UV, Blue, Green, Yellow, Red, and Small: Newest Develo Nanophosphors

Chemical Reviews 115, 11352-11378

DOI: 10.1021/acs.chemrev.5b00223

Citation Report

#	Article	IF	CITATIONS
1	One-step structure-directing approach to Ce3+-doped CaS luminescent micro-nanocrystals. CrystEngComm, 2015, 17, 8676-8682.	1.3	3
2	Tuning Mixedâ€Valent Eu ²⁺ /Eu ³⁺ in Strontium Formate Frameworks for Multichannel Photoluminescence. Chemistry - A European Journal, 2016, 22, 11170-11175.	1.7	37
3	Small-size and monodispersed red-emitting Pr ³⁺ doped barium molybdate nanocrystals with ultrahigh color purity. RSC Advances, 2016, 6, 65311-65314.	1.7	11
4	Near-white emission observed in Dy doped AlN. RSC Advances, 2016, 6, 54801-54805.	1.7	5
5	Controllable Eu valence for photoluminescence tuning in apatite-typed phosphors by the cation cosubstitution effect. Chemical Communications, 2016, 52, 7376-7379.	2.2	38
6	The structural evolution and spectral blue shift of solid solution phosphors Sr _{3â^'m} Ca _m B ₂ O ₆ :Eu ²⁺ . CrystEngComm, 2016, 18, 4597-4603.	1.3	13
7	Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale, 2016, 8, 11518-11530.	2.8	9
8	Fluorescence properties with red-shift of Eu2+ emission in novel phosphor-silicate apatite Sr3LaNa(PO4)2SiO4 phosphors. Ceramics International, 2016, 42, 18324-18332.	2.3	21
9	Solution Combustion Synthesis of Nanoscale Materials. Chemical Reviews, 2016, 116, 14493-14586.	23.0	933
10	Eu ²⁺ luminescence in Ca ₃ Si ₂ O ₇ and spectral widening and tuning of Eu ²⁺ emission color (orangish-red to green) by crystal chemical substitution. RSC Advances, 2016, 6, 98652-98662.	1.7	27
11	Allâ€Copper Nanocluster Based Downâ€Conversion White Lightâ€Emitting Devices. Advanced Science, 2016, 3, 1600182.	5.6	89
12	Structural evolution induced preferential occupancy of designated cation sites by Eu ^{$2+$ in M_{<math>5(Si<math>3O<math>9)2 (M = Sr, Ba, Y, Mn) phosphors. RSC Advances, 2016, 6, 57261-57265.</math></math></math>}}	1.7	74
13	Synthesis and Luminescence Properties of Novel Ce ³⁺ - and Eu ²⁺ -Doped Lanthanum Bromothiosilicate La ₃ Br(SiS ₄) ₂ Phosphors for White LEDs. ACS Applied Materials & District Supplied Materials & Di	4.0	61
14	Long-afterglow metal–organic frameworks: reversible guest-induced phosphorescence tunability. Chemical Science, 2016, 7, 4519-4526.	3.7	376
15	Photoluminescence properties of Yb ²⁺ ions doped in the perovskites CsCaX ₃ and CsSrX ₃ (X = Cl, Br, and I) $\hat{a} \in \hat{a}$ a comparative study. Physical Chemistry Chemical Physics, 2016, 18, 13196-13208.	1.3	50
16	Long persistent phosphors—from fundamentals to applications. Chemical Society Reviews, 2016, 45, 2090-2136.	18.7	943
17	Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation. Physica B: Condensed Matter, 2016, 488, 8-12.	1.3	2
18	Development of a new in situ analysis technique applying luminescence of local coordination sensors: principle and application for monitoring metal-ligand exchange processes. Analyst, The, 2016, 141, 2588-2594.	1.7	21

#	Article	IF	CITATIONS
19	Controlled synthesis of CaTiO ₃ :Ln ³⁺ nanocrystals for luminescence and photocatalytic hydrogen production. RSC Advances, 2016, 6, 5761-5766.	1.7	22
20	Red/Blue-Shift Dual-Directional Regulation in Blue-Emitting Ca0.8Ba1.2SiO4:Eu2+ Phosphor on Incorporation of Eu2+/Mg2+ lons. Journal of Electronic Materials, 2017, 46, 1777-1786.	1.0	9
21	Self-assembly of stable luminescent lanthanide supramolecular M ₄ L ₆ cages with sensing properties toward nitroaromatics. Chemical Communications, 2017, 53, 2459-2462.	2.2	78
22	Influence of Anion/Cation Substitution (Sr ²⁺ → Ba ²⁺ , Al ³⁺ →) Tj ETQq1 Properties of Ba ₃ Si ₆ O ₁₅ :Eu ²⁺ Phosphors. Chemistry of Materials, 2017, 29, 1813-1829.	1 0.7843 3.2	14 rgBT /Ov 118
23	Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chemical Reviews, 2017, 117, 4488-4527.	23.0	702
24	Photoluminescence properties of the "bent sandwich-like―compounds [Eu(Tp iPr2) 2] and [Yb(Tp iPr2) 2] – Intermediates between nitride-based phosphors and metallocenes. Journal of Luminescence, 2017, 187, 62-68.	1.5	20
25	Decay times of the spin-forbidden and spin-enabled transitions of Yb $<$ sup $>$ 2+ $<$ /sup $>$ doped in CsCaX $<$ sub $>$ 3 $<$ /sub $>$ and CsSrX $<$ sub $>$ 3 $<$ /sub $>$ (X = Cl, Br, I). Physical Chemistry Chemical Physics, 2017, 19, 7188-7194.	1.3	20
26	Aloe-vera Mediated Synthesis of Eu3+ doped Caln2O4-carbon Hybrid Nanostructure and its Light Emission Properties. MRS Advances, 2017, 2, 141-146.	0.5	1
27	Luminescence Properties of Ca ₁₉ Ce(PO ₄) ₁₄ :A (A =) Tj ETQq0 0 0 rgBT /O Coexistence of Ce ^{4+/3+} â \in "Eu ³⁺ and Energy Transfer of Ce ³⁺ → Tb ³⁺ /Mn ²⁺ and Tb ³⁺ . Inorganic Chemistry, 2017,	verlock 10	63
28	56, 6131-6140. Tb 3+ induced orange persistent luminescence in Cs 2 CaP 2 O 7 :Eu 2+ : The role of the auxiliary codopant. Materials Research Bulletin, 2017, 93, 223-229.	2.7	6
29	In situ luminescence analysis: a new light on monitoring calcium phosphate phase transitions. Inorganic Chemistry Frontiers, 2017, 4, 1157-1165.	3.0	19
30	Homogeneous cationic substitution for two-dimensional layered metal oxide nanosheets via a galvanic exchange reaction. Nanoscale, 2017, 9, 792-801.	2.8	13
31	Green Synthesis of A ₂ SiF ₆ (A=Liâ€"Cs) Nanoparticles using Ionic Liquids as Solvents and as Fluorine Sources: A Simple Approach without HF. Chemistry - A European Journal, 2017, 23, 12092-12095.	1.7	29
32	Precise Tuning of the Nanostructured Surface leading to the Luminescence Enhancement in SrAl2O4 Based Core/Shell Structure. Scientific Reports, 2017, 7, 462.	1.6	22
33	Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons, 2017, 2, 135-146.	4.1	184
34	Effect of preparation conditions in sol-gel method on yellow phosphor with wide spectrum. AIP Advances, 2017, 7, .	0.6	4
35	Improvement of thermal stability and photoluminescence in Sr _{0.8} Ca _{0.2} Al ₂ Si _{0₈Eu²⁺ by the substitution of Si–Na # Al–Sr and Ca # Sr for structural modifications. Dalton Transactions, 2017, 46, 14310-14317.}	1.6	16
36	Role of free electrons in phosphorescence in n-type wide bandgap semiconductors. Physical Chemistry Chemical Physics, 2017, 19, 30332-30338.	1.3	4

#	ARTICLE	IF	CITATIONS
37	Intraligand Charge Transfer Sensitization on Self-Assembled Europium Tetrahedral Cage Leads to Dual-Selective Luminescent Sensing toward Anion and Cation. Journal of the American Chemical Society, 2017, 139, 12474-12479.	6.6	128
38	Co-doping effect of monovalent alkali metals on optical properties of CeO2:Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission. Journal of Luminescence, 2017, 192, 1313-1321.	1.5	25
39	Ternary Eu($\langle scp \rangle iii \langle scp \rangle$) and Tb($\langle scp \rangle iii \langle scp \rangle$) \hat{l}^2 -diketonate complexes containing chalcones: photophysical studies and biological outlook. RSC Advances, 2017, 7, 44272-44281.	1.7	30
40	Hybridization of silver orthophosphate with a melilite-type phosphor for enhanced energy-harvesting photocatalysis. Catalysis Science and Technology, 2017, 7, 3736-3746.	2.1	16
41	Dual-Mode Manipulating Multicenter Photoluminescence in a Single-Phased Ba9Lu2Si6O24:Bi3+, Eu3+Phosphor to Realize White Light/Tunable Emissions. Scientific Reports, 2017, 7, 15884.	1.6	16
42	Monitoring the mechanism of formation of [Ce(1,10-phenanthroline) ₂ (NO ₃) ₃] by ⟨i⟩in situ⟨/i⟩ luminescence analysis of 5d–4f electronic transitions. RSC Advances, 2017, 7, 52794-52800.	1.7	10
43	Long-lasting phosphorescence with a tunable color in a Mn ²⁺ -doped anionic metal–organic framework. Journal of Materials Chemistry C, 2017, 5, 7898-7903.	2.7	56
44	Spin Crossover of Yb ²⁺ in CsCaX ₃ and CsSrX ₃ (X = Cl, Br, I) – A Guideline to Novel Halideâ€Based Scintillators. Advanced Functional Materials, 2017, 27, 1602783.	7.8	35
45	Preparation and characterization of persistent luminescence of regenerated cellulose fiber. Journal of Materials Science: Materials in Electronics, 2017, 28, 1015-1021.	1,1	15
46	Green photoluminescence and afterglow of Tb-doped SrAl2O4. Journal of Materials Science, 2017, 52, 1813-1822.	1.7	27
47	Layered host–guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science, 2017, 8, 590-599.	3.7	188
48	Low temperature synthesized SrMoO4:Eu3+ nanophosphors functionalized with ethylene glycol: A comparative study of synthesize route, morphology, luminescence and annealing. Materials Research Bulletin, 2018, 103, 1-12.	2.7	13
49	Facile Ionic Liquidâ€Assisted Strategy for Direct Precipitation of Eu ²⁺ â€Activated Nanophosphors under Ambient Conditions. Small, 2018, 14, e1703707.	5.2	16
50	Mining Unexplored Chemistries for Phosphors for High-Color-Quality White-Light-Emitting Diodes. Joule, 2018, 2, 914-926.	11.7	97
51	Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. Chemical Reviews, 2018, 118, 1951-2009.	23.0	598
52	Inherently Eu ²⁺ /Eu ³⁺ Codoped Sc ₂ O ₃ Nanoparticles asÂHighâ€Performance Nanothermometers. Advanced Materials, 2018, 30, e1705256.	11.1	203
53	From ligand exchange to reaction intermediates: what does really happen during the synthesis of emissive complexes?. Physical Chemistry Chemical Physics, 2018, 20, 7428-7437.	1.3	16
54	Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa ₃ MV ₃ O ₁₂ (M = Zn and Mg). Inorganic Chemistry, 2018, 57, 857-866.	1.9	80

#	Article	IF	CITATIONS
55	Multiscale and luminescent, hollow microspheres for gas phase thermometry. Scientific Reports, 2018, 8, 602.	1.6	6
56	A photoluminescence, thermoluminescence and electron paramagnetic resonance study of EFG grown europium doped lithium fluoride (LiF) crystals. Journal of Physics and Chemistry of Solids, 2018, 118, 53-61.	1.9	8
57	Direct white-light emitting room-temperature-phosphorescence thin films with tunable two-color polarized emission through orientational hydrogen-bonding layer-by-layer assembly. Journal of Materials Chemistry C, 2018, 6, 4444-4449.	2.7	50
58	Synthesis and photoluminescence of Ca 1-x TiO 3 : x Eu 3+ nanoparticles. Journal of Materials Science and Technology, 2018, 34, 949-954.	5.6	7
59	Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material. Renewable and Sustainable Energy Reviews, 2018, 81, 2759-2770.	8.2	181
60	Luminescence differences between two complexes of divalent europium. Journal of Organometallic Chemistry, 2018, 857, 88-93.	0.8	25
61	Optical absorption intensity analysis using Judd-Ofelt theory and photoluminescence investigation of orange-red Sr 2 SiO 4: Sm 3+ nanopigments. Dyes and Pigments, 2018, 148, 118-129.	2.0	42
62	<i>In situ</i> monitoring metal-ligand exchange processes by optical spectroscopy and X-ray diffraction analysis: a review. Reviews in Analytical Chemistry, 2018, 37, .	1.5	16
63	The influence of ionothermal synthesis using BmimBF ₄ as a solvent on nanophosphor BaFBr:Eu ²⁺ photoluminescence. Nanoscale, 2018, 10, 19706-19710.	2.8	16
64	A Facile Method Using a Flux to Improve Quantum Efficiency of Submicron Particle Sized Phosphors for Solid-State Lighting Applications. Ceramics, 2018, 1, 38-53.	1.0	3
65	Photoluminescence Property of Eu3+ doped CaSiO3 Nano-phosphor with Controlled Grain Size. Colloids and Interfaces, 2018, 2, 52.	0.9	13
66	Roundâ€theâ€Clock Photocatalytic Hydrogen Production with High Efficiency by a Longâ€Afterglow Material. Angewandte Chemie, 2019, 131, 1354-1358.	1.6	8
67	Chapter 3 Nanophosphors: From Rare Earth Activated Multicolor-Tuning to New Efficient White Light Sources. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 27-77.	0.2	2
68	Ultraâ€narrow band blue emission of Eu ²⁺ in halogenated (Alumino)borate systems based on high lattice symmetry. Journal of the American Ceramic Society, 2019, 102, 2353-2369.	1.9	17
69	Multi-wavelength tailoring of a ZnGa ₂ O ₄ nanosheet phosphor <i>via</i> defect engineering. Nanoscale, 2018, 10, 19039-19045.	2.8	46
70	New Insight for Luminescence Tuning Based on Interstitial sites Occupation of Eu ²⁺ in Sr ₃ Al _{2â^'} <i>_x</i> Si <i>_x</i> O _{5â^'} <i>_{x<!--(<i-->x}</i>) = 0â€"0.4). Advanced Optical Materials, 2018, 6, 1800940.	sub & øi>N	ki> 2s ub>x
71	Quantum Nano-Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, ,	0.2	1
72	Spectroscopic studies of strong red emitting Sr2SiO4:Eu3+ nanophosphors with high color purity for application in WLED using Judd-Ofelt theory and TL glow curve analysis. Optical Materials, 2018, 85, 363-372.	1.7	30

#	ARTICLE	IF	CITATIONS
73	Templated synthesis and characterization of red-emitting $\$ hbox {Ca}_{{1-x}}hbox {Sr}_{1-x}hbox {Eu}_{{2x}^{3+}hbox {SiO}_{4}\$\$ Ca 1 - x. Bulletin of Materials Science, 2018, 41, 1.	0.8	2
74	Color-tunable properties based on complex anion substitution in Eu2+ doped Ca8Sc2(PO4)6-(SiO4)1+ phosphor. Ceramics International, 2018, 44, 15432-15439.	2.3	6
75	Ligand-Mediated Control of Dopant Oxidation State and X-ray Excited Optical Luminescence in Eu-Doped LaOCl. Inorganic Chemistry, 2018, 57, 5842-5849.	1.9	15
76	White Light-Emitting Novel Nanophosphors for LED Applications. , 2018, , 411-431.		2
77	Composites of CaAl ₂ O ₄ : Eu ²⁺ , Nd ³⁺ /Ca _{0.25} Sr _{0.75} S: Eu ²⁺ in Polyacrylonitrile Fibers with Tri-Stimuli-Responsive Persistent Luminescence. ECS Journal of Solid State Science and Technology, 2018, 7, R83-R87.	0.9	2
78	On energy storage of Lu2O3:Tb,M (M=Hf, Ti, Nb) sintered ceramics: Glow curves, dose-response dependence, radiation hardness and self-dose effect. Journal of Alloys and Compounds, 2018, 769, 794-800.	2.8	10
79	Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small, 2018, 14, e1801882.	5.2	128
80	Eu ²⁺ Site Preferences in the Mixed Cation K ₂ BaCa(PO ₄) ₂ and Thermally Stable Luminescence. Journal of the American Chemical Society, 2018, 140, 9730-9736.	6.6	428
81	Phototunable full-color emission of dynamic luminescent materials. Journal of Materials Chemistry C, 2018, 6, 9552-9560.	2.7	30
82	Facile synthesis of highly monodisperse EuSe nanocubes with size-dependent optical/magnetic properties and their electrochemiluminescence performance. Nanoscale, 2018, 10, 13617-13625.	2.8	9
83	Influence of colloid synthesis techniques on barium silicates formation using silica hydrogel derived from serpentine minerals. Journal of Molecular Liquids, 2019, 291, 111263.	2.3	4
84	Trends in Hamiltonian parameters determined by systematic analysis of f-d absorption spectra of divalent lanthanides in alkali-halides hosts: Ill. CsSrBr3:Ln2+ (Ln = Nd, Sm, Eu, Tm, and Yb). Journal of Luminescence, 2019, 215, 116622.	1.5	4
85	Characterization of Micro―and Nanoscale LuPO ₄ :Pr ³⁺ ,Nd ³⁺ with Strong UV Emission to Reduce Xâ€Ray Doses in Radiation Therapy. Particle and Particle Systems Characterization, 2019, 36, 1900280.	1.2	16
86	A Novel Approach for System Instability Prediction Using Nodal Analysis. , 2019, , .		2
87	Introducing Uranium as the Activator toward Highly Stable Narrow-Band Green Emitters with Near-Unity Quantum Efficiency. Chemistry of Materials, 2019, 31, 9684-9690.	3.2	22
88	Photoluminescence and photocatalytic hydrogen evolution properties of orange-red emitting AlN:Sm3+. Journal of Materials Science: Materials in Electronics, 2019, 30, 20109-20118.	1.1	6
89	Luminescent europium(<scp>iii</scp>) and terbium(<scp>iii</scp>) complexes of β-diketonate and substituted terpyridine ligands: synthesis, crystal structures and elucidation of energy transfer pathways. New Journal of Chemistry, 2019, 43, 15139-15152.	1.4	38
90	Ligand-assisted reduction and reprecipitation synthesis of highly luminescent metal nanoclusters. Nanoscale Advances, 2019, 1, 834-839.	2.2	11

#	Article	IF	CITATIONS
91	Recent advances in solid-state LED phosphors with thermally stable luminescence. Journal of Rare Earths, 2019, 37, 565-572.	2.5	206
92	Achieving Dualâ€Emissive and Timeâ€Dependent Evolutive Organic Afterglow by Bridging Molecules with Weak Intermolecular Hydrogen Bonding. Advanced Optical Materials, 2019, 7, 1801593.	3.6	101
93	Smallâ€Moleculeâ€Doped Organic Crystals with Longâ€Persistent Luminescence. Advanced Functional Materials, 2019, 29, 1902503.	7.8	80
94	Novel cyanâ€emitting KBaScSi ₂ O ₇ :Eu ²⁺ phosphors with ultrahigh quantum efficiency and excellent thermal stability for WLEDs. Journal of the American Ceramic Society, 2019, 102, 7376-7385.	1.9	37
95	Enabling separation intensification of a lanthanide pair with closely similar kinetics based on droplet microfluidics: hydrodynamic and kinetic approaches. Reaction Chemistry and Engineering, 2019, 4, 1410-1420.	1.9	3
96	Enhancing the phosphorescence of hybrid metal halides through molecular sensitization. Journal of Materials Chemistry C, 2019, 7, 9803-9807.	2.7	51
97	Crystal structure insight aided design of SrGa2Si2O8:Mn2+ with multi-band and thermally stable emission for high-power LED applications. Chemical Engineering Journal, 2019, 375, 122016.	6.6	32
98	(INVITED) A review on the Eu2+ doped \hat{l}^2 -Ca3(PO4)2-type phosphors and the sites occupancy for photoluminescence tuning. Optical Materials: X, 2019, 1, 100019.	0.3	12
99	Energy transfer and luminescence properties of BaSr2Gd1-xMx(PO4)3 (M= Dy, Tm, Eu) phosphors for warm white UV LEDs. Optical Materials, 2019, 95, 109194.	1.7	11
100	Optical studies of Y3(Al,Ga)5O12:Ce3+,Cr3+,Nd3+ nano-phosphors obtained by the Pechini method. Journal of Rare Earths, 2019, 37, 1132-1136.	2.5	16
101	Synthesis, crystal structure, and photoluminescence of Eu2+, Ce3+, Mn2+ doped oxynitride phosphors. Optical Materials, 2019, 92, 411-417.	1.7	7
102	Fast preparation of Ce3+-activated scandate for high-color- rendering warm white-light illumination by cation exchange. Journal of Luminescence, 2019, 212, 361-367.	1.5	4
103	Two-/multi-wavelength light excitation effects in optical materials: From fundamentals to applications. Progress in Materials Science, 2019, 105, 100568.	16.0	18
104	Sonochemical synthesis of green emitting Ca2SiO4:Er3+ nanopowders: Promising applications in optical thermometry and radiation dosimeter. Optical Materials, 2019, 92, 125-135.	1.7	19
105	Ultralong Ca ₂ B ₂ O ₅ ·H ₂ O nanowires: water-bath pretreated eco-friendly hydrothermal synthesis, optical and rare earth-doped photoluminescence properties. CrystEngComm, 2019, 21, 2451-2463.	1.3	1
106	Blue emitting phosphor Sr0.8Ca0.2Al2+ySi2-yO8:Ce3+: Substitution of Al-Si, structural modification, luminescence property and application. Journal of Alloys and Compounds, 2019, 788, 1000-1008.	2.8	19
107	Li 5 Zn 8 Ga 5 Ge 9 O 36 : Cr 3+ , Ti 4+ : A Long Persistent Phosphor Excited in a Wide Spectral Region from UV to Red Light for Reproducible Imaging through Biological Tissue. Chemistry - an Asian Journal, 2019, 14, 1506-1514.	1.7	16
108	Tuning of the Compositions and Multiple Activator Sites toward Single-Phased White Emission in (Ca _{9â€"<i>x</i>} Sr _{<i>x</i>})MgK(PO ₄) ₇ :Eu ²⁺ Phosphors for Solid-State Lighting. Inorganic Chemistry, 2019, 58, 5006-5012.	1.9	85

#	Article	IF	CITATIONS
109	Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Research, 2019, 12, 1279-1292.	5.8	116
110	Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics. Journal of Materials Research and Technology, 2019, 8, 2466-2472.	2.6	1
111	Optical transition probabilities of white light emitting Sr2SiO4:Dy3+ nanophosphors for lighting applications using Juddâ^'Ofelt analysis. Journal of Luminescence, 2019, 211, 437-445.	1.5	28
112	Full visible light emission in Eu ²⁺ ,Mn ²⁺ -doped Ca ₉ LiY _{0.667} (PO ₄) ₇ phosphors based on multiple crystal lattice substitution and energy transfer for warm white LEDs with high colour-rendering. lournal of Materials Chemistry C. 2019. 7. 3644-3655.	2.7	92
113	Synthesis, spectroscopic properties and applications of divalent lanthanides apart from Eu2+. Journal of Luminescence, 2019, 210, 210-238.	1.5	65
114	One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. Journal of Materials Chemistry C, 2019, 7, 12502-12508.	2.7	81
115	Effects of In2O3 nanoparticles doping on the photoluminescent properties of Eu2+/Eu3+ ions in silica glasses. Ceramics International, 2019, 45, 233-238.	2.3	18
116	Efficient sensitization of Sm2+ emission by Eu2+ under UV excitation in Al2O3 host formed by plasma electrolytic oxidation. Materials Letters, 2019, 234, 9-12.	1.3	4
117	Toward a mechanistic understanding of microfluidic droplet-based extraction and separation of lanthanides. Chemical Engineering Journal, 2019, 356, 673-679.	6.6	26
118	The effect of templates on the morphological and optical properties of BaMgAl10O17:Eu2+ phosphors. Vacuum, 2019, 161, 119-124.	1.6	12
119	Monitoring the solvation process and stability of Eu ²⁺ in an ionic liquid by <i>in situ</i> luminescence analysis. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 147-152.	0.3	5
120	Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Science Advances, 2019, 5, eaav0363.	4.7	153
121	Solid-solution transformation and photoluminescence control in Ce3+-doped Ln4Si2-M O7+N2- (LnÂ= Y,) Tj ETQc	0,0,0 rgB⁻	Γ /Overlock 1
122	Structural characterization and electrochemical hydrogen sorption performances of the polycrystalline Ba2Co9O14 nanostructures. Journal of Alloys and Compounds, 2019, 777, 252-258.	2.8	34
123	Roundâ€theâ€Clock Photocatalytic Hydrogen Production with High Efficiency by a Longâ€Afterglow Material. Angewandte Chemie - International Edition, 2019, 58, 1340-1344.	7.2	67
124	Structural Design of Near-Infrared Light-Active Cu/TiO2/NaYF4:Yb,Er Nanocomposite Photocatalysts. Journal of Electronic Materials, 2019, 48, 329-336.	1.0	3
125	Plasma effect:A simple method for improving the persistent luminescence and light response range of persistent luminescent materials. Journal of Luminescence, 2020, 217, 116785.	1.5	11
126	A novel method for improving particle growth and photoluminescence through Fâ^' substituting for gallery NO3â^' in layered Y/Eu hydroxides. Chemical Engineering Journal, 2020, 380, 122618.	6.6	10

#	Article	IF	CITATIONS
127	Enhanced green emission and thermal stability of Ba3Si6O12N2:Eu2+ by Ce3+/P5+-doping: Unity energy transfer, charge compensation and lattice strain release. Journal of Luminescence, 2020, 220, 116995.	1.5	5
128	A deep-red-emitting Bi3+/Mn4+-doped CaLi6La2Nb2O12 phosphor: Luminescence and energy transfer properties. Materials Research Bulletin, 2020, 124, 110743.	2.7	27
129	Enhancement of the persistent luminescence of Sr2MgSi2O7:Eu2+,Dy3+ by Cu nanoparticles. Journal of Luminescence, 2020, 220, 116965.	1.5	19
130	Synthesis and photoluminescence properties of Sm ³⁺ doped LaOCl phosphor with reddish orange emission and it's Judd- Ofelt analysis. Materials Research Express, 2020, 7, 015003.	0.8	27
131	Designing Highâ€Performance LED Phosphors by Controlling the Phase Stability via a Heterovalent Substitution Strategy. Advanced Optical Materials, 2020, 8, 1901608.	3.6	47
132	Luminescence properties, energy transfer and thermal stability of blue-green color tunable Sr3Y(BO3)3:Ce3+, Tb3+ phosphors. Optics and Laser Technology, 2020, 123, 105900.	2.2	14
133	Electronic Structure and Photoluminescence Properties of Eu(Î- ⁹ -C ₉ H ₉) ₂ . Journal of Physical Chemistry A, 2020, 124, 152-164.	1.1	5
134	Extending Afterglow of Ga2O3 Nanocrystals by Dy3+ Dopant-Induced Carrier Trapping: Toward Design of Persistent Colloidal Nanophosphors. Chemistry of Materials, 2020, 32, 7516-7523.	3.2	8
135	Effect of coordination environment of Eu2+ ion on the 5d-4f luminescence of molecular compounds EuL2(THF) (L = Cl, Br, I, NO3, Ac, fod, tmhd, and acac; x = 0, 2). Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112839.	2.0	8
136	Analysis of Solidâ€State Luminescence Emission Amplification at Substituted Anthracenes by Host–Guest Complex Formation. Chemistry - A European Journal, 2020, 26, 17390-17398.	1.7	8
137	Photoluminescence studies of Eu3+ and Tb3+ activated Ba2SiO4 phosphor. AIP Conference Proceedings, 2020, , .	0.3	1
138	Highly Luminescent AuAg Nanoclusters with Aggregation-Induced Emission for High-Performance White LED Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 15336-15343.	3.2	26
139	Effective Yellow Y ₃ Al ₅ O ₁₂ :Ce ³⁺ Nanophosphor for Lightâ€Emitting Diode and Photovoltaic Cell as a Downconverter. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000178.	0.8	2
140	YAG:Ce ³⁺ Phosphor: From Micron-Sized Workhorse for General Lighting to a Bright Future on the Nanoscale. Chemical Reviews, 2020, 120, 13461-13479.	23.0	70
141	Synthesis and luminescence characteristics of Mg2Al4Si5O18:Eu2+ and nitrided Mg2Al4Si5O18:Eu2+ phosphors. Journal of Luminescence, 2020, 224, 117317.	1.5	12
142	Three colour solid-state luminescence from positional isomers of facilely modified thiophosphoranyl anthracenes. Chemical Communications, 2020, 56, 7479-7482.	2.2	13
143	UnterschÃtete Farbzentren: Defekte als nützliche Reduktionsmittel in Lanthanidâ€dotierten lumineszenten Materialien. Angewandte Chemie, 2020, 132, 11042-11047.	1.6	0
144	Underestimated Color Centers: Defects as Useful Reducing Agents in Lanthanideâ€Activated Luminescent Materials. Angewandte Chemie - International Edition, 2020, 59, 10949-10954.	7.2	15

#	ARTICLE	IF	CITATIONS
145	Ligand Control of Room-Temperature Phosphorescence Violating Kasha's Rule in Hybrid Organic–Inorganic Metal Halides. Chemistry of Materials, 2020, 32, 1454-1460.	3.2	47
146	ZnO nanowires/YAG:Ce functional heterostructure coatings with tunable optical properties. Journal of Alloys and Compounds, 2020, 842, 155708.	2.8	3
147	Eu(O 2 Câ€C≡Câ€CO 2): An Eu II Containing Anhydrous Coordination Polymer with High Stability and Negative Thermal Expansion. Chemistry - A European Journal, 2020, 26, 2726-2734.	1.7	7
148	Magnetism and Afterglow United: Synthesis of Novel Double Core–Shell Eu ²⁺ â€Doped Bifunctional Nanoparticles. Chemistry - A European Journal, 2020, 26, 6833-6838.	1.7	10
149	Efficient Luminescence of Sr2Si5N8:Eu2+ nanophosphor and its film applications to LED and Solar cell as a downconverter. Scientific Reports, 2020, 10, 1475.	1.6	11
150	Effect of Eu3+ on optical and energy bandgap of SrY2O4 nanophosphors for FED applications. Optik, 2020, 208, 164533.	1.4	18
151	Synthesis and optical studies of nanocrystalline Eu2+-doped and RE3+(Nd3+, Dy3+)-codoped Ba4Al14O25 materials for UV-LEDs. Optik, 2020, 212, 164671.	1.4	20
152	Understanding the cyan-emitting phosphor RbNa(Li3SiO4)2: Eu2+ by providing Rb ion vacancies. Journal of Alloys and Compounds, 2020, 837, 155084.	2.8	17
153	Effect of annealing treatment on the persistent luminescence of Y3Al2Ga3O12:Ce3+,Cr3+,Pr3+ ceramics. Optical Materials, 2020, 105, 109888.	1.7	16
154	Gd2O3:Er3+ embedded PMMA/PC nanocomposites: A luminescent nanocomposite. Polymer Testing, 2021, 93, 106911.	2.3	5
155	Functional applications and luminescence properties of emission tunable phosphors CaMoO4@SiO2:Ln3+ (Ln=Eu, Tb, Dy). Journal of Alloys and Compounds, 2021, 857, 157515.	2.8	11
156	Doping Lanthanide lons in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chemical Reviews, 2021, 121, 1425-1462.	23.0	94
157	Effect of annealing temperature on persistent luminescence of Y3Al2Ga3O12:Cr3+ co-doped with Ce3+ and Pr3+. Optical Materials, 2021, 111, 110522.	1.7	15
158	Defect clustering in an Eu-doped NaMgF ₃ compound and its influence on luminescent properties. Materials Advances, 2021, 2, 1378-1389.	2.6	12
159	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
160	Recent progress of effect of crystal structure on luminescence properties of Ce ³⁺ â€"Eu ²⁺ Co-doped phosphors. RSC Advances, 2021, 11, 26354-26367.	1.7	4
161	Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes. , 2021, , 445-480.		8
163	Rare-Earth-Free Barium Borostannate with Deep-Blue Light Emission. Chemistry of Materials, 2021, 33, 1852-1859.	3.2	10

#	Article	IF	CITATIONS
164	Preparation and luminescence performance of thermochromic luminescent fiber based on reversible thermochromic red pigment. Journal of Materials Science: Materials in Electronics, 2021, 32, 9074-9086.	1.1	6
165	Light-emitting self-assembled metallacages. National Science Review, 2021, 8, nwab045.	4.6	45
166	Blue-emitting Ca3Mg3(PO4)4:Eu2+ phosphor: Study of electron-vibrational interaction in the 5d states of Eu2+ ions. Optical Materials, 2021, 114, 110959.	1.7	5
167	Phase Diagram and Thermodynamic Properties of the EuBr ₂ –CsBr Binary System. Journal of Chemical & Care and	1.0	4
168	Thermochromic luminescent fiber based on yellow thermochromic microcapsules: preparation, properties, and potential application areas. Cellulose, 2021, 28, 5005-5018.	2.4	12
169	Dy3+ → Eu3+ Energy Transfer in SrLaGa3O7:Dy3+/Eu3+ Phosphors. ECS Journal of Solid State Science and Technology, 0, , .	0.9	2
170	Effects of Bi3+ Ion-Doped on the Microstructure and Photoluminescence of La0.97Pr0.03VO4 Phosphor. Advances in Technology Innovation, 2021, 6, 191-198.	0.3	1
171	Solidâ€State Synthesis of (Ph ₄ P)MI ₃ (M=Eu ²⁺ , Sr ²⁺ ,) Tj ETE European Journal of Inorganic Chemistry, 2021, 2021, 1846-1851.	Qq1 1 0.7 1.0	84314 rgBT 1
172	A novel [Dy4(OH)4]-based porous coordination polymer with double-wall structure: Topology structure, fluorescence and magnetic properties. Inorganic Chemistry Communication, 2021, 127, 108531.	1.8	2
173	Significantly Enhanced Afterglow Brightness via Intramolecular Energy Transfer. , 2021, 3, 713-720.		20
174	Discovery of new broadband yellowâ€emitting nitridoalumosilicate phosphor and its pcâ€WLED application. Journal of the American Ceramic Society, 2021, 104, 5281-5292.	1.9	5
175	Rare earth (RE) doped phosphors and their emerging applications: A review. Ceramics International, 2021, 47, 19282-19303.	2.3	225
176	Surface organic modification of SrAl2O4: Eu2+, Dy3+ via coupling agents to enhance hydrolysis resistance. Journal of Materials Science: Materials in Electronics, 2021, 32, 20804-20816.	1.1	7
177	A novel narrow band blue-emitting phosphor Rb2ZrSi3O9: Eu2+ with low thermal quenching and high quantum efficiency. Ceramics International, 2021, 47, 22786-22793.	2.3	11
178	The angular overlap model of ligand field theory for f elements: An intuitive approach building bridges between theory and experiment. Coordination Chemistry Reviews, 2021, 441, 213981.	9.5	17
179	An unusual Pb8 clusters based coordination polymer with room-temperature orange phosphorescence. Journal of Solid State Chemistry, 2021, 301, 122298.	1.4	3
180	Efficient Persistent Luminescence Tuning Using a Cyclodextrin Inclusion Complex as Efficient Light Conversion Materials. ACS Omega, 2021, 6, 25585-25593.	1.6	4
181	Highly Efficient Greenâ€Emitting Phosphor BaZnAl ₁₀ O ₁₇ :Mn ²⁺ with Ultraâ€Narrow Band and Extremely Low Thermal Quenching for Wide Color Gamut LCD Backlights. Advanced Optical Materials, 2021, 9, 2100799.	3.6	27

#	Article	IF	CITATIONS
182	Synthesis and luminescence performance of Tb3+/Eu3+ codoped SrLaGa3O7 phosphors. Chemical Physics Letters, 2021, 780, 138911.	1.2	2
183	Tunable Luminescence Properties and Elucidating the Electronic Structures of Single-Phase Spherical BaWO4: Dy3+, Tm3+, Eu3+ Phosphors for Warm-White-Lighting. Journal of Renewable Materials, 2022, 10, 431-451.	1.1	1
184	Highly efficient blue-emitting phosphor of $Sr[B\leq 0.05]$:Eu < 0.05 :Eu < 0.0	2.2	8
185	Fabrication and luminescence of Ca2LaTaO6:RE3+ (RE = Sm, Eu and Pr) phosphors. Chemical Physics Letters, 2020, 758, 137923.	1.2	3
186	Cation substitution and luminescence properties of Eu ²⁺ /Ga ³⁺ -codoped Na ₂ ZrSi ₂ O ₇ . Journal Physics D: Applied Physics, 2021, 54, 025103.	1.3	2
187	Eu2+-Activated Green-Emitting Phosphor Obtained from Eu3+ Ions doping Zeolite-3A in Air Surroundings and Its Efficient Green Light-Emitting Diodes. Nanoscale Research Letters, 2019, 14, 298.	3.1	6
188	Thermally stable Mn ²⁺ â€activated zinc silicate nanophosphor for speedy recognition of highâ€contrast latent fingermarks. International Journal of Applied Ceramic Technology, 2022, 19, 488-497.	1.1	3
189	Narrow Bandwidth Luminescence in Sr ₂ Li(Al,Ga)O ₄ :Eu ²⁺ by Selective Site Occupancy Engineering for High Definition Displays. Laser and Photonics Reviews, 2021, 15, 2100392.	4.4	31
190	Toward white light emission from plasmonic-luminescent hybrid nanostructures. Nanophotonics, 2021, 10, 3995-4007.	2.9	2
191	Synthesis and luminescent properties of ZrO2 and Dy3+-activated ZrO2 powders. Journal of Materials Science: Materials in Electronics, 2021, 32, 27441-27448.	1.1	9
192	Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process. Korean Journal of Materials Research, 2017, 27, 270-275.	0.1	1
193	Sensitization of Yb(III), ER(III), and Nd(III) Luminescence by Ligands Based on 3-Formyl-4-Hydroxybenzoic Acid and Transition Metals. Journal of Applied Spectroscopy, 2021, 88, 945.	0.3	0
194	Luminescence characteristics of Bi3+/Tb3+/Mn2+-doped Sr3Y2Ge3O12 phosphors. Ceramics International, 2022, 48, 5737-5743.	2.3	9
195	Ag nanoparticles significantly improve the slow decay brightness of SrAl ₂ O ₄ :Eu ²⁺ ,Dy ³⁺ by the surface plasmon effect. Dalton Transactions, 2022, 51, 2287-2295.	1.6	8
196	Crystal-field mediated electronic transitions of EuS up to 35 GPa. Scientific Reports, 2022, 12, 1217.	1.6	0
197	A novel single-phased white light emitting phosphor with single Eu2+ doped whitlockite structure. Advanced Powder Technology, 2022, 33, 103394.	2.0	11
198	Green emanating BiOCl:Tb3+ phosphors for strategic development of dermatoglyphics and anti-counterfeiting applications. Inorganic Chemistry Communication, 2022, 138, 109266.	1.8	27
199	Energy transfer from Bi3+ to Mn2+ doped in oxyfluoride glass and transparent glass-ceramics containing KMgF3. Journal of Solid State Chemistry, 2022, 308, 122938.	1.4	2

#	Article	IF	CITATIONS
200	Benzothiazole derivatives with varied π-conjugation: synthesis, tunable solid-state emission, and application in single-component LEDs. Journal of Materials Chemistry C, 2022, 10, 6392-6401.	2.7	6
201	Mesoporous silica nanoparticle-embedded lanthanide organic polyhedra for enhanced stability, luminescence and cell imaging. Dalton Transactions, 2022, 51, 4836-4842.	1.6	5
202	Preparation of M2B5O9Cl:Eu2+ (M=Sr, Ca) blue phosphors by a facile low-temperature self-reduction method and their enhanced luminescent properties. Journal of Rare Earths, 2023, 41, 349-357.	2.5	4
203	Luminescence investigation of Eu2+/Ce3+/Mn2+ doped Y2Mg2Al2Si2O12 phosphors. Journal of Luminescence, 2022, 246, 118853.	1.5	5
204	Manipulating room-temperature phosphorescence <i>via</i> lone-pair electrons and empty-orbital arrangements and hydrogen bond adjustment. Journal of Materials Chemistry C, 2022, 10, 8854-8859.	2.7	5
205	Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis. Methods and Applications in Fluorescence, 2022, 10, 032001.	1.1	4
206	Inorganic Lanthanide Compounds with f–d Transition: From Materials to Electroluminescence Devices. Journal of Physical Chemistry Letters, 2022, 13, 4365-4373.	2.1	11
207	Multiple Strategies to Approach High-Efficiency Luminescence Controllable in Blue/Cyan/Green-Emitting Bi ³⁺ -Activated Phosphors. Journal of Physical Chemistry C, 2022, 126, 9195-9206.	1.5	16
208	Preparation of Phosphorescent Eu ²⁺ , Dy ³⁺ â€Doped Strontium Aluminate Nanoparticles by Laser Vaporization for the Modification of Therapeutic Contact Lenses. Advanced Photonics Research, 0, , 2200013.	1.7	0
209	Tunable Luminescence and Oxygen Defects of the Spinel MgAl ₂ 0 ₄ : Eu ³⁺ /Eu ²⁺ for Photonic Application. SSRN Electronic Journal, 0, , .	0.4	O
210	Hydrogen-Mediated Manipulation of Luminescence Color in Single-Component EU Doped Cayalsio4 by Defect Passivation. SSRN Electronic Journal, 0, , .	0.4	0
211	Introduction to phosphors and luminescence. , 2022, , 3-41.		1
212	Rapid Aqueous-Phase Synthesis and Photoluminescence Properties of K0.3Bi0.7F2.4:Ln3+ (Ln = Eu, Tb, Pr,) Tj ETC	Qq0 0 0 rg	BT ₁ /Overlock
213	Doping concentration dependent photoluminescence and afterglow of Eu2+ doped CaAl2O4 for insight into the afterglow mechanisms. Physica B: Condensed Matter, 2022, 646, 414284.	1.3	7
214	Ultraâ€Broadband Greenâ€Emitting Phosphors without Cyan Gap Based on Doubleâ€Heterovalent Substitution Strategy for Fullâ€Spectrum WLED Lighting. Laser and Photonics Reviews, 2022, 16, .	4.4	27
215	(INVITED)Synthesis and luminescence properties of M(AlCl4)2:Eu2+ (M = Ca, Sr, Ba) a promising new Class of Eu2+ containing phosphors. Optical Materials: X , 2022, 15, 100175.	0.3	1
217	Persistent Luminescence in Strontium Aluminate: A Roadmap to a Brighter Future. Advanced Functional Materials, 2022, 32, .	7.8	47
218	Blue-light-excited red emission in a CaO:Eu phosphor. Journal of Luminescence, 2023, 253, 119457.	1.5	4

#	ARTICLE	IF	CITATIONS
219	Energy transfer induced color tunable photoluminescence in Tb3+/Sm3+ co-doped Y2O3 nano-phosphor for warm white LEDs. Journal of Alloys and Compounds, 2023, 931, 167579.	2.8	16
220	Hydrogen-mediated manipulation of luminescence color in single-component Eu doped CaYAlSiO4 by defect passivation. Journal of Alloys and Compounds, 2023, 932, 167610.	2.8	2
221	Tunable luminescence and oxygen defects of the spinel MgAl2O4: Eu3+/Eu2+ for photonic application. Materialia, 2022, 26, 101624.	1.3	1
222	Effect of seawater on the morphology, structure, and properties of synthetic ettringite. Cement and Concrete Research, 2023, 163, 107034.	4.6	10
223	Stabilization of Eu ²⁺ in Li ₂ B ₄ O ₇ with the BO ₃ network through U ⁶⁺ co-doping and defect engineering. Physical Chemistry Chemical Physics, 2023, 25, 1889-1902.	1.3	3
224	On The Validity of the Defect- Induced Negative Thermal Quenching of Eu ²⁺ -Doped Phosphors. ECS Journal of Solid State Science and Technology, 2023, 12, 016001.	0.9	2
225	Intense luminescence emission and lattice damage of the implanted Eu ions in KTiOPO4 crystals. Optical Engineering, 2022, 61 , .	0.5	1
226	Quantum confinement effects and feasible mechanisms of multicolor emitting afterglow nanophosphors., 2023,, 99-137.		0
227	Long afterglow particle enables spectral and temporal light management to boost photosynthetic efficiency. Journal of Colloid and Interface Science, 2023, 638, 76-83.	5.0	0
228	Epitaxial growth of pure Sr3Al2O6 sacrificial layer for high quality freestanding single-crystalline oxide membranes. Thin Solid Films, 2023, 773, 139820.	0.8	1
229	Analyses of ultraviolet-excitable high-efficiency phosphorescent RGB phosphors with various Eu2O3 doping concentrations for fabricating white Light–Emitting diodes. Optical Materials, 2023, 138, 113624.	1.7	1
230	Giant Pressureâ€Induced Spectral Shift in Cyanâ€Emitting Eu ²⁺ â€Activated Sr ₈ Si ₄ O ₁₂ Cl ₈ Microspheres for Ultrasensitive Visual Manometry. Advanced Functional Materials, 2023, 33, .	7.8	26