7, .	2.8	7
925	Practical Quantum Key Distribution That is Secure Against Side Channels. Physical Review Applied, 2021, 15, .	1.5	20
926	Radiative process of two entangled uniformly accelerated atoms in a thermal bath: a possible case of anti-Unruh event. Journal of High Energy Physics, 2021, 2021, 1.	1.6	17
927	Experimental tests of multiplicative Bell inequalities and the fundamental role of local correlations. Physical Review Research, 2021, 3, .	1.3	2
928	Device-independent certification of tensor products of quantum states using single-copy self-testing protocols. Quantum - the Open Journal for Quantum Science, 0, 5, 418.	0.0	6
929	Optimizing repeater schemes for the quantum internet. Physical Review A, 2021, 103, .	1.0	22
930	Nondestructive detection of photonic qubits. Nature, 2021, 591, 570-574.	13.7	30
931	Certified randomness from a remote-state-preparation dimension witness. Physical Review A, 2021, 103 , .	1.0	4
932	Distributed quantum computation for near-term quantum environments., 2021,,.		2
933	Probabilistic magnetometry with two-spin system in diamond. Quantum Science and Technology, 0, , .	2.6	4
934	Resource-efficient adaptive Bayesian tracking of magnetic fields with a quantum sensor. Journal of Physics Condensed Matter, 2021, 33, 195801.	0.7	4
935	A Note of Bell Inequalities for Graph States. International Journal of Theoretical Physics, 2021, 60, 2511-2519.	0.5	1
936	Entanglement and impropriety. Quantum Studies: Mathematics and Foundations, 2021, 8, 307.	0.4	3
937	Extreme quantum nonlinearity in superfluid thin-film surface waves. Npj Quantum Information, 2021, 7, .	2.8	9

#	ARTICLE	IF	CITATIONS
938	Effect of source statistics on utilizing photon entanglement in quantum key distribution. Physical Review A, 2021, 103, .	1.0	8
939	Estimating Coherence Measures with Untrusted Devices. Advanced Quantum Technologies, 2021, 4, 2000153.	1.8	1
940	The Original Bell Theorem without Calculus. Physics Teacher, 2021, 59, 258-259.	0.2	0
941	Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 2021, 11, 967.	1.9	132
942	Loophole-free Bell test with multi-photon-subtracted two-mode squeezed state. Optik, 2021, 231, 166261.	1.4	3
943	Violations of locality and free choice are equivalent resources in Bell experiments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
944	Quantum guidelines for solid-state spin defects. Nature Reviews Materials, 2021, 6, 906-925.	23.3	185
945	Realization of a multinode quantum network of remote solid-state qubits. Science, 2021, 372, 259-264.	6.0	314
946	Experimentally Bounding Deviations From Quantum Theory in the Landscape of Generalized Probabilistic Theories. PRX Quantum, 2021, 2, .	3.5	27
947	Entanglement versus Bell nonlocality of quantum nonequilibrium steady states. Quantum Information Processing, 2021, 20, 1.	1.0	2
948	On a contextual model refuting Bell's theorem. Europhysics Letters, 2021, 134, 10004.	0.7	6
949	Upper Bounds on Device-Independent Quantum Key Distribution. Physical Review Letters, 2021, 126, 160501.	2.9	12
950	On Superdeterministic Rejections of Settings Independence. British Journal for the Philosophy of Science, 2023, 74, 435-467.	1.4	9
951	Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nature Communications, 2021, 12, 3223.	5.8	19
952	Wave-particle duality in single-photon entanglement. Journal of Physics Communications, 2021, 5, 055002.	0.5	2
953	Device-independent quantum key distribution with random key basis. Nature Communications, 2021, 12, 2880.	5.8	49
954	Macroscopically entangled light fields. Scientific Reports, 2021, 11, 11388.	1.6	5
955	Coherently controlled quantum features in a coupled interferometric scheme. Scientific Reports, 2021, 11, 11188.	1.6	4

#	Article	IF	CITATIONS
956	Symmetry Allows for Distinguishability in Totally Destructive Many-Particle Interference. PRX Quantum, $2021, 2, \ldots$	3.5	8
957	Deconvolving Contributions to Decoherence in Molecular Electron Spin Qubits: A Dynamic Ligand Field Approach. Chemistry - A European Journal, 2021, 27, 9482-9494.	1.7	18
958	Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines. Nanomaterials, 2021, 11, 1373.	1.9	25
959	Entangled electron–photon pair production by channel-exchange in high-energy Compton scattering. Quantum Information Processing, 2021, 20, 1.	1.0	0
960	Circuit quantum electrodynamics. Reviews of Modern Physics, 2021, 93, .	16.4	634
961	ArsoNISQ: Analyzing Quantum Algorithms on Near-Term Architectures. , 2021, , .		2
962	Research on Data Integrity of Information Management System Based on QKD Error-Correction. , 2021, , .		1
963	Is the Devil in h?. Entropy, 2021, 23, 632.	1.1	16
964	Canonical Hamiltonian ensemble representation of dephasing dynamics and the impact of thermal fluctuations on quantum-to-classical transition. Scientific Reports, 2021, 11, 10046.	1.6	6
965	Improving entanglement generation rates in trapped-ion quantum networks using nondestructive photon measurement and storage. Physical Review A, 2021, 103, .	1.0	4
966	Tripartite entanglement and quantum correlation. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
967	Quantum photonics in triangular-cross-section nanodevices in silicon carbide. JPhys Photonics, 2021, 3, 034008.	2.2	13
968	Composable security for multipartite entanglement verification. Physical Review A, 2021, 103, .	1.0	2
969	Many-Body Nonlocality as a Resource for Quantum-Enhanced Metrology. Physical Review Letters, 2021, 126, 210506.	2.9	15
970	Quantum Non-Gaussian Photon Coincidences. Physical Review Letters, 2021, 126, 213604.	2.9	6
971	Multi-color laser excitation of diamond nitrogen vacancy centers embedded in nanophotonic structures. AIP Advances, 2021, 11, 065006.	0.6	1
972	Classical model of a delayed-choice quantum eraser. Physical Review A, 2021, 103, .	1.0	8
973	Quantum reality: A pragmaticized neo-Kantian approach. Studies in History and Philosophy of Science Part A, 2021, 87, 101-113.	0.6	2

#	Article	IF	CITATIONS
974	Self-testing of binary Pauli measurements requiring neither entanglement nor any dimensional restriction. Physical Review A, $2021,103,.$	1.0	8
975	Methods to accelerate high-throughput screening of atomic qubit candidates in van der Waals materials. Journal of Applied Physics, 2021, 129, 225105.	1.1	3
976	Spectral features of Pb-related color centers in diamond – a systematic photoluminescence characterization. New Journal of Physics, 2021, 23, 063032.	1.2	6
977	Heralded entanglement distribution between two absorptive quantum memories. Nature, 2021, 594, 41-45.	13.7	94
978	Radiative properties of quantum emitters in boron nitride from excited state calculations and Bayesian analysis. Npj Computational Materials, 2021, 7, .	3.5	26
979	Shallow NV centers augmented by exploiting n-type diamond. Carbon, 2021, 178, 294-300.	5.4	14
980	Time-bin entanglement built in room-temperature quantum memory. Physical Review A, 2021, 103, .	1.0	2
982	Optimizing entanglement generation and distribution using genetic algorithms. Quantum Science and Technology, 2021, 6, 035007.	2.6	9
983	Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens. ACS Photonics, 2021, 8, 1726-1734.	3.2	28
985	Experimental test of sequential weak measurements for certified quantum randomness extraction. Physical Review A, 2021, 103, .	1.0	18
987	Entanglement of dark electron-nuclear spin defects in diamond. Nature Communications, 2021, 12, 3470.	5.8	29
988	Relativistic Bell Test within Quantum Reference Frames. Physical Review Letters, 2021, 126, 230403.	2.9	20
989	Experimental realization of Schumacher's information geometric Bell inequality. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 405, 127444.	0.9	8
990	Single-copy activation of Bell nonlocality via broadcasting of quantum states. Quantum - the Open Journal for Quantum Science, 0, 5, 499.	0.0	4
991	Ruling out bipartite nonsignaling nonlocal models for tripartite correlations. Physical Review A, 2021, 104, .	1.0	8
992	Straight to the point: Experiential punctivism and the perception of time. Analysis, 2022, 81, 674-683.	0.3	0
993	Quantum Photonic Interface for Tin-Vacancy Centers in Diamond. Physical Review X, 2021, 11, .	2.8	34
994	Finding optimal Bell inequalities using the cone-projection technique. Physical Review A, 2021, 104, .	1.0	2

#	Article	IF	CITATIONS
995	Discretization, the Road to Quantum Computing?., 0, , .		O
996	The Violation of Bell-CHSH Inequalities Leads to Different Conclusions Depending on the Description Used. Entropy, 2021, 23, 872.	1.1	2
997	The binary-outcome detection loophole. New Journal of Physics, 2021, 23, 073032.	1.2	0
998	Bell-inequality violation and relativity of pre- and postselection. Physical Review A, 2021, 104, .	1.0	3
999	Dendrogramic Representation of Data: CHSH Violation vs. Nonergodicity. Entropy, 2021, 23, 971.	1.1	5
1000	A Note on Quantum Bell Nonlocality and Quantum Entanglement for High Dimensional Quantum Systems. International Journal of Theoretical Physics, 2021, 60, 2909-2915.	0.5	1
1001	Materials challenges for quantum technologies based on color centers in diamond. MRS Bulletin, 2021, 46, 623-633.	1.7	19
1002	Femtosecond laser micromachining of diamond: Current research status, applications and challenges. Carbon, 2021, 179, 209-226.	5 . 4	44
1003	Nonlocality, Steering, and Quantum State Tomography in a Single Experiment. Physical Review Letters, 2021, 127, 020401.	2.9	10
1004	Long-lived and multiplexed atom-photon entanglement interface with feed-forward-controlled readouts. Communications Physics, 2021, 4, .	2.0	12
1005	Does the Heisenberg uncertainty principle apply along the time dimension?. Journal of Physics: Conference Series, 2021, 1956, 012014.	0.3	0
1006	Goals and feasibility of the deep space quantum link., 2021,,.		4
1007	Linear semi-infinite programming approach for entanglement quantification. Physical Review A, 2021, 104, .	1.0	2
1008	Oblivious communication game, self-testing of projective and nonprojective measurements, and certification of randomness. Physical Review A, 2021, 104, .	1.0	11
1009	Heterogeneous multipartite entanglement purification for size-constrained quantum devices. Physical Review Research, 2021, 3, .	1.3	3
1010	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	2.2	152
1011	The decompositions of Werner and isotropic states. Quantum Information Processing, 2021, 20, 1.	1.0	0
1012	Quantum networks based on color centers in diamond. Journal of Applied Physics, 2021, 130, .	1.1	105

#	ARTICLE	IF	CITATIONS
1013	Entanglement of a pair of quantum emitters via continuous fluorescence measurements: a tutorial. Advances in Optics and Photonics, 2021, 13, 517.	12.1	2
1014	Contextuality-by-Default Description of Bell Tests: Contextuality as the Rule and Not as an Exception. Entropy, 2021, 23, 1104.	1.1	12
1015	A phononic interface between a superconducting quantum processor and quantum networked spin memories. Npj Quantum Information, 2021, 7, .	2.8	20
1016	Multiphoton and Side-Channel Attacks in Mistrustful Quantum Cryptography. PRX Quantum, 2021, 2, .	3.5	9
1017	Quantum-mechanical correlations and Tsirelson bound from geometric algebra. Quantum Studies: Mathematics and Foundations, 2021, 8, 411-417.	0.4	0
1018	Investigation of the Stark Effect on a Centrosymmetric Quantum Emitter in Diamond. Physical Review Letters, 2021, 127, 147402.	2.9	20
1019	Single Photon Emitters Coupled to Plasmonic Waveguides: A Review. Advanced Quantum Technologies, 2021, 4, 2100057.	1.8	9
1020	Towards probing for hypercomplex quantum mechanics in a waveguide interferometer. New Journal of Physics, 2021, 23, 093038.	1.2	4
1021	Perspective on witnessing entanglement in hybrid quantum systems. Applied Physics Letters, 2021, 119, 110501.	1.5	0
1022	Low-Temperature Spectroscopic Investigation of Lead-Vacancy Centers in Diamond Fabricated by High-Pressure and High-Temperature Treatment. ACS Photonics, 2021, 8, 2947-2954.	3.2	14
1023	Entanglement and quantum tomography with top quarks at the LHC. European Physical Journal Plus, 2021, 136, 1.	1.2	47
1024	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Si</mml:mi><mml:msup><mml:mrow><mml:mrow>Si<mml:msup><mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:msup><td>12 _</td><td>_</td></mml:mrow>	12 _	_
1025	accent="true"> <mml:mi>B</mml:mi> <mml:mo stretchy="false">Â^ pairs from</mml:mo 	er 1.6	7
1026	<mml:math <="" p="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> display="inline" xmml:mi > fmml:mi > fm</mml:math>	1.0	1
1027	SeQUeNCe: a customizable discrete-event simulator of quantum networks. Quantum Science and Technology, 2021, 6, 045027.	2.6	23
1028	Pathways for Entanglement-Based Quantum Communication in the Face of High Noise. Physical Review Letters, 2021, 127, 110505.	2.9	27
1029	Non-Gaussian Quantum States and Where to Find Them. PRX Quantum, 2021, 2, .	3.5	101
1030	Entanglement across separate silicon dies in a modular superconducting qubit device. Npj Quantum Information, 2021, 7, .	2.8	43

#	Article	IF	CITATIONS
1031	First-Principles Predictions of Out-of-Plane Group IV and V Dimers as High-Symmetry, High-Spin Defects in Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45768-45777.	4.0	12
1032	Geometric interpretation of the Clauser-Horne-Shimony-Holt inequality of nonmaximally entangled states. Physical Review A, 2021, 104, .	1.0	7
1033	Quantum-like model for unconscious–conscious interaction and emotional coloring of perceptions and other conscious experiences. BioSystems, 2021, 208, 104471.	0.9	11
1034	Device-independent randomness expansion with entangled photons. Nature Physics, 2021, 17, 452-456.	6.5	39
1035	Multiconfigurational study of the negatively charged nitrogen-vacancy center in diamond. Physical Review B, 2021, 103, .	1.1	18
1036	Indeterminism and Undecidability. The Frontiers Collection, 2021, , 17-45.	0.1	3
1038	A Realist Analysis of Six Controversial Quantum Issues. , 2019, , 329-348.		4
1039	Deterministic Quantum Devices for Optical Quantum Communication. Springer Series in Solid-state Sciences, 2020, , 285-359.	0.3	2
1040	Quantum–Inspired Measure of Behavioral Semantics. Communications in Computer and Information Science, 2019, , 765-776.	0.4	2
1041	Quantum Correlations in NMR Systems. Quantum Science and Technology, 2017, , 499-516.	1.5	1
1042	Color centers in diamond for quantum applications. Semiconductors and Semimetals, 2020, , 1-36.	0.4	7
1045	Experimental investigation of the no-signalling principle in parity–time symmetric theory using an open quantum system. , 0, .		1
1046	Extending qubit coherence by adaptive quantum environment learning. New Journal of Physics, 2020, 22, 035002.	1.2	9
1047	Nanophotonic quantum network node with neutral atoms and an integrated telecom interface. New Journal of Physics, 2020, 22, 073033.	1.2	12
1048	From micro- to macrorealism: addressing experimental clumsiness with semi-weak measurements. New Journal of Physics, 2020, 22, 073047.	1.2	3
1049	Precise high-fidelity electron–nuclear spin entangling gates in NV centers via hybrid dynamical decoupling sequences. New Journal of Physics, 2020, 22, 073059.	1.2	5
1050	Optimisation of diamond quantum processors. New Journal of Physics, 2020, 22, 093068.	1.2	13
1051	Spin-relaxation times exceeding seconds for color centers with strong spin–orbit coupling in SiC. New Journal of Physics, 2020, 22, 103051.	1.2	15

#	ARTICLE	IF	CITATIONS
1052	Predicted strong coupling of solid-state spins via a single magnon mode. Materials for Quantum Technology, 2021, 1, 011001.	1.2	30
1053	Contextuality: At the Borders of Paradox. , 2018, , .		9
1054	Pragmatist Quantum Realism., 2020, , 123-146.		6
1055	Influence of equilibrium and nonequilibrium environments on macroscopic realism through the Leggett-Garg inequalities. Physical Review A, 2020, 101, .	1.0	6
1056	Entanglement-preserving limit cycles from sequential quantum measurements and feedback. Physical Review A, 2020, 102, .	1.0	5
1057	Consequences of recent loophole-free experiments on a relaxation of measurement independence. Physical Review A, 2017, 95, .	1.0	5
1058	Einstein-Podolsky-Rosen-entangled Bose-Einstein condensates in state-dependent potentials: A dynamical study. Physical Review A, 2017, 96, .	1.0	6
1059	Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems. Physical Review Letters, 2020, 125, 260502.	2.9	91
1060	Dark defect charge dynamics in bulk chemical-vapor-deposition-grown diamonds probed via nitrogen vacancy centers. Physical Review Materials, 2020, 4, .	0.9	10
1061	Efficient randomness certification by quantum probability estimation. Physical Review Research, 2020, 2, .	1.3	30
1062	Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons. Physical Review Research, 2020, 2, .	1.3	18
1063	Hamiltonian engineering of general two-body spin- $1/2$ interactions. Physical Review Research, 2020, 2, .	1.3	5
1064	Semi-device-independent information processing with spatiotemporal degrees of freedom. Physical Review Research, 2020, 2, .	1.3	2
1065	Spin decontamination for magnetic dipolar coupling calculations: Application to high-spin molecules and solid-state spin qubits. Physical Review Research, 2020, 2, .	1.3	9
1066	Energy bounds for entangled states. Physical Review Research, 2020, 2, .	1.3	1
1067	Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond. Physical Review Research, 2020, 2, .	1.3	23
1068	Simultaneous certification of entangled states and measurements in bounded dimensional semiquantum games. Physical Review Research, 2020, 2, .	1.3	2
1069	Generation of quantum randomness by probability estimation with classical side information. Physical Review Research, 2020, 2, .	1.3	6

#	ARTICLE	IF	CITATIONS
1070	Criteria for nonclassicality in the prepare-and-measure scenario. Physical Review Research, 2020, 2, .	1.3	6
1071	Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects. PRX Quantum, 2020, 1, .	3.5	89
1072	Transcoherent States: Optical States for Maximal Generation of Atomic Coherence. PRX Quantum, 2020, 1, .	3.5	9
1073	Teleportation Systems Toward a Quantum Internet. PRX Quantum, 2020, 1, .	3.5	54
1074	Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020, 92, .	16.4	733
1075	Fully device independent quantum key distribution. Communications of the ACM, 2019, 62, 133-133.	3.3	48
1076	Designing a quantum network protocol., 2020,,.		59
1077	Quantum Cryptography: Key Distribution and Beyond. Quanta, 2017, 6, 1.	0.2	54
1078	Is the Quantum State Real in the Hilbert Space Formulation?. Quanta, 2020, 9, 37-46.	0.2	1
1079	Advances in quantum cryptography. Advances in Optics and Photonics, 2020, 12, 1012.	12.1	848
1080	Coherent Quantum Control of Silicon Vacancy Spins in Diamond with Surface Acoustics. , 2019, , .		1
1081	Compact frequency-stabilized pump laser for wavelength conversion in long-distance quantum communication. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2023.	0.9	1
1082	Optomechanical entanglement switch in the hybrid opto-electromechanical device. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1544.	0.9	6
1083	Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources. Optics Express, 2018, 26, 31957.	1.7	15
1084	Spectral noise in frequency conversion from the visible to the telecommunication C-band. Optics Express, 2019, 27, 14298.	1.7	12
1085	Optical coherence of implanted silicon vacancy centers in thin diamond membranes. Optics Express, 2019, 27, 31299.	1.7	8
1086	Polarization design for ground-to-satellite quantum entanglement distribution. Optics Express, 2020, 28, 369.	1.7	12
1087	Experimental demonstration of hidden nonlocality with local filters. Optics Express, 2020, 28, 13638.	1.7	4

#	Article	IF	CITATIONS
1088	Entanglement swapping with autonomous polarization-entangled photon pairs from a warm atomic ensemble. Optics Letters, 2020, 45, 2403.	1.7	9
1089	Femtosecond laser inscription of Bragg grating waveguides in bulk diamond. Optics Letters, 2017, 42, 3451.	1.7	35
1090	Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields [Invited]. Optical Materials Express, 2019, 9, 4654.	1.6	16
1091	Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica, 2020, 7, 1737.	4.8	68
1092	Cavity quantum electrodynamics with color centers in diamond. Optica, 2020, 7, 1232.	4.8	72
1093	Polarization-entangled photon pairs from a single molecule. Optica, 2019, 6, 34.	4.8	23
1094	Nanomechanical single-photon routing. Optica, 2019, 6, 524.	4.8	41
1095	Optomechanically amplified wavelength conversion in diamond microcavities. Optica, 2019, 6, 832.	4.8	15
1096	Semi-device-independent multiparty quantum key distribution in the asymptotic limit. OSA Continuum, 2019, 2, 814.	1.8	5
1097	Single crystal diamond blazed diffraction gratings and Fresnel microlens arrays with improved optical performance by high-resolution 3D laser lithography and pattern transfer by dry etching. OSA Continuum, 2019, 2, 3374.	1.8	6
1098	Quantum key distribution secure against partly malicious devices., 2017,,.		2
1099	Superconducting nanowire single-photon detectors for quantum information. Nanophotonics, 2020, 9, 2673-2692.	2.9	125
1101	Test for a large amount of entanglement, using few measurements. Quantum - the Open Journal for Quantum Science, 0, 2, 92.	0.0	12
1102	Quantum repeaters with individual rare-earth ions at telecommunication wavelengths. Quantum - the Open Journal for Quantum Science, 0, 2, 93.	0.0	29
1103	Optimized Entanglement Purification. Quantum - the Open Journal for Quantum Science, 0, 3, 123.	0.0	43
1104	Minimal energy cost of entanglement extraction. Quantum - the Open Journal for Quantum Science, 0, 3, 165.	0.0	12
1105	Semi-device-independent certification of indefinite causal order. Quantum - the Open Journal for Quantum Science, 0, 3, 176.	0.0	15
1106	Beyond the Cabello-Severini-Winter framework: Making sense of contextuality without sharpness of measurements. Quantum - the Open Journal for Quantum Science, 0, 3, 184.	0.0	15

#	Article	IF	CITATIONS
1107	Quantum violations in the Instrumental scenario and their relations to the Bell scenario. Quantum the Open Journal for Quantum Science, 0, 3, 186.	0.0	25
1108	How post-selection affects device-independent claims under the fair sampling assumption. Quantum - the Open Journal for Quantum Science, 0, 4, 238.	0.0	8
1109	Device-independent characterization of quantum instruments. Quantum - the Open Journal for Quantum Science, 0, 4, 243.	0.0	17
1110	What is the minimum CHSH score certifying that a state resembles the singlet?. Quantum - the Open Journal for Quantum Science, 0, 4, 246.	0.0	4
1111	Device-independent quantum key distribution with single-photon sources. Quantum - the Open Journal for Quantum Science, 0, 4, 260.	0.0	35
1112	Quantifying Bell: the Resource Theory of Nonclassicality of Common-Cause Boxes. Quantum - the Open Journal for Quantum Science, 0, 4, 280.	0.0	47
1113	The Platonic solids and fundamental tests of quantum mechanics. Quantum - the Open Journal for Quantum Science, 0, 4, 293.	0.0	14
1114	Self-testing of quantum systems: a review. Quantum - the Open Journal for Quantum Science, 0, 4, 337.	0.0	144
1115	Quantum prescriptions are more ontologically distinct than they are operationally distinguishable. Quantum - the Open Journal for Quantum Science, 0, 4, 345.	0.0	7
1116	Emergence of the Born rule in quantum optics. Quantum - the Open Journal for Quantum Science, 0, 4, 350.	0.0	5
1117	Bell nonlocality with a single shot. Quantum - the Open Journal for Quantum Science, 0, 4, 353.	0.0	12
1118	Almost Equivalent Paradigms of Contextuality. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 266, 1-22.	0.8	2
1119	Simplified Protocol of Quantum Teleportation. Journal of Quantum Information Science, 2018, 08, 107-120.	0.2	4
1120	Dependence of performance character of photon-atom entanglement source on retrieval efficiency. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 020301.	0.2	2
1121	Quantum Correlations: Theory. Quantum Science and Technology, 2021, , 57-115.	1.5	0
1122	Nonlocal correlations in the tree-tensor-network configuration. Physical Review A, 2021, 104, .	1.0	8
1123	Suppression of the Optical Linewidth and Spin Decoherence of a Quantum Spin Center in a p - n Diode. PRX Quantum, 2021, 2, .	3.5	1
1124	Device-independent quantum key distribution from computational assumptions. New Journal of Physics, 2021, 23, 123021.	1.2	9

#	Article	IF	CITATIONS
1125	Multi-photon and side-channel attacks in mistrustful quantum cryptography., 2021,,.		0
1126	Optomechanical interface between telecom photons and spin quantum memory. Nature Physics, 2021, 17, 1420-1425.	6.5	35
1127	Experimental investigation of the relation between measurement uncertainties and non-local quantum correlations. Journal of Physics Communications, 0, , .	0.5	1
1129	Measurement-Device-Independent Verification of a Quantum Memory. Physical Review Letters, 2021, 127, 160502.	2.9	8
1130	Detecting initial correlations via correlated spectroscopy in hybrid quantum systems. Scientific Reports, 2021, 11, 20718.	1.6	1
1131	Universal Limitations on Quantum Key Distribution over a Network. Physical Review X, 2021, 11, .	2.8	27
1132	Opportunities for Long-Range Magnon-Mediated Entanglement of Spin Qubits via On- and Off-Resonant Coupling. PRX Quantum, 2021, 2, .	3.5	46
1133	Nonâ€Volatile Photoâ€Switch Using a Diamond pn Junction. Advanced Electronic Materials, 0, , 2100542.	2.6	3
1134	Testing Bell Inequalities at the LHC with Top-Quark Pairs. Physical Review Letters, 2021, 127, 161801.	2.9	35
1135	A flexible system-on-a-chip control hardware for atomic, molecular, and optical physics experiments. Review of Scientific Instruments, 2021, 92, 105103.	0.6	4
1136	On the quantum performance evaluation of two distributed quantum architectures. Performance Evaluation, 2022, 153, 102242.	0.9	4
1137	Conceiving Particles as Undulating Granular Systems Allows Fundamentally Realist Interpretation of Quantum Mechanics. Entropy, 2021, 23, 1338.	1.1	6
1138	The Speed of Alternating Electricity Can Be 20 Times Faster than the Speed of Light—Comments on "EM Wave Propagation Speed―by Yi Zheng and Others. Modern Physics, 2015, 05, 125-132.	0.1	0
1139	A paradigm shift in mathematical physics, Part 4: Quantum computers and the local realism of all 4 Bell states. Journal of Advances in Mathematics, 2015, 11, 5476-5493.	0.1	13
1140	Physik der Information. , 2016, , 125-222.		0
1141	Primas, Emergence, and Worlds. , 2016, , 71-93.		0
1142	From the first loophole-free Bell test to a Quantum Internet. , 2016, , .		0
1143	Establishing Quantum Hybrid Systems with Tailored Photons. , 2016, , .		O

#	Article	IF	CITATIONS
1144	Significant-Loophole-Free Test of Local Realism with Entangled Photons. , 2016, , .		1
1145	Detection-loophole-free heralded quantum steering over a high-loss quantum channel. , 2016, , .		0
1146	A strong loophole-free test of local realism. , 2016, , .		1
1147	Measurement dependence and limited detection nonlocality., 2016,,.		O
1148	Nonlocality and Quantum Cakes, Revisited. The Frontiers Collection, 2017, , 415-423.	0.1	0
1149	An Early Long-Distance Quantum Experiment. The Frontiers Collection, 2017, , 425-432.	0.1	0
1150	From Einstein-Podolsky-Rosen paradox to quantum nonlocality: experimental investigation of quantum correlations. Proceedings of SPIE, $2016, , .$	0.8	0
1152	Quantum Inverse Measurement Theory Contributing to the Birth of Interpretation System of Quantum Mechanics of Local-Realism and Determinism. Journal of Modern Physics, 2017, 08, 1398-1469.	0.3	0
1153	Imaging a Quantum Emitter with a High-Numerical-Aperture Diamond Metalens. , 2017, , .		0
1154	Clocks Beyond Classical Space-Time. Springer Theses, 2017, , 99-114.	0.0	0
1155	Discussion of the Statistical Interpretation, the Conservation Laws in Single Micro-Process and the Principle of Superposition of States. Modern Physics, 2017, 07, 8-16.	0.1	0
1157	The Nature of Reality. Science and Fiction, 2017, , 151-177.	0.0	0
1158	Entanglement and Non-locality of Quantum Photonics. Graduate Texts in Physics, 2017, , 177-200.	0.1	0
1159	Self-organized Criticality: A Signature of Quantum-like Chaos in Atmospheric Flows. Springer Atmospheric Sciences, 2017, , 75-106.	0.4	1
1160	Interpretation Misunderstandings about Elementary Quantum Mechanics. Metatheoria, 2017, 7, 55-60.	0.0	3
1161	Quasi-Bell inequalities from symmetrized products of noncommuting qubit observables. Journal of Mathematical Physics, 2017, 58, 052107.	0.5	0
1163	View to the Future and Exploration of Our Galaxy. , 2018, , 363-380.		0
1164	A significant-loophole-free test of Bell's theorem with entangled photons. , 2017, , .		0

#	Article	IF	CITATIONS
1165	Verschräkung und Nicht-Lokalitä EPR, Bell und die Folgen. , 2018, , 107-185.		4
1166	High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 167601.	0.2	5
1167	Experimental Test of Bell's Inequality for Temporal Orders. , 2018, , .		0
1168	Randomness extraction from CHSH violation without fair sampling assumptions with a continuous wave source. , $2018, \ldots$		0
1169	Quantum control of nitrogen-vacancy center in diamond. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 120302.	0.2	3
1170	A Semi-Harmonic Frequency Pattern Organizes Local and Non-Local States by Quantum Entanglement in both EPR-Studies and Life Systems. Journal of Modern Physics, 2018, 09, 898-924.	0.3	8
1171	No-Cloning Theorem, Quantum Teleportation and Spooky Correlations., 2018,, 125-147.		1
1173	Unravelling the Quantum Maze. Journal of Modern Physics, 2018, 09, 1697-1711.	0.3	2
1174	Quantum Local Causality in Non-Metric Space. Journal of Applied Mathematics and Physics, 2018, 06, 1179-1198.	0.2	0
1178	Quantum cryptography with malicious devices. , 2018, , .		0
1179	Counterpropagating path-entangled photon pair sources based on simultaneous spontaneous parametric down-conversion processes of nonlinear photonic crystal. Optics Express, 2018, 26, 27945.	1.7	3
1180	How Does Nature Accomplish Spooky Action at a Distance?. Quanta, 2018, 7, 111.	0.2	4
1182	Evidence in quantum data., 2019,,.		0
1183	Experimental Entanglement of Temporal Orders. , 2019, , .		3
1184	Surface Acoustic Control of Single Silicon Vacancy Spins in Diamond. , 2019, , .		0
1185	Würfelt Gott doch?. , 2019, , 25-30.		0
1187	Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond. , 2019, , .		0
1188	Testing a Bell inequality in full field images of spontaneous parametric down-conversion. , 2019, , .		0

#	Article	IF	CITATIONS
1189	Collapse of Bell's Theorem. Journal of Modern Physics, 2019, 10, 1157-1165.	0.3	2
1190	A tunable Fabry-PÃ ©rot cavity for diamond-based photonics. , 2019, , .		0
1191	On the physical conclusion of the Heisenberg- Uncertainty-Relation. , 2019, , .		0
1192	The Emergence and Evolution of the Universe. Journal of High Energy Physics Gravitation and Cosmology, 2019, 05, 884-898.	0.3	4
1193	Bell inequality experiment for a high brightness time-energy entangled source. , 2019, , .		0
1196	Electrically driven source of time-energy entangled photons based on a self-pumped silicon microring resonator. Optics Letters, 2020, 45, 2768.	1.7	1
1197	Uniqueness of all fundamental noncontextuality inequalities. Physical Review Research, 2020, 2, .	1.3	0
1198	Tsirelson Polytopes and randomness generation. New Journal of Physics, 2020, 22, 083036.	1.2	2
1199	Bell correlations in a split two-mode-squeezed Bose-Einstein condensate. Physical Review A, 2021, 104, .	1.0	12
1200	Computing secure key rates for quantum cryptography with untrusted devices. Npj Quantum Information, 2021, 7, .	2.8	20
1203	Violating Bell inequality using weak coherent states. Optics Letters, 2021, 46, 5998.	1.7	4
1204	Secure Random Number Generation in Continuous Variable Systems. Quantum Science and Technology, 2020, , 85-112.	1.5	1
1205	Introduction to the Showcases. Springer Theses, 2020, , 47-66.	0.0	0
1206	Nitrogen-vacancy defect emission spectra in the vicinity of an adjustable silver mirror. Materials for Quantum Technology, 2021, 1, 015002.	1.2	1
1207	Resource prioritization and balancing for the quantum internet. Scientific Reports, 2020, 10, 22390.	1.6	4
1209	Spreading nonlocality in a quantum network. Physical Review Research, 2020, 2, .	1.3	8
1210	A New Error-Modeling of Hardy's Paradox for Superconducting Qubits and Its Experimental Verification. ACM Transactions on Quantum Computing, 2020, 1, 1-24.	2.6	9
1211	Nearly maximal violation of the Mermin-Klyshko inequality with multimode entangled coherent states. Optics Express, 2019, 27, 31864.	1.7	1

#	Article	IF	CITATIONS
1212	Entangled excitons <i>via</i> spontaneous down-conversion. Physical Chemistry Chemical Physics, 2020, 22, 12946-12950.	1.3	0
1213	Bell's Test, Entanglement and the Strict Predictions of QFT. , 2020, , 195-199.		0
1215	A Relationalist Framework. Space and Society, 2020, , 69-93.	1.6	0
1216	Some Mathematical Consequences of the Postulates. Undergraduate Lecture Notes in Physics, 2020, , 77-97.	0.1	0
1217	Mixed Species Gates. Springer Theses, 2020, , 103-111.	0.0	0
1218	On the Direct Generation of Ion-Photon Entanglement at Telecom Wavelengths in 171Yb+. , 2020, , .		1
1220	é•è·é·¢¢‡å通ä¿j実ç¾ã®ãŸã,ã®é‡åä¸ç¶™æŠ€è¡"ã®ç"究闋発. IEICE Communications Society Magazine, 2	02 0, d 4, 1	339141.
1221	Preliminaries: Device-Independent Concepts. Springer Theses, 2020, , 33-45.	0.0	0
1222	Device-Independent Quantum Key Distribution Protocol Based on Hyper-Entanglement. Computers, Materials and Continua, 2020, 65, 879-896.	1.5	4
1223	Showcase: Device-Independent Quantum Cryptography. Springer Theses, 2020, , 159-186.	0.0	0
1224	Performance of Test Supermartingale Confidence Intervals for the Success Probability of Bernoulli Trials. Journal of Research of the National Institute of Standards and Technology, 2020, 125, .	0.4	0
1225	Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces. Nanoscale, 2021, 13, 19903-19914.	2.8	20
1226	A Tiny, Counterintuitive Change to the Mathematics of the Schrodinger Wave Packet and Quantum ElectroDynamics Could Vastly Simplify How We View Nature. Journal of Advances in Physics, 0, 17, 169-203.	0.2	3
1227	One-sided device-independent quantum key distribution for two independent parties. Optics Express, 2020, 28, 11439.	1.7	8
1228	Entanglement Swapping and Action at a Distance. Foundations of Physics, 2021, 51, 1.	0.6	6
1229	Genuine activation of nonlocality: From locally available to locally hidden information. Physical Review A, 2021, 104, .	1.0	8
1230	Quantum repeaters based on individual electron spins and nuclear-spin-ensemble memories in quantum dots. Quantum - the Open Journal for Quantum Science, 0, 5, 570.	0.0	3
1231	Causal Networks and Freedom of Choice in Bell's Theorem. PRX Quantum, 2021, 2, .	3.5	22

#	Article	IF	CITATIONS
1232	Causality meets resource theory. , 0, 4, 42.		0
1233	CV-MDI-QKD with coherent state: beyond one-mode Gaussian attacks. IOP SciNotes, 2020, 1, 025202.	0.4	0
1234	Determination of spatial quantum states by using point diffraction interferometry. Journal of Optics (United Kingdom), 2020, 22, 115201.	1.0	0
1235	Encrypt me! A game-based approach to Bell inequalities and quantum cryptography. European Journal of Physics, 2020, 41, 065702.	0.3	5
1236	Eight Oxford Questions: Quantum Mechanics Under a New Light. Fundamental Theories of Physics, 2021, , 361-384.	0.1	0
1237	A three-player coherent state embezzlement game. Quantum - the Open Journal for Quantum Science, 0, 4, 349.	0.0	2
1238	Decoration of growth sector boundaries with nitrogen vacancy centers in as-grown single crystal high-pressure high-temperature synthetic diamond. Physical Review Materials, 2020, 4, .	0.9	5
1239	Quantum Mechanics for Social Scientists: Wave/Particle Duality, Observer Effect, Entanglement. , 2021, , 17-35.		0
1240	Fundamental Background. Human Ontogenetics, 2021, , 13-67.	0.3	0
1241	Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks. Physical Review A, 2019, 100, .	1.0	0
1242	No Bipartite-Nonlocal Causal Theory Can Explain Nature's Correlations. Physical Review Letters, 2021, 127, 200401.	2.9	25
1243	Conservation of correlation in measurements underlying the violation of Bell inequalities and a game of joint mapping. Physical Review A, 2021 , 104 , .	1.0	0
1244	Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nature Materials, 2022, 21, 67-73.	13.3	80
1245	Proposal to Test a Transient Deviation from Quantum Mechanics' Predictions for Bell's Experiment. Entropy, 2021, 23, 1589.	1.1	2
1246	Any physical theory of nature must be boundlessly multipartite nonlocal. Physical Review A, 2021, 104, .	1.0	14
1247	Quantum Control of the Tin-Vacancy Spin Qubit in Diamond. Physical Review X, 2021, 11, .	2.8	30
1248	Cyclic Einstein-Podolsky-Rosen steering. Physical Review Research, 2021, 3, .	1.3	4
1250	Tunable Cr ⁴⁺ Molecular Color Centers. Journal of the American Chemical Society, 2021, 143, 21350-21363.	6.6	29

#	Article	IF	CITATIONS
1251	Multiparty orthogonal product states with minimal genuine nonlocality. Physical Review A, 2021, 104, .	1.0	12
1252	Comment on "Bell's Theorem Versus Local Realism in a Quaternionic Model of Physical Space― IEEE Access, 2021, 9, 154933-154937.	2.6	3
1253	Experimental entanglement of temporal order. Quantum - the Open Journal for Quantum Science, 0, 6, 621.	0.0	24
1254	Genuine tripartite nonlocality and entanglement in curved spacetime. European Physical Journal C, 2022, 82, 1.	1.4	23
1255	Quantum Hybrid Plasmonic Nanocircuits for Versatile Polarized Photon Generation. Advanced Optical Materials, 2022, 10, 2101596.	3.6	2
1256	Testing Bell inequalities in Higgs boson decays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 825, 136866.	1.5	33
1257	Quantum physics in space. Physics Reports, 2022, 951, 1-70.	10.3	38
1258	Survey of emerging information teleportation networks and protocols. URSI Radio Science Bulletin, 2017, 2017, 34-54.	0.2	1
1259	Des tests sans faille de l'intrication quantique. Pourlascience Fr, 2019, N° 504 - octobre, 52-61.	0.0	3
1261	Telecom-heralded entanglement distribution between remote multimode solid-state quantum memories., 2021,,.		0
1262	Less entanglement exhibiting more nonlocality with noisy measurements. Npj Quantum Information, 2021, 7, .	2.8	2
1263	Quantum gravity and the square of Bell operators. Quantum Information Processing, 2022, 21, 1.	1.0	2
1264	Single photon randomness originating from the symmetric dipole emission pattern of quantum emitters. Applied Physics Letters, 2022, 120, 044001.	1.5	7
1265	Decoherence-protected quantum register of nuclear spins in diamond. Quantum Science and Technology, 2022, 7, 025015.	2.6	6
1266	Integrated Information Theory as Testing Ground for Causation: Why Nested Hylomorphism Overcomes Physicalism and Panpsychism. Journal of Consciousness Studies, 2022, 29, 56-78.	0.4	4
1267	Theoretical calculation of fiber cavity coupling silicon carbide membrance. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 060303.	0.2	О
1268	Time-Resolved Photoionization Detection of a Single Er ³⁺ Ion in Silicon. Nano Letters, 2022, 22, 396-401.	4.5	4
1269	Testing Real Quantum Theory in an Optical Quantum Network. Physical Review Letters, 2022, 128, 040402.	2.9	39

#	Article	IF	CITATIONS
1270	Towards Realâ€World Quantum Networks: A Review. Laser and Photonics Reviews, 2022, 16, .	4.4	59
1271	Proposal for a Bell test in cavity optomagnonics. Physical Review A, 2022, 105, .	1.0	18
1272	Genuine network quantum nonlocality and self-testing. Physical Review A, 2022, 105, .	1.0	21
1273	Nonlocality for Generic Networks. Physical Review Letters, 2022, 128, 060401.	2.9	17
1274	Sub-10 nm Precision Engineering of Solid-State Defects via Nanoscale Aperture Array Mask. Nano Letters, 2022, 22, 1672-1679.	4.5	4
1275	Network nonlocality via rigidity of token counting and color matching. Physical Review A, 2022, 105, .	1.0	7
1276	Addressing Single Nuclear Spins Quantum Memories by a Central Electron Spin. Applied Magnetic Resonance, 2022, 53, 1317-1330.	0.6	4
1277	Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nature Communications, 2022, 13, 748.	5.8	19
1278	Geometric entanglement of a photon and spin qubits in diamond. Communications Physics, 2021, 4, .	2.0	9
1279	Bell nonlocality in networks. Reports on Progress in Physics, 2022, 85, 056001.	8.1	78
1280	Photoionization of negatively charged NV centers in diamond: Theory and $\langle i \rangle$ ab initio $\langle i \rangle$ calculations. Physical Review B, 2021, 104, .	1.1	25
1281	Quantum Teleportation via a Two-Qubit Heisenberg XXX Chain With X-Component of Dzyaloshinskii-Moriya Interaction. SSRN Electronic Journal, 0, , .	0.4	0
1282	Against Identification of Contextuality with Violation of the Bell Inequalities: Lessons from Theory of Randomness. Journal of Russian Laser Research, 2022, 43, 48-59.	0.3	3
1284	The Franson Experiment as an Example of Spontaneous Breaking of Time-Translation Symmetry. Symmetry, 2022, 14, 380.	1.1	3
1285	Unifying Quantum and Classical Speed Limits on Observables. Physical Review X, 2022, 12, .	2.8	28
1286	Nuclear spin-wave quantum register for a solid-state qubit. Nature, 2022, 602, 408-413.	13.7	46
1287	Comment on  Quantum correlations are weaved by the spinors of the Euclidean primitives'. Royal Society Open Science, 2022, 9, 201909.	1.1	2
1288	<i>Ab initio</i> experimental violation of Bell inequalities. Physical Review Research, 2022, 4, .	1.3	12

#	Article	IF	Citations
1289	Genuine hidden nonlocality without entanglement: from the perspective of local discrimination. New Journal of Physics, 2022, 24, 043036.	1.2	3
1290	On the Quantum Performance Evaluation of Two Distributed Quantum Architectures. Performance Evaluation Review, 2022, 49, 30-31.	0.4	1
1291	Single-photon nonlocality in quantum networks. Physical Review Research, 2022, 4, .	1.3	11
1292	Device-Independent Quantum Key Distribution with Random Postselection. Physical Review Letters, 2022, 128, 110506.	2.9	27
1293	Quantum violation of local causality in urban network with hybrid photonic technologies. , 2022, , .		0
1294	Quantum steering with vector vortex photon states with the detection loophole closed. Npj Quantum Information, 2022, 8, .	2.8	4
1295	Entanglement and the Measurement Problem. Quantum Engineering, 2022, 2022, 1-12.	1.2	5
1296	Entanglement generation in a quantum network with finite quantum memory lifetime. AVS Quantum Science, 2022, 4, .	1.8	3
1297	Quantifying and Interpreting Connection Strength in Macro- and Microscopic Systems: Lessons from Bell's Approach. Entropy, 2022, 24, 364.	1.1	1
1298	Resource optimization for the quantum Internet. , 2022, , .		0
1299	Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics. Frontiers of Materials Science, 2022, 16, 1.	1.1	9
1300	Randomness-based macroscopic Franson-type nonlocal correlation. Scientific Reports, 2022, 12, 3759.	1.6	2
1301	A geometrical representation of entanglement. European Physical Journal Plus, 2022, 137, 1.	1.2	0
1302	Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon interface. Npj Quantum Information, 2022, 8, .	2.8	6
1303	Entanglement of Spin-Pair Qubits with Intrinsic Dephasing Times Exceeding a Minute. Physical Review X, 2022, 12, .	2.8	16
1304	Statistical constructions in quantum information theory. Quantum Studies: Mathematics and Foundations, 0 , 1 .	0.4	O
1305	How can a random phenomenon between particles be synchronized instantaneously and independently of the distance between said particles?. Optical and Quantum Electronics, 2022, 54, 1.	1.5	4
1306	Proposal for room-temperature quantum repeaters with nitrogen-vacancy centers and optomechanics. Quantum - the Open Journal for Quantum Science, 0, 6, 669.	0.0	5

#	Article	IF	CITATIONS
1307	Quantum information processing with integrated silicon carbide photonics. Journal of Applied Physics, 2022, 131 , .	1.1	16
1308	Quantum violation of local causality in an urban network using hybrid photonic technologies. Optica, 2022, 9, 572.	4.8	8
1309	Negatively charged boron vacancy center in diamond. Physical Review B, 2022, 105, .	1.1	3
1310	Composition of Multipartite Quantum Systems: Perspective from Timelike Paradigm. Physical Review Letters, 2022, 128, 140401.	2.9	4
1311	The origin of Franson-type nonlocal correlation. AVS Quantum Science, 2022, 4, .	1.8	4
1312	Experimental hierarchy and optimal robustness of quantum correlations of two-qubit states with controllable white noise. Physical Review A, 2021, 104, .	1.0	8
1313	Semi-device-independent certification of multiple unsharpness parameters through sequential measurements. Physical Review A, 2021, 104, .	1.0	11
1314	Blind three-qubit exact Grover search on a nitrogen-vacancy-center platform. Physical Review A, 2021, 104, .	1.0	1
1315	Strengthen the Security of Cyberspace with Device-Independent Quantum Randomness., 2021,,.		0
1316	Strengthen the Security of Cyberspace with Device-Independent Quantum Randomness. , 2021, , .		0
1317	Quantum entanglement creation for distant quantum memories via time-bin multiplexing. Physical Review A, 2021, 104, .	1.0	13
1318	Quantum-dot single-photon sources for the quantum internet. Nature Nanotechnology, 2021, 16, 1294-1296.	15.6	40
1319	3D Integration Technology for Quantum Computer based on Diamond Spin Qubits. , 2021, , .		2
1320	Tunable Continuousâ€Variable Tripartite Entanglement via Cascaded Thirdâ€Order Nonlinear Processes in a Ring Cavity. Annalen Der Physik, 2022, 534, 2100396.	0.9	0
1321	Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Physical Review Research, 2021, 3, .	1.3	12
1322	Device Independence and the Quest towards Physical Limits of Privacy. , 0, , .		0
1323	Collective Spin-Light and Light-Mediated Spin-Spin Interactions in an Optical Cavity. PRX Quantum, 2022, 3, .	3.5	20
1324	Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)\$\$mathcal {PT}!\$\$-symmetric systems. Quantum Information Processing, 2022, 21, 1.	1.0	5

#	Article	IF	CITATIONS
1326	Quantum prospects for hybrid thin-film lithium niobate on silicon photonics. Frontiers of Optoelectronics, 2022, 15 , 1 .	1.9	9
1327	Significant loophole-free test of Kochen-Specker contextuality using two species of atomic ions. Science Advances, 2022, 8, eabk1660.	4.7	17
1328	Generation of four-mode cluster states from cascaded four-wave mixing processes. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
1330	Many-body Bell inequalities for bosonic qubits. SciPost Physics Core, 2022, 5, .	0.9	1
1331	Experimentally adjudicating between different causal accounts of Bell-inequality violations via statistical model selection. Physical Review A, 2022, 105, .	1.0	3
1332	Nonseparable States of Light: From Quantum to Classical. Laser and Photonics Reviews, 2022, 16, .	4.4	52
1333	Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond. Physical Review Letters, 2022, 128, 177401.	2.9	11
1334	On-Demand Integrated Quantum Memory for Polarization Qubits. Physical Review Letters, 2022, 128, 180501.	2.9	21
1335	Two-mode Schrödinger-cat states with nonlinear optomechanics: generation and verification of non-Gaussian mechanical entanglement. Quantum Science and Technology, 2022, 7, 035012.	2.6	8
1336	Gull's Theorem Revisited. Entropy, 2022, 24, 679.	1.1	4
1337	Enhanced entanglement and quantum steering of directly and indirectly coupled modes in a magnomechanical system. Physica Scripta, 2022, 97, 075102.	1.2	16
1338	Realism-based nonlocality: Invariance under local unitary operations and asymptotic decay for thermal correlated states. Physica A: Statistical Mechanics and Its Applications, 2022, , 127568.	1.2	1
1340	Robust thermal correlations induced by spin–orbit interactions. Results in Physics, 2022, 38, 105619.	2.0	3
1341	Qubit teleportation between non-neighbouring nodes in a quantum network. Nature, 2022, 605, 663-668.	13.7	99
1342	New Directions in Quantum Technologies. SSRN Electronic Journal, 0, , .	0.4	0
1343	Generation of twelve-partite entanglement from two symmetric four-wave mixing processes. Optics Communications, 2022, , 128470.	1.0	2
1344	Quantum Bell inequalities from Information Causality – tight for Macroscopic Locality. Quantum - the Open Journal for Quantum Science, 0, 6, 717.	0.0	0
1345	Nonlocality sharing for a three-qubit system via multilateral sequential measurements. Physical Review A, 2022, 105, .	1.0	9

#	ARTICLE	IF	CITATIONS
1346	Generalized Bell-like inequality and maximum violation for multiparticle entangled SchrĶdinger cat states of spin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi></mml:math> . Physical Review A, 2022, 105, .	1.0	0
1347	Quantum realism: Axiomatization and quantification. Physical Review A, 2022, 105, .	1.0	3
1349	The electroweak horizon problem. Physics of the Dark Universe, 2022, 37, 101057.	1.8	3
1350	NetQASM—a low-level instruction set architecture for hybrid quantum–classical programs in a quantum internet. Quantum Science and Technology, 2022, 7, 035023.	2.6	9
1352	On the wave nature of particles. Physics Essays, 2022, 35, 171-174.	0.1	1
1353	Magnon-Phonon-Photon Entanglement via the Magnetoelastic Coupling in a Magnomechanical System. International Journal of Theoretical Physics, 2022, 61, . Extending the spin coherence lifetimes of < mml:math	0.5	7
1354	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi>Er</mml:mi>/><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>167</mml:mn></mml:mmultiscripts><mml:mtext>:</mml:mtext><mml:msub><mml:mi< td=""><td><mml:non< td=""><td>e 4</td></mml:non<></td></mml:mi<></mml:msub></mml:mrow>	<mml:non< td=""><td>e 4</td></mml:non<>	e 4
1355	mathvariant="normal">Y <mml:mn>2</mml:mn> <mml:msub><mml:mi>SiO</mml:mi><n ,="" .<="" 0,="" computers.="" contextuality="" demonstration="" european="" journal="" of="" peres-mermin="" physics,="" quantum="" square="" td="" the="" using="" with=""><td>o.3</td><td><!--</td--></td></n></mml:msub>	o.3	</td
1356	Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system. Quantum Information Processing, 2022, 21, .	1.0	14
1357	Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multiphoton Entanglement. Physical Review Letters, 2022, 128, .	2.9	14
1358	Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams. Physical Review A, 2022, 105, .	1.0	7
1359	A quantum router architecture for high-fidelity entanglement flows in quantum networks. Npj Quantum Information, 2022, 8, .	2.8	24
1360	Post-quantum steering is a stronger-than-quantum resource for information processing. Npj Quantum Information, 2022, 8, .	2.8	6
1361	Security in quantum cryptography. Reviews of Modern Physics, 2022, 94, .	16.4	74
1362	Independent quality assessment of a commercial quantum random number generator. EPJ Quantum Technology, 2022, 9, .	2.9	2
1364	On the question of measurement in quantum mechanics. Physics-Uspekhi, 2023, 66, 734-740.	0.8	3
1366	Entangling single atoms over 33 km telecom fibre. Nature, 2022, 607, 69-73.	13.7	62
1367	Optical observation of single spins in silicon. Nature, 2022, 607, 266-270.	13.7	47

#	ARTICLE	IF	CITATIONS
1368	Micius quantum experiments in space. Reviews of Modern Physics, 2022, 94, .	16.4	71
1369	Experimental Demonstration of Quantum Pseudotelepathy. Physical Review Letters, 2022, 129, .	2.9	4
1370	Quantum computational advantage attested by nonlocal games with the cyclic cluster state. Physical Review Research, 2022, 4, .	1.3	2
1371	Reality variation under monitoring with weak measurements. Quantum Information Processing, 2022, 21, .	1.0	1
1372	Nonlocal sets of orthogonal product states with the less amount of elements in tripartite quantum systems. Quantum Information Processing, 2022, 21, .	1.0	3
1373	A device-independent quantum key distribution system for distant users. Nature, 2022, 607, 687-691.	13.7	78
1374	Bell inequality violations with random mutually unbiased bases. Physical Review A, 2022, 106, .	1.0	1
1375	Quantum entanglement provides a key to improved security. Nature, 2022, 607, 662-664.	13.7	4
1376	Toward a Photonic Demonstration of Device-Independent Quantum Key Distribution. Physical Review Letters, 2022, 129, .	2.9	46
1377	Contextuality in infinite one-dimensional translation-invariant local Hamiltonians. Npj Quantum Information, 2022, 8, .	2.8	0
1378	Advances in the quantum internet. Communications of the ACM, 2022, 65, 52-63.	3.3	36
1379	Experimental quantum key distribution certified by Bell's theorem. Nature, 2022, 607, 682-686.	13.7	72
1380	Dynamical quantum phase transition in diamond: Applications in quantum metrology. Physical Review B, 2022, 106, .	1.1	3
1381	Decoherence of V\$\${}_{{{{\{\{\{\{\{\{m\{B\}\}\}\}\}\}\}}}}^{-}\$\$ spin defects in monoisotopic hexagonal boron nitride. Nature Communications, 2022, 13, .	5.8	31
1382	Violation of Bell's inequality with quantum-dot single-photon sources. Physical Review A, 2022, 106, .	1.0	5
1383	Postselected Entanglement between Two Atomic Ensembles Separated by 12.5Âkm. Physical Review Letters, 2022, 129, .	2.9	21
1384	Improved tests of entanglement and Bell inequalities with LHC tops. European Physical Journal C, 2022, 82, .	1.4	16
1385	Experimental Demonstration of Genuine Tripartite Nonlocality under Strict Locality Conditions. Physical Review Letters, 2022, 129, .	2.9	4

#	Article	IF	Citations
1386	Atomic structure and collision dynamics with highly charged ions. Chinese Physics B, 2022, 31, 093401.	0.7	12
1387	Nuclear spin quantum memory in silicon carbide. Physical Review Research, 2022, 4, .	1.3	7
1388	Avenues to generalising Bell inequalities. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 384011.	0.7	4
1389	Transition metal impurities in silicon: computational search for a semiconductor qubit. Npj Computational Materials, 2022, 8, .	3.5	3
1390	Entanglement harvesting between two inertial Unruh-DeWitt detectors from nonvacuum quantum fluctuations. Physical Review D, 2022, 106, .	1.6	5
1391	Decoherence of nitrogen-vacancy spin ensembles in a nitrogen electron-nuclear spin bath in diamond. Npj Quantum Information, 2022, 8, .	2.8	8
1392	Weak gravitational field effects on Bell tests with massive particles. Classical and Quantum Gravity, 2022, 39, 185003.	1.5	0
1393	High-Dimensional Bell Test without Detection Loophole. Physical Review Letters, 2022, 129, .	2.9	4
1394	Cavity-mediated electron-photon pairs. Science, 2022, 377, 777-780.	6.0	57
1395	Quantum gates activated with laser precision. Nature Photonics, 2022, 16, 617-618.	15.6	0
1396	Quantum Repeaters with Encoding on Nitrogen-Vacancy-Center Platforms. Physical Review Applied, 2022, 18, .	1.5	3
1397	Bell's nonlocality and gravity. International Journal of Modern Physics D, 2022, 31, .	0.9	1
1398	Experimental demonstration of adversarial examples in learning topological phases. Nature Communications, 2022, 13, .	5.8	5
1399	Multi-nonlocality and detection of multipartite entanglements by special quantum networks. Quantum Information Processing, 2022, 21, .	1.0	1
1400	Technological trajectories in quantum computing to design a quantum ecosystem for industrial change. Technology Analysis and Strategic Management, 0, , 1-16.	2.0	17
1401	Measurement of Bell-type inequalities and quantum entanglement from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> -hyperon spin correlations at high energy colliders. Physical Review D. 2022, 106	1.6	17
1402	Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism. Physical Review Letters, 2022, 129, .	2.9	36
1403	Geometric link between the Hardy nonlocality condition and the Clauser-Horne-Shimony-Holt inequality. Physical Review A, 2022, 106, .	1.0	O

#	Article	IF	CITATIONS
1404	Assessing the quantum-computing landscape. Communications of the ACM, 2022, 65, 57-65.	3.3	2
1405	Quantum teleportation via a two-qubit Heisenberg XXX chain with x-component of Dzyaloshinskii–Moriya interaction. Journal of Magnetism and Magnetic Materials, 2022, 563, 169816.	1.0	7
1406	Diamond surface engineering for molecular sensing with nitrogenâ€"vacancy centers. Journal of Materials Chemistry C, 2022, 10, 13533-13569.	2.7	23
1407	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15
1408	Towards Coherent Charge Transport Between Color Center Qubits as a Platform for Quantum Information Processing. , 2022, , .		0
1409	Adiabatic Quantum Computing for Multi Object Tracking. , 2022, , .		7
1410	A note on the trade-off relationships of steering and Bell inequalities and the maximal mean values of Åšliwa inequalities. Laser Physics Letters, 2022, 19, 105208.	0.6	0
1411	Optimality of any pair of incompatible rank-one projective measurements for some nontrivial Bell inequality. Physical Review A, 2022, 106, .	1.0	1
1412	An elementary quantum network of entangled optical atomic clocks. Nature, 2022, 609, 689-694.	13.7	31
1413	Experimental Genuine Tripartite Nonlocality in a Quantum Triangle Network. PRX Quantum, 2022, 3, .	3.5	9
1414	Quantum information with top quarks in QCD. Quantum - the Open Journal for Quantum Science, 0, 6, 820.	0.0	23
1415	Experimental Refutation of Real-Valued Quantum Mechanics under Strict Locality Conditions. Physical Review Letters, 2022, 129, .	2.9	5
1416	Contextuality, Complementarity, Signaling, and Bell Tests. Entropy, 2022, 24, 1380.	1.1	15
1417	Entanglement and scattering in quantum electrodynamics: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math> matrix information from an entangled spectator particle. Physical Review D, 2022, 106, .	1.6	3
1418	Experimental Demonstration that No Tripartite-Nonlocal Causal Theory Explains Nature's Correlations. Physical Review Letters, 2022, 129, .	2.9	8
1419	Test of Genuine Multipartite Nonlocality. Physical Review Letters, 2022, 129, .	2.9	9
1420	Security research on practical measurement-device-independent quantum key distribution. Physical Review A, 2022, 106, .	1.0	1
1421	Phase-Controlled Entanglement in a Four-Mode Optomechanical System. Photonics, 2022, 9, 818.	0.9	0

#	Article	IF	Citations
1422	Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems. Progress in Quantum Electronics, 2022, , 100396.	3.5	1
1423	Diamond Surfaces with Clickable Antifouling Polymer Coating for Microarrayâ€Based Biosensing. Advanced Materials Interfaces, 2022, 9, .	1.9	6
1424	Robust quantum-network memory based on spin qubits in isotopically engineered diamond. Npj Quantum Information, 2022, 8, .	2.8	14
1425	The deep space quantum link: prospective fundamental physics experiments using long-baseline quantum optics. EPJ Quantum Technology, 2022, 9, .	2.9	14
1426	Optimal discrimination between real and complex quantum theories. Physical Review A, 2022, 106, .	1.0	1
1427	Detection of a quantum phase transition in a spin-1 chain through multipartite high-order correlations. Physical Review A, 2022, 106, .	1.0	1
1428	Anti-Stokes excitation of optically active point defects in semiconductor materials. Materials for Quantum Technology, 2022, 2, 042001.	1.2	2
1429	The Bell inequalities: Commentary on the Nobel Prize in Physics 2022. Chinese Science Bulletin, 2022, , .	0.4	1
1430	Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin, 2022, 67, 2167-2175.	4.3	75
1431	Computational Insights into Electronic Excitations, Spin–Orbit Coupling Effects, and Spin Decoherence in Cr(IV)-Based Molecular Qubits. Journal of Physical Chemistry A, 2022, 126, 8007-8020.	1.1	1
1432	Hybrid quantum nanophotonic devices with color centers in nanodiamonds [Invited]. Optical Materials Express, 2023, 13, 191.	1.6	11
1433	On Applicability of Quantum Formalism to Model Decision Making: Can Cognitive Signaling Be Compatible with Quantum Theory?. Entropy, 2022, 24, 1592.	1.1	3
1434	Precession-induced nonclassicality of the free induction decay of NV centers by a dynamical polarized nuclear spin bath. Journal of Physics Condensed Matter, 2022, 34, 505701.	0.7	3
1435	Minimum detection efficiency for testing a multi-particle Bell inequality. New Journal of Physics, 2022, 24, 113031.	1.2	1
1436	Entanglement Verification of Hyperentangled Photon Pairs. Physical Review Applied, 2022, 18, .	1.5	5
1437	Certified random-number generation from quantum steering. Physical Review A, 2022, 106, .	1.0	3
1438	On-Demand Storage of Photonic Qubits at Telecom Wavelengths. Physical Review Letters, 2022, 129, .	2.9	17
1439	Unbounded randomness from uncharacterized sources. Communications Physics, 2022, 5, .	2.0	4

#	Article	IF	CITATIONS
1440	Entanglement Distribution with Minimal Memory Requirements Using Time-Bin Photonic Qudits. PRX Quantum, 2022, 3, .	3. 5	3
1441	Upper Bounds on Device-Independent Quantum Key Distribution Rates in Static and Dynamic Scenarios. Physical Review Applied, 2022, 18, .	1.5	7
1442	Stationary optomagnonic entanglement and magnon-to-optics quantum state transfer via opto-magnomechanics. Quantum Science and Technology, 2023, 8, 015014.	2.6	14
1443	Transfer of arbitrary quantum states between separated superconducting cavities via an ensemble of nitrogen-vacancy centers. Results in Physics, 2023, 44, 106157.	2.0	4
1444	A note on the relation between the Contextual Fraction and <mml:math altimg="si532.svg" display="inline" id="d1e2589" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mtext>CNT</mml:mtext></mml:mrow><mml:mrow><mml:mow><mml:mtext></mml:mtext></mml:mow></mml:mrow><mml:mrow><mml:mrow><mml:mtext></mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td>mn>2<td>ml:mn></td></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>	mn>2 <td>ml:mn></td>	ml:mn>
1445	Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces?. Journal of the American Chemical Society, 2022, 144, 21810-21825.	6.6	15
1446	Quick Quantum Steering: Overcoming Loss and Noise with Qudits. Physical Review X, 2022, 12, .	2.8	8
1447	Exponentially Decreasing Critical Detection Efficiency for Any Bell Inequality. Physical Review Letters, 2022, 129, .	2.9	8
1448	Experimental Counterexample to Bell's Locality Criterion. Entropy, 2022, 24, 1742.	1.1	1
1449	Quantum Information Science: From foundations to new technologies. Physica B: Condensed Matter, 2023, 653, 414510.	1.3	3
1450	Alain Aspect's experiments on Bell's theorem: a turning point in the history of the research on the foundations of quantum mechanics. European Physical Journal D, 2022, 76, .	0.6	1
1451	Effects of cavity birefringence in polarisation-encoded quantum networks. New Journal of Physics, 2023, 25, 013004.	1.2	4
1452	Preparation of metrological states in dipolar-interacting spin systems. Npj Quantum Information, 2022, 8, .	2.8	7
1453	Quantifying causal influence in quantum mechanics. Physical Review A, 2022, 106, .	1.0	1
1454	Wigner-approach-enabled detection of multipartite nonlocality using all different bipartitions. Physical Review A, 2022, 106, .	1.0	1
1455	Improved DIQKD protocols with finite-size analysis. Quantum - the Open Journal for Quantum Science, 0, 6, 880.	0.0	9
1456	Measurement Incompatibility versus Bell Nonlocality: An Approach via Tensor Norms. PRX Quantum, 2022, 3, .	3.5	0
1457	Can quantum non-locality be connected to extra-dimensions?. International Journal of Quantum Information, 0, , .	0.6	0

#	Article	IF	CITATIONS
1458	Probing the Evolution of the Electron Spin Wave Function of the Nitrogen-Vacancy Center in Diamond via Pressure Tuning. Physical Review Applied, 2022, 18, .	1.5	3
1459	Entanglement-assisted quantum communication with simple measurements. Nature Communications, 2022, 13, .	5 . 8	4
1460	Coincidence postselection for genuine multipartite nonlocality: Causal diagrams and threshold efficiencies. Physical Review A, 2022, 106, .	1.0	2
1461	Quantifying the Spectral Diffusion of N- <i>V</i> Centers by Symmetry. Physical Review Applied, 2022, 18, .	1.5	5
1462	Electric-Field-Induced Coherent Control of Nitrogen-Vacancy Centers. Physical Review Applied, 2022, 18, .	1.5	4
1463	A matter-wave Rarity–Tapster interferometer to demonstrate non-locality. European Physical Journal D, 2022, 76, .	0.6	2
1464	<i>Colloquium</i> : Cavity-enhanced quantum network nodes. Reviews of Modern Physics, 2022, 94, .	16.4	15
1465	Hong-Ou-Mandel Interference between Two Hyperentangled Photons Enables Observation of Symmetric and Antisymmetric Particle Exchange Phases. Physical Review Letters, 2022, 129, .	2.9	4
1466	A Mathematician Reads the Kalam Cosmological Argument. Mathematical Intelligencer, 0, , .	0.1	0
1467	Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures. Applied Physics Letters, 2022, 121, .	1.5	2
1468	Non-locality ≠quantum entanglement. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 123101.	0.9	1
1469	Conclusion andÂOutlook. Springer Theses, 2023, , 135-138.	0.0	0
1470	Remote Entanglement viaÂtheÂTwo-Photon Scheme. Springer Theses, 2023, , 67-79.	0.0	0
1471	Fusions of Consciousness. Entropy, 2023, 25, 129.	1.1	4
1472	Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks. New Journal of Physics, 2023, 25, 013023.	1.2	0
1473	Rare-earth quantum memories: The experimental status quo. Frontiers of Physics, 2023, 18, .	2.4	7
1474	Extending the fair sampling assumption using causal diagrams. Quantum - the Open Journal for Quantum Science, 0, 7, 897.	0.0	1
1475	On the Fidelity Robustness of CHSH–Bell Inequality via Filtered Random States. Entropy, 2023, 25, 94.	1.1	2

#	Article	IF	CITATIONS
1476	Testing of quantum nonlocal correlations under constrained free will and imperfect detectors. Physical Review A, 2023, 107, .	1.0	2
1478	Machine and quantum learning for diamond-based quantum applications. Materials for Quantum Technology, 2023, 3, 012001.	1.2	2
1479	Analysis of multipartite entanglement distribution using a central quantum-network node. Physical Review A, 2023, 107 , .	1.0	7
1482	Locality, Realism, Ergodicity and Randomness in Bell's Experiment. Entropy, 2023, 25, 160.	1.1	2
1483	On the ontological ambiguity of physics facing reality. Astronomische Nachrichten, 2023, 344, .	0.6	1
1484	Quantum memories for fundamental science in space. Quantum Science and Technology, 2023, 8, 024006.	2.6	4
1485	Spin-induced multipartite steady-state entanglement of motional modes in hexagonal boron nitride membranes. Physical Review A, 2023, 107, .	1.0	1
1486	The Experiments That Led to the Nobel Prize in Physics 2022. Resonance - Journal of Science Education, 2023, 28, 85-116.	0.2	0
1487	Proposal for the distribution of multiphoton entanglement with optimal rate-distance scaling. Physical Review A, 2023, 107, .	1.0	0
1488	Entanglement and the Path Integral. Foundations of Physics, 2023, 53, .	0.6	1
1489	Das Quanteninternet: neue Möglichkeiten der Kommunikation. , 2022, , 189-204.		0
1490	Synchronous Observation of Bell Nonlocality and State-Dependent Contextuality. Physical Review Letters, 2023, 130, .	2.9	6
1491	Quantum Optical Tests of the Foundations of Physics. Springer Handbooks, 2023, , 1231-1257.	0.3	0
1492	Quantum Computing: An Overview. SSRN Electronic Journal, 0, , .	0.4	0
1493	Device-independent self-testing of unsharp measurements. New Journal of Physics, 2023, 25, 013040.	1.2	2
1494	Experimental Limit on Nonlinear State-Dependent Terms in Quantum Theory. Physical Review Letters, 2023, 130, .	2.9	3
1495	Quantum Properties of Light. Springer Handbooks, 2023, , 1189-1205.	0.3	0
1496	Atomically-thin single-photon sources for quantum communication. Npj 2D Materials and Applications, 2023, 7, .	3.9	22

#	Article	IF	CITATIONS
1497	Provably-secure quantum randomness expansion with uncharacterised homodyne detection. Nature Communications, $2023, 14, \ldots$	5.8	3
1498	A new entropic quantum correlation measure for adversarial systems. Scientific Reports, 2023, 13, .	1.6	0
1499	Generation of highly retrievable atom photon entanglement with a millisecond lifetime via a spatially multiplexed cavity. Quantum - the Open Journal for Quantum Science, 0, 7, 903.	0.0	4
1500	History Lessons from the 5 th Solvay Meeting, 1927. Journal of High Energy Physics Gravitation and Cosmology, 2023, 09, 301-352.	0.3	0
1501	Quantum Information. Springer Handbooks, 2023, , 1259-1271.	0.3	0
1502	Persistent nonlocality in an ultracold-atom environment. Quantum - the Open Journal for Quantum Science, 0, 7, 907.	0.0	1
1503	Entangled-State Time Multiplexing for Multiphoton Entanglement Generation. Physical Review Applied, 2023, 19, .	1.5	3
1504	Contextuality or Nonlocality: What Would John Bell Choose Today?. Entropy, 2023, 25, 280.	1.1	5
1505	Considerations on the Relativity of Quantum Irrealism. Entropy, 2023, 25, 603.	1.1	0
1506	Boosting device-independent cryptography with tripartite nonlocality. Quantum - the Open Journal for Quantum Science, 0, 7, 980.	0.0	1
1507	Contextuality and correlation loopholes are equivalent. Europhysics Letters, 0, , .	0.7	0
1508	Device-independently verifying full network nonlocality of quantum networks. Physica A: Statistical Mechanics and Its Applications, 2023, 617, 128680.	1.2	0
1510	Spontaneous entanglement leakage of two static entangled Unruh-DeWitt detectors. Physical Review D, 2023, 107, .	1.6	3
1511	Entanglement of Trapped-Ion Qubits Separated by 230ÂMeters. Physical Review Letters, 2023, 130, .	2.9	35
1512	Comparing bound entanglement of bell diagonal pairs of qutrits and ququarts. Scientific Reports, 2023, 13, .	1.6	5
1513	Bounding the detection efficiency threshold in Bell tests using multiple copies of the maximally entangled two-qubit state carried by a single pair of particles. Physical Review A, 2023, 107, .	1.0	3
1514	Bell inequalities for nonlocality depth. Physical Review A, 2023, 107, .	1.0	3
1516	Response: "Commentary: Is the moon there if nobody looks? Bell inequalities and physical reality― Frontiers in Physics, 0, 11, .	1.0	3

#	Article	IF	CITATIONS
1517	Electroluminescence of negatively charged single NV centers in diamond. Applied Physics Letters, 2023, 122, .	1.5	4
1518	Graph-theoretic approach to Bell experiments with low detection efficiency. Quantum - the Open Journal for Quantum Science, 0, 7, 922.	0.0	3
1519	Low-loss interconnects for modular superconducting quantum processors. Nature Electronics, 2023, 6, 235-241.	13.1	14
1520	Experimental nonclassicality in a causal network without assuming freedom of choice. Nature Communications, 2023, 14, .	5.8	6
1521	Advances in device-independent quantum key distribution. Npj Quantum Information, 2023, 9, .	2.8	12
1522	Tuning spectral properties of individual and multiple quantum emitters in noisy environments. Physical Review A, 2023, 107, .	1.0	0
1523	Parallel and heralded multiqubit entanglement generation for quantum networks. Physical Review A, 2023, 107, .	1.0	9
1524	Local Quantum Theory with Fluids in Space-Time. Quantum Reports, 2023, 5, 156-185.	0.6	1
1525	Multiple Tin-Vacancy Centers in Diamond with Nearly Identical Photon Frequency and Linewidth. Physical Review Applied, 2023, 19, .	1.5	8
1526	Readout-Integrated Time-Bin Qutrit Analyzer for Echo-Based Quantum Memories. Physical Review Applied, 2023, 19, .	1.5	0
1527	One-Photon Measurement of Two-Photon Entanglement. Physical Review Letters, 2023, 130, .	2.9	5
1528	Security of device-independent quantum key distribution protocols: a review. Quantum - the Open Journal for Quantum Science, 0, 7, 932.	0.0	11
1529	Robust Quantum Memory in a Trapped-Ion Quantum Network Node. Physical Review Letters, 2023, 130, .	2.9	12
1530	Noisy intermediate-scale quantum computers. Frontiers of Physics, 2023, 18, .	2.4	19
1531	Integrated silicon T centers for quantum technologies. , 2023, , .		0
1532	Nonlocal phase modulation of multi-frequency-mode twin beams: toward networked quantum computing and sensing. , 2023, , .		0
1533	Propagating quantum microwaves: towards applications in communication and sensing. Quantum Science and Technology, 2023, 8, 023001.	2.6	8
1534	Quantum Correlations in the Minimal Scenario. Quantum - the Open Journal for Quantum Science, 0, 7, 947.	0.0	7

#	Article	IF	CITATIONS
1535	Generation of a time–bin Greenberger–Horne–Zeilinger state with an optical switch. Quantum Science and Technology, 2023, 8, 035003.	2.6	0
1536	On Magnetic Models in Wavefunction Ensembles. Entropy, 2023, 25, 564.	1.1	0
1537	Practical randomness amplification and privatisation with implementations on quantum computers. Quantum - the Open Journal for Quantum Science, 0, 7, 969.	0.0	0
1538	Waveguide-integrated silicon T centres. Optics Express, 2023, 31, 15045.	1.7	7
1539	Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit. Nature Communications, 2023, 14, .	5.8	7
1540	Phonon-assisted upconversion photoluminescence of quantum emitters. Journal of Semiconductors, 2023, 44, 041901.	2.0	3
1541	Diamond nucleation in carbon films on Si wafer during microwave plasma enhanced chemical vapor deposition for quantum applications. Journal of Applied Physics, 2023, 133, .	1.1	1
1542	Modular chip-integrated photonic control of artificial atoms in diamond waveguides. Optica, 2023, 10, 634.	4.8	6
1543	The Quantum Features of Correlated Photons with the Effect of Phase Fluctuation. Ukrainian Journal of Physics, 2023, 68, 81.	0.1	0
1546	Quantum Advantage from Any Non-local Game. , 2023, , .		3
1555	Plasmonic-Enhanced Bright Single Spin Defects in Silicon Carbide Membranes. Nano Letters, 2023, 23, 4334-4343.	4.5	1
1569	The theorem of unified locality. SN Applied Sciences, 2023, 5, .	1.5	0
1573	3D Integration for Modular Quantum Computer based on Diamond Spin Qubits. , 2023, , .		0
1581	Superconducting qubits cover new distances. Nature, 2023, 617, 254-256.	13.7	2
1584	Grundlegender Hintergrund., 2023,, 13-74.		0
1610	Generation of GHZ States with Time-bin Qubits. , 2023, , .		0
1611	Recovering quantum entanglement after its certification. , 2023, , .		0
1624	Perspective Chapter: On the Contradiction between Special Relativity and Quantum Entanglement. , 0, ,		0

#	Article	IF	CITATIONS
1630	Closing Bell Boxing Black Box Simulations inÂtheÂResource Theory ofÂContextuality. Outstanding Contributions To Logic, 2023, , 475-529.	0.2	0
1634	Quantum networks with neutral atom processing nodes. Npj Quantum Information, 2023, 9, .	2.8	3
1644	Nuclear Spins in the Proximity of Individual Erbium Dopants. , 2023, , .		0
1649	Non-locality in Quantum Mechanics and Bell's Inequality. Lecture Notes in Physics, 2023, , 283-310.	0.3	O
1685	Entanglement in High-Energy Physics: An Overview. , 0, , .		0
1694	Modular free-space architecture for photonic addressing and collection of artificial atoms in diamond. , 2023, , .		O
1698	Quantum Contextuality in a Nutshell. Springer Theses, 2023, , 9-34.	0.0	0
1699	Scaling Limits of Quantum Repeater Networks. , 2023, , .		O
1706	Perspective Chapter: Why Do We Care about Violating Bell Inequalities?., 0,,.		0
1707	Yes Ghosts, No Unicorns: Quantum Modeling and Causality in Physics and Beyond. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 2023, , 113-130.	0.0	O
1723	Quantum-Improved Weather Forecasting: Integrating Quantum Machine Learning for Precise Prediction and Disaster Mitigation. , 2023, , .		0