Metal nanoclusters: novel probes for diagnostic and the

Chemical Society Reviews 44, 8636-8663

DOI: 10.1039/c5cs00607d

Citation Report

#	Article	IF	Citations
1	Facile preparation of uniform FeSe ₂ nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. Nanoscale, 2015, 7, 20757-20768.	2.8	47
2	Bimetallic Au ₂ Cu ₆ Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species. Angewandte Chemie - International Edition, 2016, 55, 3611-3614.	7.2	200
3	Multiamino polymeric capping of fluorescent silver nanodots as an effective protective, amphiphilic and pH/thermo-responsive coating. RSC Advances, 2016, 6, 67643-67650.	1.7	9
4	Heteroatom Effects on the Optical and Electrochemical Properties of Ag ₂₅ (SR) ₁₈ and Its Dopants. ChemElectroChem, 2016, 3, 1261-1265.	1.7	42
5	Bimetallic Au ₂ Cu ₆ Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species. Angewandte Chemie, 2016, 128, 3675-3678.	1.6	44
6	Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russian Chemical Bulletin, 2016, 65, 1637-1643.	0.4	35
7	The analytical and biomedical potential of cytosine-rich oligonucleotides: A review. Analytica Chimica Acta, 2016, 930, 1-12.	2.6	50
8	Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters. Nanoscale, 2016, 8, 13006-13016.	2.8	16
9	A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe. Talanta, 2016, 154, 190-196.	2.9	38
10	Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells. Nanoscale, 2016, 8, 9614-9620.	2.8	48
11	Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale, 2016, 8, 7197-7202.	2.8	97
12	Controlling an electrostatic repulsion by oppositely charged surfactants towards positively charged fluorescent gold nanoclusters. Physical Chemistry Chemical Physics, 2016, 18, 8773-8776.	1.3	11
13	Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Mikrochimica Acta, 2016, 183, 2185-2195.	2.5	54
14	A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates. Nanoscale, 2016, 8, 11210-11216.	2.8	78
15	Nanomolar Hg $<$ sup $>2+<$ /sup $>$ Detection Using \hat{l}^2 -Lactoglobulin-Stabilized Fluorescent Gold Nanoclusters in Beverage and Biological Media. Analytical Chemistry, 2016, 88, 10275-10283.	3.2	89
16	Dual-modal light scattering and fluorometric detection of lead ion by stimuli-responsive aggregation of BSA-stabilized copper nanoclusters. RSC Advances, 2016, 6, 96729-96734.	1.7	19
17	DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale, 2016, 8, 17729-17746.	2.8	127
18	Stretchable and Thermally Stable Dual Emission Composite Films of On-Purpose Aggregated Copper Nanoclusters in Carboxylated Polyurethane for Remote White Light-Emitting Devices. ACS Applied Materials & Devices. ACS Applied Material	4.0	47

#	Article	IF	CITATIONS
19	DNA-Mediated Morphological Control of Pd–Au Bimetallic Nanoparticles. Journal of the American Chemical Society, 2016, 138, 16542-16548.	6.6	87
20	Allâ€Copper Nanocluster Based Downâ€Conversion White Lightâ€Emitting Devices. Advanced Science, 2016, 3, 1600182.	5.6	89
21	[Ag ₆₇ (SPhMe ₂) ₃₂ (PPh ₃) ₈] ³⁺ : Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster. Journal of the American Chemical Society, 2016, 138, 14727-14732.	6.6	167
22	Multifunctional Gold Nanoclusters-Based Nanosurface Energy Transfer Probe for Real-Time Monitoring of Cell Apoptosis and Self-Evaluating of Pro-Apoptotic Theranostics. Analytical Chemistry, 2016, 88, 11184-11192.	3.2	45
23	Luminescent gold nanoclusters as biocompatible probes for optical imaging and theranostics. Dyes and Pigments, 2016, 135, 64-79.	2.0	50
24	An Ir(III) complex chemosensor for the detection of thiols. Science and Technology of Advanced Materials, 2016, 17, 109-114.	2.8	24
26	Luminescent Nanoswitch Based on Organic-Phase Copper Nanoclusters for Sensitive Detection of Trace Amount of Water in Organic Solvents. Analytical Chemistry, 2016, 88, 7429-7434.	3.2	122
27	Lysozyme-stabilized Ag nanoclusters: synthesis of different compositions and fluorescent responses to sulfide ions with distinct modes. RSC Advances, 2016, 6, 66233-66241.	1.7	10
28	A long lifetime luminescent iridium(<scp>iii</scp>) complex chemosensor for the selective switch-on detection of Al ³⁺ ions. Chemical Communications, 2016, 52, 3611-3614.	2.2	111
29	Gold nanoparticles as sensitive optical probes. Analyst, The, 2016, 141, 1611-1626.	1.7	84
30	Conjugating a groove-binding motif to an $Ir(\langle scp \rangle)$ complex for the enhancement of G-quadruplex probe behavior. Chemical Science, 2016, 7, 2516-2523.	3.7	150
31	Activated nanostructured bimetallic catalysts for C–C coupling reactions: recent progress. Catalysis Science and Technology, 2016, 6, 3341-3361.	2.1	74
32	Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer. Analyst, The, 2017, 142, 800-807.	1.7	26
33	Ag ₅₀ (Dppm) ₆ (SR) ₃₀ and Its Homologue Au _{<i>x</i>} Ag _{50â€"<i>x</i>} (Dppm) ₆ (SR) ₃₀ Alloy Nanocluster: Seeded Growth, Structure Determination, and Differences in Properties. Journal of the American Chemical Society, 2017, 139, 1618-1624.	6.6	138
34	Turn-on fluorescence detection of ascorbic acid with gold nanolcusters. Talanta, 2017, 165, 346-350.	2.9	80
35	Graphene Metal Nanoclusters in Cutting-Edge Theranostics Nanomedicine Applications. Advanced Structured Materials, 2017, , 429-477.	0.3	O
36	Research Update: Interfacing ultrasmall metal nanoclusters with biological systems. APL Materials, 2017, 5, 053101.	2.2	15
37	Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9, 2718-2722.	2.8	74

#	ARTICLE	IF	CITATIONS
38	Fabrication of Water-Soluble, Green-Emitting Gold Nanoclusters with a 65% Photoluminescence Quantum Yield via Host–Guest Recognition. Chemistry of Materials, 2017, 29, 1362-1369.	3.2	209
39	Au ₁₅ Ag ₃ (SPhMe ₂) ₁₄ Nanoclusters – Crystal Structure and Insights into Ligandâ€Induced Variation. European Journal of Inorganic Chemistry, 2017, 2017, 1414-1419.	1.0	34
40	Pinpoint the Positions of Single Nucleotide Polymorphisms by a Nanocluster Dimer. Analytical Chemistry, 2017, 89, 2622-2627.	3.2	19
41	Electrocrystallization of Monolayer-Protected Gold Clusters: Opening the Door to Quality, Quantity, and New Structures. Journal of the American Chemical Society, 2017, 139, 4168-4174.	6.6	70
42	Fe (III) ion modulated I-DOPA protected gold nanocluster probe for fluorescence turn on sensing of ascorbic acid. Sensors and Actuators B: Chemical, 2017, 246, 943-951.	4.0	42
43	One-step synthesis of boronic acid functionalized gold nanoclusters for photoluminescence sensing of dopamine. Methods and Applications in Fluorescence, 2017, 5, 014006.	1.1	8
44	Fluorescent silver nanoparticle based highly sensitive immunoassay for early detection of HIV infection. RSC Advances, 2017, 7, 19863-19877.	1.7	38
45	Constructing a Robust Fluorescent DNAâ€Stabilized Silver Nanocluster Probe Module by Attaching a Duplex Moiety. Chemistry - A European Journal, 2017, 23, 10893-10900.	1.7	10
46	Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn on Detection of Dopamine. Journal of Cluster Science, 2017, 28, 2223-2238.	1.7	22
47	Visual detection of Cu ²⁺ based on fluorescence quenching of green-synthesized gold nanoclusters using soy protein as template. Food and Agricultural Immunology, 2017, 28, 848-858.	0.7	8
48	Periodic Mesoporous Organosilica Coated Prussian Blue for MR/PA Dualâ€Modal Imagingâ€Guided Photothermalâ€Chemotherapy of Triple Negative Breast Cancer. Advanced Science, 2017, 4, 1600356.	5.6	60
49	Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters. Sensors and Actuators B: Chemical, 2017, 241, 773-778.	4.0	45
50	Pattern-based sensing of triple negative breast cancer cells with dual-ligand cofunctionalized gold nanoclusters. Biomaterials, 2017, 116, 21-33.	5.7	52
51	A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters. Biosensors and Bioelectronics, 2017, 91, 232-237.	5.3	141
52	Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Biosensors and Bioelectronics, 2017, 90, 329-335.	5.3	54
53	Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. Journal of Materials Chemistry B, 2017, 5, 4190-4197.	2.9	34
54	Green Synthesis of Gluten-Stabilized Fluorescent Gold Quantum Clusters: Application As Turn-On Sensing of Human Blood Creatinine. ACS Sustainable Chemistry and Engineering, 2017, 5, 4837-4845.	3.2	52
55	Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin–stabilized gold nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 77-84.	2.0	18

#	Article	IF	Citations
56	Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Analytical and Bioanalytical Chemistry, 2017, 409, 4771-4778.	1.9	54
57	A DNA-Encapsulated and Fluorescent Ag ₁₀ ⁶⁺ Cluster with a Distinct Metal-Like Core. Journal of Physical Chemistry C, 2017, 121, 14936-14945.	1.5	27
58	Nanotechnology-Enhanced No-Wash Biosensors for <i>in Vitro</i> Diagnostics of Cancer. ACS Nano, 2017, 11, 5238-5292.	7.3	208
59	Modulating photo-luminescence of Au ₂ Cu ₆ nanoclusters via ligand-engineering. RSC Advances, 2017, 7, 28606-28609.	1.7	35
60	Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Mikrochimica Acta, 2017, 184, 4183-4188.	2.5	28
61	Magnetic Ordering in Gold Nanoclusters. ACS Omega, 2017, 2, 2607-2617.	1.6	69
62	A nanocluster-based fluorescent sensor for sensitive hemoglobin detection. Talanta, 2017, 170, 233-237.	2.9	28
63	Rational design of a luminescent nanoprobe for hypoxia imaging in vivo via ratiometric and photoluminescence lifetime imaging microscopy. Chemical Communications, 2017, 53, 4144-4147.	2.2	30
64	Research Update: Density functional theory investigation of the interactions of silver nanoclusters with guanine. APL Materials, 2017, 5 , .	2.2	16
65	Stimuli-responsive biodegradable and gadolinium-based poly[N-(2-hydroxypropyl) methacrylamide] copolymers: their potential as targeting and safe magnetic resonance imaging probes. Journal of Materials Chemistry B, 2017, 5, 2763-2774.	2.9	14
66	Directed adenine functionalization for creating complex architectures for material and biological applications. Chemical Communications, 2017, 53, 4748-4758.	2.2	34
67	Synthesis and properties enhancement of metal nanoclusters templated on a biological molecule/ionic liquids complex. New Journal of Chemistry, 2017, 41, 3766-3772.	1.4	3
68	Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters. Biosensors and Bioelectronics, 2017, 94, 523-529.	5.3	123
69	Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au ₄₂ Rh ₅₈ alloy nanocrystals. Journal of Materials Chemistry A, 2017, 5, 7064-7071.	5.2	19
70	Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons, 2017, 2, 135-146.	4.1	184
71	Silver Nanoclusters Beacon as Stimuli-Responsive Versatile Platform for Multiplex DNAs Detection and Aptamer–Substrate Complexes Sensing. Analytical Chemistry, 2017, 89, 1002-1008.	3.2	95
72	AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Scientific Reports, 2017, 7, 40103.	1.6	84
73	Histone–DNA interaction: an effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters. Chemical Communications, 2017, 53, 12568-12571.	2.2	41

#	Article	IF	Citations
74	The reactivity of phenylethanethiolated gold nanoparticles with acetic acid. Chemical Communications, 2017, 53, 11646-11649.	2.2	11
75	Multi-ligand-directed synthesis of chiral silver nanoclusters. Nanoscale, 2017, 9, 16800-16805.	2.8	54
76	Redox-active nanomaterials for nanomedicine applications. Nanoscale, 2017, 9, 15226-15251.	2.8	104
77	Nanoparticle-based optical sensor arrays. Nanoscale, 2017, 9, 16546-16563.	2.8	192
78	Synthesis of ultra $\hat{a} \in ``stable copper nanoclusters and their potential application as a reversible thermometer. Dalton Transactions, 2017, 46, 14251-14255.$	1.6	27
79	Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. Journal of Materials Chemistry B, 2017, 5, 9055-9084.	2.9	49
80	A bifunctional nanomodulator for boosting CpG-mediated cancer immunotherapy. Nanoscale, 2017, 9, 14236-14247.	2.8	48
81	Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands. Nanoscale, 2017, 9, 12618-12627.	2.8	87
82	Aggregation-induced accelerating peroxidase-like activity of gold nanoclusters and their applications for colorimetric Pb ²⁺ detection. Chemical Communications, 2017, 53, 10160-10163.	2.2	104
83	Towards Ultraâ€Bright Gold Nanoclusters. European Journal of Inorganic Chemistry, 2017, 2017, 5068-5084.	1.0	44
84	Catalyst Sintering Kinetics Data: Is There a Minimal Chemical Mechanism Underlying Kinetics Previously Fit by Empirical Power-Law Expressions—and if So, What Are Its Implications?. Industrial & Engineering Chemistry Research, 2017, 56, 10271-10286.	1.8	13
85	QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels. Polymer Chemistry, 2017, 8, 5317-5326.	1.9	20
86	Synthesis and Structure of Self-Assembled Pd ₂ Au ₂₃ (PPh ₃) ₁₀ Br ₇ Nanocluster: Exploiting Factors That Promote Assembly of Icosahedral Nano-Building-Blocks. Chemistry of Materials, 2017, 29, 6856-6862.	3.2	40
87	A polypeptide-mediated synthesis of green fluorescent gold nanoclusters for Fe3+ sensing and bioimaging. Journal of Colloid and Interface Science, 2017, 506, 386-392.	5.0	52
88	Breaking the reduced glutathione-activated antioxidant defence for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 6752-6761.	2.9	9
89	Effect of ligand structure on the size control of mono- and bi-thiolate-protected silver nanoclusters. Chemical Communications, 2017, 53, 9697-9700.	2.2	40
90	A fluorescent nanoprobe based on cellulose nanocrystals with porphyrin pendants for selective quantitative trace detection of Hg ²⁺ . New Journal of Chemistry, 2017, 41, 10272-10280.	1.4	22
91	Fluorescence Enhancement of Terminal Amine Assembled on Gold Nanoclusters and Its Application to Ratiometric Lysine Detection. Langmuir, 2017, 33, 14643-14648.	1.6	35

#	Article	IF	CITATIONS
92	Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light: Science and Applications, 2017, 6, e17107-e17107.	7.7	85
93	Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch. Analytica Chimica Acta, 2017, 984, 202-210.	2.6	37
94	Characterizing optical properties, composition of stabilizer-free copper nanoclusters and its interaction with bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 17-25.	2.0	13
95	Sensitive and Label-Free Fluorescent Detection of Transcription Factors Based on DNA-Ag Nanoclusters Molecular Beacons and Exonuclease III-Assisted Signal Amplification. Analytical Chemistry, 2017, 89, 7316-7323.	3.2	66
96	The development of anticancer ruthenium(<scp>ii</scp>) complexes: from single molecule compounds to nanomaterials. Chemical Society Reviews, 2017, 46, 5771-5804.	18.7	793
97	BSAâ€ŧemplated Pb Nanocluster as a Biocompatible Signaling Probe for Electrochemical EGFR Immunosensing. Electroanalysis, 2017, 29, 861-872.	1.5	8
98	One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing. Sensors and Actuators B: Chemical, 2017, 241, 292-297.	4.0	93
99	Sensitive detection of glutathione by using DNA-templated copper nanoparticles as electrochemical reporters. Sensors and Actuators B: Chemical, 2017, 238, 325-330.	4.0	41
100	A luminescence switch-on assay for the detection of specific gene deletion using G-quadruplex DNA and silver nanoclusters. Materials Chemistry Frontiers, 2017, 1, 128-131.	3.2	14
101	Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosensors and Bioelectronics, 2017, 89, 829-836.	5.3	95
102	Luminescent Iridium(III) Chemosensor for Tandem Detection of F ^{â€"} and Al ³⁺ . ACS Omega, 2017, 2, 9150-9155.	1.6	28
103	Preparation and Characterization of Chitosan/Soy Protein Isolate Nanocomposite Film Reinforced by Cu Nanoclusters. Polymers, 2017, 9, 247.	2.0	47
104	Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics, 2017, 7, 3667-3689.	4.6	349
105	Luminescent Metal Nanoclusters for Potential Chemosensor Applications. Chemosensors, 2017, 5, 36.	1.8	41
106	Bio-Synthesized Silver Nanoparticles Using Different Plant Extracts as Anti-Cancer Agent. Journal of Nanomedicine & Biotherapeutic Discovery, 2017, 07, .	0.6	6
107	A High-Performance Soy Protein Isolate-Based Nanocomposite Film Modified with Microcrystalline Cellulose and Cu and Zn Nanoclusters. Polymers, 2017, 9, 167.	2.0	42
108	Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 181-204.	0.4	37
109	Sensitive Detection of Single-Cell Secreted H ₂ O ₂ by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters. Analytical Chemistry, 2018, 90, 4478-4484.	3.2	77

#	Article	IF	CITATIONS
110	Improved peroxidase mimetic activity of a mixture of WS2 nanosheets and silver nanoclusters for chemiluminescent quantification of H2O2 and glucose. Mikrochimica Acta, 2018, 185, 190.	2.5	39
111	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie, 2018, 130, 4022-4026.	1.6	15
112	Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms. Analytical and Bioanalytical Chemistry, 2018, 410, 2781-2791.	1.9	40
113	Taylor Dispersion of Polydisperse Nanoclusters and Nanoparticles: Modeling, Simulation, and Analysis. Analytical Chemistry, 2018, 90, 4258-4262.	3.2	15
114	Pointâ€ofâ€Care Identification of Bacteria Using Proteinâ€Encapsulated Gold Nanoclusters. Advanced Healthcare Materials, 2018, 7, e1701370.	3.9	51
115	DNA liquid crystals doped with AuAg nanoclusters: One-photon and two-photon imaging. Journal of Molecular Liquids, 2018, 259, 82-87.	2.3	11
116	Unconventional application of gold nanoclusters/Zn-MOF composite for fluorescence turn-on sensitive detection of zinc ion. Analytica Chimica Acta, 2018, 1024, 145-152.	2.6	65
117	Synthesis of Branched DNA Scaffolded Superâ€Nanoclusters with Enhanced Antibacterial Performance. Small, 2018, 14, e1800185.	5.2	53
118	Bottomâ€up Synthesis and Selfâ€Assembly of Copper Clusters into Permanent Excimer Supramolecular Nanostructures. Angewandte Chemie, 2018, 130, 7169-7173.	1.6	4
119	Turning On/Off the Anti-Tumor Effect of the Au Cluster via Atomically Controlling Its Molecular Size. ACS Nano, 2018, 12, 4378-4386.	7.3	34
120	Bottomâ€up Synthesis and Selfâ€Assembly of Copper Clusters into Permanent Excimer Supramolecular Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 7051-7055.	7.2	17
121	DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 47, 4017-4072.	18.7	156
122	Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters. New Journal of Chemistry, 2018, 42, 7223-7229.	1.4	62
123	Atomically precise copper nanoclusters and their applications. Coordination Chemistry Reviews, 2018, 359, 112-126.	9.5	216
124	Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosensors and Bioelectronics, 2018, 105, 188-210.	5.3	85
125	Gold Nanoparticle-Based Photoluminescent Nanoswitch Controlled by Host–Guest Recognition and Enzymatic Hydrolysis for Arginase Activity Assay. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5358-5364.	4.0	29
126	Selective sensing of 2,4,6-trinitrophenol (TNP) in aqueous media with "aggregation-induced emission enhancement―(AIEE)-active iridium(<scp>iii</scp>) complexes. Chemical Communications, 2018, 54, 1730-1733.	2.2	85
127	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie - International Edition, 2018, 57, 3958-3962.	7.2	190

#	Article	IF	CITATIONS
128	Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Analytical and Bioanalytical Chemistry, 2018, 410, 2629-2636.	1.9	24
129	One-Step Synthesis of Ultrasmall and Ultrabright Organosilica Nanodots with 100% Photoluminescence Quantum Yield: Long-Term Lysosome Imaging in Living, Fixed, and Permeabilized Cells. Nano Letters, 2018, 18, 1159-1167.	4.5	120
130	An effective signal amplifying strategy for copper (II) sensing by using in situ fluorescent proteins as energy donor of FRET. Sensors and Actuators B: Chemical, 2018, 259, 633-641.	4.0	10
131	Transferrin–Copper Nanocluster–Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug. ACS Applied Materials & Interfaces, 2018, 10, 3282-3294.	4.0	94
132	A molecular beacon based on DNA-templated silver nanoclusters for the highly sensitive and selective multiplexed detection of virulence genes. Talanta, 2018, 181, 24-31.	2.9	29
133	Atom-Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. Journal of the American Chemical Society, 2018, 140, 594-597.	6.6	207
134	Fluorescent Metal Nano-Clusters as Next Generation Fluorescent Probes for Cell Imaging and Drug Delivery. Bulletin of the Chemical Society of Japan, 2018, 91, 447-454.	2.0	63
135	Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chemical Society Reviews, 2018, 47, 1285-1306.	18.7	159
136	<scp>d</scp> -Penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange. Nanoscale, 2018, 10, 1631-1640.	2.8	50
137	Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: Colorimetric, fluorometric and electrochemical studies. Journal of Colloid and Interface Science, 2018, 515, 39-49.	5.0	35
138	Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Analytical Chemistry, 2018, 90, 6247-6252.	3.2	185
139	DNA-encoded morphological evolution of bimetallic Pd@Au core-shell nanoparticles from a high-indexed core. Nano Research, 2018, 11, 4549-4561.	5.8	20
140	Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. Materials Science and Engineering C, 2018, 89, 106-118.	3.8	25
141	Gold Nanocluster Prospecting via Capillary Liquid Chromatography-Mass Spectrometry: Discovery of Three Quantized Gold Clusters in a Product Mixture of "2 nm Gold Nanoparticles― Industrial & Engineering Chemistry Research, 2018, 57, 5378-5384.	1.8	7
142	Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 123-129.	2.0	39
143	Glutathione-Depleting Gold Nanoclusters for Enhanced Cancer Radiotherapy through Synergistic External and Internal Regulations. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10601-10606.	4.0	84
144	Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 132-142.	5.7	56
145	Self-quenched gold nanoclusters for turn-on fluorescence imaging of intracellular glutathione. Nano Research, 2018, 11, 2488-2497.	5.8	24

#	Article	IF	CITATIONS
146	Bovine serum albumin-capped gold nanoclusters conjugating with methylene blue for efficient 1O2 generation via energy transfer. Journal of Colloid and Interface Science, 2018, 510, 221-227.	5.0	32
147	Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry. Nano Research, $2018, 11, 2012-2023$.	5.8	29
148	Thiolated DNA-templated silver nanoclusters with strong fluorescence emission and a long shelf-life. Nanoscale, 2018, 10, 76-81.	2.8	21
149	Antimicrobial silver nanomaterials. Coordination Chemistry Reviews, 2018, 357, 1-17.	9.5	499
150	UV-light-induced synthesis of PEI-CuNCs based on Cu2+-quenched fluorescence turn-on assay for sensitive detection of biothiols, acetylcholinesterase activity and inhibitor. Sensors and Actuators B: Chemical, 2018, 259, 226-232.	4.0	36
151	DNA-templated Au nanoclusters and MnO2 sheets: a label-free and universal fluorescence biosensing platform. Sensors and Actuators B: Chemical, 2018, 259, 204-210.	4.0	89
152	Self-Assembly Driven Aggregation-Induced Emission of Copper Nanoclusters: A Novel Technology for Lighting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12071-12080.	4.0	93
153	Fluorescence signal amplification of gold nanoclusters with silver ions. Analytical Methods, 2018, 10, 5181-5187.	1.3	3
154	Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly(AT) templated copper nanoparticles. Nanoscale, 2018, 10, 19890-19897.	2.8	17
155	Development of Rapid and Label-Free Fluorescence Sensing of Tetracyclines in Milk Based on Poly(Adenine) DNA-Templated Au Nanoclusters. Food Analytical Methods, 2018, 11, 3095-3102.	1.3	30
156	In Situ Generation of Fluorescent Copper Nanoclusters Embedded in Monolithic Eggshell Membrane: Properties and Applications. Materials, 2018, 11, 1913.	1.3	11
157	Aggregation-Enhanced Emission of Gold Nanoclusters Induced by Serum Albumin and Its Application to Protein Detection and Fabrication of Molecular Logic Gates. ACS Omega, 2018, 3, 12763-12769.	1.6	28
158	DNA Templated Metal Nanoclusters: From Emergent Properties to Unique Applications. Accounts of Chemical Research, 2018, 51, 2756-2763.	7.6	139
159	Chicken egg white and L-cysteine as cooperative ligands for effective encapsulation of Zn-doped silver nanoclusters for sensing and imaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 35-42.	2.3	27
160	Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 2018, 118, 10294-10348.	23.0	136
161	Simultaneous hetero-atom doping and foreign-thiolate exchange on the Au ₂₅ (SR) ₁₈ nanocluster. Dalton Transactions, 2018, 47, 13766-13770.	1.6	11
162	Rapid detection of methyltransferases utilizing dumbbell DNA-templated copper nanoparticles. Sensors and Actuators B: Chemical, 2018, 276, 499-506.	4.0	17
163	Fluorescent Determination of Dopamine Using Polythymine-Templated Copper Nanoclusters. Analytical Letters, 2018, 51, 2868-2877.	1.0	13

#	Article	IF	CITATIONS
164	Copper ion detection with improved sensitivity through catalytic quenching of gold nanocluster fluorescence. Talanta, 2018, 187, 231-236.	2.9	39
165	Chemiluminescence of copper nanoclusters and its application for trihexyphenidyl hydrochloride detection. Luminescence, 2018, 33, 962-967.	1.5	6
166	Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters. Analyst, The, 2018, 143, 3068-3074.	1.7	51
167	Au ₂₅ (SR) ₁₈ : the captain of the great nanocluster ship. Nanoscale, 2018, 10, 10758-10834.	2.8	253
168	Aggregation/Self-Assembly-Induced Approach for Efficient AuAg Bimetallic Nanocluster-Based Photosensitizers. Journal of Physical Chemistry C, 2018, 122, 12494-12501.	1.5	41
169	Peptide-Based Biosensor Utilizing Fluorescent Gold Nanoclusters for Detection of <i>Listeria monocytogenes</i> . ACS Applied Nano Materials, 2018, 1, 3389-3397.	2.4	46
170	A two-stage assembly with PEI induced emission enhancement of Au–AgNCs@AMP and the intrinsic mechanism. Nanoscale, 2018, 10, 14563-14569.	2.8	11
171	Use of nanostructured materials in medical diagnostics. , 2018, , 319-338.		2
172	An "all-in-one―antitumor and anti-recurrence/metastasis nanomedicine with multi-drug co-loading and burst drug release for multi-modality therapy. Chemical Science, 2018, 9, 7210-7217.	3.7	63
173	Silk fibroin-derived peptide directed silver nanoclusters for cell imaging. RSC Advances, 2018, 8, 27805-27810.	1.7	13
174	Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection. Frontiers in Physics, 2018, 6, .	1.0	59
175	Spectrofluorometric determination of berberine using a novel Au nanocluster with large Stokes shift. Analytical and Bioanalytical Chemistry, 2018, 410, 6489-6495.	1.9	23
176	Enzyme-free Gold-silver Core-shell Nanozyme Immunosensor for the Detection of Haptoglobin. Analytical Sciences, 2018, 34, 1257-1263.	0.8	18
177	Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing. Langmuir, 2018, 34, 14851-14857.	1.6	38
178	Fluorescent Nanobiosensors for Sensing Glucose. Sensors, 2018, 18, 1440.	2.1	76
179	Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. International Journal of Molecular Sciences, 2018, 19, 1979.	1.8	709
180	Nucleic acid probe based on DNA-templated silver nanoclusters for turn-on fluorescence detection of tumor suppressor gene p53. RSC Advances, 2018, 8, 25611-25616.	1.7	7
181	Fabrication of Biocompatible, Luminescent Supramolecular Structures and Their Applications in the Detection of Dopamine. Langmuir, 2018, 34, 9195-9202.	1.6	11

#	Article	IF	Citations
182	Highly Stable and Multiemissive Silver Nanoclusters Synthesized in Situ in a DNA Hydrogel and Their Application for Hydroxyl Radical Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26075-26083.	4.0	64
183	A simple design of fluorescent probes for indirect detection of \hat{I}^2 -lactamase based on AIE and ESIPT processes. Journal of Materials Chemistry B, 2018, 6, 3922-3926.	2.9	35
184	An enzymatic polymerization-activated silver nanocluster probe for <i>in situ</i> apoptosis assay. Analyst, The, 2018, 143, 2908-2914.	1.7	7
185	Green Synthesis of Fluorescent Palladium Nanoclusters. Materials, 2018, 11, 191.	1.3	10
186	Smart Transformation of a Polyhedral Oligomeric Silsesquioxane Shell Controlled by Thiolate Silver(I) Nanocluster Core in Cluster@Clusters Dendrimers. Angewandte Chemie - International Edition, 2018, 57, 12775-12779.	7.2	59
187	Smart Transformation of a Polyhedral Oligomeric Silsesquioxane Shell Controlled by Thiolate Silver(I) Nanocluster Core in Cluster@Clusters Dendrimers. Angewandte Chemie, 2018, 130, 12957-12961.	1.6	13
188	DNA-silver nanoclusters/polypyrrole nanoparticles: A label-free and enzyme-free platform for multiplexed transcription factors detection. Sensors and Actuators B: Chemical, 2018, 274, 481-490.	4.0	20
189	A novel ratiometric fluorescence nanoprobe based on aggregation-induced emission of silver nanoclusters for the label-free detection of biothiols. Talanta, 2018, 188, 623-629.	2.9	29
190	Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine. Analytical and Bioanalytical Chemistry, 2018, 410, 4991-4999.	1.9	17
191	Dual-emitting zein-protected gold nanoclusters for ratiometric fluorescence detection of Hg ²⁺ /Ag ⁺ ions in both aqueous solution and self-assembled protein film. New Journal of Chemistry, 2019, 43, 14678-14683.	1.4	19
192	Metal synergistic effect on cluster optical properties: based on Ag ₂₅ series nanoclusters. Dalton Transactions, 2019, 48, 13190-13196.	1.6	21
193	A disulfur ligand stabilization approach to construct a silver(<scp>i</scp>)-cluster-based porous framework as a sensitive SERS substrate. Nanoscale, 2019, 11, 16293-16298.	2.8	17
194	Fluorometric determination of nitrite through its catalytic effect on the oxidation of iodide and subsequent etching of gold nanoclusters by free iodine. Mikrochimica Acta, 2019, 186, 619.	2.5	14
195	Surface-Engineered Gold Nanoclusters with Biological Assembly-Amplified Emission for Multimode Imaging. Journal of Physical Chemistry Letters, 2019, 10, 5237-5243.	2.1	28
196	Molecular Targetingâ€Mediated Mildâ€Temperature Photothermal Therapy with a Smart Albuminâ€Based Nanodrug. Small, 2019, 15, e1900501.	5.2	167
197	DNA-templated copper nanoclusters obtained <i>via</i> TdT isothermal nucleic acid amplification for mercury(<scp>ii</scp>) assay. Analytical Methods, 2019, 11, 4165-4172.	1.3	6
198	Poly(adenine) DNA-Templated Gold Nanocluster-Based Fluorescent Strategy for the Determination of Thiol-Containing Pharmaceuticals. Analytical Letters, 2019, 52, 2300-2311.	1.0	13
199	Au nanoclusters/porous silica particles nanocomposites as fluorescence enhanced sensors for sensing and mapping of copper(II) in cells. Nanotechnology, 2019, 30, 475701.	1.3	8

#	Article	IF	CITATIONS
200	Metal Nanoclusters Stabilized by Selenol Ligands. Small, 2019, 15, e1902703.	5.2	48
201	Long-Term Measurement of Solar Irradiance above, within, and under Sea Ice in Polar Environments by Using Fiber Optic Spectrometry. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1773-1787.	0.5	3
202	Ligand-Mediated Nanocluster Formation with Classical and Autocatalytic Growth. Journal of Physical Chemistry C, 2019, 123, 29954-29963.	1.5	6
203	Noble-metal nanocluster as enzyme-mimetic catalyst for diagnostic analysis. Science China Technological Sciences, 2019, 62, 2306-2309.	2.0	4
204	TBHP/NH ₄ I-Mediated Direct N–H Phosphorylation of Imines and Imidates. Journal of Organic Chemistry, 2019, 84, 14949-14956.	1.7	18
205	Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Analytica Chimica Acta, 2019, 1060, 30-44.	2.6	12
206	Improved Bioavailability of Curcumin in Gliadin-Protected Gold Quantum Cluster for Targeted Delivery. ACS Omega, 2019, 4, 14169-14178.	1.6	24
207	AuCu bimetal nanoclusters as high-performance mimics for ultrasensitive recognition of biomolecules. Canadian Journal of Chemistry, 2019, 97, 546-554.	0.6	2
208	Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today, 2019, 28, 100767.	6.2	149
209	Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochimica Acta, 2019, 186, 670.	2.5	92
210	Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nature Nanotechnology, 2019, 14, 883-890.	15.6	333
211	Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Advances, 2019, 9, 26927-26941.	1.7	7
212	Sensitive monitoring and bioimaging intracellular highly reactive oxygen species based on gold nanoclusters@nanoscale metal-organic frameworks. Analytica Chimica Acta, 2019, 1092, 108-116.	2.6	33
213	A New Lamellar Gold Thiolate Coordination Polymer, [Au(m-SPhCO2H)]n, for the Formation of Luminescent Polymer Composites. Nanomaterials, 2019, 9, 1408.	1.9	9
214	Environmentally benign and cost-effective synthesis of water soluble red light emissive gold nanoclusters: selective and ultra-sensitive detection of mercuric ions. New Journal of Chemistry, 2019, 43, 900-906.	1.4	13
215	Reversible fluorescence modulation of BSA stabilised copper nanoclusters for the selective detection of protamine and heparin. Analyst, The, 2019, 144, 1799-1808.	1.7	44
216	Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Advances, 2019, 9, 1517-1525.	1.7	75
217	Label-free fluorescence "turn-on―detection of SO ₃ ^{2â^'} by gold nanoclusters: integration in a hydrogel platform and intracellular detection. Analytical Methods, 2019, 11, 1214-1223.	1.3	11

#	Article	IF	CITATIONS
218	Hierarchical assembly of silver and gold nanoparticles in two-dimension: Toward fluorescence enhanced detection platforms. Applied Surface Science, 2019, 476, 1072-1078.	3.1	5
219	A multifunctional mesoporous silica–gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. Nanoscale, 2019, 11, 2631-2636.	2.8	68
220	Conversion of Metal–Organic Cage to Ligand-Free Ultrasmall Noble Metal Nanocluster Catalysts Confined within Mesoporous Silica Nanoparticle Supports. Nano Letters, 2019, 19, 1512-1519.	4.5	36
221	Luminescent cyclic trinuclear coinage metal complexes with aggregation-induced emission (AIE) performance. Dalton Transactions, 2019, 48, 2275-2279.	1.6	17
222	Papain-stabilized silver nanoclusters: dual emission and ratiometric fluorescent sensing of ferrous ions. Analytical Methods, 2019, 11, 936-941.	1.3	9
223	Optical absorption in complexes of abasic DNA with noble-metal nanoclusters by first principles calculations. Physical Chemistry Chemical Physics, 2019, 21, 1260-1270.	1.3	4
224	Phosphate-guanidine interaction based fluorometric strategy for protein kinase activity sensing. Sensors and Actuators B: Chemical, 2019, 290, 512-519.	4.0	6
225	Confinement of AuAg NCs in a Pomegranate-Type Silica Architecture for Improved Copper Ion Sensing and Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21150-21158.	4.0	47
226	From achiral to helical bilayer self-assemblies of a 1,3,5-triazine-2,4,6-triphenol-grafted polyanionic cluster: countercation and solvent modulation. Dalton Transactions, 2019, 48, 11623-11627.	1.6	6
227	A Gold Nanocage/Cluster Hybrid Structure for Wholeâ€Body Multispectral Optoacoustic Tomography Imaging, EGFR Inhibitor Delivery, and Photothermal Therapy. Small, 2019, 15, e1900309.	5.2	7 3
228	Atomically Precise Gold–Levonorgestrel Nanocluster as a Radiosensitizer for Enhanced Cancer Therapy. ACS Nano, 2019, 13, 8320-8328.	7.3	126
229	Water-soluble metal nanoclusters: recent advances in molecular-level exploration and biomedical applications. Dalton Transactions, 2019, 48, 10385-10392.	1.6	30
230	Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Analytica Chimica Acta, 2019, 1078, 101-111.	2.6	63
231	Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters. Coordination Chemistry Reviews, 2019, 394, 1-38.	9.5	129
232	On-site monitoring of thiram via aggregation-induced emission enhancement of gold nanoclusters based on electronic-eye platform. Sensors and Actuators B: Chemical, 2019, 296, 126641.	4.0	46
233	Peptide-functionalized NaGdF4 nanoparticles for tumor-targeted magnetic resonance imaging and effective therapy. RSC Advances, 2019, 9, 17093-17100.	1.7	16
234	Biomolecule-assisted synthesis and functionality of metal nanoclusters for biological sensing: a review. Materials Chemistry Frontiers, 2019, 3, 1722-1735.	3.2	46
235	EDC-Induced Self-Assembly of BSA-Au NCs. Journal of Fluorescence, 2019, 29, 627-630.	1.3	5

#	Article	IF	CITATIONS
236	Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 375-381.	2.0	22
237	Twoâ€channel nearâ€infrared fluorescence Ag + ion sensing of a new starâ€shaped dendrimer. Luminescence, 2019, 34, 615-622.	1.5	6
238	Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator. Talanta, 2019, 202, 279-284.	2.9	35
239	Advances in DNA/RNA detection using nanotechnology. Advances in Clinical Chemistry, 2019, 91, 31-98.	1.8	16
240	Progress in biosensor based on DNA-templated copper nanoparticles. Biosensors and Bioelectronics, 2019, 137, 96-109.	5.3	82
241	Discovery of and Insights into DNA "Codes―for Tunable Morphologies of Metal Nanoparticles. Small, 2019, 15, 1900975.	5.2	37
242	Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy. Nanoscale, 2019, 11, 9661-9678.	2.8	46
243	Rapid response of dopamine towards insitu synthesised copper nanocluster in presence of H2O2. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 63-71.	2.0	16
244	Fluorescence lifetime-based pH sensing by platinum nanoclusters. Analyst, The, 2019, 144, 3533-3538.	1.7	18
245	Fluorescent pH nanosensors: Design strategies and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 76-141.	5.6	85
246	<i>In situ</i> aqueous synthesis of genetically engineered polypeptide-capped Ag ₂ S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 2484-2492.	2.9	33
247	Tailoring the photoluminescence of atomically precise nanoclusters. Chemical Society Reviews, 2019, 48, 2422-2457.	18.7	655
248	Aggregation induced non-emissive-to-emissive switching of molecular platinum clusters. Nanoscale, 2019, 11, 5914-5919.	2.8	13
249	A fluorescence nanobiosensor for detection of Campylobacter jejuni DNA in milk based on Au/Ag bimetallic nanoclusters. Journal of Food Measurement and Characterization, 2019, 13, 1797-1804.	1.6	9
250	Photoactive nanoparticles capped with functional polymers., 2019,, 169-191.		0
251	Highly fluorescent polyethyleneimine protected Au8 nanoclusters: One-pot synthesis and application in hemoglobin detection. Sensors and Actuators B: Chemical, 2019, 291, 170-176.	4.0	39
252	A Highly Efficient Chemiluminescence System Based on an Enhancing Effect of Ag Nanoclusters/Graphene Quantum Dots Mixture for Ultrasensitive Detection of Rabeprazole. Analytical Sciences, 2019, 35, 385-391.	0.8	7
253	Fabrication of polyethyleneimine-functionalized reduced graphene oxide-hemin-bovine serum albumin (PEI-rGO-hemin-BSA) nanocomposites as peroxidase mimetics for the detection of multiple metabolites. Analytica Chimica Acta, 2019, 1070, 80-87.	2.6	22

#	Article	IF	Citations
254	Fabrication of CuNCs/LDHs Films with Excellent Luminescent Properties and Exploration of Thermosensitivity. Industrial & Engineering Chemistry Research, 2019, 58, 8009-8015.	1.8	14
255	Au ₂₅ (SC _{<i>n</i>} H _{2<i>n</i>+1}) ₁₈ Clusters in Biomimetic Membranes: Role of Size, Charge, and Transmembrane Potential in Direct Membrane Permeation. ACS Applied Nano Materials, 2019, 2, 2405-2417.	2.4	3
256	Atomically Defined Monocarborane Copper(I) Acetylides with Structural and Luminescence Properties Tuned by Ligand Sterics. Chemistry - A European Journal, 2019, 25, 8754-8759.	1.7	18
257	Silver-Assisted Synthesis of High-Indexed Palladium Tetrahexahedral Nanoparticles and Their Morphological Variants. Chemistry of Materials, 2019, 31, 2923-2929.	3.2	13
258	DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection. Nanoscale Advances, 2019, 1, 1482-1488.	2.2	27
259	A portable ratiometric fluorescent strip for sensitive determination of mercuric ions. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 68-74.	2.0	11
260	Surface molecular imprinting and powerfully enhanced chemiluminescence emission by Cu nanoclusters/MOF composite for detection of tramadol. Sensors and Actuators B: Chemical, 2019, 286, 154-162.	4.0	56
261	Multifunctional Oligonucleotide-Functionalized Conjugated Oligomer Nanoparticles for Targeted Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347.	2.3	2
262	Exploring the Antibacteria Performance of Multicolor Ag, Au, and Cu Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8461-8469.	4.0	66
263	Ultrasensitive chemiluminescence assay for cimetidine detection based on the synergistic improving effect of Au nanoclusters and graphene quantum dots. Luminescence, 2019, 34, 261-271.	1.5	7
264	A poly(thymine)-templated fluorescent copper nanoparticle hydrogel-based visual and portable strategy for an organophosphorus pesticide assay. Analyst, The, 2019, 144, 2423-2429.	1.7	21
265	Rhodamine B Chemiluminescence Improved by Mimetic AuCu Alloy Nanoclusters and Ultrasensitive Measurement of H2O2, Glucose and Xanthine. Analytical Sciences, 2019, 35, 543-550.	0.8	13
266	Advanced Functional Structureâ€Based Sensing and Imaging Strategies for Cancer Detection: Possibilities, Opportunities, Challenges, and Prospects. Advanced Functional Materials, 2019, 29, 1807859.	7.8	44
267	Biomoleculeâ€Functionalized Solidâ€State Ion Nanochannels/Nanopores: Features and Techniques. Small, 2019, 15, e1804878.	5.2	115
268	Gold Nanoclusters/Iron Oxyhydroxide Platform for Ultrasensitive Detection of Butyrylcholinesterase. Analytical Chemistry, 2019, 91, 15866-15872.	3.2	33
269	Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. Chemical Communications, 2019, 55, 15097-15100.	2.2	31
270	Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chemistry of Materials, 2019, 31, 9939-9969.	3.2	130
271	Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS. RSC Advances, 2019, 9, 29511-29521.	1.7	15

#	Article	IF	CITATIONS
272	A "turn-on―fluorometric assay for kanamycin detection by using silver nanoclusters and surface plasmon enhanced energy transfer. Mikrochimica Acta, 2019, 186, 40.	2.5	28
273	An ultrasensitive signal-on electrochemiluminescence biosensor based on Au nanoclusters for detecting acetylthiocholine. Analytical and Bioanalytical Chemistry, 2019, 411, 905-913.	1.9	22
274	Oxidation of Ni 13 clusters. International Journal of Quantum Chemistry, 2019, 119, e25874.	1.0	4
275	Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta, 2019, 195, 372-380.	2.9	51
276	Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. Chinese Journal of Polymer Science (English Edition), 2019, 37, 340-351.	2.0	15
278	Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 2019, 171, 691-700.	2.9	213
279	Detecting the adulteration of antihypertensive health food using G-insertion enhanced fluorescent DNA-AgNCs. Sensors and Actuators B: Chemical, 2019, 281, 493-498.	4.0	19
280	Progress on the development of DNA-mediated metal nanomaterials for environmental and biological analysis. Chinese Chemical Letters, 2019, 30, 285-291.	4.8	31
281	Copperâ€Nanoclusterâ€Based Transparent Ultravioletâ€Shielding Polymer Films. ChemNanoMat, 2019, 5, 110-115.	1.5	18
282	Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer. Talanta, 2019, 194, 55-62.	2.9	44
283	Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters. Sensors and Actuators B: Chemical, 2019, 278, 82-87.	4.0	37
284	Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta, 2020, 208, 120342.	2.9	98
285	Fluorometric assay of iron(II) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 225, 117519.	2.0	10
286	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€Ioâ€Phosphorescence Switching. Angewandte Chemie - International Edition, 2020, 59, 9922-9927.	7.2	138
287	Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosensors and Bioelectronics, 2020, 148, 111811.	5.3	119
288	DNAâ€Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. Chemical Record, 2020, 20, 174-186.	2.9	8
289	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€₹oâ€Phosphorescence Switching. Angewandte Chemie, 2020, 132, 10008-10013.	1.6	14
290	The synthesis of switch-off fluorescent water-stable copper nanocluster Hg ²⁺ sensors <i>via</i> a simple one-pot approach by an <i>in situ</i> metal reduction strategy in the presence of a thiolated polymer ligand template. Nanoscale, 2020, 12, 944-955.	2.8	41

#	Article	IF	CITATIONS
291	Luminescent gold nanoclusters for <i>in vivo</i> tumor imaging. Analyst, The, 2020, 145, 348-363.	1.7	41
292	Aggregation-induced emission enhancement of adenosine monophosphate-capped bimetallic nanoclusters by aluminum(III) ions, and its application to the fluorometric determination of cysteine. Mikrochimica Acta, 2020, 187, 41.	2.5	8
293	Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters. TrAC - Trends in Analytical Chemistry, 2020, 124, 115786.	5.8	49
294	Proteinâ€protected metal nanoclusters: An emerging ultraâ€small nanozyme. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1602.	3.3	51
295	X-ray Spectroscopy of Silver Nanostructures toward Antibacterial Applications. Journal of Physical Chemistry C, 2020, 124, 4339-4351.	1.5	14
296	Fluorescent Copper Nanoclusters for the Iodide-Enhanced Detection of Hypochlorous Acid. ACS Applied Nano Materials, 2020, 3, 312-318.	2.4	29
297	Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Research, 2020, 13, 203-208.	5.8	46
298	Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1019.	2.0	35
299	Engineering Ultrasmall Metal Nanoclusters as Promising Theranostic Agents. Trends in Chemistry, 2020, 2, 665-679.	4.4	92
300	Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohydrate Polymers, 2020, 250, 116973.	5.1	31
301	Nanocluster Growth and Coalescence Modulated by Ligands. Journal of Physical Chemistry C, 2020, 124, 17340-17346.	1.5	3
302	Interfacial engineering of gold nanoclusters for biomedical applications. Materials Horizons, 2020, 7, 2596-2618.	6.4	91
303	Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Analytical and Bioanalytical Chemistry, 2020, 412, 5819-5826.	1.9	18
304	Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. Nanoscale, 2020, 12, 24311-24330.	2.8	40
305	Ground and excited state geometrical and optical properties of Au (nÂ=Â2–13) nanoclusters: A first-principles study. Computational and Theoretical Chemistry, 2020, 1190, 113007.	1.1	4
306	Atomically Precise Metal Nanoclusters. Synthesis Lectures on Materials and Optics, 2020, 1, 1-139.	0.2	0
307	Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews, 2020, 49, 6443-6514.	18.7	407
308	Ultrashort peptide-stabilized copper nanoclusters with aggregation-induced emission. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125514.	2.3	11

#	Article	IF	CITATIONS
309	Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Advanced Healthcare Materials, 2020, 9, e2001007.	3.9	71
310	Photoluminescent hydrophilic cyclodextrin-stabilized cysteine-protected copper nanoclusters for detecting lysozyme. Analytical and Bioanalytical Chemistry, 2020, 412, 7141-7154.	1.9	16
311	From mono-PEGylation towards anti-nonspecific protein interaction: comparison of dihydrolipoic acid <i>versus</i> glutathione-capped fluorescent gold nanoclusters using gel electrophoresis. Nanoscale, 2020, 12, 17786-17794.	2.8	1
312	High-sensitivity Detection of Cysteine and Glutathione Using Au Nanoclusters Based on Aggregation-induced Emission. Journal of Fluorescence, 2020, 30, 1491-1498.	1.3	10
313	Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Therapeutic Delivery, 2020, 11, 521-534.	1.2	26
314	Wheat â€Glutenâ€Directed Facile Synthesis of AgAuQC: Probing Inner Filter Effects and Electron Transfer for Bilirubin Detection. ChemistrySelect, 2020, 5, 9641-9653.	0.7	4
315	Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. Sensors, 2020, 20, 6890.	2.1	33
316	Metal Clusters and Their Reactivity. , 2020, , .		9
317	Cellulose-based sensors for metal ions detection. Cellulose, 2020, 27, 5477-5507.	2.4	31
318	Recent progress of SERS optical nanosensors for miRNA analysis. Journal of Materials Chemistry B, 2020, 8, 5178-5183.	2.9	56
319	Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Frontiers in Chemistry, 2020, 8, 341.	1.8	391
320	Peptide and protein modified metal clusters for cancer diagnostics. Chemical Science, 2020, 11, 5614-5629.	3.7	28
321	Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals, 2020, 10, 357.	1.0	32
322	Silver nanoclusters: synthesis, structures and photoluminescence. Materials Chemistry Frontiers, 2020, 4, 2205-2222.	3.2	80
323	TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics, 2020, 10, 6987-7001.	4.6	35
324	Polyvinyl Alcohol–Supported AuAgNCs Ds Film as a Selective Sensor for Gas Hydrogen Sulfide Detection in Air. Macromolecular Rapid Communications, 2020, 41, e2000120.	2.0	14
325	Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. Mikrochimica Acta, 2020, 187, 357.	2,5	13
326	Stepwise Achievement of Circularly Polarized Luminescence on Atomically Precise Silver Clusters. Advanced Science, 2020, 7, 2000738.	5.6	36

#	Article	IF	CITATIONS
327	Poly(sodium-p-styrenesulfonate)-enhanced fluorescent silver nanoclusters for the assay of two food flavors and silicic acid. Food Chemistry, 2020, 318, 126502.	4.2	9
328	The <i>in situ</i> synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. Journal of Materials Chemistry B, 2020, 8, 4846-4850.	2.9	35
329	Reversible Cu–S Motif Transformation and Au ₄ Distortion via Thiol Ligand Exchange Engineering. Journal of Physical Chemistry C, 2020, 124, 7531-7538.	1.5	14
330	11-Mercaptoundecanoic acid capped gold nanoclusters with unusual aggregation-enhanced emission for selective fluorometric hydrogen sulfide determination. Mikrochimica Acta, 2020, 187, 200.	2.5	20
331	Development of gold nanoclusters based direct fluorescence restoration approach for sensitive and selective detection of pesticide. Applied Nanoscience (Switzerland), 2020, 10, 3411-3420.	1.6	4
332	Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Advanced Science, 2020, 7, 2001048.	5.6	70
333	Gold nanoparticles in delivery applications. , 2020, , 329-345.		2
334	Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano, 2020, 14, 2585-2627.	7.3	239
335	Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to Ligand-Centered Emission. Nanomaterials, 2020, 10, 261.	1.9	137
336	One step synthesis of positively charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant bacteria and biofilms. Journal of Colloid and Interface Science, 2020, 569, 235-243.	5.0	67
337	Steric and Electrostatic Control of the pH-Regulated Interconversion of Au ₁₆ (SR) ₁₂ and Au ₁₈ (SR) ₁₄ (SR: Deprotonated) Tj ETQq0	0 01.19 gBT/0	Ov e4 lock 10 ⁻
338	Progress in Atomically Precise Coinage Metal Clusters with Aggregationâ€Induced Emission and Circularly Polarized Luminescence. Advanced Optical Materials, 2020, 8, 1902152.	3.6	114
339	Lipophilic Red-Emitting Oligomeric Organic Dots for Moisture Detection and Cell Imaging. ACS Applied Nano Materials, 2020, 3, 1942-1949.	2.4	7
340	Protein-stabilized gold nanoclusters for PDT: ROS and singlet oxygen generation. Journal of Photochemistry and Photobiology B: Biology, 2020, 204, 111802.	1.7	36
341	Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chemical Reviews, 2020, 120, 1936-1979.	23.0	131
342	pH-Responsive metal–organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer. Journal of Materials Chemistry B, 2020, 8, 1739-1747.	2.9	77
343	Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. Nanomaterials, 2020, 10, 209.	1.9	54
344	Sequence programmed DNA three-way junctions for templated assembly of fluorescent silver nanoclusters. Journal of Photochemistry and Photobiology B: Biology, 2020, 207, 111886.	1.7	7

#	Article	IF	CITATIONS
345	Ultrasmall Gold Nanoparticles Coated with Zwitterionic Glutathione Monoethyl Ester: A Model Platform for the Incorporation of Functional Peptides. Journal of Physical Chemistry B, 2020, 124, 3892-3902.	1.2	12
346	A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters. Mikrochimica Acta, 2020, 187, 240.	2.5	9
347	Photonic crystal enhanced gold-silver nanoclusters fluorescent sensor for Hg2+ ion. Analytica Chimica Acta, 2020, 1114, 50-57.	2.6	34
348	Activity-Based Diagnostics: An Emerging Paradigm for Disease Detection and Monitoring. Trends in Molecular Medicine, 2020, 26, 450-468.	3.5	51
349	Novel synthesis of orange-red emitting copper nanoclusters stabilized by methionine as a fluorescent probe for norfloxacin sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118334.	2.0	25
350	Biomolecule conjugated metal nanoclusters: bio-inspiration strategies, targeted therapeutics, and diagnostics. Journal of Materials Chemistry B, 2020, 8, 4176-4194.	2.9	26
351	Shell-Isolated Nanoparticle-Enhanced Luminescence of Metallic Nanoclusters. Analytical Chemistry, 2020, 92, 7146-7153.	3.2	10
352	Sensing platform for pico-molar level detection of ethyl parathion using Au–Ag nanoclusters based enzymatic strategy. Talanta, 2021, 221, 121267.	2.9	26
353	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	9.5	57
354	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie, 2021, 133, 1326-1332.	1.6	14
355	pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta, 2021, 221, 121621.	2.9	15
356	Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioactive Materials, 2021, 6, 941-950.	8.6	60
357	Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. Journal of Materials Chemistry B, 2021, 9, 94-100.	2.9	45
358	Gold nanoclusters for theranostic applications. Coordination Chemistry Reviews, 2021, 431, 213689.	9.5	96
359	DNA-coded metal nano-fluorophores: Preparation, properties and applications in biosensing and bioimaging. Nano Today, 2021, 36, 101021.	6.2	31
360	A turnâ€on fluorescence assay for heparin based on <scp>DNA</scp> â€templated gold nanoclusters via <scp>ET</scp> . Canadian Journal of Chemical Engineering, 2021, 99, 2205-2210.	0.9	2
361	Observing antimicrobial process with traceable gold nanoclusters. Nano Research, 2021, 14, 1026-1033.	5.8	40
362	Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today, 2021, 36, 101053.	6.2	86

#	Article	IF	CITATIONS
363	Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosensors and Bioelectronics, 2021, 176, 112898.	5.3	70
364	A dual-mode strategy for sensing and bio-imaging of endogenous alkaline phosphatase based on the combination of photoinduced electron transfer and hyperchromic effect. Analytica Chimica Acta, 2021, 1142, 65-72.	2.6	6
365	Trypsin encapsulated gold-silver bimetallic nanoclusters for recognition of quinalphos via fluorescence quenching and of Zn2+ and Cd2+ ions via fluorescence enhancement. Journal of Molecular Liquids, 2021, 327, 114830.	2.3	21
366	Highly Fluorescent Gold Cluster Assembly. Journal of the American Chemical Society, 2021, 143, 326-334.	6.6	73
367	Engineering multifunctional metal/protein hybrid nanomaterials as tools for therapeutic intervention and high-sensitivity detection. Chemical Science, 2021, 12, 2480-2487.	3.7	11
368	A New Class of NIRâ€II Gold Nanoclusterâ€Based Protein Biolabels for Inâ€Vivo Tumorâ€Targeted Imaging. Angewandte Chemie - International Edition, 2021, 60, 1306-1312.	7.2	155
369	Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn-off―fluorescence. Scientific Reports, 2021, 11, 2375.	1.6	29
370	Molecular-Architectonics-Guided Dynamic Assembly to Generate Fluorescent Organic Nanoclusters with Implications for Optical Imaging. ACS Applied Nano Materials, 2021, 4, 979-984.	2.4	4
371	Aggregation-Induced Emission of Au/Ag Alloy Nanoclusters for Fluorescence Detection of Inorganic Pyrophosphate and Pyrophosphatase Activity. Frontiers in Bioengineering and Biotechnology, 2020, 8, 628181.	2.0	12
372	Gold nanoclusters as a GSH activated mitochondrial targeting photosensitizer for efficient treatment of malignant tumors. RSC Advances, 2021, 11, 21384-21389.	1.7	9
373	The spatial organization of trace silver atoms on a DNA template. RSC Advances, 2021, 11, 1153-1163.	1.7	4
374	Arginine-Modified Fluorescent Gold Nanoclusters for Förster Resonance Energy Transfer with a Hemicyanine Dye: A Biofriendly Approach. ACS Applied Nano Materials, 2021, 4, 305-312.	2.4	14
375	Nucleic acid-driven aggregation-induced emission of Au nanoclusters for visualizing telomerase activity in living cells and <i>in vivo</i> . Materials Horizons, 2021, 8, 1769-1775.	6.4	33
376	Categorization of Quantum Dots, Clusters, Nanoclusters, and Nanodots. Journal of Chemical Education, 2021, 98, 703-709.	1.1	22
377	Highly selective and rapid detection of silver ions by using a "turn on―non-fluorescent cysteine stabilized gold nanocluster probe. Analytical Methods, 2021, 13, 2099-2106.	1.3	13
378	A molecular beacon-like Ag nanocluster fluorescence probe for nucleic acid detection. Analytical Sciences, 2022, 38, 131-136.	0.8	1
379	Bioorthogonal chemistry in metal clusters: a general strategy for the construction of multifunctional probes for bioimaging in living cells and <i>in vivo</i> . Journal of Materials Chemistry B, 2021, 9, 6614-6622.	2.9	7
380	A mono-copper doped undeca-gold cluster with up-converted and anti-stokes emissions of fluorescence and phosphorescence. Nanoscale, 2021, 13, 5300-5306.	2.8	9

#	Article	IF	CITATIONS
381	Dual-emission copper nanoclusters–based ratiometric fluorescent probe for intracellular detection of hydroxyl and superoxide anion species. Mikrochimica Acta, 2021, 188, 13.	2.5	16
382	Mechanistic insights into the two-phase synthesis of heteroleptic Au nanoclusters. Nanoscale, 2021, 13, 3512-3518.	2.8	8
383	Ultrasensitive and turn-on homogeneous Hg2+ sensing based on a target-triggered isothermal cycling reaction and dsDNA-templated copper nanoparticles. Analytical Methods, 2021, 13, 3521-3526.	1.3	0
384	Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Applied Nano Materials, 2021, 4, 911-948.	2.4	29
385	The Role of Oxidation during the Synthesis of Silverâ€Clutathione Monolayerâ€Protected Clusters. Small, 2021, 17, 2005663.	5.2	1
386	Tailorâ€Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science, 2021, 8, 2002545.	5.6	22
387	Gold nanoclusters modified mesoporous silica coated gold nanorods: Enhanced photothermal properties and fluorescence imaging. Journal of Photochemistry and Photobiology B: Biology, 2021, 215, 112111.	1.7	19
388	Stimulus-responsive nanomaterials containing logic gates for biomedical applications. Cell Reports Physical Science, 2021, 2, 100350.	2.8	19
389	Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Materials Today, 2023, 66, 159-193.	8.3	59
390	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	7.3	148
391	Spiropyran-Functionalized Gold Nanoclusters with Photochromic Ability for Light-Controlled Fluorescence Bioimaging. ACS Applied Bio Materials, 2021, 4, 2790-2797.	2.3	16
392	Synthesis and Antitumor Application of Antiangiogenetic Gold Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11708-11720.	4.0	11
393	Mitochondria-Anchored Molecular Thermometer Quantitatively Monitoring Cellular Inflammations. Analytical Chemistry, 2021, 93, 5081-5088.	3.2	33
394	Fluorometric detection of cancer marker FEN1 based on double-flapped dumbbell DNA nanoprobe functionalized with silver nanoclusters. Analytica Chimica Acta, 2021, 1148, 238194.	2.6	21
395	Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchemical Journal, 2021, 163, 105922.	2.3	20
396	Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Research, 2021, 49, 5074-5083.	6.5	12
397	Tannic Acid Capped Copper Nanoclusters as a Cost-Effective Fluorescence Probe for Hemoglobin Determination. Analytical Sciences, 2021, 37, 599-603.	0.8	5
398	Quercetin-Loaded Luminescent Hydroxyapatite Nanoparticles for Theranostic Application in Monolayer and Spheroid Cultures of Cervical Cancer Cell Line <i>In Vitro</i> . ACS Applied Bio Materials, 2021, 4, 4495-4506.	2.3	14

#	Article	IF	CITATIONS
399	Free Radical Polymerization of Gold Nanoclusters and Hydrogels for Cell Capture and Light-Controlled Release. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19360-19368.	4.0	29
400	Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Science China Chemistry, 2021, 64, 948-952.	4.2	18
401	Advances in oxidase-mimicking nanozymes: Classification, activity regulation and biomedical applications. Nano Today, 2021, 37, 101076.	6.2	150
402	Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. Nanoscale Research Letters, 2021, 16, 88.	3.1	76
403	Detection of silver through amplified quenching of fluorescence from polyvinyl pyrrolidone–stabilized copper nanoclusters. Mikrochimica Acta, 2021, 188, 212.	2.5	3
404	l-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters. Mikrochimica Acta, 2021, 188, 198.	2.5	20
405	Cluster From Cluster: A Quantitative Approach to Magic Gold Nanoclusters [Au ₂₅ (SR) ₁₈] ^{â^'} . Angewandte Chemie - International Edition, 2021, 60, 14415-14419.	7.2	38
406	Cluster From Cluster: A Quantitative Approach to Magic Gold Nanoclusters [Au 25 (SR) 18] â^2. Angewandte Chemie, 2021, 133, 14536-14540.	1.6	6
407	Au11Ag6 nanocluster: Controllable preparation, structural determination, and optical property investigation. Journal of Chemical Physics, 2021, 154, 184302.	1.2	8
408	Natural source of carbon dots from part of a plant and its applications: a review. Luminescence, 2021, 36, 1354-1364.	1.5	31
409	Electron Transfer in Films of Atomically Precise Gold Nanoclusters. Chemistry of Materials, 2021, 33, 4177-4187.	3.2	10
410	Hydrogelâ€based composites: Unlimited platforms for biosensors and diagnostics. View, 2021, 2, 20200165.	2.7	31
411	Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharmaceutica Sinica B, 2021, 11, 1175-1199.	5.7	23
412	Dual-Channel Logic Gates Operating on the Chemopalette ssDNA-Ag NCs/GO Nanocomposites. Analytical Chemistry, 2021, 93, 8326-8335.	3.2	14
413	Red fluorescent ultra-small gold nanoclusters functionalized with signal molecules to probe specificity in quorum sensing receptors in gram-negative bacteria. Archives of Microbiology, 2021, 203, 4293-4301.	1.0	5
414	Induction of apoptosis in Trypanosoma brucei following endocytosis of ultra-small noble metal nanoclusters. Nano Today, 2021, 38, 101122.	6.2	4
415	Doping effect on the structure and properties of eight-electron silver nanoclusters. Journal of Chemical Physics, 2021, 155, 034304.	1.2	10
416	Symmetric Growth of Dual-Packed Kernel: Exploration of the Evolution of Au40(SR)24 to Au49(SR)27 and Au58(SR)30 Clusters via the 2e–-Reduction Cluster Growth Mechanism. ACS Omega, 2021, 6, 18024-18032.	1.6	0

#	Article	IF	Citations
417	The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coordination Chemistry Reviews, 2021, 438, 213900.	9.5	24
418	Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu–Ag and Cu–Au Nanoclusters via Copper Hydride Precursors. Inorganic Chemistry, 2021, 60, 10799-10807.	1.9	22
419	Catalytic Clusterbody for Enhanced Quantitative Protein Immunoblot. Analytical Chemistry, 2021, 93, 10807-10815.	3.2	10
420	State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. Langmuir, 2021, 37, 9281-9301.	1.6	24
421	Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Mikrochimica Acta, 2021, 188, 276.	2.5	18
422	Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials, 2021, 275, 120915.	5.7	28
423	Ratiometric fluorescent probe for ascorbic acid detection based on MnO2 nanosheets, gold nanoclusters and thiamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126605.	2.3	28
424	Fluorescence "turn-off/turn-on―biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Analytica Chimica Acta, 2021, 1175, 338745.	2.6	12
425	The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response. Chinese Chemical Letters, 2021, 32, 2390-2394.	4.8	28
426	Thermal stability of an endohedrally doped aluminum nanoclusters: a BOMD study. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	3
427	Peptide or <scp>Proteinâ€Protected</scp> Metal Nanoclusters for Therapeutic Application. Chinese Journal of Chemistry, 2022, 40, 267-274.	2.6	6
428	Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications. Advanced Functional Materials, 2021, 31, 2105662.	7.8	47
429	Driving Forces and Routes for Aggregation-Induced Emission-Based Highly Luminescent Metal Nanocluster Assembly. Journal of Physical Chemistry Letters, 2021, 12, 9033-9046.	2.1	51
430	Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxideâ€Initiated Chemiluminescence for Activated Tumor Theranostics. Angewandte Chemie, 2021, 133, 23998.	1.6	2
431	Smartphone-assisted fluorescent analysis of polyT-Cu-nanoprobes using nucleic acid amplification test for the diagnosis of tuberculosis. Analytical Biochemistry, 2021, 630, 114340.	1.1	2
432	Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. TrAC - Trends in Analytical Chemistry, 2021, 143, 116395.	5.8	50
433	Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxideâ€Initiated Chemiluminescence for Activated Tumor Theranostics. Angewandte Chemie - International Edition, 2021, 60, 23805-23811.	7.2	43
434	Evolution of Electronic State and Properties of Silver Nanoparticles during Their Formation in Aqueous Solution. International Journal of Molecular Sciences, 2021, 22, 10673.	1.8	9

#	Article	IF	CITATIONS
435	Gold nanocluster surface ligand exchange: An oxidative stress amplifier for combating multidrug resistance bacterial infection. Journal of Colloid and Interface Science, 2021, 602, 846-858.	5.0	18
436	A ratiometric fluorescent sensing of proanthocyanidins by MnO2 nanosheets simultaneously tuning the photoluminescence of Au/AgNCs and thiamine. Talanta, 2021, 234, 122607.	2.9	15
437	A "turn-on" FRET aptasensor based on the metal-organic framework-derived porous carbon and silver nanoclusters for zearalenone determination. Sensors and Actuators B: Chemical, 2021, 347, 130661.	4.0	20
438	Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta, 2021, 234, 122623.	2.9	27
439	Gold nanoclusters exert antibacterial effects against gram-negative bacteria by targeting thiol-redox homeostasis. Talanta, 2021, 234, 122618.	2.9	8
440	Atomistic simulation of the surface configuration of the Ni–Re cluster. Thin Solid Films, 2021, 737, 138938.	0.8	1
441	Biomolecules as promising ligands in the synthesis of metal nanoclusters: Sensing, bioimaging and catalytic applications. Trends in Environmental Analytical Chemistry, 2021, 32, e00140.	5.3	52
442	A versatile fluorescent nanobeacon lighted by DNA-templated copper nanoparticles and the application in isothermal amplification detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120102.	2.0	3
443	Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster. Chemical Communications, 2021, 57, 2372-2375.	2.2	16
444	Bell-Shaped Electron Transfer Kinetics in Gold Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 876-883.	2.1	14
445	Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters. New Journal of Chemistry, 2021, 45, 4195-4201.	1.4	14
446	Cysteine capped copper/molybdenum bimetallic nanoclusters for fluorometric determination of methotrexate via the inner filter effect. Mikrochimica Acta, 2019, 186, 130.	2.5	19
447	Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. Journal of Cleaner Production, 2020, 269, 122356.	4.6	61
448	Copper inter-nanoclusters distance-modulated chromism of self-assembly induced emission. Nanoscale, 2017, 9, 18845-18854.	2.8	29
449	Nanomaterial-based biosensors for DNA methyltransferase assay. Journal of Materials Chemistry B, 2020, 8, 3488-3501.	2.9	21
450	Novel class of water-soluble phosphonate silver cluster assembled material for efficient photoelectric sensing and photoacoustic imaging. Nanoscale, 2021, 13, 17325-17330.	2.8	10
451	Theoretical study of the stability, structure, and optical spectra of small silver clusters and their formation using density functional theory. Physical Chemistry Chemical Physics, 2021, 23, 25507-25517.	1.3	8
452	Metal nanoclusterâ€based devices: Challenges and opportunities. Aggregate, 2022, 3, e132.	5. 2	11

#	ARTICLE	IF	CITATIONS
453	All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. Journal of Physical Chemistry Letters, 2021, 12, 9882-9887.	2.1	5
454	Solar-Powered Photocatalysis and Photoelectrocatalysis over Atomically Precise Metal Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 22421-22428.	1.5	15
455	Superatomic Au25(SC2H5)18 Nanocluster under Pressure. ACS Nanoscience Au, 0, , .	2.0	2
456	Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. Advanced Materials, 2022, 34, e2103918.	11.1	48
457	Kinetically controlled synthesis of atomically precise Ag nanoclusters for the catalytic reduction of 4-nitrophenol. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1716-1725.	2.4	2
458	Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. Small, 2021, 17, e2103780.	5.2	44
459	A novel nanosensor for detecting tetracycline based on fluorescent palladium nanoclusters. New Journal of Chemistry, 2020, 44, 9248-9254.	1.4	7
461	Sensitive detection of glutathione through inhibiting quenching of copper nanoclusters fluorescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120563.	2.0	13
462	High performance nanozymatic assay-based CuO nanocluster supported by reduced graphene oxide for determination of hydrogen peroxide and ascorbic acid. Process Biochemistry, 2021, 111, 256-261.	1.8	1
463	Fluorescent Cadmium Chalcogenide Nanoclusters in Ubiquitin. Small Structures, 2021, 2, 2000127.	6.9	1
464	Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry Reviews, 2022, 451, 214268.	9.5	79
465	An Overview of Metal Clusters and Their Reactivity. , 2020, , 1-9.		0
466	Photo-enhanced enzyme-like activities of BiOBr/PtRu hybrid nanostructures. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2020, 38, 299-314.	0.4	2
467	Target-Activating and Toehold Displacement Ag NCs/GO Biosensor-Mediating Signal Shift and Enhancement for Simultaneous Multiple Detection. Analytical Chemistry, 2021, 93, 16025-16034.	3.2	9
468	BSA stabilized copper nanoclusters as a highly sensitive and selective probe for fluorescence sensing of Fe3+ ions. Chemical Physics Letters, 2022, 787, 139226.	1.2	16
469	Bridging from Metallic Nanoclusters to Biomedical in Understanding Physicochemical Interactions at the Nano–Bio Interface. Particle and Particle Systems Characterization, 0, , 2100202.	1.2	3
470	Waterâ€Dispersible Gold Nanoclusters: Synthesis Strategies, Optical Properties, and Biological Applications. Chemistry - A European Journal, 2022, 28, e202103736.	1.7	10
471	Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. Journal of the American Chemical Society, 2021, 143, 20574-20578.	6.6	39

#	Article	IF	CITATIONS
472	Near-infrared emitting gold–silver nanoclusters with large Stokes shifts for two-photon <i>in vivo</i> imaging. Chemical Communications, 2021, 57, 13012-13015.	2.2	6
473	Ultrasmall Ag clusters in situ encapsulated into Silicalite-1 zeolite with controlled release behavior and enhanced antibacterial activity. Microporous and Mesoporous Materials, 2022, 330, 111617.	2.2	6
474	A mechanistic approach for inâ€vitro anticancer activity via nucleic acid fragmentation by copper(II) complex anchored on MCMâ€41. Applied Organometallic Chemistry, 2022, 36, .	1.7	3
475	Metal nanocluster-based hybrid nanomaterials: Fabrication and application. Coordination Chemistry Reviews, 2022, 456, 214391.	9.5	27
476	Bimetallic copper-cerium nanoclusters: Assembly-induced aggregation into nanowire network and cysteine-triggered strong red fluorescence turn-on for highly sensitive and selective cysteine sensing. Sensors and Actuators B: Chemical, 2022, 356, 131356.	4.0	4
477	Metal Nanoclusters Combined with CRISPR-Cas12a for Hepatitis B Virus DNA Detection. SSRN Electronic Journal, 0, , .	0.4	0
478	Surface environment complication makes Ag ₂₉ nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chemical Science, 2022, 13, 1382-1389.	3.7	13
479	A molecularly imprinted electrochemical sensors based on bamboo-like carbon nanotubes loaded with nickel nanoclusters for highly selective detection of cortisol. Microchemical Journal, 2022, 175, 107231.	2.3	23
480	Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. Nanomaterials, 2022, 12, 544.	1.9	29
481	Microwave-Mediated Synthesis of Near-Infrared-Emitting Silver Ion-Modified Gold Nanoclusters for Ratiometric Sensing of Hydrosulfide in Environmental Water and Hydrogen Sulfide in Live Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 2461-2472.	3.2	23
482	A highly stable copper nano cluster on nitrogen-doped graphene quantum dots for the simultaneous electrochemical sensing of dopamine, serotonin, and nicotine: a possible addiction scrutinizing strategy. Journal of Materials Chemistry B, 2022, 10, 3974-3988.	2.9	17
483	Sustainable and safer nanoclay composites for multifaceted applications. Green Chemistry, 2022, 24, 3081-3114.	4.6	28
484	Tuning the dielectric response in a nanocomposite material through nanoparticle morphology. RSC Advances, 2022, 12, 10778-10787.	1.7	3
485	Facile construction of acid-resistant Au nanoclusters via hydrophobic carbon coating for catalyzing CO oxidation in acidic media. Korean Journal of Chemical Engineering, 2022, 39, 833-837.	1.2	0
486	64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chinese Chemical Letters, 2022, 33, 3349-3360.	4.8	7
487	Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers, 2022, 14, 1188.	2.0	10
488	An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications. Biosensors, 2022, 12, 197.	2.3	10
489	Metal nanoclusters combined with CRISPR-Cas12a for hepatitis B virus DNA detection. Sensors and Actuators B: Chemical, 2022, 361, 131711.	4.0	27

#	Article	IF	CITATIONS
490	Fluorescent AgNCs Formed on Bifunctional DNA Template for Potassium Ion Detection. Chemosensors, 2021, 9, 349.	1.8	2
491	Mesoporous silica nanospheres supported atomically precise palladium nanocluster: Highly efficient and recyclable catalysts in the reduction of 4â€nitrophenol and Heck reactions. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
492	Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. Nanomaterials, 2022, 12, 62.	1.9	8
493	Electrochemical aspects of coinage metal nanoparticles for catalysis and spectroscopy. RSC Advances, 2022, 12, 12116-12135.	1.7	9
494	Antimicrobial Properties of Silver and Gold Nanomaterials., 2022,,.		0
496	Facile construction of highly luminescent and biocompatible gold nanoclusters by shell rigidification for two-photon pH-edited cytoplasmic and <i>in vivo</i> imaging. Nanoscale, 2022, 14, 8342-8348.	2.8	5
497	Gold nanocluster-based ratiometric fluorescent probe for biosensing of Hg ²⁺ ions in living organisms. Analyst, The, 2022, 147, 2773-2778.	1.7	6
498	Conjugating AIE-featured AuAg nanoclusters with highly luminescent carbon dots for improved visible-light-driven antibacterial activity. Nanoscale, 2022, 14, 8183-8191.	2.8	17
499	Microwave-Assisted Synthesis of Red Emitting Copper Nanoclusters Using Trypsin as a Ligand for Sensing of Pb ²⁺ And Hg ²⁺ Ions in Water and Tobacco Samples. Applied Spectroscopy, 2022, 76, 1234-1245.	1.2	7
500	Preparation of AIE Functional Singleâ€Chain Polymer Nanoparticles and Their Application in H ₂ O ₂ Detection through Intermolecular Heavyâ€Atom Effect. Macromolecular Rapid Communications, 2022, 43, e2200156.	2.0	6
501	Phase transferring luminescent gold nanoclusters via single-stranded DNA. Science China Chemistry, 2022, 65, 1212-1220.	4.2	10
502	Polyamineâ€Assisted Rapid Gold Nanocluster Synthesis <i>via</i> Electrostatic Attractionâ€Facilitated Core Approaching. ChemistrySelect, 2022, 7, .	0.7	2
503	Pure Metal Clusters with Atomic Precision for Nanomanufacturing. Nanomanufacturing and Metrology, 2022, 5, 230-239.	1.5	4
504	Self-sensing fluorescence polymer composites for chemical degradation protection and monitoring. Progress in Organic Coatings, 2022, 168, 106879.	1.9	2
505	Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chinese Chemical Letters, 2023, 34, 107527.	4.8	18
506	Bio-synthesis of a functionalized whey proteins theranostic nanoprobe with cancer-specific cytotoxicity and as a live/dead cell imaging probe. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114025.	2.0	1
507	An unexpected all-metal aromatic tetranuclear silver cluster in human copper chaperone Atox1. Chemical Science, 2022, 13, 7269-7275.	3.7	5
508	Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta, 2022, 248, 123607.	2.9	17

#	Article	IF	Citations
511	Metal Nanoclusters as Biomaterials for Bioapplications: Atomic Precision as the Next Goal. , 2022, 4, 1279-1296.		34
512	Toward the Controlled Synthesis of Highly Dispersed Metal Clusters Enabled by Downsizing Crystalline Porous Organic Cage Supports. Small Methods, 2022, 6, .	4.6	5
513	Bioavailability, biodistribution, and toxicity of fluorescent metal nanoclusters., 2022,, 659-678.		0
514	Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Advances, 2022, 12, 16927-16941.	1.7	6
515	Applications of metallic nanoclusters in bioimaging. , 2022, , 409-433.		0
516	Metal nanoclusters for energy storage applications. , 2022, , 625-658.		1
517	Antimicrobial properties of metal nanoclusters. , 2022, , 537-568.		0
518	Therapeutic applications of metal nanoclusters. , 2022, , 493-516.		0
519	2-Mercaptobenzothiazole-supported ratiometric fluorescent copper nanoclusters for activatable GSH sensing to drive tumor recognition. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112698.	2.5	8
520	Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116734.	5.8	15
521	<scp>Blueâ€green /scp> emission of <scp>pepsinâ€stabilized /scp> copper nanoclusters ultrafast detection of hemoglobin in human urine. Journal of the Chinese Chemical Society, 2022, 69, 1346-1355.</scp></scp>	0.8	1
522	Serineâ€Assisted Red Luminescence of Copper Nanoclusters for Cr ⁶⁺ Ion Detection and Whiteâ€Lightâ€Emitting Diodes. ChemistrySelect, 2022, 7, .	0.7	1
523	Gold–Silver Bimetallic Nanoclusters Protected by Glutathione S-Transferase for Colorimetric Sensing of Oxytetracycline. ACS Applied Nano Materials, 2022, 5, 11176-11184.	2.4	7
524	A Nanohybrid Containing Cyanâ€Emitting Copper Nanoclusters and TiO ₂ Nanoparticles: Tuning of Optoelectronic Properties. ChemistrySelect, 2022, 7, .	0.7	1
525	Natural plant compounds in synthesis and luminescence modulation of metal nanoclusters: Toward sustainable nanoprobes for sensing and bioimaging. Materials Today Advances, 2022, 16, 100279.	2.5	3
526	Cytotoxic effects of halogenated tin phosphinoyldithioformate complexes against several cancer cell lines. Dalton Transactions, 2022, 51, 13119-13128.	1.6	4
527	The hitchhiker's guide to dynamic ion–solvent clustering: applications in differential ion mobility spectrometry. Physical Chemistry Chemical Physics, 2022, 24, 20594-20615.	1.3	9
528	DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. Journal of Biomedical Nanotechnology, 2022, 18, 1237-1256.	0.5	1

#	Article	IF	CITATIONS
529	Quantifying the Solution Structure of Metal Nanoclusters Using Smallâ€Angle Neutron Scattering. Angewandte Chemie, 0, , .	1.6	O
530	Metal Cluster Triggered-Assembling Heterogeneous Au-Ag Nanoclusters with Highly Loading Performance and Biocompatible Capability. International Journal of Molecular Sciences, 2022, 23, 11197.	1.8	1
531	Quantifying the Solution Structure of Metal Nanoclusters Using Smallâ€Angle Neutron Scattering. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
532	Penicillamine-Capped Red-Emitting Gold Nanoclusters for Therapeutic Application. ACS Sustainable Chemistry and Engineering, 2022, 10, 12730-12737.	3.2	6
533	A dual-adjuvant neoantigen nanovaccine loaded with imiquimod and magnesium enhances anti-tumor immune responses of melanoma. Biomaterials Science, 2022, 10, 6740-6748.	2.6	5
534	H-bond-induced luminescence enhancement in a Pt ₁ Ag ₃₀ nanocluster and its application in methanol detection. Nanoscale, 2022, 14, 16647-16654.	2.8	3
535	Insights into mechanisms of diphosphine-mediated controlled surface construction on Au nanoclusters. Nanoscale, 2022, 14, 15804-15811.	2.8	10
536	Atomically precise Au25(GSH)18 nanoclusters versus plasmonic Au nanocrystals: Evaluating charge impetus in solar water oxidation. Chinese Chemical Letters, 2023, 34, 107901.	4.8	1
537	Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. , 2022, 1, 9140010.		25
538	Atomically-precise Au24Ag1 Clusterzymes with Enhanced Peroxidase-like Activity for Bioanalysis. Chemical Research in Chinese Universities, 0, , .	1.3	3
539	Chiral Inversion and Recovery of Supramolecular Luminescent Copper Nanocluster Hydrogels Triggered by Polyethyleneimine and Polyoxometalates. ACS Applied Materials & Samp; Interfaces, 2022, 14, 52324-52333.	4.0	6
540	Small-molecule fluorescent probes for plasma membrane staining: Design, mechanisms and biological applications. Coordination Chemistry Reviews, 2023, 474, 214862.	9.5	17
541	Nanotechnology applications for foodÂsafety: Benefits and risks. , 2023, , 3-30.		0
542	Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. International Journal of Biological Macromolecules, 2022, 223, 1067-1082.	3.6	8
543	Ratiometric Detection of Al Based on the Mixing of Dâ€penicillamineâ€Functionalized Copper Nanoclusters with Pyridoxal 5'â€phosphate. ChemistrySelect, 2022, 7, .	0.7	0
544	Investigation of effects of transferrin-conjugated gold nanoparticles on hippocampal neuronal activity and anxiety behavior in mice. Molecular and Cellular Biochemistry, 2023, 478, 1813-1824.	1.4	6
545	Poly(vinyl alcohol)-Coated Au Nanoclusters with High Stability and Quantum Yields of Fluorescence for Application in pH Sensing. ACS Applied Nano Materials, 2023, 6, 332-341.	2.4	1
546	Bovine serum albumin-stabilized gold nanoclusters as fluorescent probe for enzyme-free detection of glyphosate. Chemical Papers, 2023, 77, 2183-2192.	1.0	2

#	ARTICLE	IF	CITATIONS
547	High-Performance Formaldehyde Sensing Using Paper-Based Fluorescent Copper Nanoclusters. IEEE Sensors Journal, 2023, 23, 2076-2084.	2.4	13
548	Ligand effects on the photoluminescence of atomically precise silver nanoclusters. Nanoscale, 2023, 15, 3120-3129.	2.8	15
549	Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics, 2023, 12, 104.	1.5	6
550	Label-free and low-background FEN1 sensing based on cleavage-induced ligation of bifunctional dumbbell DNA and in-situ signal readout. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122295.	2.0	0
551	An Atomically Precise Pyrazolateâ€Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
552	A stable superatomic Cu ₆ (SMPP) ₆ nanocluster with dual emission. Nanoscale, 2023, 15, 4137-4142.	2.8	0
553	Ultrasmall PtAu ₂ nanoclusters activate endogenous anti-inflammatory and anti-oxidative systems to prevent inflammatory osteolysis. Theranostics, 2023, 13, 1010-1027.	4.6	4
554	An Atomically Precise Pyrazolateâ€Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie, 2023, 135, .	1.6	2
555	Nanoparticle-Based Artificial Mitochondrial DNA Transcription Regulator: <i>MitoScript</i> Letters, 2023, 23, 2046-2055.	4.5	2
556	Photoluminescence of the Au38(SR)26 nanocluster comprises three radiative processes. Communications Chemistry, 2023, 6, .	2.0	4
557	Emerging ultrasmall luminescent nanoprobes for <i>in vivo</i> bioimaging. Chemical Society Reviews, 2023, 52, 1672-1696.	18.7	27
558	Bioinspired materials for CO2 capture and conversion. , 2023, , 57-76.		1
559	Quenching of the Photoluminescence of Gold Nanoclusters Synthesized by Pulsed Laser Ablation in Water upon Interaction with Toxic Metal Species in Aqueous Solution. Chemosensors, 2023, 11, 118.	1.8	1
560	A hybrid ratiometric probe for the differential detection of testosterone and iron ions based on simultaneous response of fluorescence and light scattering of gold nanoclusters. Inorganica Chimica Acta, 2023, 550, 121431.	1.2	0
561	Coal humus acid functionalized high stability fluorescent copper nanoclusters for tumor identification by sequential off-on-off monitoring tryptophan and Hg2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122557.	2.0	1
562	Smart flared-nanokites with ultra-high fluorescence enhancement for multiplexing virus DNA biosensing. Sensors and Actuators B: Chemical, 2023, 387, 133813.	4.0	2
563	AuAg nanocomposites suppress biofilm-induced inflammation in human osteoblasts. Nanotechnology, 2023, 34, 165101.	1.3	0
564	Surface Ligand Influences the Cu Nanoclusters as a Dual Sensing Optical Probe for Localized pH Environment and Fluoride Ion. Nanomaterials, 2023, 13, 529.	1.9	4

#	ARTICLE	IF	CITATIONS
565	Atomically precise gold and silver nanoclusters: Synthesis and applications., 2023,, 137-164.		О
566	Gold Nanocluster-Based Ratiometric Probe with Surface Structure Regulation-Triggered Sensing of Hydrogen Sulfide in Living Organisms. ACS Applied Materials & Samp; Interfaces, 2023, 15, 12643-12652.	4.0	10
567	Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Frontiers in Chemistry, 0, 11 , .	1.8	4
568	Amorphous Copperâ€Based Nanoparticles with Clusterizationâ€Triggered Phosphorescence for Ultrasensing 2,4,6â€Trinitrotoluene. Advanced Materials, 2023, 35, .	11.1	11
569	Advances in bovine serum albumin-protected gold nanoclusters: from understanding the formation mechanisms to biological applications. Materials Today Chemistry, 2023, 29, 101460.	1.7	13
571	Determination of trypsin using protamine mediated fluorescent enhancement of DNA templated Au nanoclusters. Mikrochimica Acta, 2023, 190, .	2.5	15
577	Multifunctional DNA nanoprobe for tumor-targeted synergistic therapy by integrating chemodynamic therapy with gene silencing. Nanoscale Horizons, 2023, 8, 1106-1112.	4.1	2
579	Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application. , 0, , .		0
591	Nanohybrids of atomically precise metal nanoclusters. Communications Chemistry, 2023, 6, .	2.0	7
593	Emerging NIR-II Luminescent Gold Nanoclusters for In Vivo Bioimaging. Journal of Analysis and Testing, 2023, 7, 260-271.	2.5	2
596	Metal Nanoclusters and Their Composites for Clinical Diagnosis. , 2023, , 307-338.		0
597	Progress in optical properties of chiral metal clusters: circular dichroism and circularly polarized luminescence. Materials Chemistry Frontiers, 2023, 7, 6389-6410.	3.2	1
598	Advances in Cu nanocluster catalyst design: recent progress and promising applications. Nanoscale Horizons, 2023, 8, 1509-1522.	4.1	6