Big–deep–smart data in imaging for guiding mater

Nature Materials 14, 973-980 DOI: 10.1038/nmat4395

Citation Report

#	Article	IF	CITATIONS
1	A bridge for accelerating materials by design. Npj Computational Materials, 2015, 1, .	3.5	47
2	Deep Data Mining in a Real Space: Application to Scanning Probe Microscopy Studies on a "Parent― State of a High Temperature Superconductor. Microscopy and Microanalysis, 2016, 22, 1418-1419.	0.2	0
3	Atomic Level Structure-Property Relationship in a Spin-Orbit Mott insulator: Scanning Transmission Electron and Scanning Tunneling Microscopy Studies. Microscopy and Microanalysis, 2016, 22, 908-909.	0.2	0
4	Image driven machine learning methods for microstructure recognition. Computational Materials Science, 2016, 123, 176-187.	1.4	239
5	Kernels for scalable data analysis in science: Towards an architecture-portable future. , 2016, , .		0
6	Big, deep, and smart data from atomically resolved images: exploring the origins of materials functionality. Microscopy and Microanalysis, 2016, 22, 1416-1417.	0.2	0
7	Deep data mining in a real space: separation of intertwined electronic responses in a lightly doped BaFe ₂ As ₂ . Nanotechnology, 2016, 27, 475706.	1.3	21
8	Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3. Nature Communications, 2016, 7, 13774.	5.8	66
9	Adaptive Strategies for Materials Design using Uncertainties. Scientific Reports, 2016, 6, 19660.	1.6	172
10	Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography. Scientific Reports, 2016, 6, 26348.	1.6	62
11	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-5618.	7.3	99
12	Competing Pathways for Nucleation of the Double Perovskite Structure in the Epitaxial Synthesis of La ₂ MnNiO ₆ . Chemistry of Materials, 2016, 28, 3814-3822.	3.2	29
13	Systematic Multidimensional Quantification of Nanoscale Systems From Bimodal Atomic Force Microscopy Data. ACS Nano, 2016, 10, 6265-6272.	7.3	39
14	Big, Deep, and Smart Data in Scanning Probe Microscopy. ACS Nano, 2016, 10, 9068-9086.	7.3	103
15	Increasing the Impact of Materials in and beyond Bio-Nano Science. Journal of the American Chemical Society, 2016, 138, 13449-13456.	6.6	49
16	The Mendeleev–Meyer force project. Nanoscale, 2016, 8, 17400-17406.	2.8	9
17	Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis. Nano Letters, 2016, 16, 5574-5581.	4.5	40
18	Controlling the crystallisation of oxide materials by solvothermal chemistry: tuning composition, substitution and morphology of functional solids. CrystEngComm, 2016, 18, 7656-7670.	1.3	25

TATION REPO

#	Article	IF	CITATIONS
19	Frontiers in strain-engineered multifunctional ferroic materials. MRS Communications, 2016, 6, 151-166.	0.8	17
20	Multistability in Bistable Ferroelectric Materials toward Adaptive Applications. Advanced Functional Materials, 2016, 26, 5748-5756.	7.8	20
21	A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Computational Materials, 2016, 2, .	3.5	922
22	Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology, 2016, 27, 495703.	1.3	18
23	Perspective: Data infrastructure for high throughput materials discovery. APL Materials, 2016, 4, 053203.	2.2	25
24	A three-component model on the structure of colloidal solution with size-asymmetric electrolytes. Molecular Physics, 2016, 114, 2341-2350.	0.8	16
25	Denoising time-resolved microscopy image sequences with singular value thresholding. Ultramicroscopy, 2017, 178, 112-124.	0.8	30
26	Deep learning for computational chemistry. Journal of Computational Chemistry, 2017, 38, 1291-1307.	1.5	537
27	Machine learning phases of matter. Nature Physics, 2017, 13, 431-434.	6.5	999
28	Non-piezoelectric effects in piezoresponse force microscopy. Current Applied Physics, 2017, 17, 661-674.	1.1	123
29	Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. Npj Computational Materials, 2017, 3, .	3.5	110
30	Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Materialia, 2017, 133, 100-108.	3.8	44
31	Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensileâ€ S trained Film. Advanced Electronic Materials, 2017, 3, 1600508.	2.6	7
32	Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning. Chemistry of Materials, 2017, 29, 9436-9444.	3.2	319
33	AQUAMI: An open source Python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Computational Materials Science, 2017, 139, 320-329.	1.4	60
34	Machine Learning Phases of Strongly Correlated Fermions. Physical Review X, 2017, 7, .	2.8	216
35	Probing many-body localization with neural networks. Physical Review B, 2017, 95, .	1.1	117
36	Learning surface molecular structures via machine vision. Npj Computational Materials, 2017, 3, .	3.5	79

0			D	
		$1 \cap N$	Repo	ND T
\sim	IIAI		ILL U	ALC L

#	Article	IF	CITATIONS
37	Pycroscopy - An Open Source Approach to Microscopy and Microanalysis in the Age of Big Data and Open Science. Microscopy and Microanalysis, 2017, 23, 224-225.	0.2	6
38	The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative. Scripta Materialia, 2017, 141, 99-106.	2.6	30
39	Virtual screening of inorganic materials synthesis parameters with deep learning. Npj Computational Materials, 2017, 3, .	3.5	131
40	Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns. Scientific Reports, 2017, 7, 15259.	1.6	17
41	Machine learning topological states. Physical Review B, 2017, 96, .	1.1	222
42	Inferring low-dimensional microstructure representations using convolutional neural networks. Physical Review E, 2017, 96, 052111.	0.8	95
43	Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. Nature Communications, 2017, 8, 1468.	5.8	93
44	Magnetoresistance in magnetite film: A theoretical and experimental investigation. Journal of Magnetism and Magnetic Materials, 2017, 442, 102-106.	1.0	2
45	Mesoscale Functional Imaging of Materials for Photovoltaics. ACS Energy Letters, 2017, 2, 1825-1834.	8.8	33
46	Quantum Entanglement in Neural Network States. Physical Review X, 2017, 7, .	2.8	241
47	Rapid Photovoltaic Device Characterization through Bayesian Parameter Estimation. Joule, 2017, 1, 843-856.	11.7	47
48	Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Physical Review A, 2018, 97, .	1.0	28
49	An open experimental database for exploring inorganic materials. Scientific Data, 2018, 5, 180053.	2.4	121
50	Ultrafast current imaging by Bayesian inversion. Nature Communications, 2018, 9, 513.	5.8	14
51	Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques. Progress in Materials Science, 2018, 95, 1-41.	16.0	252
52	Construction of Hamiltonians by supervised learning of energy and entanglement spectra. Physical Review B, 2018, 97, .	1.1	24
53	Hierarchical Design of Tissue Regenerative Constructs. Advanced Healthcare Materials, 2018, 7, e1701067.	3.9	68
54	Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Reports on Progress in Physics, 2018, 81, 036502.	8.1	129

#	Article	IF	CITATIONS
55	Approximating quantum many-body wave functions using artificial neural networks. Physical Review B, 2018, 97, .	1.1	146
56	Designing perturbative metamaterials from discrete models. Nature Materials, 2018, 17, 323-328.	13.3	150
57	Ultracompact Photonic Structure Design for Strong Light Confinement and Coupling Into Nanowaveguide. Journal of Lightwave Technology, 2018, 36, 2812-2819.	2.7	34
58	Reprint of: The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative. Scripta Materialia, 2018, 143, 129-136.	2.6	12
59	Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods. Reports on Progress in Physics, 2018, 81, 046002.	8.1	60
60	An artificial intelligence atomic force microscope enabled by machine learning. Nanoscale, 2018, 10, 21320-21326.	2.8	61
61	Correlated Materials Characterization <i>via</i> Multimodal Chemical and Functional Imaging. ACS Nano, 2018, 12, 11798-11818.	7.3	28
62	Extracting many-particle entanglement entropy from observables using supervised machine learning. Physical Review B, 2018, 98, .	1.1	9
63	Mining the Critical Conditions for New Hypotheses of Materials from Historical Reaction Data. , 2018, , .		0
64	Matrix product operators for sequence-to-sequence learning. Physical Review E, 2018, 98, .	0.8	34
65	Deep Data Analytics in Structural and Functional Imaging of Nanoscale Materials. Springer Series in Materials Science, 2018, , 103-128.	0.4	3
66	Phaseâ€Change Superlattice Materials toward Low Power Consumption and High Density Data Storage: Microscopic Picture, Working Principles, and Optimization. Advanced Functional Materials, 2018, 28, 1803380.	7.8	119
67	Polar projections for big data analysis in applied superconductivity. AIP Advances, 2018, 8, .	0.6	7
68	Strategies for accelerating the adoption of materials informatics. MRS Bulletin, 2018, 43, 683-689.	1.7	29
69	Nanoscale Growth Kinetics of Cu(In,Ga)Se ₂ Absorbers. Journal of Physical Chemistry C, 2018, 122, 22897-22902.	1.5	6
70	Theory of Single-Impact Atomic Force Spectroscopy in liquids with material contrast. Scientific Reports, 2018, 8, 7534.	1.6	11
71	Identifying Nanoscale Structure–Function Relationships Using Multimodal Atomic Force Microscopy, Dimensionality Reduction, and Regression Techniques. Journal of Physical Chemistry Letters, 2018, 9, 3307-3314.	2.1	13
72	Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr _{0.2} Ti _{0.8} O ₃ Thin Films. Advanced Materials, 2018, 30, e1800701.	11.1	23

		CITATION REPORT		
#	Article		IF	CITATIONS
73	Extracting Knowledge from Data through Catalysis Informatics. ACS Catalysis, 2018, 8, 7	7403-7429.	5.5	179
74	Machine learning for molecular and materials science. Nature, 2018, 559, 547-555.		13.7	2,387
75	Towards Generalized Noise-Level Dependent Crystallographic Symmetry Classifications o Less Periodic Crystal Patterns. Symmetry, 2018, 10, 133.	of More or	1.1	16
76	Machine learning for heterogeneous catalyst design and discovery. AICHE Journal, 2018,	64, 2311-2323.	1.8	258
77	Accurate lattice parameters from 2D-periodic images for subsequent Bravais lattice type Advanced Structural and Chemical Imaging, 2018, 4, 5.	assignments.	4.0	13
78	Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems. Physica Letters, 2018, 120, 240402.	al Review	2.9	51
79	Graphene milling dynamics during helium ion beam irradiation. Carbon, 2018, 138, 277-2	282.	5.4	18
80	Improved multi-level storage performance by insulator-metal transition of In2S3-doped C films. Ceramics International, 2019, 45, 24090-24095.	e2Sb2Te5	2.3	7
81	Recent advances and applications of machine learning in solid-state materials science. N Computational Materials, 2019, 5, .	рj	3.5	1,289
82	USID and Pycroscopy – Open Source Frameworks for Storing and Analyzing Imaging a Data. Microscopy and Microanalysis, 2019, 25, 220-221.	nd Spectroscopy	0.2	27
83	3D Morphological Analysis and Synthesis of Industrial Materials Surfaces. Integrating Ma Manufacturing Innovation, 2019, 8, 537-550.	iterials and	1.2	0
84	Designing nanophotonic structures using conditional deep convolutional generative adv networks. Nanophotonics, 2019, 8, 1255-1261.	ersarial	2.9	175
85	A New High-Efficiency Experimental Design for Optimizing Various Flow Velocities Testin Aggressive Formation Water. Acta Metallurgica Sinica (English Letters), 2019, 32, 944-9		1.5	7
86	Materials science in the artificial intelligence age: high-throughput library generation, ma learning, and a pathway from correlations to the underpinning physics. MRS Communica 821-838.	chine itions, 2019, 9,	0.8	109
87	Intelligent metasurface imager and recognizer. Light: Science and Applications, 2019, 8,	97.	7.7	225
88	Revealing ferroelectric switching character using deep recurrent neural networks. Nature Communications, 2019, 10, 4809.		5.8	34
89	The ORNL Lectures on Scanning Probe Microscopy, Part 1: Piezoresponse Force Microsc Spectroscopy of Ferroelectrics, Energy Materials, and Biological Systems. Microscopy To 12-16.		0.2	0
90	Visualizing Scientists' Cognitive Representation of Materials Data through the Applic Ontology. Journal of Physical Chemistry Letters, 2019, 10, 7482-7491.	cation of	2.1	16

		REPORT	
#	Article	IF	Citations
91	2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion. Advanced Materials, 2019, 31, e1905405.	11.1	82
92	Estimating physical properties from liquid crystal textures via machine learning and complexity-entropy methods. Physical Review E, 2019, 99, 013311.	0.8	36
93	A machine learning approach to thermal conductivity modeling: A case study on irradiated uranium-molybdenum nuclear fuels. Computational Materials Science, 2019, 161, 107-118.	1.4	23
94	Classifying optical microscope images of exfoliated graphene flakes by data-driven machine learning. Npj 2D Materials and Applications, 2019, 3, .	3.9	64
95	Completing the picture through correlative characterization. Nature Materials, 2019, 18, 1041-1049.	13.3	73
96	Data visualization heuristics for the physical sciences. Materials and Design, 2019, 179, 107868.	3.3	11
97	Automating material image analysis for material discovery. MRS Communications, 2019, 9, 545-555.	0.8	21
98	Statistical Raman spectroscopy characterization of carbon additive in low composites: Toward industrial quality control. Journal of Raman Spectroscopy, 2019, 50, 1015-1026.	1.2	7
99	Intuition-Enabled Machine Learning Beats the Competition When Joint Human-Robot Teams Perform Inorganic Chemical Experiments. Journal of Chemical Information and Modeling, 2019, 59, 2664-2671.	2.5	25
100	Machine learning for renewable energy materials. Journal of Materials Chemistry A, 2019, 7, 17096-17117.	5.2	207
101	Layer dependence of graphene-diamene phase transition in epitaxial and exfoliated few-layer graphene using machine learning. 2D Materials, 2019, 6, 035043.	2.0	40
102	Probing electromechanical behaviors by datacube piezoresponse force microscopy in ambient and aqueous environments. Nanotechnology, 2019, 30, 235701.	1.3	9
103	Machine learning as a contributor to physics: Understanding Mg alloys. Materials and Design, 2019, 172, 107759.	3.3	20
104	New frontiers for the materials genome initiative. Npj Computational Materials, 2019, 5, .	3.5	312
105	Deep Learning to Speed up the Development of Structure–Property Relations For Hexagonal Boron Nitride and Graphene. Small, 2019, 15, 1900656.	5.2	10
106	Spin-qubit noise spectroscopy from randomized benchmarking by supervised learning. Physical Review A, 2019, 99, .	1.0	3
107	Design of multifunctional supercapacitor electrodes using an informatics approach. Molecular Systems Design and Engineering, 2019, 4, 654-663.	1.7	17

108	Machine learning based prediction of metal hydrides for hydrogen storage, part I: Prediction of hydrogen weight percent. International Journal of Hydrogen Energy, 2019, 44, 7337-7344.	3.8	50
-----	---	-----	----

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
109	Nanomaterials Discovery and Design through Machine Learning. Small Methods, 2019,	, 3, 1900025.	4.6	67
110	Machine learning electron correlation in a disordered medium. Physical Review B, 2019	, 99, .	1.1	12
111	Deep Convolutional Neural Network Approach for Solving Nonlinear Inverse Scattering 2019, , .	Problems. ,		3
112	Decoding crystallography from high-resolution electron imaging and diffraction datase learning. Science Advances, 2019, 5, eaaw1949.	ts with deep	4.7	81
113	Decoding Phases of Matter by Machine-Learning Raman Spectroscopy. Physical Review	/ Applied, 2019, 12, .	1.5	17
114	Mapping intrinsic electromechanical responses at the nanoscale via sequential excitati probe microscopy empowered by deep data. National Science Review, 2019, 6, 55-63.	on scanning	4.6	27
115	General Resolution Enhancement Method in Atomic Force Microscopy Using Deep Lea Theory and Simulations, 2019, 2, 1800137.	rning. Advanced	1.3	23
116	Avoiding common pitfalls in machine learning omic data science. Nature Materials, 201	19, 18, 422-427.	13.3	83
117	DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering. IEEE Antennas and Propagation, 2019, 67, 1819-1825.	Transactions on	3.1	258
118	A penalized autologistic regression with application for modeling the microstructure or high-strength steel. Journal of Quality Technology, 2020, 52, 329-342.	f dual-phase	1.8	2
119	Neural network representations of quantum many-body states. Science China: Physics, Astronomy, 2020, 63, 1.	, Mechanics and	2.0	11
120	A MGI-oriented investigation of the Young's modulus and its application to the develop Ti–Nb–Zr–Cr bio-alloy. Materials Science and Engineering C, 2020, 106, 110265	oment of a novel	3.8	25
121	The metamorphosis of analytical chemistry. Analytical and Bioanalytical Chemistry, 202	20, 412, 3525-3537.	1.9	14
122	Machine Learning Approaches for Thermoelectric Materials Research. Advanced Functi 2020, 30, 1906041.	onal Materials,	7.8	114
123	A journey into the microstructure: Using a multifocal 3D digital light microscope to stuarchaeological artefacts retrieved from shipwrecks. Digital Applications in Archaeology Heritage, 2020, 16, e00129.	Idy and Cultural	0.9	5
124	Crystallographic prediction from diffraction and chemistry data for higher throughput classification using machine learning. Computational Materials Science, 2020, 173, 10	9409.	1.4	27
125	From Ionic Surfactants to Nafion through Convolutional Neural Networks. Journal of Ph Chemistry B, 2020, 124, 8918-8927.	nysical	1.2	7
126	A deep-learning approach to realizing functionality in nanoelectronic devices. Nature Nanotechnology, 2020, 15, 992-998.		15.6	41

#	Article	IF	CITATIONS
128	Imaging spatiotemporal evolution of molecules and active sites in zeolite catalyst during methanol-to-olefins reaction. Nature Communications, 2020, 11, 3641.	5.8	70
129	High-Speed Piezoresponse Force Microscopy and Machine Learning Approaches for Dynamic Domain Growth in Ferroelectric Materials. ACS Applied Materials & Interfaces, 2020, 12, 9944-9952.	4.0	10
130	Machine learning-driven new material discovery. Nanoscale Advances, 2020, 2, 3115-3130.	2.2	111
131	Machine learning meets quantum foundations: A brief survey. AVS Quantum Science, 2020, 2, 034101.	1.8	30
132	Photoexcitation Induced Ultrafast Nonthermal Amorphization in Sb ₂ Te ₃ . Journal of Physical Chemistry Letters, 2020, 11, 10242-10249.	2.1	12
133	Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles. Scientific Reports, 2020, 10, 18910.	1.6	26
134	Exploring the A ₂ BX ₃ Family for New Functional Materials Using Crystallographic Database Mining and First-Principles Calculations. Journal of Physical Chemistry C, 2020, 124, 19413-19425.	1.5	2
135	Interactive human–machine learning framework for modelling of ferroelectric–dielectric composites. Journal of Materials Chemistry C, 2020, 8, 10352-10361.	2.7	10
136	AI Applications through the Whole Life Cycle of Material Discovery. Matter, 2020, 3, 393-432.	5.0	86
137	Simultaneous inversion of optical and infra-red image data to determine thermo-mechanical properties of thermally conductive solid materials. International Journal of Heat and Mass Transfer, 2020, 163, 120445.	2.5	6
138	Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships. Journal of Applied Physics, 2020, 128, .	1.1	37
139	Ensemble-machine-learning-based correlation analysis of internal and band characteristics of thermoelectric materials. Journal of Materials Chemistry C, 2020, 8, 13079-13089.	2.7	9
140	Closing the Gap Between Modeling and Experiments in the Self-Assembly of Biomolecules at Interfaces and in Solution. Chemistry of Materials, 2020, 32, 8043-8059.	3.2	10
141	Machine learning in materials genome initiative: A review. Journal of Materials Science and Technology, 2020, 57, 113-122.	5.6	110
142	Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Dataâ€Rich. Advanced Materials Technologies, 2020, 5, .	3.0	49
143	The structural information filtered features (SIFF) potential: Maximizing information stored in machine-learning descriptors for materials prediction. Journal of Applied Physics, 2020, 127, 215108.	1.1	3
144	Artificial neural network based computation for out-of-time-ordered correlators. Physical Review B, 2020, 101, .	1.1	8
145	Deep learning analysis on microscopic imaging in materials science. Materials Today Nano, 2020, 11, 100087.	2.3	82

#	Article	IF	CITATIONS
146	Progress in Computational and Machineâ€Learning Methods for Heterogeneous Smallâ€Molecule Activation. Advanced Materials, 2020, 32, e1907865.	11.1	46
147	Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires. Chemistry of Materials, 2020, 32, 2703-2741.	3.2	26
148	Machine learning enables design of on-chip integrated silicon T-junctions with footprint of 1.2Âl¼m×1.2l¼m. Nano Communication Networks, 2020, 25, 100312.	1.6	11
149	Cambridge Structural Database (CSD). , 2021, , 413-437.		1
150	Automated structure discovery in atomic force microscopy. Science Advances, 2020, 6, eaay6913.	4.7	71
151	Learning the Physics of Pattern Formation from Images. Physical Review Letters, 2020, 124, 060201.	2.9	34
152	A Critical Review of Machine Learning of Energy Materials. Advanced Energy Materials, 2020, 10, 1903242.	10.2	319
153	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	11.1	64
154	Materials Informatics Screening of Liâ€Rich Layered Oxide Cathode Materials with Enhanced Characteristics Using Synthesis Data. Batteries and Supercaps, 2020, 3, 427-438.	2.4	16
155	ALKEMIE: An intelligent computational platform for accelerating materials discovery and design. Computational Materials Science, 2021, 186, 110064.	1.4	89
156	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	11.1	75
157	Non-negative matrix factorization for mining big data obtained using four-dimensional scanning transmission electron microscopy. Ultramicroscopy, 2021, 221, 113168.	0.8	15
158	Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Materialia, 2021, 202, 211-221.	3.8	85
159	Critical review of machine learning applications in perovskite solar research. Nano Energy, 2021, 80, 105546.	8.2	70
160	Artificial intelligence-enabled smart mechanical metamaterials: advent and future trends. International Materials Reviews, 2021, 66, 365-393.	9.4	63
161	Nanotechnology for Green Applications: How Far on the Anvil of Machine Learning!. Nanotechnology in the Life Sciences, 2021, , 1-38.	0.4	1
162	Deep learning for material synthesis and manufacturing systems: A review. Materials Today: Proceedings, 2021, 46, 3263-3269.	0.9	37
163	Predicting hydration layers on surfaces using deep learning. Nanoscale Advances, 2021, 3, 3447-3453.	2.2	6

#	Article	IF	CITATIONS
164	From Big Data to Deep Data to Support People Analytics for Employee Attrition Prediction. IEEE Access, 2021, 9, 60447-60458.	2.6	34
165	Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration. ACS Nano, 2021, 15, 3971-3995.	7.3	36
166	Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging. Npj Computational Materials, 2021, 7, .	3.5	1
167	Progress on material characterization methods under big data environment. Advanced Composites and Hybrid Materials, 2021, 4, 235-247.	9.9	16
168	Complex-Valued Pix2pix—Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering. Electronics (Switzerland), 2021, 10, 752.	1.8	16
169	Ferroelectric/multiferroic self-assembled vertically aligned nanocomposites: Current and future status. APL Materials, 2021, 9, .	2.2	15
171	Big data and machine learning for materials science. Discover Materials, 2021, 1, 12.	1.0	49
172	Fast Labelâ€Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning. Small Methods, 2021, 5, e2100279.	4.6	10
173	Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution. GAMM Mitteilungen, 2021, 44, e202100007.	2.7	26
174	Unsupervised Learning of Non-Hermitian Topological Phases. Physical Review Letters, 2021, 126, 240402.	2.9	22
175	Al in Measurement Science. Annual Review of Analytical Chemistry, 2021, 14, 1-19.	2.8	11
176	Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science, 2021, 193, 110360.	1.4	103
177	Design of <i>c</i> -Axis-Oriented Pnictogen Chalcogenides. ACS Applied Electronic Materials, 2021, 3, 3114-3122.	2.0	1
178	Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy. Npj Computational Materials, 2021, 7, .	3.5	26
179	Deep Learning Method to Accelerate Discovery of Hybrid Polymer-Graphene Composites. Scientific Reports, 2021, 11, 15111.	1.6	13
180	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano, 2021, 15, 12604-12627.	7.3	49
181	Image inversion and uncertainty quantification for constitutive laws of pattern formation. Journal of Computational Physics, 2021, 436, 110279.	1.9	14
182	Accelerating Microstructure Recognition of Nickel-Based Superalloy Data by UNet++. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 863-870.	0.5	1

#	Article	IF	CITATIONS
183	Phase Transition Effect on Ferroelectric Domain Surface Charge Dynamics in BaTiO3 Single Crystal. Materials, 2021, 14, 4463.	1.3	3
184	Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 943-995.	0.2	14
185	Hystorian: A processing tool for scanning probe microscopy and other n-dimensional datasets. Ultramicroscopy, 2021, 228, 113345.	0.8	3
186	Adoption of Image-Driven Machine Learning for Microstructure Characterization and Materials Design: A Perspective. Jom, 2021, 73, 3639-3657.	0.9	6
187	Machine learning analysis of microwave dielectric properties for seven structure types: The role of the processing and composition. Journal of Physics and Chemistry of Solids, 2021, 156, 110178.	1.9	6
188	Visualization of electrochemical behavior in carbon steel assisted by machine learning. Applied Surface Science, 2021, 563, 150412.	3.1	10
189	Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 2021, 88, 106227.	8.2	76
190	Tree-based interpretable machine learning of the thermodynamic phases. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 412, 127589.	0.9	3
191	Multi defect detection and analysis of electron microscopy images with deep learning. Computational Materials Science, 2021, 199, 110576.	1.4	24
192	Machine Learning Classifiers for Surface Crack Detection in Fracture Experiments. International Journal of Mechanical Sciences, 2021, 209, 106698.	3.6	25
193	Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. Chinese Journal of Catalysis, 2021, 42, 2141-2148.	6.9	3
194	Smart Data as a Service. ITM Web of Conferences, 2021, 38, 03001.	0.4	3
195	Machine Learning for Glass Modeling. Springer Handbooks, 2019, , 1157-1192.	0.3	28
196	An image-driven machine learning approach to kinetic modeling of a discontinuous precipitation reaction. Materials Characterization, 2020, 166, 110379.	1.9	20
197	Deformation behavior and amorphization in icosahedral boron-rich ceramics. Progress in Materials Science, 2020, 112, 100664.	16.0	34
198	Chapter 6. A Prediction of Future States: Al-powered Chemical Innovation for Defense Applications. RSC Theoretical and Computational Chemistry Series, 2020, , 136-168.	0.7	1
199	Exploration of lattice Hamiltonians for functional and structural discovery via Gaussian process-based exploration–exploitation. Journal of Applied Physics, 2020, 128, 164304.	1.1	8
200	K-means-driven Gaussian Process data collection for angle-resolved photoemission spectroscopy. Machine Learning: Science and Technology, 2020, 1, 045015.	2.4	7

#	Article	IF	CITATIONS
201	Classifying surface probe images in strongly correlated electronic systems via machine learning. Physical Review Materials, 2019, 3, .	0.9	11
203	Strategic Key Elements in Big Data Analytics as Driving Forces of IoT Manufacturing Value Creation: A Challenge for Research Framework. IEEE Transactions on Engineering Management, 2024, 71, 90-105.	2.4	3
204	Predicting the thermodynamic stability of perovskite oxides using multiple machine learning techniques. Materials Today: Proceedings, 2022, 52, 457-461.	0.9	6
205	Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning. Journal of Physical Chemistry Letters, 2021, 12, 10242-10248.	2.1	10
206	Machine learning to electrochemistry: Analysis of polymers and halide ions in a copper electrolyte. Electrochimica Acta, 2021, 399, 139424.	2.6	10
207	Comportamiento de consumo en puntos de venta fÃsicos: aplicación de smart data. Redmarka Revista De Marketing Aplicado, 2019, 1, 229-243.	0.1	0
208	PROBLEMS OF THE BANKING SECTOR IN THE TRANSITION TO DIGITAL BANKING. Business Strategies, 2018, , 26-28.	0.1	0
209	Machine‣earning Microstructure for Inverse Material Design. Advanced Science, 2021, 8, e2101207.	5.6	28
210	A brief review of other methods of computer simulation. , 2021, , 484-518.		0
211	Electrostatic Discovery Atomic Force Microscopy. ACS Nano, 2022, 16, 89-97.	7.3	11
212	Applications of deep learning in electron microscopy. Microscopy (Oxford, England), 2022, 71, i100-i115.	0.7	24
213	How transitioning to Industry 4.0 promotes circular product lifetimes. Industrial Marketing Management, 2022, 101, 125-140.	3.7	34
214	Machine-learning and high-throughput studies for high-entropy materials. Materials Science and Engineering Reports, 2022, 147, 100645.	14.8	44
215	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	5.6	29
216	Simple Setup Miniaturization with Multiple Benefits for Green Chemistry in Nanoparticle Synthesis. ACS Omega, 2022, 7, 4714-4721.	1.6	6
217	Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multiâ€Modal and Multiâ€Scale Standardized Experimental Workflow. Advanced Energy Materials, 2022, 12, .	10.2	17
218	"Deep Reinforcement Learning for Engineering Design Through Topology Optimization of Elementally Discretized Design Domains". SSRN Electronic Journal, 0, , .	0.4	0
219	Influence of Molecular Layered Structure on Thermoelectric Properties of Materials. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
220	Correlative image learning of chemo-mechanics in phase-transforming solids. Nature Materials, 2022, 21, 547-554.	13.3	27
221	Automated Image Analysis for Single-Atom Detection in Catalytic Materials by Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 8018-8029.	6.6	33
222	Deep learning modeling strategy for material science: from natural materials to metamaterials. JPhys Materials, 2022, 5, 014003.	1.8	6
223	Study of crystal properties based on attention mechanism and crystal graph convolutional neural network. Journal of Physics Condensed Matter, 2022, 34, 195901.	0.7	7
224	High-throughput exploration of halide perovskite compositionally-graded films and degradation mechanisms. Communications Materials, 2022, 3, .	2.9	14
225	Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	11.8	59
226	Multi-dimensional characteristic construction methods of computational materials under big data environment. ChemPhysMater, 2022, , .	1.4	0
227	Data-Driven Methods for Accelerating Polymer Design. ACS Polymers Au, 2022, 2, 8-26.	1.7	39
229	Automated Phase Segmentation and Quantification of High-Resolution Tem Image for Alloy Design. SSRN Electronic Journal, 0, , .	0.4	0
230	Deep-level trap formation in Si-substituted Sr2SnO4:Sm3+ for rewritable optical information storage. Materials Today Chemistry, 2022, 24, 100906.	1.7	6
231	"Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains― Materials and Design, 2022, 218, 110672.	3.3	17
232	Enhanced Cellular Materials through Multiscale, Variable-Section Inner Designs: Mechanical Attributes and Neural Network Modeling. Materials, 2022, 15, 3581.	1.3	5
233	An Automated Scanning Transmission Electron Microscope Guided by Sparse Data Analytics. Microscopy and Microanalysis, 2022, 28, 1611-1621.	0.2	15
234	Deep Learning to Predict Structure-Property Relationships of Polymer Blends. ACS Symposium Series, 0, , 51-64.	0.5	0
235	Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys. Journal of Materials Science and Technology, 2022, 131, 1-13.	5.6	9
236	Analytical methods for superresolution dislocation identification in dark-field X-ray microscopy. Journal of Materials Science, 2022, 57, 14890-14904.	1.7	3
237	Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nature Reviews Materials, 2022, 7, 991-1009.	23.3	30
238	Emerging machine learning strategies for diminishing measurement uncertainty in SPM nanometrology, Surface Topography: Metrology and Properties, 2022, 10, 033002	0.9	2

#	Article	IF	CITATIONS
239	A Robust Neural Network for Extracting Dynamics from Electrostatic Force Microscopy Data. Journal of Chemical Information and Modeling, 2022, 62, 4342-4350.	2.5	0
240	Machine learning for battery research. Journal of Power Sources, 2022, 549, 232125.	4.0	22
241	Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. Nanoscale Horizons, 2022, 7, 1427-1477.	4.1	21
242	Hydrogen Storage Prediction in Dibenzyltoluene as Liquid Organic Hydrogen Carrier Empowered with Weighted Federated Machine Learning. Mathematics, 2022, 10, 3846.	1.1	6
243	Prediction of hydrogen storage in dibenzyltoluene empowered with machine learning. Journal of Energy Storage, 2022, 55, 105844.	3.9	11
244	Generalised deep-learning workflow for the prediction of hydration layers over surfaces. Journal of Molecular Liquids, 2022, 367, 120571.	2.3	1
245	Dynamic Modeling of Intrinsic Self-Healing Polymers Using Deep Learning. ACS Applied Materials & Interfaces, 2022, 14, 52486-52498.	4.0	2
246	Image-driven deep learning enabled automatic microstructural recognition. Emerging Materials Research, 2023, 12, 1-5.	0.4	1
247	Autonomous continuous flow reactor synthesis for scalable atom-precision. Carbon Trends, 2023, 10, 100234.	1.4	2
248	A Neural Network Approach to Predict Cibbs Free Energy of Ternary Solid Solutions. Journal of Phase Equilibria and Diffusion, 2022, 43, 916-930.	0.5	0
249	Bayesian modeling of pattern formation from one snapshot of pattern. Physical Review E, 2022, 106, .	0.8	2
250	Neural Network Modeling of Microstructure Formation in an AlMg6/10% SiC Metal Matrix Composite and Identification of Its Softening Mechanisms under High-Temperature Deformation. Applied Sciences (Switzerland), 2023, 13, 939.	1.3	2
251	Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning. Physical Review Letters, 2022, 129, .	2.9	11
252	A bibliometric analysis of inflammatory bowel disease and COVID-19 researches. Frontiers in Public Health, 0, 11, .	1.3	4
253	Probe microscopy is all you need [*] . Machine Learning: Science and Technology, 2023, 4, 023001.	2.4	4
254	Irregular microstructure-property linkage for cast alloys by a novel deep learning approach: Application on cast austenitic stainless steel. Materials Today Communications, 2023, 35, 105979.	0.9	0
255	Automated phase segmentation and quantification of high-resolution TEM image for alloy design. Materials Characterization, 2023, 199, 112779.	1.9	2
256	Universal ion-transport descriptors and classes of inorganic solid-state electrolytes. Materials Horizons, 2023, 10, 1757-1768.	6.4	4

#	Article	IF	CITATIONS
257	Reshaping the material research paradigm of electrochemical energy storage and conversion by machine learning. EcoMat, 2023, 5, .	6.8	5
276	Machine learning for automated experimentation in scanning transmission electron microscopy. Npj Computational Materials, 2023, 9, .	3.5	1