Mechanisms Contributing to the Progression of Ischem Cardiomyopathy

Journal of the American College of Cardiology 66, 2038-2047 DOI: 10.1016/j.jacc.2015.09.010

Citation Report

#	Article	IF	CITATIONS
1	A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow-derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Research and Therapy, 2016, 7, 186.	2.4	18
2	Clinical management of dilated cardiomyopathy: current knowledge and future perspectives. Expert Review of Cardiovascular Therapy, 2016, 14, 137-140.	0.6	20
3	Mesenchymal Cell Therapy for DilatedÂCardiomyopathy. Journal of the American College of Cardiology, 2017, 69, 538-540.	1.2	2
4	YiQiFuMai Powder Injection attenuates coronary artery ligation-induced myocardial remodeling and heart failure through modulating MAPKs signaling pathway. Journal of Ethnopharmacology, 2017, 202, 67-77.	2.0	32
5	Intravenously Delivered Mesenchymal Stem Cells. Circulation Research, 2017, 120, 1598-1613.	2.0	142
7	Mesenchymal Stem Cell Therapy for the Treatment of Heart Failure Caused by Ischemic or Non-ischemic Cardiomyopathy: Immunosuppression and Its Implications. Handbook of Experimental Pharmacology, 2017, 243, 329-353.	0.9	7
8	Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction. Circulation Research, 2017, 120, 1139-1150.	2.0	155
9	Paracrine-Mediated Systemic Anti-Inflammatory Activity of Intravenously Administered Mesenchymal Stem Cells. Circulation Research, 2017, 121, 1044-1046.	2.0	27
10	Heart failure with reduced ejection fraction. Nature Reviews Disease Primers, 2017, 3, 17058.	18.1	136
11	Histone Modification Is Correlated With Reverse Left Ventricular Remodeling in Nonischemic Dilated Cardiomyopathy. Annals of Thoracic Surgery, 2017, 104, 1531-1539.	0.7	29
12	Intravenous Allogeneic Mesenchymal Stem Cells for Nonischemic Cardiomyopathy. Circulation Research, 2017, 120, 332-340.	2.0	144
13	Randomized Comparison of Allogeneic Versus Autologous Mesenchymal StemÂCells for Nonischemic DilatedÂCardiomyopathy. Journal of the American College of Cardiology, 2017, 69, 526-537.	1.2	297
14	Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNFâ€Î± and TGFâ€Î²1/ERK1/2 signaling pathways. Molecular Medicine Reports, 2018, 17, 71-78.	1.1	23
15	Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca2+-Calcineurin-Mediated Drp1 Signaling Pathways. International Journal of Molecular Sciences, 2017, 18, 1825.	1.8	28
16	Myocardial Expression of Macrophage Migration Inhibitory Factor in Patients with Heart Failure. Journal of Clinical Medicine, 2017, 6, 95.	1.0	12
17	Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovascular Diabetology, 2017, 16, 142.	2.7	30
18	Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Research and Therapy, 2017, 8, 270.	2.4	78
19	Persistent Inflammation, Stem Cell–Induced Systemic Antiâ€Inflammatory Effects, and Need for Repeated Stem Cell Injections: Critical Concepts Influencing Optimal Stem Cell Strategies for Treating Acute Myocardial Infarction and Heart Failure. Journal of the American Heart Association. 2018. 7	1.6	4

#	Article	IF	CITATIONS
20	Stemâ€cell therapy in STâ€segment elevation myocardial infarction with reduced ejection fraction: A multicenter, doubleâ€blind randomized trial. Clinical Cardiology, 2018, 41, 392-399.	0.7	32
21	Body builder: from synthetic cells to engineered tissues. Current Opinion in Cell Biology, 2018, 54, 37-42.	2.6	15
22	A controlled release system for simultaneous delivery of three human perivascular stem cellâ€derived factors for tissue repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1164-e1172.	1.3	27
23	Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials, 2018, 155, 176-190.	5.7	45
24	A Hemicyanineâ€Embedded Diphenylselenideâ€Containing Probe "HemiSe―in which SePh ₂ St Reduced for Selective Detection of Superoxide in Living Cells. Chemistry - an Asian Journal, 2018, 13, 3895-3902.	ays 1.7	9
25	Comparison of Mesenchymal Stem Cell Efficacy in Ischemic Versus Nonischemic Dilated Cardiomyopathy. Journal of the American Heart Association, 2018, 7, .	1.6	29
26	New Paradigms in Cell Therapy. Circulation Research, 2018, 123, 138-158.	2.0	105
27	Clinical Studies of Cell Therapy in Cardiovascular Medicine. Circulation Research, 2018, 123, 266-287.	2.0	129
28	Myocardial Ischemia and Mobilization of Circulating Progenitor Cells. Journal of the American Heart Association, 2018, 7, e007504.	1.6	7
29	Efficacy and safety of stem cell therapy in patients with dilated cardiomyopathy: a systematic appraisal and meta-analysis. Journal of Translational Medicine, 2019, 17, 221.	1.8	7
30	Comparison of QT interval variability of coronary patients without myocardial infarction with that of patients with old myocardial infarction. Computers in Biology and Medicine, 2019, 113, 103396.	3.9	6
31	Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Research and Therapy, 2019, 10, 46.	2.4	118
32	Optimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Translational Medicine, 2019, 8, 1068-1083.	1.6	34
33	Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress. Cell Death Discovery, 2019, 5, 79.	2.0	75
34	Mesenchymal stem cell and bone marrow mononuclear cell therapy for cardiomyopathy: From bench to bedside. Journal of Cellular Biochemistry, 2019, 120, 45-55.	1.2	16
35	Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology. Translational Research, 2020, 215, 86-101.	2.2	29
36	Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 567-576.	0.7	26
37	Identification of Upstream Transcriptional Regulators of Ischemic Cardiomyopathy Using Cardiac RNA-Seq Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 3472.	1.8	9

CITATION REPORT

		CITATION R	CITATION REPORT		
#	ARTICLE		IF	Citations	
38	The impact of patient sex on the response to intramyocardial mesenchymal stem cell a patients with non-ischaemic dilated cardiomyopathy. Cardiovascular Research, 2020, 1	dministration in 16, 2131-2141.	1.8	10	
39	NGF nanoparticles enhance the potency of transplanted human umbilical cord mesench for myocardial repair. American Journal of Physiology - Heart and Circulatory Physiology H1959-H1974.	hymal stem cells , 2021, 320,	1.5	9	
40	Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy Research and Therapy, 2021, 12, 361.	¹ . Stem Cell	2.4	39	
41	MicroRNA-181b Serves as a Circulating Biomarker and Regulates Inflammation in Heart Markers, 2021, 2021, 1-12.	Failure. Disease	0.6	11	
42	Metabolic Processes are Potential Biological Processes Distinguishing Nonischemic Dila Cardiomyopathy from Ischemic Cardiomyopathy: A Clue from Serum Proteomics. Pharm and Personalized Medicine, 2021, Volume 14, 1169-1184.	ited nacogenomics	0.4	3	
43	Endothelial Progenitor Cells in Coronary Atherosclerosis and Percutaneous Coronary In A Systematic Review and Meta-Analysis. Cardiovascular Revascularization Medicine, 20	tervention: 22, 42, 94-99.	0.3	5	
44	Extracellular vesicle-mediated bidirectional communication between heart and other or American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H769-H7	gans. 84.	1.5	19	
45	Leveraging Extracellular Non-coding RNAs to Diagnose and Treat Heart Diseases. Journa Cardiovascular Translational Research, 2022, 15, 456-468.	al of	1.1	7	
46	Moderate continuous or high intensity interval exercise in heart failure with reduced eje fraction: Differences between ischemic and non-ischemic etiology. American Heart Jour 22, 100202.	ection nal Plus, 2022,	0.3	0	
47	The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Inter Journal of Molecular Sciences, 2022, 23, 13573.	national	1.8	6	