An AKT3-FOXG1-reelin network underlies defective mig malformations of cortical development

Nature Medicine 21, 1445-1454

DOI: 10.1038/nm.3982

Citation Report

#	Article	IF	CITATIONS
1	Sending Mixed Signals: The Expanding Role of Molecular Cascade Mutations in Malformations of Cortical Development and Epilepsy. Epilepsy Currents, 2016, 16, 158-163.	0.4	5
2	Canonical and Non-canonical Reelin Signaling. Frontiers in Cellular Neuroscience, 2016, 10, 166.	1.8	89
3	Reelin and Neuropsychiatric Disorders. Frontiers in Cellular Neuroscience, 2016, 10, 229.	1.8	143
4	Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell, 2016, 19, 663-671.	5.2	437
5	Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & Damp; therapeutic strategies. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 402-421.	0.7	195
6	Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment. Schizophrenia Bulletin, 2017, 43, sbw085.	2.3	56
7	The mTOR signalling cascade: paving new roads to cure neurological disease. Nature Reviews Neurology, 2016, 12, 379-392.	4.9	283
8	Focal Cortical Dysplasia: Gene Mutations, Cell Signaling, and Therapeutic Implications. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 547-571.	9.6	98
9	AKT2 Regulates Pulmonary Inflammation and Fibrosis via Modulating Macrophage Activation. Journal of Immunology, 2017, 198, 4470-4480.	0.4	62
10	Mosaic Analysis with Double Markers Reveals Distinct Sequential Functions of Lgl1 in Neural Stem Cells. Neuron, 2017, 94, 517-533.e3.	3.8	83
11	Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders. Neuroscience, 2017, 354, 196-207.	1.1	16
12	Brain Development and Akt Signaling: the Crossroads of Signaling Pathway and Neurodevelopmental Diseases. Journal of Molecular Neuroscience, 2017, 61, 379-384.	1.1	131
13	Murine pluripotent stem cells with a homozygous knockout of Foxg1 show reduced differentiation towards cortical progenitors in vitro. Stem Cell Research, 2017, 25, 50-60.	0.3	10
14	Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling through TRIM24 Binding. Cancer Research, 2017, 77, 6190-6201.	0.4	75
15	Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability. Nature Communications, 2017, 8, 1052.	5.8	63
16	Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain, 2017, 140, 2610-2622.	3.7	102
17	Foxp1 regulation of neonatal vocalizations via cortical development. Genes and Development, 2017, 31, 2039-2055.	2.7	52
18	Evolutionary conservation and conversion of Foxg1 function in brain development. Development Growth and Differentiation, 2017, 59, 258-269.	0.6	77

#	ARTICLE	IF	CITATIONS
19	Somatic Mutations Activating the mTOR Pathway in Dorsal Telencephalic Progenitors Cause a Continuum of Cortical Dysplasias. Cell Reports, 2017, 21, 3754-3766.	2.9	247
20	Tuberous Sclerosis and Other mTORopathies. , 2017, , 797-810.		1
22	Dendrite growth and the effect of ectopic Rheb expression on cortical neurons. Neuroscience Letters, 2018, 671, 140-147.	1.0	19
23	Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathology and Applied Neurobiology, 2018, 44, 6-17.	1.8	145
24	Targeting the Mammalian Target of Rapamycin for Epileptic Encephalopathies and Malformations of Cortical Development. Journal of Child Neurology, 2018, 33, 55-63.	0.7	17
25	Genetics and mechanisms leading to human cortical malformations. Seminars in Cell and Developmental Biology, 2018, 76, 33-75.	2.3	87
26	Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer. Cancer Discovery, 2018, 8, 336-353.	7.7	32
27	Ephrinâ€'b3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpineâ€'induced model of epilepsy. International Journal of Molecular Medicine, 2018, 41, 3457-3467.	1.8	8
28	FOXG1 Orchestrates Neocortical Organization and Cortico-Cortical Connections. Neuron, 2018, 100, 1083-1096.e5.	3.8	63
29	Somatic mosaicism and neurodevelopmental disease. Nature Neuroscience, 2018, 21, 1504-1514.	7.1	186
30	Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Research, 2018, 145, 1-17.	0.8	25
31	Characterization of a severe case of <i>PIK3CA</i> â€related overgrowth at autopsy by droplet digital polymerase chain reaction and report of <i>PIK3CA</i> sequencing in 22 patients. American Journal of Medical Genetics, Part A, 2018, 176, 2301-2308.	0.7	20
32	Role of mTOR Complexes in Neurogenesis. International Journal of Molecular Sciences, 2018, 19, 1544.	1.8	117
33	Structural Analysis of Hippocampal Kinase Signal Transduction. ACS Chemical Neuroscience, 2018, 9, 3072-3085.	1.7	6
34	Brain Somatic Mutations in MTOR Disrupt Neuronal Ciliogenesis, Leading to Focal Cortical Dyslamination. Neuron, 2018, 99, 83-97.e7.	3.8	83
35	SIAH1 ubiquitin ligase mediates ubiquitination and degradation of Akt3 in neural development. Journal of Biological Chemistry, 2019, 294, 15435-15445.	1.6	10
36	<scp>GATOR</scp> opathies: The role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia, 2019, 60, 2163-2173.	2.6	45
37	Cortical Seizures in FoxG1+/ \hat{a} Mice are Accompanied by Akt/S6 Overactivation, Excitation/Inhibition Imbalance and Impaired Synaptic Transmission. International Journal of Molecular Sciences, 2019, 20, 4127.	1.8	16

#	ARTICLE	IF	Citations
38	Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathologica, 2019, 138, 885-900.	3.9	205
39	Malformations of Cerebral Cortex Development: Molecules and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 293-318.	9.6	71
40	Golgi Complex Dynamics and Its Implication in Prevalent Neurological Disorders. Frontiers in Cell and Developmental Biology, 2019, 7, 75.	1.8	24
41	Structural brain anomalies in patients with <scp>FOXG</scp> 1 syndrome and in Foxg1+/â^ mice. Annals of Clinical and Translational Neurology, 2019, 6, 655-668.	1.7	19
42	Analysis of the Human Kinome and Phosphatome by Mass Cytometry Reveals Overexpression-Induced Effects on Cancer-Related Signaling. Molecular Cell, 2019, 74, 1086-1102.e5.	4.5	32
43	Hemimegalencephaly., 2019,, 448-454.		0
44	S-allyl-l-cysteine attenuates bleomycin-induced pulmonary fibrosis and inflammation via AKT/NF-κB signaling pathway in mice. Journal of Pharmacological Sciences, 2019, 139, 377-384.	1.1	15
45	Nanomaterials for Regenerative Medicine. Pancreatic Islet Biology, 2019, , .	0.1	1
46	The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biology, 2020, 28, 101364.	3.9	125
47	Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Frontiers in Cell and Developmental Biology, 2020, 8, 574382.	1.8	15
48	Focal cortical dysplasia: etiology, epileptogenesis, classification, clinical presentation, imaging, and management. Child's Nervous System, 2020, 36, 2939-2947.	0.6	11
49	The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Frontiers in Neuroanatomy, 2020, 14, 39.	0.9	35
50	Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. Nature Communications, 2020, 11, 6194.	5.8	8
51	Autosomal dominant lateral temporal lobe epilepsy associated with a novel reelin mutation. Epileptic Disorders, 2020, 22, 443-448.	0.7	8
52	BRAFV600E expression in neural progenitors results in a hyperexcitable phenotype in neocortical pyramidal neurons. Journal of Neurophysiology, 2020, 123, 2449-2464.	0.9	21
53	Double UP: A Dual Color, Internally Controlled Platform for in utero Knockdown or Overexpression. Frontiers in Molecular Neuroscience, 2020, 13, 82.	1.4	6
54	Focal cortical dysplasia. , 2020, , 285-307.		1
55	Specification of cortical projection neurons. , 2020, , 427-459.		1

#	ARTICLE	IF	CITATIONS
56	Insight into developmental mechanisms of global and focal migration disorders of cortical development. Current Opinion in Neurobiology, 2021, 66, 77-84.	2.0	9
57	GABAergic Interneuron and Neurotransmission Are mTOR-Dependently Disturbed in Experimental Focal Cortical Dysplasia. Molecular Neurobiology, 2021, 58, 156-169.	1.9	10
58	Induced pluripotent stem cells for modeling of Rett Syndrome. , 2021, , 171-216.		0
59	Defining the latent period of epileptogenesis and epileptogenic zone in a focal cortical dysplasia type II (FCDII) rat model. Epilepsia, 2021, 62, 1268-1279.	2.6	8
60	Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies. Frontiers in Neuroanatomy, 2021, 15, 664695.	0.9	30
61	RHEB/mTOR hyperactivity causes cortical malformations and epileptic seizures through increased axonal connectivity. PLoS Biology, 2021, 19, e3001279.	2.6	27
62	Efficient Derivation of Excitatory and Inhibitory Neurons from Human Pluripotent Stem Cells Stably Expressing Direct Reprogramming Factors. Current Protocols, 2021, 1, e141.	1.3	8
64	Non–Cell Autonomous Epileptogenesis in Focal Cortical Dysplasia. Annals of Neurology, 2021, 90, 285-299.	2.8	23
66	Neuroregenerative Nanotherapeutics. Pancreatic Islet Biology, 2019, , 143-181.	0.1	2
68	DEPDC5 takes a second hit in familial focal epilepsy. Journal of Clinical Investigation, 2018, 128, 2194-2196.	3.9	8
69	Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. Journal of Clinical Investigation, 2019, 129, 4207-4223.	3.9	45
70	Disorders of neurogenesis and cortical development. Dialogues in Clinical Neuroscience, 2018, 20, 255-266.	1.8	38
71	Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. Journal of Korean Neurosurgical Society, 2019, 62, 272-287.	0.5	24
72	Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. ELife, 2015, 4,	2.8	79
73	PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. ELife, 2019, 8, .	2.8	28
74	Precision Therapy for Epilepsy Related to Brain Malformations. Neurotherapeutics, 2021, 18, 1548-1563.	2.1	18
75	Neocortical development and epilepsy: insights from focal cortical dysplasia and brain tumours. Lancet Neurology, The, 2021, 20, 943-955.	4.9	47
76	Blood borne: Bacterial components in mother's blood influence fetal development. Inflammation and Cell Signaling, 2016, 3, .	1.6	1

#	Article	IF	CITATIONS
78	Autismo no Brasil: uma revisão sobre estudos em neurogenética. Revista Neurociencias, 0, 29, 1-20.	0.0	4
79	Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Frontiers in Neuroscience, 2021, 15, 817218.	1.4	10
81	BKM120 alters the migration of doublecortin-positive cells in the dentate gyrus of mice. Pharmacological Research, 2022, 179, 106226.	3.1	1
83	Zika virus induces FOXG1 nuclear displacement and downregulation in human neural progenitors. Stem Cell Reports, 2022, 17, 1683-1698.	2.3	10
84	Tissue-Wide Effects Override Cell-Intrinsic Gene Function in Radial Neuron Migration., 2022, 1, .		5
85	Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Frontiers in Neurology, $0,13,.$	1.1	3
86	Specific contribution of Reelin expressed by Cajal–Retzius cells or GABAergic interneurons to cortical lamination. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
87	Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Molecular Psychiatry, 2023, 28, 856-870.	4.1	5
88	Reversibility and developmental neuropathology of linear nevus sebaceous syndrome caused by dysregulation of the RAS pathway. Cell Reports, 2023, 42, 112003.	2.9	1
91	Gene set enrichment analysis indicates convergence in the mTOR signalling pathway between syndromic and non-syndromic autism. Neuroscience Informatics, 2023, 3, 100119.	2.8	0
92	Adult-specific Reelin expression alters striatal neuronal organization: implications for neuropsychiatric disorders. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	2