Experimental demonstration of a quantum key distribution monitoring

Nature Photonics 9, 832-836 DOI: 10.1038/nphoton.2015.209

Citation Report

#	Article	IF	CITATIONS
1	Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Physical Review A, 2015, 92, .	1.0	29
2	Quantum key distribution using qudits that each encode one bit of raw key. Physical Review A, 2015, 92,	1.0	28
3	Establishing security of quantum key distribution without monitoring disturbance. Proceedings of SPIE, 2015, , .	0.8	0
4	Round-robin with photons. Nature Photonics, 2015, 9, 781-782.	15.6	3
5	Security of the differential-quadrature-phase-shift quantum key distribution. Physical Review A, 2016, 94, .	1.0	10
6	Two-dimensional distributed-phase-reference protocol for quantum key distribution. Scientific Reports, 2016, 6, 36756.	1.6	30
7	Recent advances on integrated quantum communications. Journal of Optics (United Kingdom), 2016, 18, 083002.	1.0	103
8	Practical round-robin differential phase-shift quantum key distribution. Optics Express, 2016, 24, 20763.	1.7	17
9	Multiplexed entangled photon-pair sources for all-fiber quantum networks. Physical Review A, 2016, 94, .	1.0	29
10	Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units. Optics Express, 2016, 24, 8302.	1.7	26
11	Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution. Physical Review A, 2016, 93, .	1.0	8
12	Detector-decoy quantum key distribution without monitoring signal disturbance. Physical Review A, 2016, 93, .	1.0	18
13	Experimental round-robin differential phase-shift quantum key distribution. Physical Review A, 2016, 93, .	1.0	40
14	Practical challenges in quantum key distribution. Npj Quantum Information, 2016, 2, .	2.8	489
15	N-dimensional measurement-device-independent quantum key distribution with N + 1 un-characterized sources: zero quantum-bit-error-rate case. Scientific Reports, 2016, 6, 30036.	1.6	4
16	Round-robin differential-phase-shift quantum key distribution in wavelength-multiplexed fiber channel. , 2017, , .		0
17	Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Information Processing, 2017, 16, 1.	1.0	26
18	Round-robin differential-phase-shift quantum key distribution with a passive decoy state method. Scientific Reports, 2017, 7, 42261.	1.6	18

#	ARTICLE Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison	IF 1.0	CITATIONS 6
20	with existing qubit- and qudit-based protocols. Physical Review A, 2017, 95, . QKD system with fast active optical path length compensation. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	20
21	A security proof of the round-robin differential phase shift quantum key distribution protocol based on the signal disturbance. Quantum Science and Technology, 2017, 2, 024006.	2.6	10
22	Round-robin differential quadrature phase-shift quantum key distribution. Chinese Physics B, 2017, 26, 020303.	0.7	3
23	Practical round-robin differential-phase-shift quantum key distribution. New Journal of Physics, 2017, 19, 033013.	1.2	20
24	Proof of Security of a Semi-Device-Independent Quantum Key Distribution Protocol. Chinese Physics Letters, 2017, 34, 020302.	1.3	5
25	Round-Robin Differential Phase Shift with Heralded Single-Photon Source. Chinese Physics Letters, 2017, 34, 040301.	1.3	3
26	Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Physical Review A, 2017, 95, .	1.0	19
27	Plug-and-play round-robin differential phase-shift quantum key distribution. Scientific Reports, 2017, 7, 15435.	1.6	15
28	Experimental long-distance quantum secure direct communication. Science Bulletin, 2017, 62, 1519-1524.	4.3	208
29	Quantum Secure Direct Communication with Quantum Memory. Physical Review Letters, 2017, 118, 220501.	2.9	460
30	Robust generation of entangled state via ground-state antiblockade of Rydberg atoms. Scientific Reports, 2017, 7, 16489.	1.6	12
31	Manipulating photon coherence to enhance the security of distributed phase reference quantum key distribution. Applied Physics Letters, 2017, 111, .	1.5	6
32	Biased decoy-state reference-frame-independent quantum key distribution. European Physical Journal D, 2017, 71, 1.	0.6	8
33	Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing. Chinese Physics Letters, 2017, 34, 080301.	1.3	2
34	Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution. Chinese Physics Letters, 2017, 34, 080302.	1.3	0
35	Realistic Device Imperfections Affect the Performance of Hong-Ou-Mandel Interference With Weak Coherent States. Journal of Lightwave Technology, 2017, 35, 4996-5002.	2.7	16
36	Polarization variations in installed fibers and their influence on quantum key distribution systems. Optics Express, 2017, 25, 27923.	1.7	35

#	Article	IF	CITATIONS
37	Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 2017, 4, 1016.	4.8	112
38	Trustworthiness of devices in a quantum random number generator based on a symmetric beam splitter. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2185.	0.9	3
39	Multi-Hop Teleportation of an Unknown Qubit State Based on W States. International Journal of Theoretical Physics, 2018, 57, 981-993.	0.5	15
40	Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nature Communications, 2018, 9, 457.	5.8	52
41	Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Science and Technology, 2018, 3, 025006.	2.6	28
42	Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution. Quantum Information Processing, 2018, 17, 1.	1.0	11
43	Security proof for single-photon round-robin differential-quadrature-phase-shift quantum key distribution. Physical Review A, 2018, 98, .	1.0	6
44	Afterpulse Analysis for Quantum Key Distribution. Physical Review Applied, 2018, 10, .	1.5	33
45	Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice. Communications in Theoretical Physics, 2018, 70, 331.	1.1	3
46	Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors. Chinese Physics B, 2018, 27, 100309.	0.7	3
47	Round-robin-differential-phase-shift quantum key distribution based on wavelength division multiplexing. Laser Physics Letters, 2018, 15, 115201.	0.6	2
48	Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. Optics Letters, 2018, 43, 4228.	1.7	7
49	Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation. Chinese Physics B, 2018, 27, 050301.	0.7	2
50	Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Physical Review A, 2018, 97, .	1.0	53
51	New Quantum Key Distribution Scheme Based on Random Hybrid Quantum Channel with EPR Pairs and GHZ States. International Journal of Theoretical Physics, 2018, 57, 2648-2656.	0.5	5
52	Practical reference-frame-independent quantum key distribution systems against the worst relative rotation of reference frames. Journal of Physics Communications, 2018, 2, 055029.	0.5	11
53	Three-step three-party quantum secure direct communication. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	128
54	Quantum secret sharing without monitoring signal disturbance. Quantum Information Processing, 2018, 17, 1.	1.0	2

ARTICLE IF CITATIONS # Round-robin differential-phase-shift quantum key distribution with twisted photons. Physical Review 55 1.0 26 A, 2018, 98, . High-Speed Reconciliation for CVQKD Based on Spatially Coupled LDPC Codes. IEEE Photonics Journal, 1.0 2018, 10, 1-10. FBG-Based Weak Coherent State and Entanglement-Assisted Multidimensional QKD. IEEE Photonics 57 1.0 14 Journal, 2018, 10, 1-12. Practical decoy-state quantum digital signature with optimized parameters. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122341. Practical Quantum Private Query with Classical Participants. Chinese Physics Letters, 2019, 36, 030301. 59 1.3 4 Refined security proof of the round-robin differential-phase-shift quantum key distribution and its 1.0 improved performance in the finite-sized case. Physical Review A, 2019, 99, . Performance optimization of decoy-state BB84- and MDI- QKD protocol and their key integrating 61 1.4 4 application strategy for power dispatching. Optical Fiber Technology, 2019, 52, 101944. Improving the Secure Key Rate and Error Tolerance of the Interferometer-Based Time-Frequency Encoding QKD System. International Journal of Theoretical Physics, 2019, 58, 1456-1469. Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam 63 0.7 6 splitter*. Chinese Physics B, 2019, 28, 090301. Experimental Twoâ€Way Communication with One Photon. Advanced Quantum Technologies, 2019, 2, 1.8 1900050. Decoy state quantum-key-distribution by using odd coherent states without monitoring signal 1 65 0.6 disturbance. International Journal of Quantum Information, 2019, 17, 1950012. Active Phase Stabilization for the Interferometer With 128 Actively Selectable Paths. IEEE Transactions 1.2 on Nuclear Science, 2019, 66, 1076-1080. Practical Quantum Key Distribution with Non-Phase-Randomized Coherent States. Physical Review 67 1.5 7 Applied, 2019, 12, . Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle. Chinese Physics B, 2019, 28, 010305. A quantum secret sharing scheme without monitoring signal disturbance. Optik, 2019, 181, 810-815. 69 2 1.4 Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state. Science China Information Sciences, 2019, 62, 1. Decoy-state reference-frame-independent quantum key distribution with the heralded pair-coherent 71 0.6 2 source. European Physical Journal D, 2019, 73, 1. Adjustable round-pulse time delayer for round-robin differential phase-shift quantum key distribution. Optics Communications, 2019, 448, 43-47.

#	Article	IF	CITATIONS
73	A quantum network stack and protocols for reliable entanglement-based networks. New Journal of Physics, 2019, 21, 033003.	1.2	74
74	Chau–Wang–Wong17 scheme is experimentally more feasible than the six-state scheme. Quantum Information Processing, 2019, 18, 1.	1.0	2
75	Practical Security Analysis of Reference Pulses for Continuous-Variable Quantum Key Distribution. Scientific Reports, 2019, 9, 18155.	1.6	5
76	Quantum identity authentication without entanglement. Quantum Information Processing, 2019, 18, 1.	1.0	44
77	Efficient scheme for passive decoy-state reference-frame-independent quantum key distribution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 311-315.	0.9	7
78	Device-independent quantum secure direct communication against collective attacks. Science Bulletin, 2020, 65, 12-20.	4.3	198
79	Reference-frame-independent quantum key distribution with an untrusted source*. Chinese Physics B, 2020, 29, 030303.	0.7	6
80	An efficient quantum identity authentication key agreement protocol without entanglement. Quantum Information Processing, 2020, 19, 1.	1.0	15
81	A universal simulating framework for quantum key distribution systems. Science China Information Sciences, 2020, 63, 1.	2.7	9
82	Multiple-pulse phase-matching quantum key distribution. Quantum Information Processing, 2020, 19, 1.	1.0	6
83	Improving the performance of decoy-state quantum digital signature with single-photon-added coherent sources. Quantum Information Processing, 2020, 19, 1.	1.0	8
84	Optimizing Single-Photon Avalanche Photodiodes for Dynamic Quantum Key Distribution Networks. Physical Review Applied, 2020, 13, .	1.5	20
85	One-decoy state reference-frame-independent quantum key distribution*. Chinese Physics B, 2020, 29, 070303.	0.7	10
86	Phase-coding quantum-key-distribution system based on Sagnac–Mach-Zehnder interferometers. Physical Review A, 2020, 101, .	1.0	6
87	Reconciliation for CV-QKD using globally-coupled LDPC codes*. Chinese Physics B, 2020, 29, 040301.	0.7	5
88	Real-Time Phase Tracking Scheme With Mismatched-Basis Data for Phase-Coding Quantum Key Distribution. IEEE Photonics Journal, 2020, 12, 1-7.	1.0	3
89	Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Frontiers of Physics, 2021, 16, 1.	2.4	29
90	Round robin differential quadrature phase shift quantum key distribution by using odd coherent states. Optik, 2021, 227, 165763.	1.4	5

#	Article	IF	CITATIONS
91	Two-photon interference: the Hong–Ou–Mandel effect. Reports on Progress in Physics, 2021, 84, 012402.	8.1	83
92	Quantum communication scheme with freely selectable users. Modern Physics Letters B, 2021, 35, 2150156.	1.0	1
93	Round-Robin Differential Phase-Time-Shifting Protocol for Quantum Key Distribution: Theory and Experiment. Physical Review Applied, 2021, 15, .	1.5	2
94	Coexistence of quantum key distribution and optical transport network based on standard single-mode fiber at high launch power. Optics Letters, 2021, 46, 2573.	1.7	19
95	Intensity modulator for secure, stable, and high-performance decoy-state quantum key distribution. Npj Quantum Information, 2021, 7, .	2.8	14
96	Tight finite-key analysis for quantum key distribution without monitoring signal disturbance. Npj Quantum Information, 2021, 7, .	2.8	2
97	Secure quantum secret sharing without signal disturbance monitoring. Optics Express, 2021, 29, 32244.	1.7	19
98	Novel quantum key distribution with shift operations based on Fibonacci and Lucas valued orbital angular momentum entangled states. Physica A: Statistical Mechanics and Its Applications, 2020, 554, 124694.	1.2	3
99	An Improved Polar Codesâ€Based Key Reconciliation for Practical Quantum Key Distribution. Chinese Journal of Electronics, 2018, 27, 250-255.	0.7	11
100	Novel continuous-variable quantum secure direct communication and its security analysis. Laser Physics Letters, 2019, 16, 095207.	0.6	14
101	Secure quantum key distribution with realistic devices. Reviews of Modern Physics, 2020, 92, .	16.4	733
102	Quantum hacking on a free-space quantum key distribution system without measuring quantum signals. Journal of the Optical Society of America B: Optical Physics, 2019, 36, B77.	0.9	14
103	Proof-of-principle demonstration of parametric down-conversion source-based quantum key distribution over 40 dB channel loss. Optics Express, 2018, 26, 25921.	1.7	15
104	Finite-key analysis for round-robin-differential-phase-shift quantum key distribution. Optics Express, 2020, 28, 15416.	1.7	3
105	Weak randomness impacts the security of reference-frame-independent quantum key distribution. Optics Letters, 2019, 44, 1226.	1.7	13
106	Principle and Demonstration of Quantum Key Distribution without Monitoring Disturbance. , 2016, , .		0
107	Time–energy high-dimensional one-side device-independent quantum key distribution. Chinese Physics B, 2017, 26, 050302.	0.7	2
108	Reference-frame-independent measurement-device-independent quantum key distribution under reference frame fluctuation. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 240301.	0.2	4

#	Article	IF	CITATIONS
109	Reference-frame-independent quantum key distribution with random atmospheric transmission efficiency. Modern Physics Letters B, 2020, 34, 2050416.	1.0	0
110	Quantum key distribution integrating with ultra-high-power classical optical communications based on ultra-low-loss fiber. Optics Letters, 2021, 46, 6099.	1.7	12
111	High-dimensional discrete Fourier transform gates with a quantum frequency processor. Optics Express, 2022, 30, 10126.	1.7	15
112	Two-mode quantum entanglement dynamics of underwater quantum communication. , 2022, , .		0
113	Security proof for round-robin differential-quadrature-phase-shift quantum key distribution. Physical Review A, 2022, 105, .	1.0	2
114	One-step device-independent quantum secure direct communication. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	77
115	Optimal Vehicle Scheduling of Logistics Distribution in Foreign Trade Enterprises based on Hybrid Quantum Genetic Algorithm. , 2021, , .		0
116	Security of round-robin differential-phase-shift quantum-key-distribution protocol with correlated light sources. Physical Review A, 2021, 104, .	1.0	6
117	Integration in the C-band between quantum key distribution and the classical channel of 25 dBm launch power over multicore fiber media. Optics Letters, 2022, 47, 3111.	1.7	7
118	Research Progress in Construction and Application of Enzyme-Based DNA Logic Gates. IEEE Transactions on Nanobioscience, 2023, 22, 245-258.	2.2	1
119	Improved reference-frame-independent quantum key distribution. Optics Letters, 2022, 47, 4219.	1.7	5
120	Performance influence on reference-frame-independent quantum key distributions with detection imperfections. Quantum Information Processing, 2022, 21, .	1.0	3
121	Performance analysis of the QKD algorithm using RS and AES. , 2022, , .		0
122	Performance analysis of inter-satellite round-robin differential-phase-shift quantum key distribution. Quantum Information Processing, 2022, 21, .	1.0	0
123	Scalable high-rate measurement-device-independent quantum key distribution network without reference-frame alignment. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
124	Twin-Field Quantum Key Distribution with Partial Phase Postselection. Physical Review Applied, 2022, 18, .	1.5	4
125	Numerical simulation of quantum key distribution network based on wavelength division multiplexing technology. Journal of Physics: Conference Series, 2022, 2381, 012082.	0.3	0
126	Simplified scheme for passive decoy-state reference-frame-independent quantum key distribution. , 2022, , .		0

#	Article	IF	CITATIONS
127	Device-Independent Quantum Secure Direct Communication with Single-Photon Sources. Physical Review Applied, 2023, 19, .	1.5	30
128	Multiple-participant measurement-device-independent quantum secret sharing protocol based on entanglement swapping. Laser Physics Letters, 2023, 20, 025203.	0.6	9
129	Measurement-device-independent three-party quantum secure direct communication. Quantum Information Processing, 2023, 22, .	1.0	14
130	Afterpulse effects in quantum key distribution without monitoring signal disturbance. Optics Letters, 2023, 48, 1558.	1.7	0
131	Measurement-Device-Independent Three-party Quantum Secure Direct Communication Based on Entanglement Swapping. , 2022, , .		0
132	Hacking measurement-device-independent quantum key distribution. Optica, 2023, 10, 520.	4.8	5