Computational modeling of development by epithelia, runified model

Bioinformatics 32, 219-225

DOI: 10.1093/bioinformatics/btv527

Citation Report

#	Article	IF	CITATIONS
1	A set of simple cell processes are sufficient to model spiral cleavage. Development (Cambridge), 2016, 144, 54-62.	1.2	17
2	Mechanocellular models of epithelial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150519.	1.8	80
3	Computer modeling in developmental biology: growing today, essential tomorrow. Development (Cambridge), 2017, 144, 4214-4225.	1.2	78
4	Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Computational Biology, 2017, 13, e1005387.	1.5	185
5	Heritability: the link between development and the microevolution of molar tooth form. Historical Biology, 2018, 30, 53-63.	0.7	15
6	Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2018, 2, 040901.	3.3	110
7	Possibilities and limitations of three-dimensional reconstruction and simulation techniques to identify patterns, rhythms and functions of apoptosis in the early developing neural tube. History and Philosophy of the Life Sciences, 2018, 40, 55.	0.6	4
8	The second biennial meeting of the Panâ€American Society for Evolutionary Developmental Biology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 132-137.	0.6	0
9	Microbial multicellular development: mechanical forces in action. Current Opinion in Genetics and Development, 2018, 51, 37-45.	1.5	21
10	Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study. PLoS Computational Biology, 2018, 14, e1005981.	1.5	25
11	A multiscale in silico model of endothelial to mesenchymal transformation in a tumor microenvironment. Journal of Theoretical Biology, 2019, 480, 229-240.	0.8	7
12	Cell signaling stabilizes morphogenesis against noise. Development (Cambridge), 2019, 146, .	1.2	18
13	Mathematical Models of Organoid Cultures. Frontiers in Genetics, 2019, 10, 873.	1.1	42
14	ya a: GPU-Powered Spheroid Models for Mesenchyme and Epithelium. Cell Systems, 2019, 8, 261-266.e3.	2.9	33
15	PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics, 2019, 35, 1188-1196.	1.8	88
16	Multiscale Models Coupling Chemical Signaling and Mechanical Properties for Studying Tissue Growth. , 2020, , 173-195.		5
17	Rethinking embryology in vitro: A synergy between engineering, data science and theory. Developmental Biology, 2021, 474, 48-61.	0.9	15
18	Modeling Evolution of Developmental Gene Regulatory Networks. , 2021, , 1013-1029.		1

		CITATION REPORT		
#	Article	IF	CITATIONS	
19	Understanding the Genotype-Phenotype Map: Contrasting Mathematical Models. , 2021, , 221-244.		2	
20	On the evolution and development of morphological complexity: A view from gene regulatory networks. PLoS Computational Biology, 2021, 17, e1008570.	1.5	17	
21	Quantification of cell behaviors and computational modeling show that cell directional behaviors drive zebrafish pectoral fin morphogenesis. Bioinformatics, 2021, 37, 2946-2954.	1.8	2	
22	Seven challenges in the multiscale modeling of multicellular tissues. WIREs Mechanisms of Disease, 2022, 14, e1527.	1.5	20	
23	Viscoelastic Networks: Forming Cells and Tissues. Frontiers in Physics, 2021, 9, .	1.0	22	
26	Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Computational Biology, 2017, 13, e1005533.	1.5	35	
27	Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Computational Biology, 2020, 16, e1008411.	1.5	49	
29	Chaste: Cancer, Heart and Soft Tissue Environment. Journal of Open Source Software, 2020, 5, 1848.	2.0	58	
30	Using phenotypic plasticity to understand the structure and evolution of the genotype–phenotype map. Genetica, 2022, 150, 209-221.	0.5	16	
31	Modeling Evolution of Developmental Gene Regulatory Networks. , 2018, , 1-17.		0	
32	ya a: GPU-powered Spheroid Models for Mesenchyme and Epithelium. SSRN Electronic Journal, 0, , .	0.4	0	
33	Can We Compute the Embryo?. Fascinating Life Sciences, 2019, , 251-267.	0.5	0	
34	How Do Gene Networks Promote Morphological Evolution. Fascinating Life Sciences, 2019, , 209-234.	0.5	0	
35	Self-organized multicellular structures from simple cell signaling: a computational model. Physical Biology, 2020, 17, 066003.	0.8	12	
36	A single locus regulates a female-limited color pattern polymorphism in a reptile. Science Advances, 2022, 8, eabm2387.	4.7	17	
37	Arrested coalescence of multicellular aggregates. Soft Matter, 2022, 18, 3771-3780.	1.2	9	
38	Curvature strains as a global orchestrator of morphogenesis. Physical Review Research, 2022, 4, .	1.3	1	
39	A computational model of organism development and carcinogenesis resulting from cells' bioelectric properties and communication. Scientific Reports, 2022, 12, .	1.6	2	

#	Article	IF	CITATIONS
41	Spatiotemporal image generation for embryomics applications. , 2022, , 517-541.		0
42	A mechanistic protrusive-based model for 3D cell migration. European Journal of Cell Biology, 2022, 101, 151255.	1.6	5
43	Cellular mechanisms of reverse epithelial curvature in tissue morphogenesis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
44	Novel Ground-Up 3D Multicellular Simulators for Synthetic Biology CAD Integrating Stochastic Gillespie Simulations Benchmarked with Topologically Variable SBML Models. Genes, 2023, 14, 154.	1.0	2
45	Tissue interplay during morphogenesis. Seminars in Cell and Developmental Biology, 2023, 147, 12-23.	2.3	2

CITATION REPORT