Abundant molecular oxygen in the coma of comet 67P/0

Nature 526, 678-681 DOI: 10.1038/nature15707

Citation Report

#	Article	IF	CITATIONS
1	DIVISION F COMMISSION 15: PHYSICAL STUDY OF COMETS AND MINOR PLANETS. Proceedings of the International Astronomical Union, 2015, 11, 316-339.	0.0	1
3	MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY. Astrophysical Journal Letters, 2015, 815, L11.	3.0	55
4	Rosetta sniffs oxygen around comet 67P. Nature, 2015, , .	13.7	0
5	Setting the volatile composition of (exo)planet-building material. Astronomy and Astrophysics, 2016, 595, A83.	2.1	123
6	A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O ₂ ice from clouds to discs. Monthly Notices of the Royal Astronomical Society, 2016, 462, S99-S115.	1.6	70
7	WHAT IS EATING OZONE? THERMAL REACTIONS BETWEEN SO ₂ AND O ₃ : IMPLICATIONS FOR ICY ENVIRONMENTS. Astrophysical Journal Letters, 2016, 833, L9.	3.0	11
8	THE NATURE AND FREQUENCY OF THE GAS OUTBURSTS IN COMET 67P/CHURYUMOV–GERASIMENKO OBSERVED BY THE ALICE FAR-ULTRAVIOLET SPECTROGRAPH ON ROSETTA. Astrophysical Journal Letters, 2016, 825, L8.	3.0	31
9	Variations in cometary dust composition from <i>Giotto</i> to <i>Rosetta</i> , clues to their formation mechanisms. Monthly Notices of the Royal Astronomical Society, 2016, 462, S323-S330.	1.6	28
10	Discrete sources of cryovolcanism on the nucleus of Comet 29P/Schwassmann–Wachmann and their origin. Icarus, 2016, 272, 387-413.	1.1	30
11	Observation of stable HO ₄ ⁺ and DO ₄ ⁺ ions from ion–molecule reactions in helium nanodroplets. Physical Chemistry Chemical Physics, 2016, 18, 13169-13172.	1.3	5
12	Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S156-S169.	1.6	87
13	2D photochemical model for forbidden oxygen line emission for comet 1P/Halley. Monthly Notices of the Royal Astronomical Society, 2016, 462, S116-S123.	1.6	1
14	Observations of high-plasma density region in the inner coma of 67P/Churyumov–Gerasimenko during early activity. Monthly Notices of the Royal Astronomical Society, 2016, 462, S33-S44.	1.6	11
15	Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S253-S273.	1.6	137
16	Ionospheric plasma of comet 67P probed by <i>Rosetta</i> at 3Âau from the Sun. Monthly Notices of the Royal Astronomical Society, 2016, 462, S331-S351.	1.6	75
17	Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view. Monthly Notices of the Royal Astronomical Society, 2016, 462, S2-S8.	1.6	53
18	NITROGEN ISOTOPIC RATIO OF COMETARY AMMONIA FROM HIGH-RESOLUTION OPTICAL SPECTROSCOPIC OBSERVATIONS OF C/2014 Q2 (LOVEJOY). Astronomical Journal, 2016, 152, 145.	1.9	7
19	CHANGES IN THE PHYSICAL ENVIRONMENT OF THE INNER COMA OF 67P/CHURYUMOV–GERASIMENKO WITH DECREASING HELIOCENTRIC DISTANCE. Astronomical Journal, 2016, 152, 130.	1.9	36

#	Article	IF	CITATIONS
20	67P/Churyumov-Gerasimenko-Rosetta mission shortly before second landing on a comet: a review. , 2016, , .		2
21	Cosmochemical implications of CONSERT permittivity characterization of 67P/CG. Monthly Notices of the Royal Astronomical Society, 2016, 462, S516-S532.	1.6	59
22	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
23	From Giotto to Rosetta. Astronomy and Geophysics, 2016, 57, 6.37-6.40.	0.1	0
24	ON THE MASS AND ORIGIN OF CHARIKLO'S RINGS. Astrophysical Journal, 2016, 821, 18.	1.6	53
25	PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS. Origins of Life and Evolution of Biospheres, 2016, 46, 369-384.	0.8	2
26	ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal Letters, 2016, 823, L41.	3.0	58
27	Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumovâ€Gerasimenko. Journal of Geophysical Research: Space Physics, 2016, 121, 804-816.	0.8	10
28	HIGH-TIME RESOLUTION IN SITU INVESTIGATION OF MAJOR COMETARY VOLATILES AROUND 67P/C–G AT 3.1–2.3 au MEASURED WITH ROSINA-RTOF. Astrophysical Journal, 2016, 819, 126.	1.6	29
29	PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal, 2016, 818, 102.	1.6	5
30	Transport and Distribution of Hydroxyl Radicals and Oxygen Atoms from H2O Photodissociation in the Inner Coma of Comet 67P/Churyumov–Gerasimenko. Earth, Moon and Planets, 2016, 117, 23-39.	0.3	3
31	Heat of solution: A new source of thermal energy in the subsurface of cometary nuclei and the gas-exsolution mechanism driving outbursts of Comet 29P/Schwassmann‒Wachmann and other comets. Icarus, 2016, 272, 356-386.	1.1	29
32	Weakly bound molecular complexes in the laboratory and in the interstellar medium: A lost interest?. Molecular Astrophysics, 2017, 6, 16-21.	1.7	16
33	Sensitivity and fragmentation calibration of the time-of-flight mass spectrometer RTOF on board ESA's Rosetta mission. Planetary and Space Science, 2017, 135, 64-73.	0.9	22
34	Production of O ₂ through dismutation of H ₂ O ₂ during water ice desorption: a key to understanding comet O ₂ abundances. Astronomy and Astrophysics, 2017, 597, A56.	2.1	34
35	IMAGING OBSERVATIONS OF THE HYDROGEN COMA OF COMET 67P/CHURYUMOV–GERASIMENKO IN 2015 SEPTEMBER BY THE PROCYON/LAICA. Astronomical Journal, 2017, 153, 76.	1.9	21
36	Formation of bi-lobed shapes by sub-catastrophic collisions. Astronomy and Astrophysics, 2017, 597, A62.	2.1	72
37	Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances, 2017, 35, 905-932.	6.0	48

#	Article	IF	CITATIONS
38	Dynamic molecular oxygen production in cometary comae. Nature Communications, 2017, 8, 15298.	5.8	34
39	A new model of the chemistry of ionizing radiation in solids: CIRIS. Physical Chemistry Chemical Physics, 2017, 19, 11043-11056.	1.3	26
40	H2O and O2 absorption in the coma of comet 67P/Churyumov–Gerasimenko measured by the Alice far-ultraviolet spectrograph on Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S158-S177.	1.6	28
41	Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA. Monthly Notices of the Royal Astronomical Society, 2017, 469, S108-S117.	1.6	66
42	Evidence for depletion of heavy silicon isotopes at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 601, A123.	2.1	26
43	Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science, 2017, 356, 1069-1072.	6.0	161
44	The 67P/Churyumov–Gerasimenko observation campaign in support of the Rosetta mission. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160249.	1.6	29
45	Comets: looking ahead. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160261.	1.6	13
46	The Rosetta mission orbiter science overview: the comet phase. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160262.	1.6	74
47	Stability of Sulphur Dimers (S ₂) in Cometary Ices. Astrophysical Journal, 2017, 835, 134.	1.6	9
48	Stability of the magnetosonic wave in a cometary multi-ion plasma. Advances in Space Research, 2017, 59, 2679-2688.	1.2	4
49	The photochemical fractionation of oxygen isotopologues in Titan's atmosphere. Icarus, 2017, 291, 17-30.	1.1	26
50	Formation of nitrogen- and oxygen-bearing molecules from radiolysis of nitrous oxide ices – implications for Solar system and interstellar ices. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3281-3290.	1.6	19
51	Isotopic composition of CO ₂ in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS. Astronomy and Astrophysics, 2017, 605, A50.	2.1	35
52	Major achievements of the Rosetta mission in connection with the origin of the solar system. Astronomy and Astrophysics Review, 2017, 25, 1.	9.1	15
53	Diffuse interstellar bands carriers and cometary organic materialâ~ Monthly Notices of the Royal Astronomical Society, 2017, 469, S646-S660.	1.6	8
54	lon composition at comet 67P near perihelion: Rosetta observations and model-based interpretation. Monthly Notices of the Royal Astronomical Society, 2017, 469, S427-S442.	1.6	28
55	Formation of Hydroxylamine in Low-Temperature Interstellar Model Ices. Journal of Physical Chemistry A, 2017, 121, 7477-7493.	1.1	24

#	Article	IF	CITATIONS
56	The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition. Astrophysical Journal, 2017, 846, 131.	1.6	27
57	Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1336-1345.	1.6	44
58	New Horizons Upper Limits on O ₂ in Pluto's Present Day Atmosphere. Astronomical Journal, 2017, 154, 55.	1.9	7
59	Comparison of some characteristics of comets 1P/Halley and 67P/Churyumov–Gerasimenko from the Vega and Rosetta mission data. Solar System Research, 2017, 51, 204-220.	0.3	1
60	30 years of the Vega mission: Comparison of some properties of the 1P/Halley and 67P/Churyumov-Gerasimenko comets. Physics-Uspekhi, 2017, 60, 290-304.	0.8	1
61	Trapping mechanism of O2 in water ice as first measured by Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S818-S823.	1.6	10
62	Sulphur isotope mass-independent fractionation observed in comet 67P/Churyumov–Gerasimenko by Rosetta/ROSINA. Monthly Notices of the Royal Astronomical Society, 2017, 469, S787-S803.	1.6	16
63	The Main Belt Comets and ice in the Solar System. Astronomy and Astrophysics Review, 2017, 25, 1.	9.1	60
64	Effects of the convective field on weakly outgassing comets. Monthly Notices of the Royal Astronomical Society, 2017, 469, S824-S841.	1.6	2
	First in-situ detection of the cometary ammonium ion NH\$_4^{+}\$ (protonated ammonia NH) Tj ETQq1 1 0.784	1211 raDT	Overlach 10
65	Society, 0, , stw3370.	1.6	6 6
65 66			
	Society, 0, , stw3370. Rosetta Mission: Electron Scattering Cross Sections—Data Needs and Coverage in BEAMDB Database.	1.6	6
66	Society, 0, , stw3370. Rosetta Mission: Electron Scattering Cross Sections—Data Needs and Coverage in BEAMDB Database. Atoms, 2017, 5, 46.	1.6 0.7	6 8
66 67	Society, 0, , stw3370. Rosetta Mission: Electron Scattering Cross Sectionsâ€"Data Needs and Coverage in BEAMDB Database. Atoms, 2017, 5, 46. Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumovâ€"Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S695-S711. The chemical connection between 67P/C-G and IRAS 16293-2422. Proceedings of the International	1.6 0.7 1.6	6 8 27
66 67 68	Society, 0, , stw3370. Rosetta Mission: Electron Scattering Cross Sectionsâ€"Data Needs and Coverage in BEAMDB Database. Atoms, 2017, 5, 46. Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumovâ€"Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S695-S711. The chemical connection between 67P/C-G and IRAS 16293-2422. Proceedings of the International Astronomical Union, 2017, 13, 196-201. Astrochemistry: overview and challenges. Proceedings of the International Astronomical Union, 2017,	1.6 0.7 1.6 0.0	6 8 27 0
66 67 68 69	Society, 0, , stw3370. Rosetta Mission: Electron Scattering Cross Sectionsâ€"Data Needs and Coverage in BEAMDB Database. Atoms, 2017, 5, 46. Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumovâ€"Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S695-S711. The chemical connection between 67P/C-G and IRAS 16293-2422. Proceedings of the International Astronomical Union, 2017, 13, 196-201. Astrochemistry: overview and challenges. Proceedings of the International Astronomical Union, 2017, 13, 3-22.	1.6 0.7 1.6 0.0 0.0	6 8 27 0 26
 66 67 68 69 70 	Society, 0, , stw3370. Rosetta Mission: Electron Scattering Cross Sectionsâ€"Data Needs and Coverage in BEAMDB Database. Atoms, 2017, 5, 46. Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumovâ€"Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S695-S711. The chemical connection between 67P/C-G and IRAS 16293-2422. Proceedings of the International Astronomical Union, 2017, 13, 196-201. Astrochemistry: overview and challenges. Proceedings of the International Astronomical Union, 2017, 13, 3-22. Gas and dust in the star-forming region <i>i×i Chemical highlights from the Rosetta mission. Proceedings of the International Astronomical Union,</i>	1.6 0.7 1.6 0.0 0.0 2.1	6 8 27 0 26 13

#	Article	IF	CITATIONS
74	Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals. Space Science Reviews, 2018, 214, 1.	3.7	92
75	Modelling the molecular composition and nuclear-spin chemistryof collapsing pre-stellar sourcesâ~ Monthly Notices of the Royal Astronomical Society, 2018, 477, 4454-4472.	1.6	25
76	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Science Reviews, 2018, 214, 1.	3.7	88
77	FUV Spectral Signatures of Molecules and the Evolution of the Gaseous Coma of Comet 67P/Churyumov–Gerasimenko. Astronomical Journal, 2018, 155, 9.	1.9	20
78	The ALMA-PILS survey: the sulphur connection between protostars and comets: IRAS 16293–2422 B and 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4949-4964.	1.6	74
79	Cause of Cambrian Explosion - Terrestrial or Cosmic?. Progress in Biophysics and Molecular Biology, 2018, 136, 3-23.	1.4	34
80	The Castalia mission to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research, 2018, 62, 1947-1976.	1.2	27
81	Organic Molecules and Volatiles in Comets. Elements, 2018, 14, 101-106.	0.5	5
82	The Rosetta Mission and the Chemistry of Organic Species in Comet 67P/Churyumov–Gerasimenko. Elements, 2018, 14, 95-100.	0.5	12
83	Ultraviolet Observations of Coronal Mass Ejection Impact on Comet 67P/Churyumov–Gerasimenko by Rosetta Alice. Astronomical Journal, 2018, 156, 16.	1.9	15
84	Dynamics and Origin of Comets: New Problems Appeared after the Rosetta Space Mission. Solar System Research, 2018, 52, 382-391.	0.3	2
85	Linking interstellar and cometary O ₂ : a deep search for ¹⁶ O ¹⁸ O in the solar-type protostar IRAS 16293–2422. Astronomy and Astrophysics, 2018, 618, A11.	2.1	22
86	Binding of the atomic cations hydrogen through argon to water and hydrogen sulfide. Physical Chemistry Chemical Physics, 2018, 20, 25967-25973.	1.3	12
87	Ion irradiation of N2O ices and NO2:N2O4 ice mixtures: first steps to understand the evolution of molecules with the Nâ^'O bond in space. Monthly Notices of the Royal Astronomical Society, 2018, , .	1.6	7
88	Comets, Enceladus and panspermia. Astrophysics and Space Science, 2018, 363, 1.	0.5	3
89	Planet Formation, Migration, and Habitability. , 2018, , 2879-2895.		0
90	The Chemical Evolution from Prestellar to Protostellar Cores: A New Multiphase Model with Bulk Diffusion and Photon Penetration. Astrophysical Journal, 2018, 869, 165.	1.6	9
91	Abundance of HCN and its C and N isotopologues in L1498. Astronomy and Astrophysics, 2018, 615, A52.	2.1	25

#	Article	IF	CITATIONS
92	Noble Gas Abundance Ratios Indicate the Agglomeration of 67P/Churyumov–Gerasimenko from Warmed-up Ice. Astrophysical Journal Letters, 2018, 865, L11.	3.0	11
93	Communication: State-to-state inelastic scattering of interstellar O2 with H2. Journal of Chemical Physics, 2018, 149, 121101.	1.2	6
94	Oscillator Strengths and Integral Cross Sections of the Valence-shell Excitations of the Oxygen Molecule Studied by Fast Electron and Inelastic X-Ray Scattering. Astrophysical Journal, Supplement Series, 2018, 238, 26.	3.0	12
95	The Pluto System After <i>New Horizons</i> . Annual Review of Astronomy and Astrophysics, 2018, 56, 357-392.	8.1	72
96	Origin of Molecular Oxygen in Comets: Current Knowledge and Perspectives. Space Science Reviews, 2018, 214, 1.	3.7	23
97	Limits on the Contribution of Endogenic Radiolysis to the Presence of Molecular Oxygen in Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal, 2018, 864, 9.	1.6	3
98	O ₂ signature in thin and thick O ₂ â^'H ₂ O ices. Astronomy and Astrophysics, 2018, 620, A46.	2.1	9
99	Synthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula. Astrophysical Journal, 2018, 858, 66.	1.6	11
100	Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K. Physics Reports, 2018, 751, 1-90.	10.3	113
101	On the origin of molecular oxygen in cometary comae. Nature Communications, 2018, 9, 2580.	5.8	22
102	Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes. Astronomy and Astrophysics, 2018, 613, A14.	2.1	100
103	The Volatile Composition of Comet C/2017 E4 (Lovejoy) before its Disruption, as Revealed by High-resolution Infrared Spectroscopy with iSHELL at the NASA/IRTF. Astronomical Journal, 2018, 156, 68.	1.9	24
104	Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2018, 4, eaar6297.	4.7	52
105	Stability of CH ₃ NCO in Astronomical Ices under Energetic Processing: A Laboratory Study. Astrophysical Journal, 2018, 861, 61.	1.6	11
106	Reply to "On the origin of molecular oxygen in cometary comae― Nature Communications, 2018, 9, 2581.	5.8	3
107	Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 489, 594-607.	1.6	112
108	Volatile Species in Comet 67P/Churyumov-Gerasimenko: Investigating the Link from the ISM to the Terrestrial Planets. ACS Earth and Space Chemistry, 2019, 3, 1792-1811.	1.2	39
109	The Effective Surface Area of Amorphous Solid Water Measured by the Infrared Absorption of Carbon Monoxide. Astrophysical Journal, 2019, 878, 94.	1.6	12

#	Article	IF	CITATIONS
110	Photodesorption of Water Ice from Dust Grains and Thermal Desorption of Cometary Ices Studied by the INSIDE Experiment. Astrophysical Journal, 2019, 880, 12.	1.6	17
111	Molecular oxygen generation from the reaction of water cations with oxygen atoms. Journal of Chemical Physics, 2019, 150, 201103.	1.2	6
112	Complex Organic Molecules in Comets from Remote-Sensing Observations at Millimeter Wavelengths. ACS Earth and Space Chemistry, 2019, 3, 1550-1555.	1.2	30
113	Position-dependent microchannel plate gain correction in Rosetta's ROSINA/DFMS mass spectrometer. International Journal of Mass Spectrometry, 2019, 446, 116232.	0.7	11
114	Effect of the Surface Roughness of Icy Grains on Molecular Oxygen Chemistry in Molecular Clouds. Astrophysical Journal, 2019, 882, 131.	1.6	0
116	Towards New Comet Missions. Space Science Reviews, 2019, 215, 1.	3.7	13
117	Advanced Curation of Astromaterials for Planetary Science. Space Science Reviews, 2019, 215, 1.	3.7	50
118	The Peculiar Volatile Composition of CO-dominated Comet C/2016 R2 (PanSTARRS). Astronomical Journal, 2019, 158, 128.	1.9	55
119	Computational vibrational spectroscopy for the detection of molecules in space. Annual Reports in Computational Chemistry, 2019, 15, 173-202.	0.9	59
120	Reduction of Hepatic Lipogenesis by Loliolide and Pinoresinol from Lysimachia vulgaris via Degrading Liver X Receptors. Journal of Agricultural and Food Chemistry, 2019, 67, 12419-12427.	2.4	6
121	Rotational and vibrational fingerprints of the oxywater cation (H2OO+), a possible precursor to abiotic O2. Journal of Molecular Spectroscopy, 2019, 364, 111183.	0.4	3
122	Calibration of parent and fragment ion detection rates in Rosettas ROSINA/DFMS mass spectrometer. International Journal of Mass Spectrometry, 2019, 446, 116233.	0.7	4
123	Direct dioxygen evolution in collisions of carbon dioxide with surfaces. Nature Communications, 2019, 10, 2294.	5.8	16
124	Cometary Chemistry and the Origin of Icy Solar System Bodies: The View After <i>Rosetta</i> . Annual Review of Astronomy and Astrophysics, 2019, 57, 113-155.	8.1	108
125	High resolution optical spectroscopy of the N ₂ -rich comet C/2016 R2 (PanSTARRS). Astronomy and Astrophysics, 2019, 624, A64.	2.1	33
126	On Simulating the Proton-irradiation of O ₂ and H ₂ O Ices Using Astrochemical-type Models, with Implications for Bulk Reactivity. Astrophysical Journal, 2019, 876, 140.	1.6	30
127	Stellar Occultation by Comet 67P/Churyumov–Gerasimenko Observed with Rosetta's Alice Far-ultraviolet Spectrograph. Astronomical Journal, 2019, 157, 173.	1.9	5
128	Dust temperature and time-dependent effects in the chemistry of photodissociation regions. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3

#	ARTICLE	IF	Citations
129	Identification of organic molecules with a laboratory prototype based on the Laser Ablation-CosmOrbitrap. Planetary and Space Science, 2019, 170, 42-51.	0.9	18
130	The Origin and Fate of O 2 \$mbox{O}_{2}\$ in Europa's Ice: An Atmospheric Perspective. Space Science Reviews, 2019, 215, 1.	3.7	9
131	Generalized oscillator strengths of the low-lying valence-shell excitations of N2, O2, and C2H2 studied by fast electron and inelastic x-ray scattering. Journal of Chemical Physics, 2019, 150, 094302.	1.2	5
132	A gas-phase primordial origin of O2 in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 486, 10-20.	1.6	8
133	Two years with comet 67P/Churyumov-Gerasimenko: H ₂ 0, CO ₂ , and CO as seen by the ROSINA/RTOF instrument of Rosetta. Astronomy and Astrophysics, 2019, 630, A33.	2.1	13
134	Long-term monitoring of the outgassing and composition of comet 67P/Churyumov-Gerasimenko with the Rosetta/MIRO instrument. Astronomy and Astrophysics, 2019, 630, A19.	2.1	78
135	Comparison of neutral outgassing of comet 67P/Churyumov-Gerasimenko inbound and outbound beyond 3 AU from ROSINA/DFMS. Astronomy and Astrophysics, 2019, 630, A30.	2.1	8
136	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A37.	2.1	21
137	Rovibrational Spectral Analysis of CO ₃ and C ₂ O ₃ : Potential Sources for O ₂ Observed in Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal Letters, 2019, 886, L10.	3.0	10
138	Simulations of Ice Chemistry in Cometary Nuclei. Astrophysical Journal, 2019, 884, 69.	1.6	21
139	Cosmic biology in perspective. Astrophysics and Space Science, 2019, 364, 1.	0.5	4
141	Formation of cometary O ₂ ice and related ice species on grain surfaces in the midplane of the pre-solar nebula. Astronomy and Astrophysics, 2019, 621, A75.	2.1	17
142	A stellar occultation by Vanth, a satellite of (90482) Orcus. Icarus, 2019, 319, 657-668.	1.1	13
143	The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer. Icarus, 2020, 335, 113421.	1.1	57
144	The composition and structure of Ceres' interior. Icarus, 2020, 335, 113404.	1.1	19
145	Thermal and photochemical study of CH3OH and CH3OH–O2 astrophysical ices. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1188-1200.	1.6	4
146	Limitations in the determination of surface emission distributions on comets through modelling of observational data - A case study based on Rosetta observations. Icarus, 2020, 346, 113742.	1,1	7
147	Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition. Space Science Reviews, 2020, 216, 1.	3.7	13

#	Article	IF	CITATIONS
148	On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. Space Science Reviews, 2020, 216, 102.	3.7	42
149	Far-ultraviolet aurora identified at comet 67P/Churyumov-Gerasimenko. Nature Astronomy, 2020, 4, 1084-1091.	4.2	11
150	Investigating the Rosetta/RTOF observations of comet 67P/Churyumov-Gerasimenko using a comet nucleus model: influence of dust mantle and trapped CO. Astronomy and Astrophysics, 2020, 638, A106.	2.1	7
151	Vacuum ultraviolet photoabsorption spectroscopy of space-related ices: 1 keV electron irradiation of nitrogen- and oxygen-rich ices. Astronomy and Astrophysics, 2020, 641, A154.	2.1	11
152	Molecule-dependent oxygen isotopic ratios in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5855-5862.	1.6	13
153	Cometary panspermia and origin of life?. Advances in Genetics, 2020, 106, 5-20.	0.8	1
154	A cryogenic ice setup to simulate carbon atom reactions in interstellar ices. Review of Scientific Instruments, 2020, 91, 054501.	0.6	17
155	CO Gas and Dust Outbursts from Centaur 29P/Schwassmann–Wachmann. Astronomical Journal, 2020, 159, 136.	1.9	32
156	Chemical and Isotope Composition of Comet 67P/Churyumovâ^'Gerasimenko: The Rosettaâ^'Philae Mission Results Reviewed in the Context of Cosmogony and Cosmochemistry. Solar System Research, 2020, 54, 96-120.	0.3	10
157	A photochemical model of ultraviolet atomic line emissions in the inner coma of comet 67P/Churyumov-Gerasimenko. Icarus, 2020, 347, 113790.	1.1	2
158	The Effect of Cosmic Rays on Cometary Nuclei. I. Dose Deposition. Astrophysical Journal, 2020, 890, 89.	1.6	18
159	Evolution of mobile phases in cometary interiors. Publications of the Astronomical Society of Australia, 2020, 37, .	1.3	Ο
160	ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1180-1198.	1.6	58
161	Forbidden atomic carbon, nitrogen, and oxygen emission lines in the water-poor comet C/2016 R2 (Pan-STARRS). Astronomy and Astrophysics, 2020, 635, A108.	2.1	16
162	Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations. Space Science Reviews, 2020, 216, 1.	3.7	61
163	The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko. Scientific Reports, 2020, 10, 5796.	1.6	24
164	Concepts of the Small Body Sample Return Missions - the 1st 10 Million Year Evolution of the Solar System. Space Science Reviews, 2020, 216, 1.	3.7	7
165	A computational investigation of the equilibrium geometries, energetics, vibrational frequencies, infrared intensities and Raman activities of C ₂ O _{<i>y</i>} (<i>y</i> = 3, 4) species. Molecular Physics, 2021, 119, e1837404.	0.8	1

#	Article	IF	CITATIONS
166	Sulfur Ice Astrochemistry: A Review of Laboratory Studies. Space Science Reviews, 2021, 217, 1.	3.7	22
167	Organic Matter in Cometary Environments. Life, 2021, 11, 37.	1.1	9
168	The role of the three body photodissociation channel of water in the evolution of dioxygen in astrophysical applications. Physical Chemistry Chemical Physics, 2021, 23, 9235-9248.	1.3	2
169	Asteroids: Near Earth Objects That Provide Opportunities for Human Space Exploration. , 2021, , 807-815.		0
170	Bubbles to Chondrites-II. Chemical fractionations in chondrites. Progress in Earth and Planetary Science, 2021, 8, .	1.1	1
171	Role of Suprathermal Chemistry on the Evolution of Carbon Oxides and Organics within Interstellar and Cometary Ices. Accounts of Chemical Research, 2021, 54, 1067-1079.	7.6	4
172	Photodissociation branching ratios of ¹² C ¹⁶ O from 110 500 to 113 045 cm ^{â^1} : first observation of the C(¹ S) channel. Astronomy and Astrophysics, 2021, 647, A127.	2.1	1
173	Multi-instrument analysis of far-ultraviolet aurora in the southern hemisphere of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2021, 647, A119.	2.1	6
174	On the origin & amp; thermal stability of Arrokoth's and Pluto's ices. Icarus, 2021, 356, 114072.	1.1	31
175	Three body photodissociation of the water molecule and its implications for prebiotic oxygen production. Nature Communications, 2021, 12, 2476.	5.8	15
176	Neutral–neutral synthesis of organic molecules in cometary comae. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5401-5408.	1.6	5
177	Water in star-forming regions: physics and chemistry from clouds to disks as probed by <i>Herschel</i> spectroscopy. Astronomy and Astrophysics, 2021, 648, A24.	2.1	98
179	Spatial Distribution of Ultraviolet Emission from Cometary Activity at 67P/Churyumov-Gerasimenko. Astronomical Journal, 2021, 162, 5.	1.9	0
180	Chlorine-bearing species and the 37Cl/35Cl isotope ratio in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1020-1032.	1.6	1
181	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	1.6	4
182	Knowledge Gaps in the Cometary Spectra of Oxygen-bearing Molecular Cations. Astrophysical Journal, Supplement Series, 2021, 256, 6.	3.0	5
183	Cometary plasma science. Experimental Astronomy, 2022, 54, 1129-1167.	1.6	3
184	Dust Outburst Dynamics and Hazard Assessment for Close Spacecraft–Comet Encounters. Planetary Science Journal, 2021, 2, 154.	1.5	3

#	Article	IF	CITATIONS
185	Modelling the insertion of O(1D) into methane on the surface of interstellar ice mantles. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1526-1532.	1.6	7
186	Quantification of O ₂ formation during UV photolysis of water ice: H ₂ O and H ₂ O:CO ₂ ices. Astronomy and Astrophysics, 2022, 657, A120.	2.1	4
187	The effect of thermal conductivity on the outgassing and local gas dynamics from cometary nuclei. Astronomy and Astrophysics, 2021, 655, A20.	2.1	3
188	Limits on the contribution of early endogenous radiolysis to oxidation in carbonaceous chondrites' parent bodies. Astronomy and Astrophysics, 2021, 653, A59.	2.1	2
189	A molecular wind blows out of the Kuiper belt. Astronomy and Astrophysics, 2021, 653, L11.	2.1	7
190	The growing case for life as a cosmic phenomenon. , 2021, , 1-14.		0
191	Temperature-dependent direct photodissociation cross sections and rates of AlCl. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2848-2854.	1.6	7
192	Systematic Study on the Absorption Features of Interstellar Ices in the Presence of Impurities. ACS Earth and Space Chemistry, 2020, 4, 920-946.	1.2	6
193	Deep search for hydrogen peroxide toward pre- and protostellar objects. Astronomy and Astrophysics, 2020, 636, A114.	2.1	1
194	Exocomets from a Solar System Perspective. Publications of the Astronomical Society of the Pacific, 2020, 132, 101001.	1.0	16
195	Prestellar grain-surface origins of deuterated methanol in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4901-4920.	1.6	24
196	A physico-chemical model to study the ion density distribution in the inner coma of comet C/2016 R2 (Pan-STARRS). Monthly Notices of the Royal Astronomical Society, 2021, 501, 4035-4052.	1.6	8
197	Coulomb explosion of multiply ionized xenon in water ice. Geochemical Journal, 2019, 53, 69-81.	0.5	2
198	Formation, Composition, and History of the Pluto System: A Post-New Horizons Synthesis. , 2020, , 1-1.		4
199	The Effect of Cosmic Rays on Cometary Nuclei. II. Impact on Ice Composition and Structure. Astrophysical Journal, 2020, 901, 136.	1.6	13
200	Formation of Complex Organic Molecules in Cold Interstellar Environments through Nondiffusive Grain-surface and Ice-mantle Chemistry. Astrophysical Journal, Supplement Series, 2020, 249, 26.	3.0	77
201	The search for living worlds and the connection to our cosmic origins. Experimental Astronomy, 2022, 54, 1275-1306.	1.6	1
202	Convergence to Cometary Panspermia: Time for Disclosure?. Journal of Astrobiology & Outreach, 2015, 03, .	0.1	1

# 203	ARTICLE The Origin of Life. The Frontiers Collection, 2016, , 121-164.	IF 0.1	CITATIONS
203	The Origin of Life. The Frontiers Collection, 2010, , 121-104.	0.1	0
205	Atmophile Elements. Encyclopedia of Earth Sciences Series, 2017, , 1-3.	0.1	0
207	Planet Formation, Migration, and Habitability. , 2018, , 1-17.		0
208	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Sciences Series of ISSI, 2018, , 35-81.	0.0	Ο
212	Upper Limits for Emissions in the Coma of Comet 67P/Churyumov–Gerasimenko near Perihelion as Measured by Rosetta's Alice Far-UV Spectrograph. Astronomical Journal, 2019, 158, 252.	1.9	1
213	UV exploration of the solar system. Experimental Astronomy, 2022, 54, 1169-1186.	1.6	1
214	Dust Emission from the Surface. Astronomy and Astrophysics Library, 2020, , 281-397.	0.2	1
216	Asteroids: Near Earth Objects That Provide Opportunities for Human Space Exploration. , 2020, , 1-8.		Ο
217	Gas Emissions Near the Nucleus. Astronomy and Astrophysics Library, 2020, , 179-280.	0.2	0
218	Refractory elements in the gas phase for comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2022, 658, A87.	2.1	1
219	Chemical Evolution of CO ₂ Ices under Processing by Ionizing Radiation: Characterization of Nonobserved Species and Chemical Equilibrium Phase with the Employment of PROCODA Code. Astrophysical Journal, 2022, 925, 147.	1.6	11
221	Dual storage and release of molecular oxygen in comet 67P/Churyumov–Gerasimenko. Nature Astronomy, 2022, 6, 724-730.	4.2	8
222	Classification of X-Ray Flare-driven Chemical Variability in Protoplanetary Disks. Astrophysical Journal, 2022, 928, 46.	1.6	4
223	Reactive scattering of water group ions on ice surfaces with relevance to Saturn's icy moons. Icarus, 2022, 379, 114967.	1.1	ο
224	Synthesis of Amino Acids from Aldehydes and Ammonia: Implications for Organic Reactions in Carbonaceous Chondrite Parent Bodies. ACS Earth and Space Chemistry, 2022, 6, 1311-1320.	1.2	11
225	On the origin of molecular oxygen on the surface of Ganymede. Icarus, 2022, 383, 115074.	1.1	3
226	Gas Analyzer for Monitoring H ₂ O and CO ₂ Partial Pressures in Space Instrumentation. IEEE Sensors Journal, 2022, 22, 12576-12587.	2.4	1
227	Visible, near-infrared and mid-infrared spectra of solid O2 at 6–33ÂK. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2815-2820.	1.6	2

#	Article	IF	CITATIONS
228	Underground reservoir of oxygen in comet 67P. Nature Astronomy, 2022, 6, 635-636.	4.2	1
229	The Volatile Carbon-to-oxygen Ratio as a Tracer for the Formation Locations of Interstellar Comets. Planetary Science Journal, 2022, 3, 150.	1.5	10
230	Ozone production in electron irradiated CO ₂ :O ₂ ices. Physical Chemistry Chemical Physics, 2022, 24, 18169-18178.	1.3	4
231	Laboratory spectroscopy of theoretical ices: Predictions for JWST and test for astrochemical models. Astronomy and Astrophysics, 2022, 668, A46.	2.1	4
232	Gas-phase formation of silicon monoxide <i>via</i> non-adiabatic reaction dynamics and its role as a building block of interstellar silicates. Physical Chemistry Chemical Physics, 2022, 24, 19761-19772.	1.3	1
233	The Molecular Composition of Shadowed Proto-solar Disk Midplanes Beyond the Water Snowline. Astrophysical Journal, 2022, 936, 188.	1.6	5
234	Alternative Methylated Biosignatures. I. Methyl Bromide, a Capstone Biosignature. Astrophysical Journal, 2022, 938, 6.	1.6	7
235	From planetary exploration goals to technology requirements. , 2023, , 177-248.		1
236	The Plasma Environment of Comet 67P/Churyumov-Gerasimenko. Space Science Reviews, 2022, 218, .	3.7	11
237	29P/Schwassmann–Wachmann 1: A Rosetta Stone for Amorphous Water Ice and CO ↔ CO ₂ Conversion in Centaurs and Comets?. Planetary Science Journal, 2022, 3, 251.	1.5	6
238	Analytical performances of the LAb-CosmOrbitrap mass spectrometer for astrobiology. Planetary and Space Science, 2023, 225, 105607.	0.9	1
239	Rosetta Spacecraft. , 2022, , 1-7.		0
240	Soluble Sulfur-Bearing Organic Compounds in Carbonaceous Meteorites: Implications for Chemical Evolution in Primitive Asteroids. ACS Earth and Space Chemistry, 2023, 7, 41-48.	1.2	5
241	Highlight Advances in Planetary Physics in the Solar System: In Situ Detection Over the Past 20 Years. Space: Science & Technology, 2023, 3, .	1.0	0
242	Thermal Behavior of Astrophysical Amorphous Molecular Ices. Faraday Discussions, 0, , .	1.6	1
243	Visible and infrared spectra of the solids α- and β-O2 at 9–30ÂK. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3183-3187.	1.6	0
247	Rosetta Spacecraft. , 2023, , 2689-2695.		0
249	Insight intoÂtheÂOrigin ofÂCometary Ices fromÂRosetta/ROSINA Mass Spectrometer Data. Thirty Years of Astronomical Discovery With UKIRT, 2023, , 259-269.	0.3	0

#	ARTICLE	IF	CITATIONS
258	The Comet Interceptor Mission. Space Science Reviews, 2024, 220, .	3.7	1