Three-dimensional printing of complex biological struc embedding of suspended hydrogels

Science Advances 1, e1500758 DOI: 10.1126/sciadv.1500758

Citation Report

#	Article	IF	CITATIONS
1	Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Sciences, 2016, 17, 1976.	1.8	454
2	Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomaterials Science and Engineering, 2016, 2, 1694-1709.	2.6	25
3	A review on design for bioprinting. Bioprinting, 2016, 3-4, 1-14.	2.9	50
4	Three-dimensional printing of alginate: From seaweeds to heart valve scaffolds. QScience Connect, 2016, 2016, .	0.2	10
5	Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Engineering and Regenerative Medicine, 2016, 13, 647-662.	1.6	50
6	Current advances in three-dimensional tissue/organ printing. Tissue Engineering and Regenerative Medicine, 2016, 13, 612-621.	1.6	33
7	Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy. Scientific Reports, 2016, 6, 39140.	1.6	97
8	Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomaterials Science and Engineering, 2016, 2, 1662-1678.	2.6	237
9	Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering, 2016, 44, 2090-2102.	1.3	518
10	Emerging Trends in Biomaterials Research. Annals of Biomedical Engineering, 2016, 44, 1861-1862.	1.3	7
11	3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding. ACS Biomaterials Science and Engineering, 2016, 2, 1781-1786.	2.6	346
12	Undermined by overhead accounting. Science, 2016, 352, 158-159.	6.0	3
13	Designing Biomaterials for 3D Printing. ACS Biomaterials Science and Engineering, 2016, 2, 1679-1693.	2.6	581
14	3D-printed fluidic networks as vasculature for engineered tissue. Lab on A Chip, 2016, 16, 2025-2043.	3.1	110
15	Creating biomaterials with spatially organized functionality. Experimental Biology and Medicine, 2016, 241, 1025-1032.	1.1	8
17	Editorial: Special Issue on 3D Printing of Biomaterials. ACS Biomaterials Science and Engineering, 2016, 2, 1658-1661.	2.6	22
18	Competitive ligand exchange of crosslinking ions for ionotropic hydrogel formation. Journal of Materials Chemistry B, 2016, 4, 6175-6182.	2.9	38
19	Electrophoretic hydrogel adhesion for fabrication of three-dimensional materials. Polymer Journal, 2016, 48, 1095-1101.	1.3	15

#	Article	IF	CITATIONS
20	Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterials Research, 2016, 20, 27.	3.2	77
21	Current Developments in 3D Printing for Craniofacial Regeneration. Current Oral Health Reports, 2016, 3, 319-327.	0.5	Ο
22	Recent advances in bioprinting techniques: approaches, applications and future prospects. Journal of Translational Medicine, 2016, 14, 271.	1.8	406
23	Design and Printing Strategies in 3D Bioprinting of Cellâ€Hydrogels: A Review. Advanced Healthcare Materials, 2016, 5, 2856-2865.	3.9	251
24	Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment. Journal of Tissue Engineering, 2016, 7, 204173141663819.	2.3	41
25	Bioprinting the Cancer Microenvironment. ACS Biomaterials Science and Engineering, 2016, 2, 1710-1721.	2.6	194
26	3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016, 34, 422-434.	6.0	1,240
27	From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis. Cell Stem Cell, 2016, 18, 20-24.	5.2	43
28	Current state of 3D printing in tissue engineering. Journal of 3D Printing in Medicine, 2017, 1, 77-79.	1.0	1
29	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507
30	3D Bioprinting for Vascularized Tissue Fabrication. Annals of Biomedical Engineering, 2017, 45, 132-147.	1.3	166
31	State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. Annals of Biomedical Engineering, 2017, 45, 195-209.	1.3	242
32	Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Annals of Biomedical Engineering, 2017, 45, 115-131.	1.3	71
33	3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels. ACS Biomaterials Science and Engineering, 2017, 3, 399-408.	2.6	181
34	Amplified Photodegradation of Cell‣aden Hydrogels via an Addition–Fragmentation Chain Transfer Reaction. Advanced Materials, 2017, 29, 1605001.	11.1	88
35	Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Science Robotics, 2017, 2, .	9.9	131
36	The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 2017, 35, 217-239.	6.0	770
37	From Microscale Devices to 3D Printing. Circulation Research, 2017, 120, 150-165.	2.0	71

		CITATION REPORT	
# 38	ARTICLE 3D bioprinting: improving <i>in vitro</i> models of metastasis with heterogeneous tumor microenvironments. DMM Disease Models and Mechanisms, 2017, 10, 3-14.	IF 1.2	CITATIONS 123
39	Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomaterialia, 2017, 51, 1-20.	4.1	327
40	Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 532-554.	1.9	101
41	Suspended Manufacture of Biological Structures. Advanced Materials, 2017, 29, 1605594.	11.1	96
42	Building a bioartificial heart: Obstacles and opportunities. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 748-750.	0.4	11
43	Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. Advanced Functional Materials, 2017, 27, 1605352.	7.8	278
44	3D printing: State of the art and future perspectives. Journal of Cultural Heritage, 2017, 26, 172-182.	1.5	155
45	3D bioprinting of structural proteins. Biomaterials, 2017, 134, 180-201.	5.7	131
46	Current developments in 3D bioprinting for tissue engineering. Current Opinion in Biomedical Engineering, 2017, 2, 76-82.	1.8	29
47	Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017, 13, 1700684.	5.2	27
48	Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air. ACS Applied Materials & Interfaces, 2017, 9, 17456-17465.	4.0	183
49	3D Bioprinting for Cardiovascular Tissue Engineering. , 2017, , 167-182.		8
50	Extrusion Bioprinting of Shearâ€Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 2017, 6, 1601451.	3.9	352
51	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
52	4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2017, 9, 012001.	3.7	271
53	Stimuli-Responsive Adhesion for 3D Fabrication of Hydrogels. , 2017, , 255-267.		0
54	Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel. Chemistry of Materials, 2017, 29, 5816-5823.	3.2	119
55	From intricate to integrated: Biofabrication of articulating joints. Journal of Orthopaedic Research, 2017, 35, 2089-2097.	1.2	35

#	Article	IF	CITATIONS
56	3D Printing of Microstructured and Stretchable Chitosan Hydrogel for Guided Cell Growth. Advanced Biology, 2017, 1, 1700058.	3.0	76
57	Introduction to 3D printing in medicine. , 2017, , 1-20.		21
58	Writing with Fluid: Structuring Hydrogels with Micrometer Precision by AFM in Combination with Nanofluidics. Small, 2017, 13, 1700962.	5.2	14
59	Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials. ACS Applied Materials & Interfaces, 2017, 9, 20057-20066.	4.0	110
60	3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage. ACS Biomaterials Science and Engineering, 2017, 3, 863-869.	2.6	112
61	3D bioprinting from the micrometer to millimeter length scales: Size does matter. Current Opinion in Biomedical Engineering, 2017, 1, 31-37.	1.8	43
62	Dissecting the stem cell niche with organoid models: an engineering-based approach. Development (Cambridge), 2017, 144, 998-1007.	1.2	64
63	Bioengineering cardiac constructs using 3D printing. Journal of 3D Printing in Medicine, 2017, 1, 123-139.	1.0	44
64	The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomaterialia, 2017, 54, 35-44.	4.1	51
65	Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. ACS Applied Materials & Interfaces, 2017, 9, 876-883.	4.0	351
66	Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting, 2017, 5, 1-9.	2.9	109
67	Natural Extracellular Matrix for Cellular and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2017, 3, 1462-1476.	2.6	54
68	Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. Tissue Engineering - Part B: Reviews, 2017, 23, 436-450.	2.5	66
69	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	3.9	385
70	Optimising low molecular weight hydrogels for automated 3D printing. Soft Matter, 2017, 13, 8426-8432.	1.2	60
71	Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels. ACS Applied Materials & Interfaces, 2017, 9, 40898-40904.	4.0	44
72	4D Biofabrication Using Shapeâ€Morphing Hydrogels. Advanced Materials, 2017, 29, 1703443.	11.1	315
73	Printing@Clinic: From Medical Models to Organ Implants. ACS Biomaterials Science and Engineering, 2017, 3, 3083-3097.	2.6	21

#	Article	IF	CITATIONS
74	Photo-responsive polymer materials for biological applications. Chinese Chemical Letters, 2017, 28, 2085-2091.	4.8	35
75	A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology, 2017, 05, 185-195.	1.4	54
76	Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication, 2017, 9, 044102.	3.7	98
77	Three-Dimensional Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise Three-Dimensional Printability and Angiogenesis Potential for Tissue-Engineered Substitutes. Tissue Engineering - Part C: Methods, 2017, 23, 604-615.	1.1	94
78	Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. Journal of Visualized Experiments, 2017, , .	0.2	25
79	Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules. Scientific Reports, 2017, 7, 8624.	1.6	122
80	Continuous lattice fabrication of ultra-lightweight composite structures. Additive Manufacturing, 2017, 18, 48-57.	1.7	52
81	Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Advanced Healthcare Materials, 2017, 6, 1700496.	3.9	49
82	Bioprinting: uncovering the utility layer-by-layer. Journal of 3D Printing in Medicine, 2017, 1, 165-179.	1.0	13
83	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	14.8	151
84	Freezeâ€Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Advanced Healthcare Materials, 2017, 6, 1700598.	3.9	84
85	High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing. Scientific Reports, 2017, 7, 7004.	1.6	154
86	Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. Advanced Biology, 2017, 1, 1700068.	3.0	18
87	Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 2017, 9, 033001.	3.7	22
88	Bioprinting of three-dimensional culture models and organ-on-a-chip systems. MRS Bulletin, 2017, 42, 593-599.	1.7	11
89	Three-dimensional bioprinting of volumetric tissues and organs. MRS Bulletin, 2017, 42, 585-592.	1.7	39
90	Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bulletin, 2017, 42, 571-577.	1.7	108
91	Toward next-generation bioinks: Tuning material properties pre- and post-printing to optimize cell viability. MRS Bulletin, 2017, 42, 563-570.	1.7	39

ARTICLE IF CITATIONS # 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future 92 1.5 452 trends. Genes and Diseases, 2017, 4, 185-195. New technologies for engineering neural tissue from stem cells., 2017, , 181-204. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable 94 1.6 142 vasculature-like structures. Scientific Reports, 2017, 7, 16902. Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2017, 334 Bio-inks for 3D bioprinting: recent advances and future prospects. Polymer Chemistry, 2017, 8, 96 1.9 256 4451-4471. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication, 2017, 9, 034102. 3.7 178 Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review. 98 1.7 135 Macromolecular Materials and Engineering, 2017, 302, 1600266. Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630. 99 11.1 Bioinks for biofabrication: current state and future perspectives. Journal of 3D Printing in Medicine, 100 1.0 21 2017, 1, 49-62. Evaluation of bioprinter technologies. Additive Manufacturing, 2017, 13, 179-200. 1.7 141 The use of hydrocolloids in physical modelling of complex biological matrices. Food Hydrocolloids, 103 5.6 1 2017, 68, 102-107. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue<sup />. 104 Tissue Engineering - Part B. Reviews, 2017, 23, 225-236. Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells, 2017, 35, 51-60. 105 1.4 48 Dependence of stacking direction on mechanical properties of gels and plastics formed by 3D printing. 0.1 Transactions of the JSME (in Japanese), 2017, 83, 16-00567-16-00567 High-resolution 3D printing for healthcare underpinned by small-scale fluidics., 2017, , 167-206. 107 18 The Bioink â^— â^—With contributions by Monika Hospodiuk and Madhuri Dey, The Pennsylvania State University.., 2017, , 41-92. 109 Design for Bioprinting., 2017, , 13-39. 0 Extrusion-Based Bioprinting $\hat{a} - \hat{a}$ -With minor contributions by Monika Hospodiuk, The Pennsylvania State University.. , 2017, , 93-124.

#	Article	IF	CITATIONS
111	Bioprinter Technologies â^— â^—With contributions by Hemanth Gudupati and Kazim Moncal, The Pennsylvania State University , 2017, , 199-241.		3
112	Roadmap to Organ Printing. , 2017, , 243-269.		2
113	3D Printing of Organs-On-Chips. Bioengineering, 2017, 4, 10.	1.6	140
114	5.14 Biofabrication in Tissue Engineering â~†. , 2017, , 236-266.		26
115	Materials for Use in Bioprinting. , 2017, , 81-94.		0
116	3D Cell Printed Tissue Analogues: A New Platform for Theranostics. Theranostics, 2017, 7, 3118-3137.	4.6	99
117	Cryogenic 3D Printing of Super Soft Hydrogels. Scientific Reports, 2017, 7, 16293.	1.6	98
118	Dual Extruder 3D-Bioprinter for Computer Designed Cardiac Structures. , 0, , .		2
119	Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I. F1000Research, 2017, 5, 2811.	0.8	5
120	Implementing a 3D printing service in a biomedical library. Journal of the Medical Library Association: JMLA, 2017, 105, 55-60.	0.6	21
121	Customizing the Shape and Microenvironment Biochemistry of Biocompatible Macroscopic Plant-Derived Cellulose Scaffolds. ACS Biomaterials Science and Engineering, 2018, 4, 3726-3736.	2.6	69
122	3D printing for cardiovascular tissue engineering: a review. Materials Technology, 2018, 33, 433-442.	1.5	31
123	Model-guided design and characterization of a high-precision 3D printing process for carbohydrate glass. Additive Manufacturing, 2018, 22, 38-50.	1.7	25
124	Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Science Translational Medicine, 2018, 10, .	5.8	53
125	Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, 2018, 41, 337-359.	0.7	54
126	Research and development of 3D printed vasculature constructs. Biofabrication, 2018, 10, 032002.	3.7	29
127	Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Scientific Reports, 2018, 8, 2802.	1.6	40
128	Large volume syringe pump extruder for desktop 3D printers. HardwareX, 2018, 3, 49-61.	1.1	95

#	Article	IF	CITATIONS
129	Chemical modification and printability of shear-thinning hydrogel inks for direct-write 3D printing. Polymer, 2018, 152, 42-50.	1.8	116
130	In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Science Advances, 2018, 4, eaao1175.	4.7	149
131	Micro―and Macrobioprinting: Current Trends in Tissue Modeling and Organ Fabrication. Small Methods, 2018, 2, 1700318.	4.6	12
132	Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Developmental Cell, 2018, 44, 165-178.e6.	3.1	145
133	3D Bioprinting of Self‣tanding Silkâ€Based Bioink. Advanced Healthcare Materials, 2018, 7, e1701026.	3.9	177
134	Drops, Jets and High-Resolution 3D Printing: Fundamentals and Applications. Energy, Environment, and Sustainability, 2018, , 123-162.	0.6	3
135	Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nature Communications, 2018, 9, 84.	5.8	90
137	Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing. ACS Applied Materials & Interfaces, 2018, 10, 16793-16801.	4.0	105
138	A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors. Journal of Materials Chemistry C, 2018, 6, 6200-6207.	2.7	71
139	3D printing of soft robotic systems. Nature Reviews Materials, 2018, 3, 84-100.	23.3	620
140	3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures. Macromolecular Bioscience, 2018, 18, e1800034.	2.1	24
141	Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 143-170.	0.8	7
142	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	23.3	502
143	Body builder: from synthetic cells to engineered tissues. Current Opinion in Cell Biology, 2018, 54, 37-42.	2.6	15
144	3D freeform printing of silk fibroin. Acta Biomaterialia, 2018, 71, 379-387.	4.1	83
145	Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures. Materials Science and Engineering C, 2018, 89, 65-74.	3.8	21
146	Surface tension-assisted additive manufacturing. Nature Communications, 2018, 9, 1184.	5.8	47
147	Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025718.	2.9	67

ARTICLE IF CITATIONS # Bioprinting and its applications in tissue engineering and regenerative medicine. International Journal 148 3.6 242 of Biological Macromolecules, 2018, 107, 261-275. The <i>Biomaker</i>: an entryâ€level bioprinting device for biotechnological applications. Journal of Chemical Technology and Biotechnology, 2018, 93, 792-799. 149 1.6 Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing. 150 2.6 25 Biomacromolecules, 2018, 19, 62-70. Organ Bioprinting: Are We There Yet?. Advanced Healthcare Materials, 2018, 7, 1701018. 151 3.9 Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – A brief review. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 298-314. 152 1.5 53 Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Advanced Healthcare Materials, 2018, 7, 1700927. 143 Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials, 154 5.7 190 2018, 156, 88-106. Three-dimensional fabrication of thick and densely populated soft constructs with complex and 4.1 actively perfused channel network. Acta Biomaterialia, 2018, 65, 174-184. 156 Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402. 4.9 465 Embedded Multimaterial Extrusion Bioprinting. SLAS Technology, 2018, 23, 154-163. 1.0 3D bioprinting for modelling vasculature. Microphysiological Systems, 2018, 1, 1-1. 158 2.0 48 Additive manufacturing with stimuli-responsive materials. Journal of Materials Chemistry A, 2018, 6, 5.2 20621-20645. Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Current Opinion in 160 0.8 11 Organ Transplantation, 2018, 23, 649-656. A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-Design and Manufacturing, 2018, 1, 265-279 Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 162 1.8 25 3D-Bioprinting Purposes. Journal of Functional Biomaterials, 2018, 9, 63. 3D Printing Applied to Tissue Engineered Vascular Grafts. Applied Sciences (Switzerland), 2018, 8, 2631. 24 Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices. Materials, 2018, 11, 2529. 164 1.323 Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering. Applied Physics 5.5 44 Reviews, 2018, 5, 041112.

#	Article	IF	CITATIONS
168	Bioprinting neural tissues using stem cells as a tool for screening drug targets for Alzheimer's disease. Journal of 3D Printing in Medicine, 2018, 2, 163-165.	1.0	6
169	3D bioprinting technologies and bioinks for therapeutic and tissue engineering applications. Journal of 3D Printing in Medicine, 2018, 2, 187-203.	1.0	8
170	Cardiovascular tissue bioprinting: Physical and chemical processes. Applied Physics Reviews, 2018, 5, 041106.	5.5	36
171	Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews, 2018, 5, .	5.5	129
172	Applications of Cardiac Extracellular Matrix in Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1098, 59-83.	0.8	10
173	Cardiac Extracellular Matrix Modification as a Therapeutic Approach. Advances in Experimental Medicine and Biology, 2018, 1098, 131-150.	0.8	12
175	An Additive Manufacturing Technique for the Facile and Rapid Fabrication of Hydrogel-based Micromachines with Magnetically Responsive Components. Journal of Visualized Experiments, 2018, , .	0.2	8
176	3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials and Design, 2018, 160, 486-495.	3.3	115
177	Facile Engineering of Longâ€Term Culturable Ex Vivo Vascularized Tissues Using Biologically Derived Matrices. Advanced Healthcare Materials, 2018, 7, e1800845.	3.9	23
178	Review Article: Capturing the physiological complexity of the brain's neuro-vascular unit <i>in vitro</i> . Biomicrofluidics, 2018, 12, 051502.	1.2	15
179	Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 2018, 30, e1706539.	11.1	325
180	Commercially available microgels for 3D bioprinting. Bioprinting, 2018, 11, e00037.	2.9	36
181	Reversibly Reconfigurable Cross-Linking Induces Fusion of Separate Chitosan Hydrogel Films. ACS Applied Bio Materials, 2018, 1, 1695-1704.	2.3	12
182	Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 3610-3616.	2.6	128
183	Fabrication of 3D Tubular Hydrogel Materials through On-Site Surface Free Radical Polymerization. Chemistry of Materials, 2018, 30, 6756-6768.	3.2	32
184	Multi-length scale bioprinting towards simulating microenvironmental cues. Bio-Design and Manufacturing, 2018, 1, 77-88.	3.9	34
185	Depth-controlled laser-induced jet injection for direct three-dimensional liquid delivery. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	10
186	A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds. Gels, 2018, 4, 68.	2.1	44

#	Article	IF	CITATIONS
187	Temperature-Controllable Hydrogels in Double-Walled Microtube Structure Prepared by Using a Triple Channel Microfluidic System. Langmuir, 2018, 34, 11553-11558.	1.6	13
188	Electromagnetic and mechanical properties of carbonyl iron powders-PLA composites fabricated by fused deposition modeling. Materials Research Express, 2018, 5, 115303.	0.8	18
189	Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 2018, 3, 159-173.	23.3	572
190	Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170224.	1.8	38
191	Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochimica Acta, 2018, 281, 429-436.	2.6	43
192	Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures. ACS Biomaterials Science and Engineering, 2018, 4, 2643-2652.	2.6	99
193	Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication. Biofabrication, 2018, 10, 035008.	3.7	59
194	3D biofabrication for tubular tissue engineering. Bio-Design and Manufacturing, 2018, 1, 89-100.	3.9	65
195	3D bioprinting of a corneal stroma equivalent. Experimental Eye Research, 2018, 173, 188-193.	1.2	268
196	Fabrication and Printing of Multi-material Hydrogels. , 2018, , 397-430.		0
197	Vascular Networks Within 3D Printed and Engineered Tissues. , 2018, , 79-105.		1
198	The Efficacy of Graphene Foams for Culturing Mesenchymal Stem Cells and Their Differentiation into Dopaminergic Neurons. Stem Cells International, 2018, 2018, 1-12.	1.2	34
199	Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnology Advances, 2018, 36, 1481-1504.	6.0	105
200	Assessing printability of bioinks. , 2018, , 173-189.		9
201	3D bioprinting for cardiovascular regeneration and pharmacology. Advanced Drug Delivery Reviews, 2018, 132, 252-269.	6.6	115
202	Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior. Frontiers in Materials, 2018, 5, .	1.2	16
203	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	6.4	28
204	Novel Biomaterials Used in Medical 3D Printing Techniques. Journal of Functional Biomaterials, 2018, 9, 17.	1.8	325

# 205	ARTICLE Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D	IF 1,3	Citations 38
206	Printing of Bone-Like Materials. Materials, 2018, 11, 700. Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography. Micromachines, 2018, 9, 125.	1.4	39
207	Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs. Polymers, 2018, 10, 40.	2.0	41
208	Practical laboratory methods for 3D bioprinting. , 2018, , 7-32.		2
209	3D bioprinting blood vessels. , 2018, , 377-391.		1
210	Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique. Scientific Reports, 2018, 8, 10430.	1.6	143
211	Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing. ACS Biomaterials Science and Engineering, 2018, 4, 3088-3098.	2.6	60
212	4D Printing of Actuating Cardiac Tissue. , 2018, , 153-162.		18
213	Bioprinting Cardiovascular Organs. , 2018, , 163-187.		1
214	Engineering Breast Cancer Microenvironments and 3D Bioprinting. Frontiers in Bioengineering and Biotechnology, 2018, 6, 66.	2.0	77
215	Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath. Applied Sciences (Switzerland), 2018, 8, 403.	1.3	77
216	A diffusion-driven fabrication technique for anisotropic tubular hydrogels. Soft Matter, 2018, 14, 7706-7713.	1.2	24
217	3D Bioprinting and its application to organ-on-a-chip. Microelectronic Engineering, 2018, 200, 1-11.	1.1	51
218	Funnel-Guided Positioning of Multicellular Microtissues to Build Macrotissues. Tissue Engineering - Part C: Methods, 2018, 24, 557-565.	1.1	8
219	Review of 3D printable hydrogels and constructs. Materials and Design, 2018, 159, 20-38.	3.3	182
220	3D human skin bioprinting: a view from the bio side. Journal of 3D Printing in Medicine, 2018, 2, 141-162.	1.0	22
221	Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H771-H789.	1.5	24
222	Complex 3Dâ€Printed Microchannels within Cellâ€Degradable Hydrogels. Advanced Functional Materials, 2018, 28, 1801331.	7.8	171

#	Article	IF	CITATIONS
223	Additive manufacturing of hierarchical injectable scaffolds for tissue engineering. Acta Biomaterialia, 2018, 76, 71-79.	4.1	39
224	Expert-guided optimization for 3D printing of soft and liquid materials. PLoS ONE, 2018, 13, e0194890.	1.1	53
225	How to build a lung: latest advances and emerging themes in lung bioengineering. European Respiratory Journal, 2018, 52, 1601355.	3.1	51
226	Multiscale bioprinting of vascularized models. Biomaterials, 2019, 198, 204-216.	5.7	191
227	Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials, 2019, 198, 78-94.	5.7	24
228	Bioinks for Three-Dimensional Printing in Regenerative Medicine. , 2019, , 805-830.		5
229	Design Principles in Biomaterials and Scaffolds. , 2019, , 505-522.		6
230	Bioengineering Scaffolds for Regenerative Engineering. , 2019, , 444-461.		2
231	3D Bioprinting Technologies. , 2019, , 1-66.		1
232	Architecture-inspired paradigm for 3D bioprinting of vessel-like structures using extrudable carboxylated agarose hydrogels. Emergent Materials, 2019, 2, 233-243.	3.2	25
233	A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles. Bioprinting, 2019, 16, e00058.	2.9	43
234	Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1900742.	3.9	70
235	Engineering Functional Cardiac Tissues for Regenerative Medicine Applications. Current Cardiology Reports, 2019, 21, 105.	1.3	28
236	3D bioprinting of collagen to rebuild components of the human heart. Science, 2019, 365, 482-487.	6.0	1,116
237	iPSC Bioprinting: Where are We at?. Materials, 2019, 12, 2453.	1.3	32
238	Bioprinting of a Cell-Laden Conductive Hydrogel Composite. ACS Applied Materials & Interfaces, 2019, 11, 30518-30533.	4.0	117
239	A FRESH SLATE for 3D bioprinting. Science, 2019, 365, 446-447.	6.0	39
240	Optimization of Silicone 3D Printing with Hierarchical Machine Learning. 3D Printing and Additive Manufacturing, 2019, 6, 181-189.	1.4	71

# 241	ARTICLE Materials as Bioinks and Bioink Design. , 2019, , 67-100.	IF	CITATIONS
242	Print Me An Organ! Why We Are Not There Yet. Progress in Polymer Science, 2019, 97, 101145.	11.8	192
243	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72
244	State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs. Vascular Specialist International, 2019, 35, 77-89.	0.2	26
245	Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension. ACS Applied Materials & Interfaces, 2019, 11, 29207-29217.	4.0	38
246	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€Temperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	7.8	560
247	An Application of Integrated 3D Technologies for Replicas in Cultural Heritage. ISPRS International Journal of Geo-Information, 2019, 8, 285.	1.4	35
248	Direct-write and sacrifice-based techniques for vasculatures. Materials Science and Engineering C, 2019, 104, 109936.	3.8	12
249	A FRESH Take on Resolution in 3D Bioprinting. Trends in Biotechnology, 2019, 37, 1153-1155.	4.9	27
250	Freeform, Reconfigurable Embedded Printing of Allâ€Aqueous 3D Architectures. Advanced Materials, 2019, 31, e1904631.	11.1	83
251	A Bifurcated Vascular Channel Construction Method based on Diploic Vein Characteristics. Journal of Bionic Engineering, 2019, 16, 814-827.	2.7	3
252	3D printing of conjugated polymers. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1592-1605.	2.4	40
253	A New Dip Coating Method Using Supporting Liquid for Forming Uniformly Thick Layers on Serpentine 3D Substrates. Advanced Materials Interfaces, 2019, 6, 1901485.	1.9	15
254	Development and Biocompatibility of Collagen-Based Composites Enriched with Nanoparticles of Strontium Containing Mesoporous Glass. Materials, 2019, 12, 3719.	1.3	18
255	Fabrication of Complex Hydrogel Structures Using Suspended Layer Additive Manufacturing (SLAM). Advanced Functional Materials, 2019, 29, 1904845.	7.8	71
256	Bioprinting Vasculature: Materials, Cells and Emergent Techniques. Materials, 2019, 12, 2701.	1.3	103
257	Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 2019, 5, eaaw2459.	4.7	563
258	Getting the measure of living biomaterials. Nature, 2019, 572, 38-39.	13.7	4

#	Article	IF	CITATIONS
259	Direct Patterning of Highly Conductive PEDOT:PSS/Ionic Liquid Hydrogel via Microreactive Inkjet Printing. ACS Applied Materials & Interfaces, 2019, 11, 37069-37076.	4.0	67
260	Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Acta Biomaterialia, 2019, 99, 121-132.	4.1	35
261	In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold. Bioprinting, 2019, 16, e00059.	2.9	36
262	Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Materials Today Bio, 2019, 4, 100028.	2.6	56
263	The use of bacterial polysaccharides in bioprinting. Biotechnology Advances, 2019, 37, 107448.	6.0	86
264	Ystruder: Open source multifunction extruder with sensing and monitoring capabilities. HardwareX, 2019, 6, e00080.	1.1	17
265	Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. Materials, 2019, 12, 3218.	1.3	32
267	Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomaterials Science, 2019, 7, 560-570.	2.6	22
268	Adipose tissue regeneration. , 2019, , 291-330.		2
269	3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting. Nano Energy, 2019, 58, 447-454.	8.2	52
270	Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 1150-1169.	2.6	86
271	Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication. Biofabrication, 2019, 11, 025008.	3.7	23
272	Use of GelMA for 3D printing of cardiac myocytes and fibroblasts. Journal of 3D Printing in Medicine, 2019, 3, 11-22.	1.0	38
273	Modulating stiffness with photo-switchable supramolecular hydrogels. Polymer Chemistry, 2019, 10, 467-472.	1.9	48
274	Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomaterials Science, 2019, 7, 1179-1187.	2.6	178
275	Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. Bioprinting, 2019, 16, e00053.	2.9	44
276	Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure. Biofabrication, 2019, 11, 045010.	3.7	35
277	Colorectal distribution and retention of polymeric nanoparticles following incorporation into a thermosensitive enema. Biomaterials Science, 2019, 7, 3801-3811.	2.6	15

#	Article	IF	Citations
" 278	Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions. Journal of Materials Chemistry B, 2019, 7, 4538-4551.	2.9	54
279	Microextrusion printing cell-laden networks of type I collagen with patterned fiber alignment and geometry. Soft Matter, 2019, 15, 5728-5738.	1.2	81
280	Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Materials Horizons, 2019, 6, 1625-1631.	6.4	161
281	Bioprinters for organs-on-chips. Biofabrication, 2019, 11, 042002.	3.7	71
282	Utility of Chitosan for 3D Printing and Bioprinting. Sustainable Agriculture Reviews, 2019, , 271-292.	0.6	10
283	Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Translational Research, 2019, 211, 123-138.	2.2	19
284	Lung tissue bioengineering for chronic obstructive pulmonary disease: overcoming the need for lung transplantation from human donors. Expert Review of Respiratory Medicine, 2019, 13, 665-678.	1.0	16
285	Hierarchically structured phase separated biopolymer hydrogels create tailorable delayed burst release during gastrointestinal digestion. Journal of Colloid and Interface Science, 2019, 553, 308-319.	5.0	22
286	Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method. HardwareX, 2019, 6, e00069.	1.1	44
287	Channeled ECM-Based Nanofibrous Hydrogel for Engineering Vascularized Cardiac Tissues. Nanomaterials, 2019, 9, 689.	1.9	12
288	Dynamic Hydrogels and Polymers as Inks for Three-Dimensional Printing. ACS Biomaterials Science and Engineering, 2019, 5, 2688-2707.	2.6	67
289	Hydrogel Synthesis and Design. Polymers and Polymeric Composites, 2019, , 239-278.	0.6	4
290	Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomaterialia, 2019, 95, 60-72.	4.1	26
291	Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences (Switzerland), 2019, 9, 1713.	1.3	184
292	Artificial neural networks enabled by nanophotonics. Light: Science and Applications, 2019, 8, 42.	7.7	189
293	Bioprinting of stem cell expansion lattices. Acta Biomaterialia, 2019, 95, 225-235.	4.1	35
294	Are Three-Dimensional Printed Models Useful for Preoperative Planning of Tibial Plafond Fractures?. Journal of Foot and Ankle Surgery, 2019, 58, 723-729.	0.5	10
295	Advanced Polymer Designs for Directâ€Inkâ€Write 3D Printing. Chemistry - A European Journal, 2019, 25, 10768-10781.	1.7	171

#	Article	IF	Citations
296	3D bioprinting for lungs and hollow organs. Translational Research, 2019, 211, 19-34.	2.2	58
297	Fabrication of Biopolymer-Based Organs and Tissues Using 3D Bioprinting. , 2019, , 43-62.		7
298	3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Biomaterials, 2019, 213, 119212.	5.7	45
299	A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Renal Replacement Therapy, 2019, 5, .	0.3	27
300	3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Translational Research, 2019, 211, 64-83.	2.2	95
301	Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 2019, 364, 458-464.	6.0	908
302	De novo lung biofabrication: clinical need, construction methods, and design strategy. Translational Research, 2019, 211, 1-18.	2.2	6
303	Desktop Electrospinning. , 2019, , .		19
304	3D Printing of Freestanding Overhanging Structures Utilizing an In Situ Light Guide. Advanced Materials Technologies, 2019, 4, 1900118.	3.0	12
305	Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells International, 2019, 2019, 1-17.	1.2	25
306	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	5.2	235
307	Thermally-controlled extrusion-based bioprinting of collagen. Journal of Materials Science: Materials in Medicine, 2019, 30, 55.	1.7	86
308	3D bioprinting of vascular conduits for pediatric congenital heart repairs. Translational Research, 2019, 211, 35-45.	2.2	22
309	Bioprinted scaffolds. , 2019, , 35-60.		6
310	Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing. Additive Manufacturing, 2019, 28, 14-22.	1.7	36
311	Chemistry from 3D printed objects. Nature Reviews Chemistry, 2019, 3, 305-314.	13.8	93
312	Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture. Acta Biomaterialia, 2019, 95, 258-268.	4.1	22
313	Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Applied Physics Reviews, 2019, 6, .	5.5	163

#	Article	IF	Citations
314	Highly sensitive compression sensors using three-dimensional printed polydimethylsiloxane/carbon nanotube nanocomposites. Journal of Intelligent Material Systems and Structures, 2019, 30, 1216-1224.	1.4	25
315	Sustainable Biomass Materials for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 2079-2092.	2.6	36
316	3D Printing of Multifunctional Hydrogels. Advanced Functional Materials, 2019, 29, 1900971.	7.8	225
317	Stimuli-responsive materials in additive manufacturing. Progress in Polymer Science, 2019, 93, 36-67.	11.8	148
318	Evaluating 3D-printed models of coronary anomalies: a survey among clinicians and researchers at a university hospital in the UK. BMJ Open, 2019, 9, e025227.	0.8	23
319	Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Journal of Materials Science: Materials in Medicine, 2019, 30, 32.	1.7	150
320	<p>3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 1311-1333.	3.3	76
321	3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomaterialia, 2019, 95, 214-224.	4.1	85
322	Jammed Polyelectrolyte Microgels for 3D Cell Culture Applications: Rheological Behavior with Added Salts. ACS Applied Bio Materials, 2019, 2, 1509-1517.	2.3	35
323	A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials, 2019, 206, 160-169.	5.7	213
324	Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing. Applied Physics Reviews, 2019, 6, .	5.5	89
325	Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. Journal of Food Engineering, 2019, 261, 76-86.	2.7	132
326	Recent advances in 3D printing: vascular network for tissue and organ regeneration. Translational Research, 2019, 211, 46-63.	2.2	92
327	3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced Science, 2019, 6, 1900344.	5.6	612
328	Plant-Derived Biomaterials: A Review of 3D Bioprinting and Biomedical Applications. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	77
329	Microfluidic bioprinting for organ-on-a-chip models. Drug Discovery Today, 2019, 24, 1248-1257.	3.2	105
330	Agarose Slurry as a Support Medium for Bioprinting and Culturing Freestanding Cell-Laden Hydrogel Constructs. 3D Printing and Additive Manufacturing, 2019, 6, 158-164.	1.4	55
331	Biofabrication: From Additive Manufacturing to Bioprinting. , 2019, , 41-41.		5

#	Article	IF	CITATIONS
332	Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. Journal of Materials Science, 2019, 54, 7883-7892.	1.7	31
333	Applications of stem cells and bioprinting for potential treatment of diabetes. World Journal of Stem Cells, 2019, 11, 13-32.	1.3	23
334	Advances in threeâ€dimensional bioprinting of bone: Progress and challenges. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 925-945.	1.3	59
335	3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications. Applied Physics Reviews, 2019, 6, .	5.5	91
336	Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication, 2019, 11, 032002.	3.7	43
337	Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 2019, 86, 188-198.	7.8	106
338	Multimaterial actinic spatial control 3D and 4D printing. Nature Communications, 2019, 10, 791.	5.8	208
339	A Guiding Framework for Microextrusion Additive Manufacturing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	1.3	26
340	Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics, 2019, 11, 597.	2.0	56
341	Characterization and printability of Sodium alginate -Gelatin hydrogel for bioprinting NSCLC co-culture. Scientific Reports, 2019, 9, 19914.	1.6	106
342	3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Scientific Reports, 2019, 9, 19987.	1.6	107
343	Three-Dimensional Printing on a Rotating Cylindrical Mandrel: A Review of Additive-Lathe 3D Printing Technology. 3D Printing and Additive Manufacturing, 2019, 6, 293-307.	1.4	10
344	Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting. Micromachines, 2019, 10, 814.	1.4	48
345	Universal Nanocarrier Ink Platform for Biomaterials Additive Manufacturing. Small, 2019, 15, e1905421.	5.2	34
346	Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering, 2019, 6, 113.	1.6	60
347	Various Applications of 3D-Bioprinted Tissues/Organs Using Tissue-Specific Bioinks. , 2019, , 53-108.		1
348	Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Acta Biomaterialia, 2019, 85, 84-93.	4.1	41
349	Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing. Journal of Industrial and Engineering Chemistry, 2019, 72, 232-240.	2.9	42

#	Article	IF	CITATIONS
350	Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies. Journal of Computing and Information Science in Engineering, 2019, 19, .	1.7	50
351	Hydrocolloid Inks for 3D Printing of Porous Hydrogels. Advanced Materials Technologies, 2019, 4, 1800343.	3.0	19
352	Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing. International Journal of Advanced Manufacturing Technology, 2019, 101, 675-686.	1.5	87
353	Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Materials Today Chemistry, 2019, 12, 61-70.	1.7	140
354	Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting. ACS Applied Materials & Interfaces, 2019, 11, 5714-5726.	4.0	94
355	Biomimetic principle for development of nanocomposite biomaterials in tissue engineering. , 2019, , 287-306.		9
356	Jammed Microgel Inks for 3D Printing Applications. Advanced Science, 2019, 6, 1801076.	5.6	270
357	3Dâ€Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Advanced Healthcare Materials, 2019, 8, e1800788.	3.9	21
358	Freeform Assembly Planning. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1315-1329.	3.4	5
359	Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration. Biofabrication, 2019, 11, 012001.	3.7	75
360	3D printing with silk: considerations and applications. Connective Tissue Research, 2020, 61, 163-173.	1.1	28
361	Organ-level vascularization: The Mars mission of bioengineering. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 2003-2007.	0.4	15
362	Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Materials Science and Engineering C, 2020, 107, 110290.	3.8	32
363	Biofabrication of tissue perfusion systems and microvasculatures. , 2020, , 205-225.		1
364	3D Printing of Silk Protein Structures by Aqueous Solventâ€Directed Molecular Assembly. Macromolecular Bioscience, 2020, 20, e1900191.	2.1	42
365	Additive Manufacturing of Precision Biomaterials. Advanced Materials, 2020, 32, e1901994.	11.1	105
366	Biohybrid Design Gets Personal: New Materials for Patient‧pecific Therapy. Advanced Materials, 2020, 32, e1901969.	11.1	21
367	Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication, 2020, 12, 015012.	3.7	53

	СПАПО	N REPORT	
#	Article	IF	Citations
368	Topology-Optimized 4D Printing of a Soft Actuator. Acta Mechanica Solida Sinica, 2020, 33, 418-430.	1.0	61
369	Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Materials Horizons, 2020, 7, 82-92.	6.4	55
370	Voidâ€Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. Advanced Functional Materials, 2020, 30, 1908349.	7.8	96
371	Biofabrication of valentine-shaped heart with a composite hydrogel and sacrificial material. Materials Science and Engineering C, 2020, 108, 110205.	3.8	52
372	Hydrogel microparticles for biomedical applications. Nature Reviews Materials, 2020, 5, 20-43.	23.3	646
373	3D Printed Neural Regeneration Devices. Advanced Functional Materials, 2020, 30, 1906237.	7.8	76
374	Rapid Biofabrication of Printable Dense Collagen Bioinks of Tunable Properties. Advanced Functional Materials, 2020, 30, 1903874.	7.8	31
375	Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Advanced Materials, 2020, 32, e1902516.	11.1	126
376	Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. Small, 2020, 16, e1902838.	5.2	109
377	Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production. Journal of Food Engineering, 2020, 271, 109781.	2.7	70
378	Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics. Lab on A Chip, 2020, 20, 525-536.	3.1	34
379	Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103519.	1.5	13
380	A high-throughput approach to compare the biocompatibility of candidate bioink formulations. Bioprinting, 2020, 17, e00068.	2.9	16
381	Engineered extracellular matrices: Emerging strategies for decoupling structural and molecular signals that regulate epithelial branching morphogenesis. Current Opinion in Biomedical Engineering, 2020, 13, 103-112.	1.8	5
382	Direct process feedback in extrusion-based 3D bioprinting. Biofabrication, 2020, 12, 015017.	3.7	30
383	Multilayered microcasting of agarose–collagen composites for neurovascular modeling. Bioprinting, 2020, 17, e00069.	2.9	12
384	Acoustic Poration and Dynamic Healing of Mammalian Cell Membranes during Inkjet Printing. ACS Biomaterials Science and Engineering, 2020, 6, 749-757.	2.6	9
385	Influence of Different Cell Types and Sources on Pre-Vascularisation in Fibrin and Agarose–Collagen Gels. Organogenesis, 2020, 16, 14-26.	0.4	19

#	Article	IF	CITATIONS
386	Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, 2020, 15, 529-557.	4.3	264
387	Advanced Bottomâ€Up Engineering of Living Architectures. Advanced Materials, 2020, 32, e1903975.	11.1	127
388	Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing. ACS Applied Materials & Interfaces, 2020, 12, 1832-1839.	4.0	36
389	3D Bioprinting. , 2020, , 177-194.		1
390	A 3D printing strategy for fabricating in situ topographical scaffolds using pluronic F-127. Additive Manufacturing, 2020, 32, 101023.	1.7	10
391	Lab-on-a-Chip for Cardiovascular Physiology and Pathology. Micromachines, 2020, 11, 898.	1.4	12
392	Ultrasonic Microplotting of Microgel Bioinks. ACS Applied Materials & Interfaces, 2020, 12, 47309-47319.	4.0	6
393	Visible Light-Induced 3D Bioprinting Technologies and Corresponding Bioink Materials for Tissue Engineering: A Review. Engineering, 2021, 7, 966-978.	3.2	91
394	Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography. Acta Biomaterialia, 2020, 117, 121-132.	4.1	55
395	An Integration of a Peristaltic Pump-Based Extruder into a 3D Bioprinter Dedicated to Hydrogels. Materials, 2020, 13, 4237.	1.3	8
396	Modeling the Three-Dimensional Bioprinting Process of β-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Frontiers in Medical Technology, 2020, 2, 571626.	1.3	27
397	FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomaterials Science and Engineering, 2020, 6, 6453-6459.	2.6	163
398	Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers, 2020, 12, 2262.	2.0	67
399	Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer, 2020, 211, 123063.	1.8	84
400	Cascade Pumping Overcomes Hydraulic Resistance and Moderates Shear Conditions for Slow Gelatin Fiber Shaping in Narrow Tubes. IScience, 2020, 23, 101228.	1.9	2
401	Humanâ€Recombinantâ€Elastinâ€Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues. Advanced Materials, 2020, 32, e2003915.	11.1	104
402	Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Biomedical Engineering Letters, 2020, 10, 453-479.	2.1	47
403	Recyclable and biocompatible microgel-based supporting system for positive 3D freeform printing of silicone rubber. Biomedical Engineering Letters, 2020, 10, 517-532.	2.1	11

#	Article	IF	CITATIONS
404	3D bioprinting and craniofacial regeneration. Journal of Oral Biology and Craniofacial Research, 2020, 10, 650-659.	0.8	22
405	Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS Applied Materials & Interfaces, 2020, 12, 44563-44577.	4.0	89
406	3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyping Journal, 2020, 26, 1313-1334.	1.6	67
407	A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Science Advances, 2020, 6, eaba7260.	4.7	99
408	3D biofabrication for soft tissue and cartilage engineering. Medical Engineering and Physics, 2020, 82, 13-39.	0.8	21
409	Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chemical Reviews, 2020, 120, 10950-11027.	23.0	120
410	Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Materials Horizons, 2020, 7, 2336-2347.	6.4	59
411	Granular hydrogels for 3D bioprinting applications. View, 2020, 1, 20200060.	2.7	39
412	Improving Bioprinted Volumetric Tumor Microenvironments In Vitro. Trends in Cancer, 2020, 6, 745-756.	3.8	38
413	Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. Biomicrofluidics, 2020, 14, 041501.	1.2	54
414	Biofabrication strategies for engineering heterogeneous artificial tissues. Additive Manufacturing, 2020, 36, 101459.	1.7	15
415	Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers. ACS Biomaterials Science and Engineering, 2020, 6, 7021-7031.	2.6	44
416	3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Scientific Reports, 2020, 10, 20648.	1.6	62
417	Emerging Neuroblastoma 3D In Vitro Models for Pre-Clinical Assessments. Frontiers in Immunology, 2020, 11, 584214.	2.2	11
418	Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration—A Review. Materials, 2020, 13, 5303.	1.3	55
419	Engineering breast cancer models in vitro with 3D bioprinting. , 2020, , 399-425.		0
420	Recent Progress on Polymer Materials for Additive Manufacturing. Advanced Functional Materials, 2020, 30, 2003062.	7.8	364
421	3D Bioprinting of Tumor Models for Cancer Research. ACS Applied Bio Materials, 2020, 3, 5552-5573.	2.3	63

#	Article	IF	CITATIONS
422	Decellularised scaffolds: just a framework? Current knowledge and future directions. Journal of Tissue Engineering, 2020, 11, 204173142094290.	2.3	54
423	3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 713.	2.0	22
424	Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. Small, 2020, 16, e2002931.	5.2	157
425	Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chemical Reviews, 2020, 120, 10608-10661.	23.0	246
426	3D bioprinting for reconstituting the cancer microenvironment. Npj Precision Oncology, 2020, 4, 18.	2.3	163
427	Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Materials Today Bio, 2020, 7, 100069.	2.6	39
428	Additive manufacturing by material extrusion with medical grade silicone elastomers and IR laser curing. Rapid Prototyping Journal, 2020, 26, 145-155.	1.6	11
429	Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Advanced Science, 2020, 7, 2001379.	5.6	171
430	An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting, 2020, 20, e00093.	2.9	109
431	Pre-vascularization Approaches for Heart Tissue Engineering. Regenerative Engineering and Translational Medicine, 2021, 7, 450-459.	1.6	4
432	3D Cell Printing of Tissue/Organ-Mimicking Constructs for Therapeutic and Drug Testing Applications. International Journal of Molecular Sciences, 2020, 21, 7757.	1.8	29
433	Aspiration-assisted freeform bioprinting of pre-fabricated tissue spheroids in a yield-stress gel. Communications Physics, 2020, 3, .	2.0	62
434	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Research, 2020, 6, 00123-2020.	1.1	2
435	A mini-review of embedded 3D printing: supporting media and strategies. Journal of Materials Chemistry B, 2020, 8, 10474-10486.	2.9	47
436	Everything in its right place: controlling the local composition of hydrogels using microfluidic traps. Lab on A Chip, 2020, 20, 4572-4581.	3.1	4
437	Simulation of liquid transfer between the plate and the groove. Modern Physics Letters B, 2020, 34, 2050331.	1.0	2
438	Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955.	2.0	32
439	Collagen Hybrid Formulations for the 3D Printing of Nanostructured Bone Scaffolds: An Optimized Genipin-Crosslinking Strategy. Nanomaterials, 2020, 10, 1681.	1.9	39

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
440	Biomaterials for Bioprinting Microvasculature. Chemical Reviews, 2020, 120, 10887-10949.	23.0	51
443	Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 2020, 120, 11093-11127.	23.0	62
444	Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia, 2020, 117, 60-76.	4.1	115
445	3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. Chemistry of Materials, 2020, 32, 8733-8746.	3.2	40
446	An insight into cell-laden 3D-printed constructs for bone tissue engineering. Journal of Materials Chemistry B, 2020, 8, 9836-9862.	2.9	21
447	Quantitatively Designed Cross-Linker-Clustered Maleimide–Dextran Hydrogels for Rationally Regulating the Behaviors of Cells in a 3D Matrix. ACS Applied Bio Materials, 2020, 3, 5759-5774.	2.3	8
448	Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chemical Reviews, 2020, 120, 11028-11055.	23.0	552
449	3D Printing of a Reactive Hydrogel Bio-Ink Using a Static Mixing Tool. Polymers, 2020, 12, 1986.	2.0	31
450	Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chemical Reviews, 2020, 120, 11093-11139.	23.0	61
451	A FAHP-FTOPSIS approach for bioprinter selection. Health and Technology, 2020, 10, 1455-1467.	2.1	11
452	Development of a new additive manufacturing platform for direct freeform 3D printing of intrinsically curved flexible membranes. Additive Manufacturing, 2020, 36, 101563.	1.7	13
453	Mini-review: advances in 3D bioprinting of vascularized constructs. Biology Direct, 2020, 15, 22.	1.9	18
454	A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting. Polymers, 2020, 12, 2346.	2.0	14
455	UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing. ACS Applied Materials & Interfaces, 2020, 12, 24450-24457.	4.0	17
456	A Tailorable Family of Elastomericâ€ŧoâ€Rigid, 3D Printable, Interbonding Polymer Networks. Advanced Functional Materials, 2020, 30, 2002374.	7.8	39
457	Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting. Biofabrication, 2020, 12, 035031.	3.7	41
458	Highâ€ŧhroughput <scp>3D</scp> bioprinting of corneal stromal equivalents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2981-2994.	1.6	41
459	Introduction of Hydrogen Bonds Improves the Shape Fidelity of Viscoelastic 3D Printed Scaffolds While Maintaining Their Low-Temperature Printability. Macromolecules, 2020, 53, 3690-3699.	2.2	21

#	Article	IF	CITATIONS
460	Cryopreservation and functional analysis of cardiac autonomic neurons. Journal of Neuroscience Methods, 2020, 341, 108724.	1.3	1
461	Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nature Communications, 2020, 11, 2687.	5.8	43
462	Traditional three-dimensional printing technology versus three-dimensional printing mirror model technology in the treatment of isolated acetabular fractures: a retrospective analysis. Journal of International Medical Research, 2020, 48, 030006052092425.	0.4	5
463	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	23.0	185
464	Printing direction dependent microstructures in direct ink writing. Additive Manufacturing, 2020, 34, 101192.	1.7	10
465	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	23.0	161
466	From Arteries to Capillaries: Approaches to Engineering Human Vasculature. Advanced Functional Materials, 2020, 30, 1910811.	7.8	74
467	Lipidâ€Bilayerâ€Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. Advanced Materials, 2020, 32, e2002183.	11.1	40
468	Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration. Pharmaceutics, 2020, 12, 550.	2.0	46
469	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	2.3	86
470	Three-Dimensional Printing of Ceramics through "Carving―a Gel and "Filling in―the Precursor Polymer. ACS Applied Materials & Interfaces, 2020, 12, 31984-31991.	4.0	25
471	Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5, 584-603.	23.3	851
472	Artificial Biosystems by Printing Biology. Small, 2020, 16, e1907691.	5.2	21
473	3D Bioprinting and Its Application to Military Medicine. Military Medicine, 2020, 185, e1510-e1519.	0.4	6
474	Transparent support media for high resolution 3D printing of volumetric cell-containing ECM structures. Biomedical Materials (Bristol), 2020, 15, 045018.	1.7	33
475	Why choose 3D bioprinting? Part II: methods and bioprinters. Bio-Design and Manufacturing, 2020, 3, 1-4.	3.9	39
476	Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B, 2020, 8, 2930-2950.	2.9	124
477	Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures. Scientific Reports, 2020, 10, 5257.	1.6	84

#	Article	IF	CITATIONS
478	Specialized Multimaterial Print Heads for 3D Hydrogel Printing: Tissue-Engineering Applications. IEEE Nanotechnology Magazine, 2020, 14, 42-52.	0.9	3
479	In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 2020, 127, 207-224.	2.0	174
480	3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells. Cells, 2020, 9, 682.	1.8	65
481	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	11.1	144
482	Functionally Graded Biomaterials for Use as Model Systems and Replacement Tissues. Advanced Functional Materials, 2020, 30, 1909089.	7.8	58
483	Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 2020, 109, 106120.	5.6	36
484	Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nature Biomedical Engineering, 2020, 4, 916-932.	11.6	90
485	Whole Organ Engineering: Approaches, Challenges, and Future Directions. Applied Sciences (Switzerland), 2020, 10, 4277.	1.3	24
486	A facile approach to patterning pollen microparticles for in situ imaging. Applied Materials Today, 2020, 20, 100702.	2.3	2
487	If You Build It, They Will Come. Circulation Research, 2020, 127, 225-228.	2.0	2
488	Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5, 686-705.	23.3	420
489	Bioprinting Organs—Progress Toward a Moonshot Idea. Transplantation, 2020, 104, 1310-1311.	0.5	3
490	Additive Biomanufacturing with Collagen Inks. Bioengineering, 2020, 7, 66.	1.6	34
491	An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Science Robotics, 2020, 5, .	9.9	30
492	Dynamic Bioinks to Advance Bioprinting. Advanced Healthcare Materials, 2020, 9, e1901798.	3.9	141
493	Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Advanced Healthcare Materials, 2020, 9, e1901255.	3.9	35
494	From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Advanced Healthcare Materials, 2020, 9, e1901552.	3.9	53
495	Grand challenges in the design and manufacture of vascular self-healing. Multifunctional Materials, 2020, 3, 013001.	2.4	21

#	Article	IF	CITATIONS
496	A three-dimensional model for analysis and control of phase change phenomena during 3D printing of biological tissue. Bioprinting, 2020, 18, e00077.	2.9	11
497	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
498	Immersion Bioprinting of Tumor Organoids in Multi-Well Plates for Increasing Chemotherapy Screening Throughput. Micromachines, 2020, 11, 208.	1.4	103
499	Bioprinting of Multiscaled Hepatic Lobules within a Highly Vascularized Construct. Small, 2020, 16, e1905505.	5.2	88
500	Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Engineering - Part A, 2020, 26, 358-370.	1.6	33
501	Rapid Fabrication of Ready-to-Use Gelatin Scaffolds with Prevascular Networks Using Alginate Hollow Fibers as Sacrificial Templates. ACS Biomaterials Science and Engineering, 2020, 6, 2297-2311.	2.6	17
502	Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds. Journal of the European Ceramic Society, 2020, 40, 3689-3697.	2.8	60
503	From Shape to Function: The Next Step in Bioprinting. Advanced Materials, 2020, 32, e1906423.	11.1	298
504	Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioengineering, 2020, 4, 010901.	3.3	28
505	Cellâ€Instructive Multiphasic Gelâ€inâ€Gel Materials. Advanced Functional Materials, 2020, 30, 1908857.	7.8	34
506	Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates. Biomaterials, 2020, 240, 119856.	5.7	28
507	Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication, 2020, 12, 025013.	3.7	78
508	Vascularized Biomaterials to Study Cancer Metastasis. Advanced Healthcare Materials, 2020, 9, e1901459.	3.9	20
509	3D Printing in Suspension Baths: Keeping the Promises of Bioprinting Afloat. Trends in Biotechnology, 2020, 38, 584-593.	4.9	183
510	3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding. ACS Biomaterials Science and Engineering, 2020, 6, 1333-1343.	2.6	40
511	Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. ACS Applied Materials & Interfaces, 2020, 12, 7855-7868.	4.0	55
512	Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardiumâ€onâ€aâ€Chip Application. Advanced Functional Materials, 2020, 30, 1907436.	7.8	42
514	Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 2020, 30, 1909009.	7.8	76

#	Article	IF	CITATIONS
515	Freeze-FRESH: A 3D Printing Technique to Produce Biomaterial Scaffolds with Hierarchical Porosity. Materials, 2020, 13, 354.	1.3	26
516	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291
517	Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogelâ€Based Bioinks. Advanced Healthcare Materials, 2020, 9, e1901648.	3.9	190
518	Collagen-based 3D structures—versatile, efficient materials for biomedical applications. , 2020, , 881-906.		1
519	Lung tissue engineering. , 2020, , 1273-1285.		0
520	Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication, 2020, 12, 032001.	3.7	107
521	A Review of 3D Printing Technologies for Soft Polymer Materials. Advanced Functional Materials, 2020, 30, 2000187.	7.8	379
522	Bioprinting Neural Systems to Model Central Nervous System Diseases. Advanced Functional Materials, 2020, 30, 1910250.	7.8	38
523	100th Anniversary of Macromolecular Science Viewpoint: Macromolecular Materials for Additive Manufacturing. ACS Macro Letters, 2020, 9, 627-638.	2.3	69
524	Freeform 3D printing using a continuous viscoelastic supporting matrix. Biofabrication, 2020, 12, 035017.	3.7	49
525	Stepwise Control of Crosslinking in a Oneâ€Pot System for Bioprinting of Lowâ€Đensity Bioinks. Advanced Healthcare Materials, 2020, 9, e1901544.	3.9	37
526	Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chemical Reviews, 2020, 120, 10695-10743.	23.0	283
527	Facile Photo and Thermal Two‣tage Curing for Highâ€Performance 3D Printing of Poly(Dimethylsiloxane). Macromolecular Rapid Communications, 2020, 41, e2000064.	2.0	37
528	3D-Printed Synthetic Vocal Fold Models. Journal of Voice, 2021, 35, 685-694.	0.6	12
529	Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chemical Reviews, 2020, 120, 10662-10694.	23.0	222
530	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	2.8	52
531	Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 400.	2.0	46
532	3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering, 2020, 7, 32.	1.6	83

#	Article	IF	CITATIONS
533	Nanomaterials combination for wound healing and skin regeneration. , 2020, , 159-217.		3
534	3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. ACS Applied Materials & Interfaces, 2020, 12, 20295-20306.	4.0	65
535	<scp>3D</scp> bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 6-17.	2.1	22
536	Bioengineering tissue morphogenesis and function in human neural organoids. Seminars in Cell and Developmental Biology, 2021, 111, 52-59.	2.3	22
537	Heparinâ€functionalized hydrogels as growth factorâ€signaling substrates. Journal of Biomedical Materials Research - Part A, 2021, 109, 374-384.	2.1	9
538	3D printing low-stiffness silicone within a curable support matrix. Additive Manufacturing, 2021, 37, 101681.	1.7	15
539	3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomaterialia, 2021, 119, 75-88.	4.1	110
540	Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer and Metastasis Reviews, 2021, 40, 71-88.	2.7	19
541	Fabrication techniques of biomimetic scaffolds in threeâ€dimensional cell culture: A review. Journal of Cellular Physiology, 2021, 236, 741-762.	2.0	51
542	3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane. Sensors and Actuators B: Chemical, 2021, 326, 128781.	4.0	27
543	Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose. Additive Manufacturing, 2021, 37, 101640.	1.7	21
544	Bioprinting of Collagen: Considerations, Potentials, and Applications. Macromolecular Bioscience, 2021, 21, e2000280.	2.1	69
545	Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials, 2021, 267, 120465.	5.7	22
546	Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method. European Archives of Oto-Rhino-Laryngology, 2021, 278, 1443-1453.	0.8	12
547	3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nature Reviews Materials, 2021, 6, 27-47.	23.3	140
548	Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomaterialia, 2021, 121, 204-213.	4.1	11
549	Extracellularâ€Matrixâ€Reinforced Bioinks for 3D Bioprinting Human Tissue. Advanced Materials, 2021, 33, e2005476.	11.1	142
550	Current Trends in In Vitro Modeling to Mimic Cellular Crosstalk in Periodontal Tissue. Advanced Healthcare Materials, 2021, 10, e2001269.	3.9	27

#	Article	IF	CITATIONS
551	3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials, 2021, 31, 2007983.	7.8	55
552	3D printed collagen structures at low concentrations supported by jammed microgels. Bioprinting, 2021, 21, e00121.	2.9	32
553	Construction of a Novel In Vitro Atherosclerotic Model from Geometryâ€Tunable Artery Equivalents Engineered via Inâ€Bath Coaxial Cell Printing. Advanced Functional Materials, 2021, 31, 2008878.	7.8	51
554	Recent progress in field-assisted additive manufacturing: materials, methodologies, and applications. Materials Horizons, 2021, 8, 885-911.	6.4	35
555	Engineering a Chemically Defined Hydrogel Bioink for Direct Bioprinting of Microvasculature. Biomacromolecules, 2021, 22, 275-288.	2.6	20
556	Guiding tissue-scale self-organization. Nature Materials, 2021, 20, 2-3.	13.3	6
557	Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials, 2021, 269, 120628.	5.7	32
558	Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nature Protocols, 2021, 16, 937-964.	5.5	35
559	Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. Advanced NanoBiomed Research, 2021, 1, 2000022.	1.7	11
560	Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials Science, 2021, 9, 535-573.	2.6	206
561	Optimised Vascular Network for Skin Tissue Engineering by Additive Manufacturing. , 2021, , 1-20.		0
562	New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications. Chemistry - A European Journal, 2021, 27, 2887-2907.	1.7	9
563	Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nature Materials, 2021, 20, 22-29.	13.3	279
564	In vitro characterization of xeno-free clinically relevant human collagen and its applicability in cell-laden 3D bioprinting. Journal of Biomaterials Applications, 2021, 35, 912-923.	1.2	15
565	Microfluidic Biomaterials. Advanced Healthcare Materials, 2021, 10, e2001028.	3.9	18
566	FRESH bioprinting technology for tissue engineering – the influence of printing process and bioink composition on cell behavior and vascularization. Journal of Applied Biomaterials and Functional Materials, 2021, 19, 228080002110288.	0.7	12
567	Biocomposites for the fabrication of artificial organs. , 2021, , 301-328.		0
568	Chapter 11. Bioprinting Hydrogels and Tissue Engineering. Biomaterials Science Series, 2021, , 292-315.	0.1	О

#	Article	IF	Citations
569	3D Printing Methods Applicable in Oral and Maxillofacial Surgery. , 2021, , 11-60.		1
570	Cell-based Soft Biomaterials. RSC Soft Matter, 2021, , 720-749.	0.2	0
571	Alginate Hydrogels with Tuneable Properties. Advances in Biochemical Engineering/Biotechnology, 2021, 178, 37-61.	0.6	6
572	3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure. Small, 2021, 17, e2005743.	5.2	54
573	3D Printing of Cellulose and Chitin from Ionic Liquids for Drug Delivery: A Mini-Review. , 2021, , 71-90.		0
574	Use of FDM Technology in Healthcare Applications: Recent Advances. Materials Forming, Machining and Tribology, 2021, , 277-297.	0.7	3
575	3D-bioprinting for Engineering Complex Tissues and Vascularization. Biomaterials Science Series, 2021, , 339-359.	0.1	0
576	Simulated filament shapes in embedded 3D printing. Soft Matter, 2021, 17, 8027-8046.	1.2	18
577	Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 5529-5538.	4.0	33
578	Extrusion-Based Additive Manufacturing Techniques for Biomedical Applications. , 2021, , 1101-1111.		0
579	Step-by-step assembly and testing of a low-cost bioprinting solution for research and educational purposes. MethodsX, 2021, 8, 101186.	0.7	6
580	Bioprinting for the Biologist. Cell, 2021, 184, 18-32.	13.5	152
581	3D bioprinting in cardiac tissue engineering. Theranostics, 2021, 11, 7948-7969.	4.6	56
582	3D-Bioprinting. Learning Materials in Biosciences, 2021, , 201-232.	0.2	1
583	Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered, 2021, 12, 3787-3801.	1.4	29
584	Biohybrid robotics: From the nanoscale to the macroscale. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1703.	3.3	21
585	Conformal Geometry and Multimaterial Additive Manufacturing through Freeform Transformation of Building Layers. Advanced Materials, 2021, 33, e2005672.	11.1	19
586	Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 4077-4101.	2.6	37

#	Article	IF	CITATIONS
587	Assessment of fibrin-collagen co-gels for generating microvessels ex vivo using endothelial cell-lined microfluidics and multipotent stromal cell (MSC)-induced capillary morphogenesis. Biomedical Materials (Bristol), 2021, 16, 035005.	1.7	5
588	PEG-Coated Large Mesoporous Silicas as Smart Platform for Protein Delivery and Their Use in a Collagen-Based Formulation for 3D Printing. International Journal of Molecular Sciences, 2021, 22, 1718.	1.8	15
589	Fast Stereolithography Printing of Large cale Biocompatible Hydrogel Models. Advanced Healthcare Materials, 2021, 10, e2002103.	3.9	48
590	Direct ink writing techniques for in situ gelation and solidification. MRS Communications, 2021, 11, 106-121.	0.8	25
591	Bioprinting of human nasoseptal chondrocytesâ€laden collagen hydrogel for cartilage tissue engineering. FASEB Journal, 2021, 35, e21191.	0.2	22
592	The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation. Molecular Pharmacology, 2021, 99, 256-265.	1.0	9
593	Freeform Polymer Precipitation in Microparticulate Gels. ACS Applied Polymer Materials, 2021, 3, 908-919.	2.0	12
594	Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue. Biomedical Materials (Bristol), 2021, 16, 035003.	1.7	23
595	Optimization of the co-axial dispensing nozzle of a 3D bioprinter for the fabrication of tubular structures with micro-channel encapsulation. Journal of Micromechanics and Microengineering, 2021, 31, 045009.	1.5	4
596	Induction of Fourâ€Dimensional Spatiotemporal Geometric Transformations in High Cell Density Tissues via Shapeâ€Changing Hydrogels. Advanced Functional Materials, 2021, 31, 2010104.	7.8	39
597	Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering, 2021, 8, 27.	1.6	93
598	Development of Thermoinks for 4D Direct Printing of Temperatureâ€Induced Selfâ€Rolling Hydrogel Actuators. Advanced Functional Materials, 2021, 31, 2009664.	7.8	43
599	A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers, 2021, 13, 480.	2.0	14
600	Engineering Three-Dimensional Vascularized Cardiac Tissues. Tissue Engineering - Part B: Reviews, 2022, 28, 336-350.	2.5	12
601	Oneâ€Step Formation of Proteinâ€Based Tubular Structures for Functional Devices and Tissues. Advanced Healthcare Materials, 2021, 10, e2001746.	3.9	5
603	PEDOT and PEDOT:PSS conducting polymeric hydrogels: A report on their emerging applications. Synthetic Metals, 2021, 273, 116709.	2.1	42
604	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2000088.	1.7	9
605	Process monitoring and control strategies in extrusion-based bioprinting to fabricate spatially graded structures. Bioprinting, 2021, 21, e00126.	2.9	20

#	Article	IF	CITATIONS
606	Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel. Langmuir, 2021, 37, 4154-4162.	1.6	17
607	The rheology of direct and suspended extrusion bioprinting. APL Bioengineering, 2021, 5, 011502.	3.3	129
608	Cardiac Regeneration: the Heart of the Issue. Current Transplantation Reports, 2021, 8, 67-75.	0.9	5
609	3D bioprinting for lung and tracheal tissue engineering: Criteria, advances, challenges, and future directions. Bioprinting, 2021, 21, e00124.	2.9	34
610	Complex 3D bioprinting methods. APL Bioengineering, 2021, 5, 011508.	3.3	47
611	Three-Dimensional Bioprinting of Anatomically Realistic Tissue Constructs for Disease Modeling and Drug Testing. Tissue Engineering - Part C: Methods, 2021, 27, 225-231.	1.1	5
612	Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioengineering, 2021, 5, 010904.	3.3	115
613	3D Tissue and Organ Printing—Hope and Reality. Advanced Science, 2021, 8, 2003751.	5.6	54
614	3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation. Cells Tissues Organs, 2022, , 90-103.	1.3	5
615	Bioprinted Vascularized Mature Adipose Tissue with Collagen Microfibers for Soft Tissue Regeneration. Cyborg and Bionic Systems, 2021, 2021, .	3.7	30
616	Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. Biofabrication, 2021, 13, 035020.	3.7	11
617	Multiâ€Dimensional Printing for Bone Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2001986.	3.9	41
618	Recent advances in bioprinting technologies for engineering different cartilage-based tissues. Materials Science and Engineering C, 2021, 123, 112005.	3.8	29
619	Vascularisation of pluripotent stem cell–derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Archiv European Journal of Physiology, 2021, 473, 1117-1136.	1.3	7
620	Printability in extrusion bioprinting. Biofabrication, 2021, 13, 033001.	3.7	74
621	Biomaterials and 3D printing techniques used in the medical field. Journal of Medical Engineering and Technology, 2021, 45, 290-302.	0.8	22
622	3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges. Frontiers in Robotics and Al, 2021, 8, 673533.	2.0	27
623	Recent advances in 3D printing with protein-based inks. Progress in Polymer Science, 2021, 115, 101375.	11.8	74

#	Article	IF	CITATIONS
625	Construction of Tissueâ€Level Cancerâ€Vascular Model with Highâ€Precision Position Control via In Situ 3D Cell Printing. Small Methods, 2021, 5, e2100072.	4.6	25
627	<scp>PolyChemPrint</scp> : A hardware and software framework for benchtop additive manufacturing of functional polymeric materials. Journal of Polymer Science, 2021, 59, 2468-2478.	2.0	3
628	A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting. HardwareX, 2021, 9, e00170.	1.1	36
629	The Technique of Thyroid Cartilage Scaffold Support Formation for Extrusion-Based Bioprinting. International Journal of Bioprinting, 2021, 7, 348.	1.7	10
630	A dual nozzle 3D printing system for super soft composite hydrogels. HardwareX, 2021, 9, e00176.	1.1	10
631	Recent advances in bioprinting technologies for engineering hepatic tissue. Materials Science and Engineering C, 2021, 123, 112013.	3.8	26
632	Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. Tissue Engineering - Part B: Reviews, 2022, 28, 295-335.	2.5	16
633	Microvascular Tissue Engineering—A Review. Biomedicines, 2021, 9, 589.	1.4	16
634	Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Advanced Biology, 2021, 5, 2000190.	1.4	4
635	3D Bioprinting of Vascularized Tissues for in vitro and in vivo Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 664188.	2.0	48
636	Recent advances in bioprinting technologies for engineering cardiac tissue. Materials Science and Engineering C, 2021, 124, 112057.	3.8	35
637	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2170053.	1.7	4
638	Optimization of Freeze-FRESH Methodology for 3D Printing of Microporous Collagen Constructs. 3D Printing and Additive Manufacturing, 2022, 9, 411-424.	1.4	3
639	Demonstrating Freeform Fabrication of Fluidic Edible Materials. , 2021, , .		1
640	Bio-inspired Incrustation Interfacial Polymerization of Dopamine and Cross-linking with Gelatin toward Robust, Biodegradable Three-Dimensional Hydrogels. Langmuir, 2021, 37, 6201-6207.	1.6	9
641	Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Frontiers in Chemistry, 2021, 9, 680836.	1.8	16
642	A perfusable vascularized full-thickness skin model for potential topical and systemic applications. Biofabrication, 2021, 13, 035042.	3.7	19
643	Direct three-dimensional printing of a highly customized freestanding hyperelastic bioscaffold for complex craniomaxillofacial reconstruction. Chemical Engineering Journal, 2021, 411, 128541.	6.6	37

ARTICLE

IF CITATIONS

Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 To

645	Freeform Fabrication of Fluidic Edible Materials. , 2021, , .		7
646	3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomaterialia, 2021, 126, 154-169.	4.1	71
647	Perspectives on Existing and Novel Alternative Intravaginal Probiotic Delivery Methods in the Context of Bacterial Vaginosis Infection. AAPS Journal, 2021, 23, 66.	2.2	12
648	3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. Journal of Controlled Release, 2021, 333, 91-106.	4.8	24
649	Lightâ€Activated Decellularized Extracellular Matrixâ€Based Bioinks for Volumetric Tissue Analogs at the Centimeter Scale. Advanced Functional Materials, 2021, 31, 2011252.	7.8	64
650	Extracellular Matrix by Design: Native Biomaterial Fabrication and Functionalization to Boost Tissue Regeneration. Regenerative Engineering and Translational Medicine, 2022, 8, 55-74.	1.6	4
651	Processing variables of direct-write, near-field electrospinning impact size and morphology of gelatin fibers. Biomedical Materials (Bristol), 2021, 16, 045017.	1.7	5
652	Flower Jelly Printer: Slit Injection Printing for Parametrically Designed Flower Jelly. , 2021, , .		10
653	Demonstrating Flower Jelly Printer for Parametrically Designed Flower Jelly. , 2021, , .		Ο
654	Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduction and Targeted Therapy, 2021, 6, 177.	7.1	55
655	Biofabrication of tissue engineering vascular systems. APL Bioengineering, 2021, 5, 021507.	3.3	19
656	3D bioprinting for in vitro models of oral cancer: Toward development and validation. Bioprinting, 2021, 22, e00132.	2.9	11
657	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
658	The orthotropic viscoelastic characterisation of sub-zero 3D-printed poly(vinyl alcohol) cryogel. MRS Advances, 2021, 6, 467-471.	0.5	4
659	Three-Dimensional Bioprinting, Oxygenated Tissue Constructs, and Intravital Tissue Regeneration. Journal of Craniofacial Surgery, 2021, 32, 2257-2258.	0.3	3
660	Engineering fiber anisotropy within natural collagen hydrogels. American Journal of Physiology - Cell Physiology, 2021, 320, C1112-C1124.	2.1	24
661	Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine. Journal of Biomedical Nanotechnology, 2021, 17, 989-1006.	0.5	9

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
662	Engineered neuromuscular actuators for medicine, meat, and machines. MRS Bulletin, 2021, 46, 522-533.	1.7	2
664	Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. Current Transplantation Reports, 2021, 8, 205-219.	0.9	6
665	Advances in tissue engineering of vasculature through threeâ€dimensional bioprinting. Developmental Dynamics, 2021, 250, 1717-1738.	0.8	16
666	Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technology, 2021, 26, 333-366.	1.0	39
667	Recent advancements in the bioprinting of vascular grafts. Biofabrication, 2021, 13, 032003.	3.7	38
668	Smart Digital Image Correlation Patterns via 3D Printing. Experimental Mechanics, 2021, 61, 1181-1191.	1.1	10
669	An open-source technology platform to increase reproducibility and enable high-throughput production of tailorable gelatin methacryloyl (GelMA) - based hydrogels. Materials and Design, 2021, 204, 109619.	3.3	10
670	Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 2021, 6, 30.	2.5	49
671	Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures. Journal of Materials Research, 2021, 36, 3851-3864.	1.2	7
672	A bibliometric indicators analysis of additive manufacturing research trends from 2010 to 2020. Rapid Prototyping Journal, 2021, 27, 1432-1454.	1.6	21
673	3D-Printed Collagen-Based Waveform Microfibrous Scaffold for Periodontal Ligament Reconstruction. International Journal of Molecular Sciences, 2021, 22, 7725.	1.8	12
674	Printing New Bones: From Print-and-Implant Devices to Bioprinted Bone Organ Precursors. Trends in Molecular Medicine, 2021, 27, 700-711.	3.5	24
675	Investigating the Viability of Epithelial Cells on Polymer Based Thin-Films. Polymers, 2021, 13, 2311.	2.0	4
676	UV-curable silicone materials with tuneable mechanical properties for 3D printing. Materials and Design, 2021, 205, 109681.	3.3	10
677	Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioactive Materials, 2022, 9, 358-372.	8.6	21
678	A review of regulated self-organizing approaches for tissue regeneration. Progress in Biophysics and Molecular Biology, 2021, 167, 63-78.	1.4	5
679	A Feasibility Study on 3D Bioprinting of Microfat Constructs Towards Wound Healing Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 707098.	2.0	9
681	Innovations in craniofacial bone and periodontal tissue engineering – from electrospinning to converged biofabrication. International Materials Reviews, 2022, 67, 347-384.	9.4	23

#	Article	IF	CITATIONS
683	Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioactive Materials, 2022, 9, 105-119.	8.6	73
684	Bioprinting Marches Forward With New Technology. IEEE Pulse, 2021, 12, 11-16.	0.1	0
685	3D printing of edible hydrogels containing thiamine and their comparison to cast gels. Food Hydrocolloids, 2021, 116, 106550.	5.6	23
686	Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials. Advanced Functional Materials, 2021, 31, 2106276.	7.8	15
687	3D printing fluorescent material with tunable optical properties. Scientific Reports, 2021, 11, 17135.	1.6	23
688	Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nature Reviews Cardiology, 2022, 19, 83-99.	6.1	36
689	Engineered Vasculature for Organ-on-a-Chip Systems. Engineering, 2022, 9, 131-147.	3.2	22
690	Strategies for constructing pluripotent stem cell―and progenitor cellâ€derived threeâ€dimensional cardiac microâ€ŧissues. Journal of Biomedical Materials Research - Part A, 2022, 110, 488-503.	2.1	1
692	Key parameters and applications of extrusion-based bioprinting. Bioprinting, 2021, 23, e00156.	2.9	20
693	Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: A comprehensive review. Bioprinting, 2021, 23, e00147.	2.9	35
694	3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing. Essays in Biochemistry, 2021, 65, 417-427.	2.1	12
695	An image analysis-based workflow for 3D bioprinting of anatomically realistic retinal vascular patterns. Bioprinting, 2021, 23, e00152.	2.9	4
696	Recent update of 3D printing technology in pharmaceutical formulation development. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2306-2330.	1.9	5
697	Current state and future of 3D bioprinted models for cardio-vascular research and drug development. ADMET and DMPK, 2021, 9, 231-242.	1.1	2
698	Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200344.	1.6	10
699	Seeding A Growing Organ. Trends in Biotechnology, 2021, 39, 753-754.	4.9	3
700	Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications, 2021, 12, 5059.	5.8	141
701	Manufacturing of animal products by the assembly of microfabricated tissues. Essays in Biochemistry, 2021, 65, 611-623.	2.1	9

#	Article	IF	CITATIONS
702	A super low-cost bioprinter based on DVD-drive components and a raspberry pi as controller. Bioprinting, 2021, 23, e00142.	2.9	9
703	Extrusion-based 3D (Bio)Printed Tissue Engineering Scaffolds: Process–Structure–Quality Relationships. ACS Biomaterials Science and Engineering, 2021, 7, 4694-4717.	2.6	12
704	Biofabrication of advanced <i>in vitro</i> and <i>ex vivo</i> cancer models for disease modeling and drug screening. Future Drug Discovery, 2021, 3, .	0.8	2
705	A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers, 2021, 13, 3015.	2.0	48
706	3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022, 40, 432-447.	4.9	36
707	Norbornene-functionalized methylcellulose as a thermo- and photo-responsive bioink. Biofabrication, 2021, 13, 045023.	3.7	13
708	Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering, 2021, 8, 123.	1.6	9
709	Review: 3D printing hydrogels for the fabrication of soilless cultivation substrates. Applied Materials Today, 2021, 24, 101088.	2.3	15
711	Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomaterialia, 2021, 131, 41-61.	4.1	27
712	Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines, 2021, 9, 1137.	1.4	30
713	A fluid-supported 3D hydrogel bioprinting method. Biomaterials, 2021, 276, 121034.	5.7	18
714	Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages. ACS Biomaterials Science and Engineering, 2021, 7, 4736-4756.	2.6	28
715	Rheological and Printability Assessments on Biomaterial Inks of Nanocellulose/Photo-Crosslinkable Biopolymer in Light-Aided 3D Printing. Frontiers in Chemical Engineering, 2021, 3, .	1.3	11
716	Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering - Part B: Reviews, 2022, 28, 891-911.	2.5	8
717	Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomaterialia, 2021, 132, 52-82.	4.1	5
718	Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732130.	2.0	11
719	Processes and materials used for direct writing technologies: A review. Results in Engineering, 2021, 11, 100257.	2.2	41
720	Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomaterialia, 2021, 132, 188-216.	4.1	21

#	Article	IF	CITATIONS
721	3D Printing of Hydrogels for Stretchable Ionotronic Devices. Advanced Functional Materials, 2021, 31, 2107437.	7.8	70
722	Fabricating Robust Constructs with Internal Phase Nanostructures via Liquidâ€inâ€Liquid 3D Printing. Macromolecular Rapid Communications, 2021, 42, e2100445.	2.0	9
723	Replace and repair: Biomimetic bioprinting for effective muscle engineering. APL Bioengineering, 2021, 5, 031502.	3.3	9
724	Hydrogel prepared by 3D printing technology and its applications in the medical field. Colloids and Interface Science Communications, 2021, 44, 100498.	2.0	35
725	Stem cell-based vascularization of microphysiological systems. Stem Cell Reports, 2021, 16, 2058-2075.	2.3	12
726	Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Advanced Drug Delivery Reviews, 2021, 176, 113852.	6.6	13
727	Anti-freezing starch hydrogels with superior mechanical properties and water retention ability for 3D printing. International Journal of Biological Macromolecules, 2021, 190, 382-389.	3.6	12
728	A review of strategies for development of tissue engineered meniscal implants. Biomaterials and Biosystems, 2021, 4, 100026.	1.0	12
729	Immune response against the biomaterials used in 3D bioprinting of organs. Transplant Immunology, 2021, 69, 101446.	0.6	13
730	Multimaterial bioprinting approaches and their implementations for vascular and vascularized tissues. Bioprinting, 2021, 24, e00159.	2.9	13
731	3D bioprinting technology to mimic the tumor microenvironment: tumor-on-a-chip concept. Materials Today Advances, 2021, 12, 100160.	2.5	13
732	Mechanically-reinforced and highly adhesive decellularized tissue-derived hydrogel for efficient tissue repair. Chemical Engineering Journal, 2022, 427, 130926.	6.6	25
733	4D biofabrication via instantly generated graded hydrogel scaffolds. Bioactive Materials, 2022, 7, 324-332.	8.6	45
734	Heterotypic tumor models through freeform printing into photostabilized granular microgels. Biomaterials Science, 2021, 9, 4496-4509.	2.6	23
735	Additive manufacturing of biomaterials. Advances in Chemical Engineering, 2021, , 233-260.	0.5	0
736	Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomaterials Science, 2021, 9, 1974-1994.	2.6	32
737	Synthetic Boneâ€Like Structures Through Omnidirectional Ceramic Bioprinting in Cell Suspensions. Advanced Functional Materials, 2021, 31, 2008216.	7.8	43
738	Engineered Microgels—Their Manufacturing and Biomedical Applications. Micromachines, 2021, 12, 45.	1.4	20

		CITATION REPORT		
#	Article		IF	CITATIONS
739	Resolution of 3D bioprinting inside bulk gel and granular gel baths. Soft Matter, 2021,	17, 8769-8785.	1.2	23
740	3D Bioprinting Hydrogel for Hard Tissue Regeneration. Biomaterials Science Series, 20.	21, , 316-338.	0.1	1
741	Clinical Application and Regulation of Bioprinting Biomaterials Focusing on Hydrogels. Science Series, 2021, , 409-438.	Biomaterials	0.1	0
742	Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molec 2016, 17, 1976.	ular Sciences,	1.8	24
743	Direct 3D Printed Biomimetic Scaffolds Based on Hydrogel Microparticles for Cell Sphe Advanced Functional Materials, 2020, 30, 1910573.	roid Growth.	7.8	99
744	Extrusion-Based Bioprinting: Current Standards and Relevancy for Human-Sized Tissue Methods in Molecular Biology, 2020, 2140, 65-92.	Fabrication.	0.4	13
745	Extrusion Bioprinting of Scaffolds. , 2019, , 117-145.			16
746	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 321-338.			6
747	Bioinks and Their Applications in Tissue Engineering. , 2019, , 187-218.			5
748	Biofabrication in Tissue Engineering. , 2020, , 289-312.			7
749	Conductive Hydrogels for Bioelectronic Interfaces. , 2020, , 237-265.			3
750	Fabrication and Printing of Multi-material Hydrogels. , 2016, , 1-34.			3
751	Bioprinting. New Paradigms of Living Systems, 2020, , 137-156.		0.4	3
752	Embedded 3D printing of multi-internal surfaces of hydrogels. Additive Manufacturing, 101097.	2020, 32,	1.7	25
753	Cutting-edge platforms in cardiac tissue engineering. Current Opinion in Biotechnolog 23-29.	y, 2017, 47,	3.3	26
754	Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Structures?. Trends in Biotechnology, 2020, 38, 1316-1328.	lissue	4.9	68
755	Biomechanical factors in three-dimensional tissue bioprinting. Applied Physics Reviews	, 2020, 7, 041319.	5.5	30
756	Silk fibroin reactive inks for 3D printing crypt-like structures. Biomedical Materials (Bris 055037.	stol), 2020, 15,	1.7	11

#	Article	IF	CITATIONS
757	1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies. Biofabrication, 2020, 12, 045023.	3.7	22
758	Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication, 2021, 13, 015014.	3.7	32
759	Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. Progress in Biomedical Engineering, 2020, 2, 042003.	2.8	11
764	Inscribing the Blank Slate: The Growing Role of Modified Alginates in Tissue Engineering. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2016, 1, .	0.1	1
765	Bioprinting in cardiovascular tissue engineering: a review. International Journal of Bioprinting, 2016, 2, 27.	1.7	29
766	Roles of support materials in 3D bioprinting – Present and future. International Journal of Bioprinting, 2017, 3, 83.	1.7	37
767	Progress in organ 3D bioprinting. International Journal of Bioprinting, 2018, 4, 128.	1.7	52
768	Optimized vascular network by stereolithography for tissue engineered skin. International Journal of Bioprinting, 2018, 4, 134.	1.7	24
769	The arrival of commercial bioprinters – Towards 3D bioprinting revolution!Â. International Journal of Bioprinting, 2018, 4, 139.	1.7	110
770	Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing. International Journal of Bioprinting, 2019, 6, 245.	1.7	24
772	Collagen as Bioink for Bioprinting: A Comprehensive Review. International Journal of Bioprinting, 2020, 6, 270.	1.7	129
773	Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. International Journal of Bioprinting, 2020, 6, 282.	1.7	10
774	3D Printed Coronary Models Offer Potential Value in Visualising Coronary Anatomy and Coronary Stents for Investigation of Coronary CT Protocols. Current Medical Imaging, 2020, 16, 625-628.	0.4	2
775	Vascularization in 3D printed tissues: emerging technologies to overcome longstanding obstacles. AIMS Cell and Tissue Engineering, 2018, 2, 163-184.	0.4	8
776	3D Bioprinting of Cell‣aden Hydrogels for Improved Biological Functionality. Advanced Materials, 2022, 34, e2103691.	11.1	88
778	Digital Assembly of Spherical Viscoelastic Bioâ€Ink Particles. Advanced Functional Materials, 2022, 32, 2109004.	7.8	6
779	Processing of Selfâ€Healing Polymers for Soft Robotics. Advanced Materials, 2022, 34, e2104798.	11.1	80
780	Emerging Technologies in Multiâ€Material Bioprinting. Advanced Materials, 2021, 33, e2104730.	11.1	100

#	Article	IF	CITATIONS
781	Narrative review of gene modification: applications in three-dimensional (3D) bioprinting. Annals of Translational Medicine, 2021, 9, 1502-1502.	0.7	3
782	Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering, 2021, 8, 144.	1.6	19
783	3D Printed Chitosan-Pectin Hydrogels: From Rheological Characterization to Scaffold Development and Assessment. Gels, 2021, 7, 175.	2.1	23
784	3D Liver Tissue Model with Branched Vascular Networks by Multimaterial Bioprinting. Advanced Healthcare Materials, 2021, 10, e2101405.	3.9	31
785	Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. Journal of Cardiovascular Development and Disease, 2021, 8, 137.	0.8	27
786	Recent advances in the extrusion methods for ceramics. IOP Conference Series: Materials Science and Engineering, 2021, 1193, 012030.	0.3	2
787	Recent Trends in Biofabrication Technologies for Studying Skeletal Muscle Tissue-Related Diseases. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782333.	2.0	9
788	In Vitro Disease Models of the Endocrine Pancreas. Biomedicines, 2021, 9, 1415.	1.4	2
789	Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. Journal of Biomaterials Applications, 2022, 36, 1019-1032.	1.2	13
790	Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Advanced Drug Delivery Reviews, 2021, 179, 114003.	6.6	20
791	Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I. F1000Research, 2016, 5, 2811.	0.8	3
792	Vascular Networks Within 3D Printed and Engineered Tissues. , 2017, , 1-27.		0
793	CAD Modeling for 3D Bio-printing of Human Coronary Artery. Journal of Image and Graphics(United) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf
795	CRISPR engineering cardiometabolic disease models using human iPSC. AIMS Cell and Tissue Engineering, 2018, 2, 185-202.	0.4	0
796	Deri Doku Mühendisliği Amaçlı Üç Boyutlu Biyobaskı ve Keratinosit Kültürü. Dicle Medical Jour 9-14.	nal, 0, ,	2
797	Polymers in Biofabrication and 3D Tissue Modelling. Biomaterials Science Series, 2019, , 119-147.	0.1	0
798	Shear Thinning Hydrogel-based 3D Tissue Modelling. Biomaterials Science Series, 2019, , 94-118.	0.1	1
799	3D Bioprinting Hardware. , 2019, , 161-186.		3

#	Article	IF	Citations
800	Vascularization in Oral and Maxillofacial Tissue Engineering. , 2019, , 97-122.		2
801	Optimization of 3D printing parameters with sodium alginate hydrogel. Proceedings of the National Academy of Sciences of Belarus Physical-Technical Series, 2019, 64, 7-13.	0.1	0
804	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 1-18.		0
805	Structural dimensions depending on light intensity in a 3D printing method that utilizes in situ light as a guide. Micro and Nano Systems Letters, 2020, 8, .	1.7	2
807	Surface Tension-Assisted Additive Manufacturing of Tubular, Multicomponent Biomaterials. Methods in Molecular Biology, 2021, 2147, 149-160.	0.4	0
809	Biomedical Manufacturing: A Review of the Emerging Research and Applications. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	1.3	8
810	Bioprinting Au Natural: The Biologics of Bioinks. Biomolecules, 2021, 11, 1593.	1.8	17
811	Highâ€Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermoâ€Responsive Poloxamer Ink Platform. Macromolecular Rapid Communications, 2022, 43, e2100579.	2.0	7
812	Facile Fabrication of Three-Dimensional Hydrogel Film with Complex Tissue Morphology. Bioengineering, 2021, 8, 164.	1.6	1
813	Advances in polymers for bio-additive manufacturing: A state of art review. Journal of Manufacturing Processes, 2021, 72, 439-457.	2.8	19
814	Methodology of Implementing Transformative Bioactive Hybrids in Built Environment to Achieve Sustainability. , 0, , .		1
815	In vitro disease and organ model. , 2020, , 629-668.		0
816	Bioinks for 3D printing of artificial extracellular matrices. , 2020, , 1-37.		5
817	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31
818	Bioprinting of Complex Multicellular Organs with Advanced Functionality—Recent Progress and Challenges Ahead. Advanced Materials, 2022, 34, e2101321.	11.1	31
819	An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting. Scientific Reports, 2021, 11, 21547.	1.6	10
820	3D Printable and Subâ€Micrometer Porous Polymeric Monoliths with Shape Reconfiguration Ability by Miniemulsion Templating. Macromolecular Materials and Engineering, 2022, 307, 2100615.	1.7	2
822	Nucleic Acid Delivery from Granular Hydrogels. Advanced Healthcare Materials, 2022, 11, e2101867.	3.9	15

#	Article	IF	CITATIONS
824	3D Freeform Printing of Nanocomposite Hydrogels through Precipitation in Reactive Viscous Fluid. International Journal of Bioprinting, 2020, 6, 258.	1.7	17
825	pre-vascularization strategies for tissue engineered constructs-Bioprinting and others. International Journal of Bioprinting, 2017, 3, 008.	1.7	3
826	Developments and Opportunities for 3D Bioprinted Organoids. International Journal of Bioprinting, 2021, 7, 364.	1.7	2
827	Developments and Opportunities for 3D Bioprinted OrganoidsÂ. International Journal of Bioprinting, 2021, 7, 364.	1.7	46
828	Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. International Journal of Bioprinting, 2021, 7, 426.	1.7	11
829	Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering. Advanced Materials, 2022, 34, e2105883.	11.1	53
831	Engineered Myoblast-Laden Collagen Filaments Fabricated Using a Submerged Bioprinting Process to Obtain Efficient Myogenic Activities. Biomacromolecules, 2021, 22, 5042-5051.	2.6	6
832	3D extrusion bioprinting. Nature Reviews Methods Primers, 2021, 1, .	11.8	127
833	Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. ACS Applied Bio Materials, 2021, 4, 8597-8606.	2.3	20
834	3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds. Materials, 2021, 14, 6720.	1.3	5
835	3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773511.	2.0	32
836	A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioactive Materials, 2022, 14, 302-312.	8.6	12
837	Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Advanced Drug Delivery Reviews, 2022, 180, 114067.	6.6	10
838	Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophysical Reviews, 2021, 13, 1245-1271.	1.5	1
839	A suspended layer additive manufacturing approach to the bioprinting of tri-layered skin equivalents. APL Bioengineering, 2021, 5, 046103.	3.3	6
841	Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting. Advanced Science, 2022, 9, e2103469.	5.6	21
844	An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1192-1205.	1.6	10
845	Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement. ACS Biomaterials Science and Engineering, 2022, 8, 303-313.	2.6	10

#	Article	IF	CITATIONS
847	Freeform 3D printing of vascularized tissues: Challenges and strategies. Journal of Tissue Engineering, 2021, 12, 204173142110572.	2.3	23
848	Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules, 2022, 23, 619-640.	2.6	36
849	Multi-axis 3D printing of gelatin methacryloyl hydrogels on a non-planar surface obtained from magnetic resonance imaging. Additive Manufacturing, 2022, 50, 102566.	1.7	10
850	Mechanically toughened conductive hydrogels with shape memory behavior toward self-healable, multi-environmental tolerant and bidirectional sensors. Chemical Engineering Journal, 2022, 432, 134406.	6.6	32
851	Dynamic Molding: Additive manufacturing in partially ordered system. Additive Manufacturing, 2022, 51, 102598.	1.7	1
852	Micropatterning of acoustic droplet vaporization in acoustically-responsive scaffolds using extrusion-based bioprinting. Bioprinting, 2022, 25, e00188.	2.9	7
853	Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. Journal of Materials Chemistry B, 2021, 9, 10003-10014.	2.9	12
854	Zastosowanie fibryny w inżynierii tkankowej. Osiągnięcia i perspektywy. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 749-761.	0.1	2
855	Sacrificial Biomaterials for Vascularized/Neuralized Organ 3D Printing. SSRN Electronic Journal, 0, , .	0.4	0
856	Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioactive Materials, 2022, 17, 178-194.	8.6	23
857	3D printing for soft musculoskeletal tissue engineering. , 2022, , 167-200.		0
858	Jammed Microâ€Flake Hydrogel for Fourâ€Dimensional Living Cell Bioprinting. Advanced Materials, 2022, 34, e2109394.	11.1	49
859	Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Biofabrication, 2022, 14, 025011.	3.7	12
860	3D bioprinting as a designer organoid to assess pathological processes in translational medicine. Journal of 3D Printing in Medicine, 2022, 6, 37-46.	1.0	2
861	Emerging Threeâ€Dimensional Integrated Systems for Biomimetic Neural InÂVitro Cultures. Advanced Materials Interfaces, 2022, 9, .	1.9	10
862	Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends in Biotechnology, 2022, 40, 891-902.	4.9	35
864	A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Biofabrication, 2022, 14, 025005.	3.7	5
865	From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell and Tissue Banking, 2022, 23, 417-440.	0.5	13

	CHAHON R		
#	Article	IF	Citations
866	Responsive biomaterials for 3D bioprinting: A review. Materials Today, 2022, 52, 112-132.	8.3	64
867	Aspiration-assisted freeform bioprinting of mesenchymal stem cell spheroids within alginate microgels. Biofabrication, 2022, 14, 024103.	3.7	25
868	Bioprinting: A Strategy to Build Informative Models of Exposure and Disease. IEEE Reviews in Biomedical Engineering, 2023, 16, 594-610.	13.1	1
869	Plasminogen-Loaded Fibrin Scaffold as Drug Delivery System for Wound Healing Applications. Pharmaceutics, 2022, 14, 251.	2.0	11
870	3D printing of polymer composites: Materials, processes, and applications. Matter, 2022, 5, 43-76.	5.0	136
871	Bioprinted microvasculature: progressing from structure to function. Biofabrication, 2022, 14, 022002.	3.7	21
872	Additive Manufacturing Approaches toward the Fabrication of Biomaterials. Advanced Materials Interfaces, 2022, 9, .	1.9	3
873	Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage. Matter, 2022, 5, 573-593.	5.0	36
874	Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications. Applied Physics Reviews, 2022, 9, 011408.	5.5	19
875	Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydrate Polymers, 2022, 281, 119045.	5.1	45
877	2D Nanosilicate for additive manufacturing: Rheological modifier, sacrificial ink and support bath. Bioprinting, 2022, 25, e00187.	2.9	7
878	Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomaterialia, 2022, 140, 1-22.	4.1	35
879	Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomaterials Science, 2022, 10, 2462-2483.	2.6	19
880	Mechanical reinforcement of granular hydrogels. Chemical Science, 2022, 13, 3082-3093.	3.7	27
881	Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths. Journal of Materials Chemistry B, 2022, 10, 1897-1907.	2.9	28
884	3D Bioprinting: A Short Overview and Future Prospects in Healthcare Engineering. , 2022, , 149-156.		0
886	Hydrogels for Bioprinting. , 2022, , 185-211.		2
887	3D Printing of Cartilage and Subchondral Bone. , 2022, , 371-395.		0

#	Article	IF	CITATIONS
888	Computer vision-aided bioprinting for bone research. Bone Research, 2022, 10, 21.	5.4	9
889	Main Applications and Recent Research Progresses of Additive Manufacturing in Dentistry. BioMed Research International, 2022, 2022, 1-26.	0.9	9
890	3D Printed Scaffold Based on Type I Collagen/PLGA_TGF-β1 Nanoparticles Mimicking the Growth Factor Footprint of Human Bone Tissue. Polymers, 2022, 14, 857.	2.0	7
891	Pneumatic Soft Robots: Challenges and Benefits. Actuators, 2022, 11, 92.	1.2	39
892	Fabrication of 3D GelMA Scaffolds Using Agarose Microgel Embedded Printing. Micromachines, 2022, 13, 469.	1.4	15
893	Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. ACS Applied Materials & Interfaces, 2022, 14, 15653-15666.	4.0	32
894	Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication, 2022, 14, 034104.	3.7	26
896	3D coaxial bioprinting: process mechanisms, bioinks and applications. Progress in Biomedical Engineering, 2022, 4, 022003.	2.8	11
897	General Suspended Printing Strategy toward Programmatically Spatial Kevlar Aerogels. ACS Nano, 2022, 16, 4905-4916.	7.3	19
898	Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments. Polymers, 2022, 14, 1351.	2.0	16
899	Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials, 2022, 34, e2108855.	11.1	361
900	3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials, 2022, 284, 121487.	5.7	66
901	FRESH 3D bioprinting a contractile heart tube using human stem cell-derived cardiomyocytes. Biofabrication, 2022, 14, 024106.	3.7	20
902	Embedded 3D Printing of Ultrasound ompatible Arterial Phantoms with Biomimetic Elasticity. Advanced Functional Materials, 2022, 32, .	7.8	15
903	Design-Build-Validate Strategy to 3D Print Bioglass Gradients for ACL Enthesis Reconstruction. Tissue Engineering - Part C: Methods, 2022, , .	1.1	7
904	Current advances in cell therapeutics: a biomacromolecules application perspective. Expert Opinion on Drug Delivery, 2022, 19, 521-538.	2.4	6
905	Continuous fiber extruder for desktop 3D printers toward long fiber embedded hydrogel 3D printing. HardwareX, 2022, 11, e00297.	1.1	5
906	Hybprinting for musculoskeletal tissue engineering. IScience, 2022, 25, 104229.	1.9	1

#	Article	IF	CITATIONS
907	Medical 3D Printing: Tools and Techniques, Today and Tomorrow. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 481-499.	3.3	11
908	A review on customized food fabrication process using Food Layered Manufacturing. LWT - Food Science and Technology, 2022, 161, 113411.	2.5	9
909	Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure. Carbohydrate Polymers, 2022, 288, 119376.	5.1	7
910	Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries. Bioactive Materials, 2022, 15, 185-193.	8.6	17
911	Freeform Liquid 3D Printing of Soft Functional Components for Soft Robotics. ACS Applied Materials & Interfaces, 2022, 14, 2301-2315.	4.0	17
912	Magnetism in Dentistry: Review and Future Perspectives. Applied Sciences (Switzerland), 2022, 12, 95.	1.3	5
913	Freeform 3D Bioprinting Involving Ink Gelation by Cascade Reaction of Oxidase and Peroxidase: A Feasibility Study Using Hyaluronic Acid-Based Ink. Biomolecules, 2021, 11, 1908.	1.8	7
914	Direct Microextrusion Printing of a Low Viscosity Hydrogel on a Supportive Microstructured Bioprinting Substrate for the Vasculogenesis of Endothelial Cells. Advanced Materials Technologies, 2022, 7, .	3.0	4
916	Progress in Bioengineering Strategies for Heart Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 3482.	1.8	14
918	Engineering Densely Packed Adipose Tissue via Environmentally Controlled Inâ€Bath 3D Bioprinting. Advanced Functional Materials, 2022, 32, .	7.8	13
919	Functionalized Hydrogels for Articular Cartilage Tissue Engineering. Engineering, 2022, 13, 71-90.	3.2	25
920	A Comprehensive Assessment on the Pivotal Role of Hydrogels in Scaffold-Based Bioprinting. Gels, 2022, 8, 239.	2.1	6
921	Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell, 2022, 29, 678-691.	5.2	28
928	Biofabricating the Vascular Tree in Engineered Bone Tissue. SSRN Electronic Journal, 0, , .	0.4	0
929	Emerging strategies in 3D printed tissue models for inÂvitro biomedical research. , 2022, , 207-246.		1
930	Mechanical characterization of soft microparticles prepared by droplet microfluidics. Journal of Polymer Science, 2022, 60, 1670-1699.	2.0	5
931	Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Biofabrication, 2022, 14, 032001.	3.7	23
932	Design and Implementation of Anatomically Inspired Mesenteric and Intestinal Vascular Patterns for Personalized 3D Bioprinting. Applied Sciences (Switzerland), 2022, 12, 4430.	1.3	2

		EPORT	
#	Article	IF	CITATIONS
933	Biomanufacturing human tissues via organ building blocks. Cell Stem Cell, 2022, 29, 667-677.	5.2	31
934	Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell, 2022, 29, 722-743.	5.2	19
935	Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication, 2022, 14, 034105.	3.7	41
936	Tuning of 2D cultured human fibroblast behavior using lumichrome photocrosslinked collagen hydrogels. Materials Today Communications, 2022, 31, 103635.	0.9	6
937	Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. Journal of Molecular and Cellular Cardiology, 2022, 169, 13-27.	0.9	8
938	FRESH bioprinting of biodegradable chitosan thermosensitive hydrogels. Bioprinting, 2022, 27, e00209.	2.9	9
939	Mimicking the liver function in micro-patterned units: Challenges and perspectives in 3D bioprinting. Bioprinting, 2022, 27, e00208.	2.9	9
940	Biomaterials for bioprinting. , 2022, , 51-86.		2
941	Bioprinting technologies: an overview. , 2022, , 19-49.		4
942	From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines, 2022, 13, 780.	1.4	15
943	Scalable fabrication, compartmentalization and applications of living microtissues. Bioactive Materials, 2023, 19, 392-405.	8.6	4
944	FRESH 3D Bioprinting a Ventricle-like Cardiac Construct Using HumanÂStem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2022, , 71-85.	0.4	4
945	Investigation on the Temperature Control Accuracy of a Print Head for Extrusion 3D Printing and Its Improved Design. Biomedicines, 2022, 10, 1233.	1.4	3
947	One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks. ACS Biomaterials Science and Engineering, 2022, 8, 2589-2597.	2.6	8
948	Leading Approaches to Vascularize Kidney Constructs in Tissue Engineering. Engineering, 2022, 19, 117-127.	3.2	1
949	A Printâ€∎ndâ€Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels. Advanced Materials, 2022, 34, .	11.1	24
950	Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	25
951	Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers, 2022, 14, 2182.	2.0	15

#	Article	IF	CITATIONS
952	Scalable Biofabrication: A Perspective on the Current State and Future Potentials of Process Automation in 3D-Bioprinting Applications. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
953	Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions. Npj Flexible Electronics, 2022, 6, .	5.1	22
954	Versatile and Extendable Boronate-Based Tunable Hydrogel Networks for Patterning Applications. ACS Applied Polymer Materials, 2022, 4, 5091-5102.	2.0	2
955	Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies. Manufacturing Technology, 2022, 22, 347-355.	0.2	9
956	Embedded 3D Printing in Selfâ€Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs. Advanced Science, 2022, 9, .	5.6	21
957	Jammed Microgelâ€Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations. Macromolecular Rapid Communications, 2022, 43, .	2.0	13
958	Three-dimensional direct laser writing of biomimetic neuron interfaces in the era of artificial intelligence: principles, materials, and applications. Advanced Photonics, 2022, 4, .	6.2	3
959	Optimal conditions and generation mechanism of jet atomization for uniform distribution of nano- and micro-droplets. Japanese Journal of Applied Physics, 0, , .	0.8	0
960	A versatile embedding medium for freeform bioprinting with multi-crosslinking methods. Biofabrication, 2022, 14, 035022.	3.7	12
961	Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nature Communications, 2022, 13, .	5.8	43
962	Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. ACS Applied Materials & amp; Interfaces, 2022, 14, 27575-27588.	4.0	4
963	Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomaterials Science and Engineering, 2022, 8, 2764-2797.	2.6	34
964	Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges. Biomacromolecules, 2022, 23, 2730-2751.	2.6	25
965	Multi-Scale Analysis of the Composition, Structure, and Function of Decellularized Extracellular Matrix for Human Skin and Wound Healing Models. Biomolecules, 2022, 12, 837.	1.8	9
966	Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs. IScience, 2022, 25, 104552.	1.9	7
967	A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds <i>via</i> combination of 3D printing and stimuli-responsive hydrogels. Materials Horizons, 2022, 9, 2393-2407.	6.4	23
968	Suppression of Filament Defects in Embedded 3D Printing. ACS Applied Materials & Interfaces, 2022, 14, 32561-32578.	4.0	13
969	Personalized Volumetric Tissue Generation by Enhancing Multiscale Mass Transport through 3D Printed Scaffolds in Perfused Bioreactors. Advanced Healthcare Materials. 2022. 11	3.9	5

#	Article	IF	CITATIONS
970	Cell‣aden Gradient Microgel Suspensions for Spatial Control of Differentiation During Biofabrication. Advanced Healthcare Materials, 2022, 11, .	3.9	7
971	<scp>Threeâ€dimensional</scp> bioprinting of tragacanth/hydroxyapaptite modified alginate bioinks for bone tissue engineering with tunable printability and bioactivity. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
972	Biomimetic Vasculatures by 3Dâ€Printed Porous Molds. Small, 2022, 18, .	5.2	8
973	A hackable, multi-functional, and modular extrusion 3D printer for soft materials. Scientific Reports, 2022, 12, .	1.6	11
974	Advances of 3D Printing in Vascularized Organ Construction. International Journal of Bioprinting, 2022, 8, 588.	1.7	5
975	Extracellular Matrix Microparticles Improve GelMA Bioink Resolution for 3D Bioprinting at Ambient Temperature. Macromolecular Materials and Engineering, 2022, 307, .	1.7	11
976	Injectable Microporous Annealed Particle Hydrogel Based on Guest–Hostâ€Interlinked Polyethylene Glycol Maleimide Microgels. Advanced NanoBiomed Research, 2022, 2, .	1.7	10
977	Simulated stress mitigation strategies in embedded bioprinting. Physics of Fluids, 2022, 34, .	1.6	5
978	Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid with an Interactive Dual Microstructure. ACS Applied Materials & Interfaces, 2022, 14, 39420-39431.	4.0	9
979	Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies. International Journal of Molecular Sciences, 2022, 23, 8589.	1.8	8
980	Material extrusion additive manufacturing of dense pastes consisting of macroscopic particles. MRS Communications, 2022, 12, 483-494.	0.8	8
981	Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Advanced Healthcare Materials, 2022, 11, .	3.9	8
982	Self-Healing Injectable Hydrogels for Tissue Regeneration. Chemical Reviews, 2023, 123, 834-873.	23.0	190
983	Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomaterialia, 2023, 156, 21-36.	4.1	20
984	Organ-on-a-chip: A new tool for in vitro research. Biosensors and Bioelectronics, 2022, 216, 114626.	5.3	16
985	Spatially guided endothelial tubulogenesis by laser-induced side transfer (LIST) bioprinting of HUVECs. Bioprinting, 2022, 28, e00240.	2.9	1
986	Three-dimensional bioprinting of organs. Modern achievements. Critical Reviews in Biomedical Engineering, 2022, , .	0.5	1
987	3D Bioprinting for Tumor Metastasis Research. SSRN Electronic Journal, 0, , .	0.4	Ο

ARTICLE IF CITATIONS # 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor 988 2.6 13 photothermal-chemotherapy and wound healing. Biomaterials Science, 2022, 10, 5648-5661. Three-Dimensional Arenas for the Assessment of Caenorhabditis elegans Behavior. International 1.7 Journal of Bioprinting, 2022, 8, 610. In situ formation of osteochondral interfaces through "bone-ink―printing in tailored microgel 990 4.1 7 suspensions. Acta Biomaterialia, 2023, 156, 75-87. Hydrogel Injection Molding to Generate Complex Cell Encapsulation Geometries. ACS Biomaterials 991 Science and Engineering, 2022, 8, 4002-4013. Thermo-sensitive Sacrificial Microsphere-based Bioink for Centimeter-scale Tissue with Angiogenesis. 992 1.7 4 International Journal of Bioprinting, 2022, 8, 599. Classification of the emerging freeform three-dimensional printing techniques. MRS Bulletin, 2023, 48, 1.7 69-92. 3D Bioprinted Patientâ€Specific Extracellular Matrix Scaffolds for Soft Tissue Defects. Advanced 994 3.9 17 Healthcare Materials, 2022, 11, . An integrated computer vision system for real-time monitoring and control of long-fiber embedded hydrogel 3D printing. Materials Today: Proceedings, 2022, , . Freeform liquid 3D printing of hydraulically enhanced dielectric actuators. Materials Today: 996 0.9 2 Proceedings, 2022, 70, 83-89. High Throughput Omnidirectional Printing of Tubular Microstructures from Elastomeric Polymers. Advanced Healthcare Materials, 2022, 11, Leveraging ultra-low interfacial tension and liquid–liquid phase separation in embedded 3D 998 3 1.0 bioprinting. Biophysics Reviews, 2022, 3, . Role of 3D Printing in the Development of Biodegradable Implants for Central Nervous System Drug 999 2.3 Delivery. Molecular Pharmaceutics, 2022, 19, 4411-4427. A "Nonsolvent Quenching―Strategy for 3D Printing of Polysaccharide Scaffolds with Immunoregulatory Accuracy. Advanced Science, 0, , 2203236. 1000 5.6 3 All-aqueous printing of viscoelastic droplets in yield-stress fluids. Acta Biomaterialia, 2023, 165, 60-71. 4.1 Regulable Supporting Baths for Embedded Printing of Soft Biomaterials with Variable Stiffness. ACS 1003 4.0 16 Applied Materials & amp; Interfaces, 2022, 14, 41695-41711. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell 2.0 Osteogenesis. Polymers, 2022, 14, 3788. Complex architectural control of ice-templated collagen scaffolds using a predictive model. Acta 1006 4.1 3 Biomaterialia, 2022, 153, 260-272. Multiaxis printing method for bent tubular structured gels in support bath for achieving high 1.8 dimension and shape accuracy. Precision Engineering, 2023, 79, 109-118.

#	Article	IF	CITATIONS
1010	Engineering multicellular living systems—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1518, 183-195.	1.8	3
1011	FRESH Bioprinting of Dynamic Hydrazone-Cross-Linked Synthetic Hydrogels. Biomacromolecules, 2022, 23, 4883-4895.	2.6	10
1012	In situ volumetric imaging and analysis of FRESH 3D bioprinted constructs using optical coherence tomography. Biofabrication, 2023, 15, 014102.	3.7	9
1013	Non-planar embedded 3D printing for complex hydrogel manufacturing. Bioprinting, 2022, 28, e00242.	2.9	2
1014	Design of a multichannel indentation system for measuring biomechanical properties of forearm soft tissues in vivo. Journal of Biomechanical Science and Engineering, 2022, , .	0.1	1
1015	Modern prerequisites for creating a collagen-based artificial analogue of the corneal stroma. Vestnik Oftalmologii, 2022, 138, 253.	0.1	0
1016	Rational Design of Materials for 3D Bioprinting of Bioinks for Fabricating Human Tissues. , 2022, , 237-245.		0
1017	Three-Dimensional Bioprinting of Naturally Derived Protein-Based Biopolymers. , 2022, , 363-377.		0
1018	Vascularization strategies for bioprinting. Materials Today: Proceedings, 2022, , .	0.9	0
1019	Embedded 3D Printing of Thermally ured Thermoset Elastomers and the Interdependence of Rheology and Machine Pathing. Advanced Materials Technologies, 2023, 8, .	3.0	6
1020	Recent Advances in the Hydrogel-Based Biomolecule Delivery System for Cartilage Tissue Engineering. Advances in Materials Science and Engineering, 2022, 2022, 1-16.	1.0	1
1021	Cryobioprinting for biomedical applications. Journal of 3D Printing in Medicine, 0, , .	1.0	1
1022	Enzymatically Triggered Deprotection and Cross-Linking of Thiolated Alginate-Based Bioinks. Chemistry of Materials, 2022, 34, 9536-9545.	3.2	6
1023	Investigation on the Temperature Distribution Uniformity of an Extrusion-Based 3D Print Head and Its Temperature Control Strategy. Pharmaceutics, 2022, 14, 2108.	2.0	4
1024	4D Biofabrication of Tâ€Shaped Vascular Bifurcation. Advanced Materials Technologies, 2023, 8, .	3.0	12
1025	3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses. Applied Sciences (Switzerland), 2022, 12, 11015.	1.3	6
1026	3D Printing Technology for Smart Clothing: A Topic Review. Materials, 2022, 15, 7391.	1.3	7
1027	Printâ€andâ€Grow within a Novel Support Material for 3D Bioprinting and Postâ€Printing Tissue Growth. Advanced Science, 2022, 9, .	5.6	11

#	Article	IF	CITATIONS
1028	Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. Nanomaterials, 2022, 12, 3878.	1.9	10
1029	Embedded extrusion printing in yield-stress-fluid baths. Matter, 2022, 5, 3775-3806.	5.0	20
1030	3D-Printed Soft Wearable Electronics: Techniques, Materials, and Applications. , 2023, , 1-49.		0
1031	Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers, 2022, 14, 4825.	2.0	16
1032	Analytical modeling of deposited filaments for high viscosity material-based piston-driven direct ink writing. International Journal of Advanced Manufacturing Technology, 2022, 123, 3387-3398.	1.5	3
1034	Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Biomedical Materials (Bristol), 2023, 18, 015014.	1.7	12
1035	Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs. ACS Applied Materials & Interfaces, 2022, 14, 51602-51618.	4.0	11
1036	3D bioprinting of articular cartilage: Recent advances and perspectives. Bioprinting, 2022, 28, e00253.	2.9	4
1037	Research Progress of Three-Dimensional Bioprinting Artificial Cardiac Tissue. Tissue Engineering and Regenerative Medicine, 2023, 20, 1-9.	1.6	6
1038	Embedded 3D Printing of Multimaterial Polymer Lattices via Graphâ€Based Print Path Planning. Advanced Materials, 2023, 35, .	11.1	20
1039	Three-Dimensional Bio-Printed Cardiac Patch for Sustained Delivery of Extracellular Vesicles from the Interface. Gels, 2022, 8, 769.	2.1	2
1040	A Bionic Testbed for Cardiac Ablation Tools. International Journal of Molecular Sciences, 2022, 23, 14444.	1.8	1
1041	Process fundamentals and quality investigation in extrusion 3D printing of shear thinning materials: extrusion process based on Nishihara model. International Journal of Advanced Manufacturing Technology, 2023, 124, 245-264.	1.5	2
1042	Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels. Biomacromolecules, 2022, 23, 5137-5147.	2.6	6
1043	3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics, 2022, 14, 2596.	2.0	10
1044	Functional Tough Hydrogels: Design, Processing, and Biomedical Applications. Accounts of Materials Research, 2023, 4, 101-114.	5.9	23
1045	3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication, 2023, 15, 015017.	3.7	7
1046	In Situ Endothelialization of Freeâ€Form 3D Network of Interconnected Tubular Channels via Interfacial Coacervation by Aqueousâ€inâ€Aqueous Embedded Bioprinting. Advanced Materials, 2023, 35, .	11.1	10

#	Article	IF	CITATIONS
1047	Microfluidic 3D Printing of Emulsion Ink for Engineering Porous Functionally Graded Materials. Advanced Materials Technologies, 2023, 8, .	3.0	9
1048	3D bioprinting and its innovative approach for biomedical applications. MedComm, 2023, 4, .	3.1	15
1049	Three-dimensional printing of soft hydrogel electronics. Nature Electronics, 2022, 5, 893-903.	13.1	51
1050	Building block properties govern granular hydrogel mechanics through contact deformations. Science Advances, 2022, 8, .	4.7	15
1051	Percutaneous reduction and cannulated screw fixation assisted by 3D printing technology of calcaneal fractures in children. Journal of Orthopaedic Science, 2024, 29, 236-242.	0.5	0
1052	Fresh 3D Printing of Double Crosslinked Hyaluronic Acid/Pectin Hydrogels. Macromolecular Symposia, 2022, 406, .	0.4	1
1053	Development of a lowâ€cost hydrogel microextrusion printer based on a Kossel delta <scp>3D</scp> printer platform. Engineering Reports, 2023, 5, .	0.9	2
1055	3D soft tissue printing—from vision to reality—review of current concepts. European Journal of Plastic Surgery, 0, , .	0.3	0
1056	Emerging 3D bioprinting applications in plastic surgery. Biomaterials Research, 2023, 27, .	3.2	31
1057	Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. Bioengineering, 2023, 10, 106.	1.6	6
1058	3D Printing of Green Materials. , 2022, , 1-13.		0
1059	Bioprinting Technologies and Bioinks for Vascular Model Establishment. International Journal of Molecular Sciences, 2023, 24, 891.	1.8	10
1060	Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions. Biofabrication, 2023, 15, 025005.	3.7	10
1061	Jammed microgels fabricated via various methods for biological studies. Korean Journal of Chemical Engineering, 0, , .	1.2	0
1062	Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS Applied Bio Materials, 2023, 6, 1-23.	2.3	13
1063	A dual osteoconductive-osteoprotective implantable device for vertical alveolar ridge augmentation. Frontiers in Dental Medicine, 0, 3, .	0.5	2
1064	Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	12
1065	3D Printing of Selfâ€Assembling Nanofibrous Multidomain Peptide Hydrogels. Advanced Materials, 2023, 35, .	11.1	22

#	Article	IF	CITATIONS
1066	Extrusion <scp>3D</scp> printing of a multiphase collagenâ€based material: An optimized strategy to obtain biomimetic scaffolds with high shape fidelity. Journal of Applied Polymer Science, 2023, 140, .	1.3	5
1067	Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Biomaterials, 2023, 294, 121999.	5.7	18
1069	Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering. Tissue Engineering - Part A, 2023, 29, 244-255.	1.6	2
1070	3D bioprinting vascular networks in suspension baths. Applied Materials Today, 2023, 30, 101729.	2.3	3
1071	Design and characterization of 3-D printed hydrogel lattices with anisotropic mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105652.	1.5	1
1072	A vertical additive-lathe printing system for the fabrication of tubular constructs using gelatin methacryloyl hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 139, 105665.	1.5	3
1073	Additive manufacturing of Schwann cell-laden collagen/alginate nerve guidance conduits by freeform reversible embedding regulate neurogenesis via exosomes secretion towards peripheral nerve regeneration. , 2023, 146, 213276.		11
1074	Bioprinted Hydrogels for Fibrosis and Wound Healing: Treatment and Modeling. Gels, 2023, 9, 19.	2.1	8
1075	Aqueous Twoâ€Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter. Advanced Science, 2023, 10, .	5.6	8
1076	Development of a high-performance open-source 3D bioprinter. Scientific Reports, 2022, 12, .	1.6	10
1077	Considerations of bioprinting. , 2023, , 13-67.		0
1078	3D printing families: laser, powder, and nozzle-based techniques. , 2023, , 29-57.		2
1079	High-resolution 3D printing for healthcare. , 2023, , 225-271.		1
1080	Introduction to three-dimensional printing in medicine. , 2023, , 1-27.		0
1081	Recent advances in tumors-on-chips. , 2023, , 79-117.		0
1082	(Bio)fabrication of microfluidic devices and organs-on-a-chip. , 2023, , 273-336.		2
1083	Bioprinting of vascularized tissues. , 2023, , 173-213.		0
1084	Closed-loop vasculature network design for bioprinting large, solid tissue scaffolds. Biofabrication, 2023, 15, 024104.	3.7	1

#	Article	IF	Citations
1085	Hydrogel Based on Alginate as an Ink in Additive Manufacturing Technology—Processing Methods and Printability Enhancement. , 2023, , 209-232.		1
1086	Integrated data-driven modeling and experimental optimization of granular hydrogel matrices. Matter, 2023, 6, 1015-1036.	5.0	9
1087	Hydrogel-Based Tissue-Mimics for Vascular Regeneration and Tumor Angiogenesis. , 2023, , 143-180.		0
1088	Advances in skin-on-a-chip and skin tissue engineering. , 2023, , 123-166.		1
1089	3D Bioprinting techniques. , 2023, , 91-145.		2
1091	Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Tissue Engineering - Part C: Methods, 2023, 29, 85-94.	1.1	3
1092	Nozzle-based precision patterning with micro-/nano fluidics integrated cantilevers. Journal of Mechanical Science and Technology, 2023, 37, 887-900.	0.7	2
1093	Associative Liquidâ€Inâ€Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter. Small, 2023, 19, .	5.2	13
1094	Eye-on-a-chip. , 2023, , 315-369.		2
1095	In situ 3D bioprinting: A promising technique in advanced biofabrication strategies. Bioprinting, 2023, 31, e00260.	2.9	7
1096	3D Printing Ceramics—Materials for Direct Extrusion Process. Ceramics, 2023, 6, 364-385.	1.0	8
1097	Angiogenesis driven extracellular matrix remodeling of 3D bioprinted vascular networks. Bioprinting, 2023, 30, e00258.	2.9	1
1098	Expanding Embedded 3D Bioprinting Capability for Engineering Complex Organs with Freeform Vascular Networks. Advanced Materials, 2023, 35, .	11.1	23
1099	Vat photopolymerization bioprinting with a dynamic support bath. Additive Manufacturing, 2023, 69, 103533.	1.7	3
1100	Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Materials and Design, 2023, 229, 111885.	3.3	4
1101	Nondestructive ultrasound evaluation of microstructure-related material parameters of skeletal muscle: an in silico and in vitro study. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105807.	1.5	0
1102	Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. International Journal of Biological Macromolecules, 2023, 240, 124364.	3.6	5
1103	3D printing a universal knee meniscus using a custom collagen ink. Bioprinting, 2023, 31, e00272.	2.9	5

# 1104	ARTICLE Programmable Tissue Folding Patterns in Structured Hydrogels. Advanced Materials, 0, , .	IF 11.1	CITATIONS 5
1105	Nonplanar 3D Printing of Epoxy Using Freeform Reversible Embedding. Advanced Materials Technologies, 2023, 8, .	3.0	5
1106	Design and bioprinting for tissue interfaces. Biofabrication, 2023, 15, 022002.	3.7	3
1107	Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. International Journal of Biological Macromolecules, 2023, 232, 123476.	3.6	27
1108	Conformal 3D Material Extrusion Additive Manufacturing for Large Moulds. Applied Sciences (Switzerland), 2023, 13, 1892.	1.3	5
1109	Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. Medicine in Novel Technology and Devices, 2023, 17, 100211.	0.9	8
1110	Engineering Tridimensional Hydrogel Tissue and Organ Phantoms with Tunable Springiness. Advanced Functional Materials, 2023, 33, .	7.8	14
1111	Liquid-embedded (bio)printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	11
1112	3Dâ€Printed Anisotropic Nanofiber Composites with Gradual Mechanical Properties. Advanced Materials Technologies, 2023, 8, .	3.0	5
1115	Advanced supramolecular design for direct ink writing of soft materials. Chemical Society Reviews, 2023, 52, 1614-1649.	18.7	25
1116	"Outâ€ofâ€ŧheâ€box―Granular Gel Bath Based on Cationic Polyvinyl Alcohol Microgels for Embedded Extrusion Printing. Macromolecular Rapid Communications, 2023, 44, .	2.0	5
1117	Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering. Circulation Research, 2023, 132, 519-540.	2.0	6
1118	Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Advanced Healthcare Materials, 2023, 12, .	3.9	15
1119	Machine learning for soft and liquid molecular materials. , 2023, 2, 298-315.		2
1120	3D Bioprinting in Otolaryngology: A Review. Advanced Healthcare Materials, 2023, 12, .	3.9	9
1122	Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polymer-Plastics Technology and Materials, 2022, 61, 1039-1070.	0.6	15
1123	Multiscale Hybrid Fabrication: Volumetric Printing Meets Twoâ€Photon Ablation. Advanced Materials Technologies, 2023, 8, .	3.0	9
1124	Hydrogels—A Promising Materials for 3D Printing Technology. Gels, 2023, 9, 260.	2.1	16

#	Article	IF	CITATIONS
1125	Polysaccharideâ€based biomaterials in a journey from <scp>3D</scp> to <scp>4D</scp> printing. Bioengineering and Translational Medicine, 2023, 8, .	3.9	6
1126	Granular Ionogel Particle Inks for 3D Printed Tough and Stretchable Ionotronics. Research, 2023, 6, .	2.8	3
1127	Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. Npj Microgravity, 2023, 9, .	1.9	1
1128	3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators. Science Advances, 2023, 9, .	4.7	12
1129	Three-Dimensional Bioprinting of Organoid-Based Scaffolds (OBST) for Long-Term Nanoparticle Toxicology Investigation. International Journal of Molecular Sciences, 2023, 24, 6595.	1.8	5
1130	3D printingâ€based fullâ€scale human brain for diverse applications. , 2023, 1, .		2
1131	Future solutions for osteoarthritis using 3D bioprinting of articular cartilage. , 2023, , 335-369.		0
1132	Study of hydrogel materials thermophysical properties. Thermal Science, 2023, , 71-71.	0.5	0
1133	Preparation and properties of composite hydrogels for <scp>3D</scp> bioprinting. Polymers for Advanced Technologies, 2023, 34, 2369-2383.	1.6	1
1134	Soft Hydrogel Shapeability via Supportive Bath Matching in Embedded 3D Printing. Advanced Materials Technologies, 2023, 8, .	3.0	7
1135	Evaluation of ionic calcium and protein concentration on heat- and cold-induced gelation of whey protein isolate gels as a potential food formulation for 3D food printing. Food Hydrocolloids, 2023, 142, 108777.	5.6	4
1136	Interfacial Polyelectrolyte Complexation-Inspired Bioprinting of Vascular Constructs. ACS Applied Materials & Interfaces, 2023, 15, 20712-20725.	4.0	1
1137	Comparative analysis of the residues of granular support bath materials on printed structures in embedded extrusion printing. Biofabrication, 2023, 15, 035013.	3.7	4
1138	Emerging silk fibroin materials and their applications: New functionality arising from innovations in silk crosslinking. Materials Today, 2023, 65, 244-259.	8.3	12
1139	From shape to function—bioprinting technologies for tissue engineered grafts to meet clinical needs. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 701-722.	1.8	0
1140	Advances in 3D/4D printing of mechanical metamaterials: From manufacturing to applications. Composites Part B: Engineering, 2023, 254, 110585.	5.9	54
1141	Development of a Clay 3D Printing Pen. Lecture Notes in Mechanical Engineering, 2023, , 91-104.	0.3	0
1145	Supramolecular assemblies of multifunctional microgels for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 6265-6289.	2.9	3

	CITATION	N REPORT	
#	Article	IF	CITATIONS
1149	Engineering Dynamic 3D Models of Lung. Advances in Experimental Medicine and Biology, 2023, , 155-189.	0.8	0
1157	Three-dimensional bioprinting vascularized bone tissue. MRS Bulletin, 2023, 48, 668-675.	1.7	2
1168	Post-processing methods for 3D printed biopolymers. , 2023, , 229-264.		0
1177	Protein-Based Microfluidic Models for Biomedical Applications. , 2023, , 1-28.		0
1192	FRESH-Printing of a Multi-actuator Biodegradable Robot Arm for Articulation and Grasping. Lecture Notes in Computer Science, 2023, , 130-141.	1.0	0
1201	Nanomaterial scaffolds for cardiovascular tissue engineering. , 2023, , 511-535.		0
1204	A dive into the bath: embedded 3D bioprinting of freeform <i>in vitro</i> models. Biomaterials Science, 2023, 11, 5462-5473.	2.6	1
1209	The prospects for bioprinting tumor models: recent advances in their applications. Bio-Design and Manufacturing, 2023, 6, 661-675.	3.9	1
1220	The Use of 3D Printing in the Food Industry. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 175-183.	0.3	0
1223	Elastin-like hydrogels as tissue regeneration scaffolds. , 2024, , 65-77.		0
1259	Computational Modeling for Decision Making. , 2023, , 217-227.		0
1263	Hybrid Printing of Liquid Metal. , 2024, , 1-52.		0
1266	Semisolid Extrusion Printing and 3D Bioprinting. AAPS Advances in the Pharmaceutical Sciences Series, 2024, , 195-233.	0.2	0
1272	Tissue engineering applications of additive manufacturing. , 2023, , .		0
1275	Closer to nature. , 2024, , 47-92.		0
1279	Microgels for bioprinting: recent advancements and challenges. Biomaterials Science, 0, , .	2.6	0
1282	Bioprinting as a fabrication method for cultivated meat. , 2024, , 189-202.		0
1283	Scaffolds for cultivated meat: technological considerations. , 2024, , 143-160.		0

#	Article	IF	CITATIONS
1288	3D bioprinting of microorganisms: principles and applications. Bioprocess and Biosystems Engineering, 2024, 47, 443-461.	1.7	1
1300	Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models. Methods in Molecular Biology, 2024, , 279-288.	0.4	0