Clinical and inflammatory characteristics of the Europe cohort

European Respiratory Journal 46, 1308-1321

DOI: 10.1183/13993003.00779-2015

Citation Report

#	Article	IF	Citations
1	Asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) longitudinal profiling study. Respiratory Research, 2015, 16, 142.	1.4	53
2	A silent revolution: phenotyping asthma for personalised medicine. Revista Portuguesa De Pneumologia, 2015, 21, 293-294.	0.7	1
3	The burden of severe asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts. European Respiratory Journal, 2015, 46, 1322-1333.	3.1	179
4	The quest for the grail: multidimensional efforts for understanding and targeting severe asthma. European Respiratory Journal, 2015, 46, 1227-1231.	3.1	8
5	Non-invasive Biomarkers in Asthma: Promises and Pitfalls. , 0, , .		1
6	Current concepts of severe asthma. Journal of Clinical Investigation, 2016, 126, 2394-2403.	3.9	188
7	Recent advances in understanding and managing asthma. F1000Research, 2016, 5, 2052.	0.8	6
8	Understanding the priorities for women diagnosed with lymphangioleiomyomatosis: a patient perspective. ERJ Open Research, 2016, 2, 00102-2015.	1.1	5
9	Toward better management of rare and orphan pulmonary diseases. European Respiratory Journal, 2016, 47, 1334-1335.	3.1	5
10	Targeting immunoglobulin E in non-atopic asthma: crossing the red line?. European Respiratory Journal, 2016, 48, 1538-1540.	3.1	4
11	Identifying patients at risk for severe exacerbations of asthma: development and external validation of a multivariable prediction model. Thorax, 2016, 71, 838-846.	2.7	74
13	Allergy immunotherapy across the life cycle to promote active and healthy ageing: from research to policies. Clinical and Translational Allergy, 2016, 6, 41.	1.4	24
14	Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respiratory Research, 2016, 17, 165.	1.4	107
15	Targeted therapeutics for severe refractory asthma: monoclonal antibodies. Expert Review of Clinical Pharmacology, 2016, 9, 927-941.	1.3	28
16	Novel approaches to the management of noneosinophilic asthma. Therapeutic Advances in Respiratory Disease, 2016, 10, 211-234.	1.0	86
17	Dupilumab: a potential new treatment for severe asthma. Lancet, The, 2016, 388, 3-4.	6.3	17
19	LSC 2016: from system approaches in lung disease to getting the job you want. Breathe, 2016, 12, 169-173.	0.6	0
20	Predictors of future exacerbation risk in patients with asthma. Postgraduate Medicine, 2016, 128, 687-692.	0.9	11

#	ARTICLE	IF	CITATIONS
21	Asthma phenotyping: noninvasive biomarkers suitable for bedside science are the next step to implement precision medicine. Journal of Internal Medicine, 2016, 279, 205-207.	2.7	9
22	Can severe asthmatic patients achieve asthma control? A systematic approach in patients with difficult to control asthma followed in a specialized clinic. BMC Pulmonary Medicine, 2016, 16, 153.	0.8	15
23	Triple inhaled therapy for chronic obstructive pulmonary disease. Drug Discovery Today, 2016, 21, 1820-1827.	3.2	30
24	Physiological phenotyping of pediatric chronic obstructive airway diseases. Journal of Applied Physiology, 2016, 121, 324-332.	1.2	20
25	Severe asthma exists despite suppressed tissue inflammation: findings of the U-BIOPRED study. European Respiratory Journal, 2016, 48, 1307-1319.	3.1	44
26	The differential effects of azithromycin on the airway epithelium inÂvitro and inÂvivo. Physiological Reports, 2016, 4, e12960.	0.7	20
27	Inappropriate asthma therapyâ€"a tale of two countries: a parallel population-based cohort study. Npj Primary Care Respiratory Medicine, 2016, 26, 16076.	1.1	28
28	Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 2016, 8, 71.	3.6	190
29	Severe asthma phenotypes and targeted therapy: news from the 25th European Respiratory Society international congress, 26–30ÂSeptember, Amsterdam. Drugs and Therapy Perspectives, 2016, 32, 156-161.	0.3	0
30	Addressing corticosteroid insensitivity in adults with asthma. Expert Review of Respiratory Medicine, 2016, 10, 137-156.	1.0	17
31	Challenges in the pharmacological treatment of geriatric asthma. Expert Review of Clinical Pharmacology, 2016, 9, 917-926.	1.3	11
32	Staphylococcal enterotoxinâ€specific IgE: a biomarker for a distinct phenotype of severe asthma?. Clinical and Experimental Allergy, 2016, 46, 387-389.	1.4	5
33	Chronic diseases like asthma and COPD: do they truly exist?. European Respiratory Journal, 2016, 47, 359-361.	3.1	17
34	Roles of Periostin in Respiratory Disorders. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 949-956.	2.5	154
35	Diagnosis and investigation in the severe asthma clinic. Expert Review of Respiratory Medicine, 2016, 10, 491-503.	1.0	21
36	New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opinion on Pharmacotherapy, 2017, 18, 283-293.	0.9	8
37	The level of diagnostic assessment in severe asthma: A nationwide real-life study. Respiratory Medicine, 2017, 124, 21-29.	1.3	22
38	Longterm clinical outcomes of omalizumab therapy in severe allergic asthma: Study of efficacy and safety. Respiratory Medicine, 2017, 124, 36-43.	1.3	65

#	ARTICLE	IF	CITATIONS
39	Changing Paradigms in the Treatment of Severe Asthma: The Role of Biologic Therapies. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, S1-S14.	2.0	57
40	Adaptation of a difficult-to-manage asthma programme for implementation in the Dutch context: a modified e-Delphi. Npj Primary Care Respiratory Medicine, 2017, 27, 16086.	1.1	13
41	Phenotype-Driven Therapeutics in Severe Asthma. Current Allergy and Asthma Reports, 2017, 17, 10.	2.4	36
42	Qualitative evaluation of the St George's Respiratory Questionnaire in patients with severe asthma. Respiratory Medicine, 2017, 126, 32-38.	1.3	19
43	T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. European Respiratory Journal, 2017, 49, 1602135.	3.1	283
44	Susceptibility to influenza virus infection of bronchial biopsies in asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 309-312.e4.	1.5	17
45	Severe asthma: phenotyping to endotyping or vice versa?. European Respiratory Journal, 2017, 49, 1700053.	3.1	14
46	Airway basophils are increased and activated in eosinophilic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1532-1539.	2.7	42
47	Severe asthma: Current management, targeted therapies and future directionsâ€"A roundtable report. Respirology, 2017, 22, 53-60.	1.3	50
48	Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. New England Journal of Medicine, 2017, 376, 2448-2458.	13.9	779
49	The future of asthma research and development: a roadmap from the European Asthma Research and Innovation Partnership (EARIP). European Respiratory Journal, 2017, 49, 1602295.	3.1	18
50	<i>IL4Rα</i> and <i>ADAM33</i> as genetic markers in asthma exacerbations and typeâ€2 inflammatory endotype. Clinical and Experimental Allergy, 2017, 47, 998-1006.	1.4	21
51	Coâ€morbidities in severe asthma: <scp>C</scp> linical impact and management. Respirology, 2017, 22, 651-661.	1.3	172
52	Clinical management of severe therapy-resistant asthma. Expert Review of Respiratory Medicine, 2017, 11, 1-8.	1.0	17
53	Severe Asthma in Children. Current Allergy and Asthma Reports, 2017, 17, 21.	2.4	8
54	A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1311-1320.	2.5	152
55	Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma. European Respiratory Journal, 2017, 50, 1602298.	3.1	44
56	How should treatment approaches differ depending on the severity of asthma? Expert Review of Respiratory Medicine, $2017, 11, 1-11$.	1.0	0

#	ARTICLE	IF	CITATIONS
57	Clinical and biological characteristics of the French COBRA cohort of adult subjects with asthma. European Respiratory Journal, 2017, 50, 1700019.	3.1	32
58	The role of upper airway pathology as a co-morbidity in severe asthma. Expert Review of Respiratory Medicine, 2017, 11, 855-865.	1.0	42
59	Profile of the ProAxsis active neutrophil elastase immunoassay for precision medicine in chronic respiratory disease. Expert Review of Molecular Diagnostics, 2017, 17, 875-884.	1.5	10
60	"l have lost in every facet of my life― the hidden burden of severe asthma. European Respiratory Journal, 2017, 50, 1700765.	3.1	128
61	An invisible disease: severe asthma is more than just "bad asthma― European Respiratory Journal, 2017, 50, 1701109.	3.1	15
62	Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends in Immunology, 2017, 38, 942-954.	2.9	331
63	Care pathways for the selection of a biologic in severe asthma. European Respiratory Journal, 2017, 50, 1701782.	3.1	79
64	The era of research collaborations: new models for working together. European Respiratory Journal, 2017, 49, 1601848.	3.1	11
65	Up in Smoke: Accelerated Loss of Lung Function in Two Clusters of Smokers Identified in a Longitudinal Cohort Study of Adult-Onset Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 979-980.	2.0	5
66	A Systematic Approach to Evaluating Difficult to Control Asthma: A Little Goes a Long Way. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 965-966.	2.0	1
67	U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. Journal of Allergy and Clinical Immunology, 2017, 139, 1797-1807.	1.5	236
68	A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 443-455.	2.5	165
69	eTRIKS analytical environment: A modular high performance framework for medical data analysis. , 2017, , .		6
70	Health-related quality of life in asthma patients - A comparison of two cohorts from 2005 and 2015. Respiratory Medicine, 2017, 132, 154-160.	1.3	27
71	Dupilumab in the management of moderate-to-severe asthma: the data so far. Therapeutics and Clinical Risk Management, 2017, Volume 13, 1139-1149.	0.9	38
72	Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Frontiers in Medicine, 2017, 4, 158.	1.2	190
73	Asthma: From Diagnosis to Endotype to Treatment. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1065-1067.	2.5	1
74	Reclassification of Bronchodilator Reversibility in the U-BIOPRED Adult Asthma Cohort Using zÂScores. Chest, 2018, 153, 1070-1072.	0.4	7

#	Article	IF	CITATIONS
75	Sarcoidosis in World Trade Center-Exposed Firefighters. Chest, 2018, 153, 1072-1073.	0.4	1
76	Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. European Respiratory Journal, 2018, 51, 1702173.	3.1	67
77	Putting the brake on accelerated lung function decline in asthma. European Respiratory Journal, 2018, 51, 1702630.	3.1	1
78	Factors reducing omalizumab response in severe asthma. European Journal of Internal Medicine, 2018, 52, 78-85.	1.0	40
79	Airway Inflammation and Inflammatory Biomarkers. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 056-063.	0.8	25
80	Diagnosis and Management of Severe Asthma. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 091-099.	0.8	23
81	Remote or in-person breathing retraining for uncontrolled asthma symptoms. Lancet Respiratory Medicine, the, 2018, 6, 2-3.	5.2	2
82	Asthma onset pattern and patient outcomes in a chronic rhinosinusitis population. International Forum of Allergy and Rhinology, 2018, 8, 495-503.	1.5	36
83	<scp>IL</scp> â€6 pathway upregulation in subgroup of severe asthma is associated with neutrophilia and poor lung function. Clinical and Experimental Allergy, 2018, 48, 475-478.	1.4	29
84	Exacerbations in Adults with Asthma: A Systematic Review and External Validation of Prediction Models. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1942-1952.e15.	2.0	49
85	Nordic consensus statement on the systematic assessment and management of possible severe asthma in adults. European Clinical Respiratory Journal, 2018, 5, 1440868.	0.7	40
86	Estudio de los mecanismos implicados en la génesis y evolución del asma (proyecto MEGA): creación y seguimiento a largo plazo de una cohorte de pacientes asmáticos. Archivos De Bronconeumologia, 2018, 54, 378-385.	0.4	10
87	Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 560-570.	1.5	166
88	Comorbidities in Difficult-to-Control Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 108-113.	2.0	57
89	Metabolomics in asthma. Current Opinion in Pulmonary Medicine, 2018, 24, 94-103.	1.2	37
91	High prevalence of severe asthma in a large random population study. Journal of Allergy and Clinical Immunology, 2018, 141, 2256-2264.e2.	1.5	28
92	New approaches for identifying and testing potential new anti-asthma agents. Expert Opinion on Drug Discovery, 2018, 13, 51-63.	2.5	31
93	Trends in Omalizumab Utilization for Asthma: Evidence of Suboptimal Patient Selection. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1568-1577.e4.	2.0	33

#	Article	IF	Citations
94	Associations of atopy and asthma during aging of an adult population over a 20-year follow-up. Journal of Asthma, 2018, 55, 994-1001.	0.9	3
95	Moving toward consensus on diagnosis and management of severe asthma in adults. Current Medical Research and Opinion, 2018, 34, 387-399.	0.9	9
96	Moving toward consensus on diagnosis and management of severe asthma in children. Current Medical Research and Opinion, 2018, 34, 447-458.	0.9	7
97	Comorbid "treatable traits―in difficult asthma: Current evidence and clinical evaluation. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1369-1382.	2.7	113
98	Biologic agents for severe asthma patients: clinical perspectives and implications. Internal and Emergency Medicine, 2018, 13, 155-176.	1.0	13
99	Translating Asthma: Dissecting the Role of Metabolomics, Genomics and Personalized Medicine. Indian Journal of Pediatrics, 2018, 85, 643-650.	0.3	11
100	Pathogenesis of Severe Asthma. , 2018, , 37-56.		1
101	Pathway discovery using transcriptomic profiles in adult-onset severe asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1280-1290.	1.5	105
102	Anxiety Contributes to Poorer Asthma Outcomes in Inner-City Black Adolescents. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 227-235.	2.0	40
103	More than a decade follow-up in patients with severe or difficult-to-treat asthma: The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) II. Journal of Allergy and Clinical Immunology, 2018, 141, 1590-1597.e9.	1.5	62
104	Diagnosis of severe asthma. Medical Journal of Australia, 2018, 209, S3-S10.	0.8	10
105	Lung Function Trajectory Types in Never-Smoking Adults With Asthma: Clinical Features and Inflammatory Patterns. Allergy, Asthma and Immunology Research, 2018, 10, 614.	1.1	10
106	Managing comorbid conditions in severe asthma. Medical Journal of Australia, 2018, 209, S11-S17.	0.8	34
107	Healthâ€related quality of life burden in severe asthma. Medical Journal of Australia, 2018, 209, S28-S33.	0.8	62
108	Sleep and asthma. Current Opinion in Pulmonary Medicine, 2018, 24, 569-573.	1.2	54
109	Improvement of patient-reported outcomes in severe allergic asthma by omalizumab treatment: the real life observational PROXIMA study. World Allergy Organization Journal, 2018, 11, 33.	1.6	25
110	Eosinophilic asthma, according to a blood eosinophil criterion, is associated with disease severity and lack of control among underprivileged urban Brazilians. Respiratory Medicine, 2018, 145, 95-100.	1.3	26
111	The Severe Heterogeneous Asthma Research collaboration, Patient-centred (SHARP) ERS Clinical Research Collaboration: a new dawn in asthma research. European Respiratory Journal, 2018, 52, 1801671.	3.1	28

#	ARTICLE	IF	CITATIONS
112	Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers. Metabolomics, 2018, 14, 123.	1.4	17
113	Clinical and economic burden of severe asthma: A French cohort study. Respiratory Medicine, 2018, 144, 42-49.	1.3	33
114	Enhanced oxidative stress in smoking and ex-smoking severe asthma in the U-BIOPRED cohort. PLoS ONE, 2018, 13, e0203874.	1.1	18
115	Molecular Endotypes Contribute to the Heterogeneity of Asthma. Immunology and Allergy Clinics of North America, 2018, 38, 655-665.	0.7	7
116	Randomised controlled trials in severe asthma: selection by phenotype or stereotype. European Respiratory Journal, 2018, 52, 1801444.	3.1	70
117	Is a Longitudinal Trajectory Helpful in Identifying Phenotypes in Asthma?. Allergy, Asthma and Immunology Research, 2018, 10, 571.	1.1	3
118	Omalizumab for Severe Asthma: Beyond Allergic Asthma. BioMed Research International, 2018, 2018, 1-10.	0.9	29
119	Sepsis: Personalized Medicine Utilizing †Omic' Technologies— A Paradigm Shift?. Healthcare (Switzerland), 2018, 6, 111.	1.0	20
120	ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. Journal of Neuroinflammation, 2018, 15, 246.	3.1	20
121	Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration. ERJ Open Research, 2018, 4, 00013-2018.	1.1	39
122	Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. New England Journal of Medicine, 2018, 378, 2475-2485.	13.9	816
124	Data Science for Asthma Study. Translational Bioinformatics, 2018, , 277-301.	0.0	1
125	A Multi Tenant Computational Platform for Translational Medicine. , 2018, , .		1
126	Systematic literature review of the clinical, humanistic, and economic burden associated with asthma uncontrolled by GINA Steps 4 or 5 treatment. Current Medical Research and Opinion, 2018, 34, 2075-2088.	0.9	72
127	Rhinosinutis and Asthma in Children. Sinusitis, 2018, 3, 3.	0.2	2
128	Rhinology Future Debates 2017 by <scp>EUFOREA</scp> : Novel treatments and surgical solutions in rhinology. Clinical Otolaryngology, 2018, 43, 1429-1438.	0.6	3
129	U-BIOPRED: evaluation of the value of a public–private partnership to industry. Drug Discovery Today, 2018, 23, 1622-1634.	3.2	14
130	Asthma Over the Age of 65: All's Well That Ends Well. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 764-773.	2.0	37

#	Article	IF	CITATIONS
131	Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome. Journal of Proteome Research, 2018, 17, 2072-2091.	1.8	16
132	The MEGA Project: A Study of the Mechanisms Involved in the Genesis and Disease Course of Asthma. Asthma Cohort Creation and Long-Term Follow-Up. Archivos De Bronconeumologia, 2018, 54, 378-385.	0.4	6
133	Repeated Allergen Exposure in A/J Mice Causes Steroid-Insensitive Asthma via a Defect in Glucocorticoid Receptor Bioavailability. Journal of Immunology, 2018, 201, 851-860.	0.4	15
134	Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, 577-590.	1.5	140
135	Severe Asthma. , 2019, , 722-736.e5.		0
136	Severe asthma: Comparison of different classifications of severity and control. Respiratory Medicine, 2019, 156, 1-7.	1.3	7
137	Application of structured statistical analyses to identify a biomarker predictive of enhanced tralokinumab efficacy in phase III clinical trials for severe, uncontrolled asthma. BMC Pulmonary Medicine, 2019, 19, 129.	0.8	6
138	Asthma severity in four countries of Latin America. BMC Pulmonary Medicine, 2019, 19, 123.	0.8	15
139	Association of depressive symptoms with health status and markers of uncontrolled severe asthma. Allergy and Asthma Proceedings, 2019, 40, 230-239.	1.0	3
140	<p>A case of chronic eosinophilic pneumonia in a patient treated with dupilumab</p> . Therapeutics and Clinical Risk Management, 2019, Volume 15, 869-875.	0.9	49
141	Serum levels of IL-5, IL-6, IL-8, IL-13 and IL-17A in pre-defined groups of adult patients with moderate and severe bronchial asthma. Respiratory Medicine, 2019, 154, 144-154.	1.3	29
142	Patterns of systemic and local inflammation in patients with asthma hospitalised with influenza. European Respiratory Journal, 2019, 54, 1900949.	3.1	22
143	Severe Asthmaâ€"Perspectives From Adult and Pediatric Pulmonology. Frontiers in Pediatrics, 2019, 7, 389.	0.9	16
144	Severe asthma phenotypes and endotypes. Seminars in Immunology, 2019, 46, 101301.	2.7	43
145	PlatformTM, a standards-based data custodianship platform for translational medicine research. Scientific Data, 2019, 6, 149.	2.4	5
146	Defining severe obstructive lung disease in the biologic era: an endotype-based approach. European Respiratory Journal, 2019, 54, 1900108.	3.1	12
147	Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opinion on Investigational Drugs, 2019, 28, 931-940.	1.9	68
148	Contribution of airway eosinophils in airway wall remodeling in asthma: Role of ⟨i⟩⟨scp⟩MMP⟨ scp⟩‶0⟨ i⟩ and ⟨i⟩⟨scp⟩MET⟨ scp⟩⟨ i⟩. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1102-1112.	2.7	32

#	Article	IF	CITATIONS
149	Three Major Efforts to Phenotype Asthma: Severe Asthma Research Program, Asthma Disease Endotyping for Personalized Therapeutics, and Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome. Clinics in Chest Medicine, 2019, 40, 13-28.	0.8	20
150	Prospective observational study in patients with obstructive lung disease: NOVELTY design. ERJ Open Research, 2019, 5, 00036-2018.	1.1	29
151	Stratification of asthma phenotypes by airway proteomic signatures. Journal of Allergy and Clinical Immunology, 2019, 144, 70-82.	1.5	59
152	Protocol for the Wessex AsThma CoHort of difficult asthma (WATCH): a pragmatic real-life longitudinal study of difficult asthma in the clinic. BMC Pulmonary Medicine, 2019, 19, 99.	0.8	22
154	IL-17–high asthma with features of a psoriasis immunophenotype. Journal of Allergy and Clinical Immunology, 2019, 144, 1198-1213.	1.5	80
155	Biologics for Severe Asthma: Treatment-Specific Effects Are Important in Choosing a Specific Agent. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1379-1392.	2.0	47
156	Association between exhaled nitric oxide and nasal polyposis in severe asthma. Respiratory Medicine, 2019, 152, 20-24.	1.3	12
157	EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2312-2319.	2.7	239
158	What did we learn from multiple omics studies in asthma?. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2129-2145.	2.7	29
159	Omalizumab and long-term quality of life outcomes in patients with moderate-to-severe allergic asthma: a systematic review. Therapeutic Advances in Respiratory Disease, 2019, 13, 175346661984135.	1.0	10
160	Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux. European Respiratory Journal, 2019, 53, 1900453.	3.1	15
161	Follow up on atopy and the gastrointestinal tract $\hat{a}\in$ a review of a common association 2018. Expert Review of Gastroenterology and Hepatology, 2019, 13, 437-445.	1.4	4
162	Severe asthmaâ€"A population study perspective. Clinical and Experimental Allergy, 2019, 49, 819-828.	1.4	70
163	Matrix Metalloproteinase-9-Dependent Release of IL-1 <i>\hat{l}^2</i> by Human Eosinophils. Mediators of Inflammation, 2019, 2019, 1-11.	1.4	22
164	Unmet therapeutic goals and potential treatable traits in a population of patients with severe uncontrolled asthma in Spain. ENEAS study. Respiratory Medicine, 2019, 151, 49-54.	1.3	27
165	The impact of severe asthma on patients' autonomy: A qualitative study. Health Expectations, 2019, 22, 528-536.	1.1	18
166	Sputum proteomic signature of gastro-oesophageal reflux in patients with severe asthma. Respiratory Medicine, 2019, 150, 66-73.	1.3	19
167	Pathophysiological Mechanisms of Asthma. Frontiers in Pediatrics, 2019, 7, 68.	0.9	84

#	ARTICLE	IF	CITATIONS
168	A Novel Insight on Endotyping Heterogeneous Severe Asthma Based on Endoplasmic Reticulum Stress: Beyond the "Type 2/Non-Type 2 Dichotomy― International Journal of Molecular Sciences, 2019, 20, 713.	1.8	16
169	Corticosteroid tapering with benralizumab treatment for eosinophilic asthma: PONENTE Trial. ERJ Open Research, 2019, 5, 00009-2019.	1.1	36
170	Comorbidities associated with severe asthma. Journal of Precision Respiratory Medicine, 2019, 2, 5-9.	0.1	4
171	The effectiveness of Reslizumab in severe asthma treatment: a real-world experience. Respiratory Research, 2019, 20, 289.	1.4	35
172	Treatable traits can be identified in a severe asthma registry and predict future exacerbations. Respirology, 2019, 24, 37-47.	1.3	136
173	Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clinical Reviews in Allergy and Immunology, 2019, 56, 219-233.	2.9	667
174	Characteristics of Adult Severe Refractory Asthma in Korea Analyzed From the Severe Asthma Registry. Allergy, Asthma and Immunology Research, 2019, 11, 43.	1.1	35
175	Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine, the, 2019, 7, 20-34.	5.2	183
176	Breathprinting Based Diagnosis, Selected Case Study: U-BIOPRED Project., 2019,, 33-48.		1
177	"T2-high―in severe asthma related to blood eosinophil, exhaled nitric oxide andÂserum periostin. European Respiratory Journal, 2019, 53, 1800938.	3.1	104
178	CSF3R/CD114 mediates infection-dependent transition to severe asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 785-788.e6.	1.5	28
179	Identification and prospective stability of electronic nose (eNose)–derived inflammatory phenotypes in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 1811-1820.e7.	1.5	74
180	Obesity and severe asthma. Allergology International, 2019, 68, 135-142.	1.4	82
181	Treatable traits in the European Uâ€ <scp>BIOPRED</scp> adult asthma cohorts. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 406-411.	2.7	37
182	Ezrin, a Membrane Cytoskeleton Cross-Linker Protein, as a Marker of Epithelial Damage in Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 496-507.	2.5	35
183	Methodological considerations for large-scale breath analysis studies: lessons from the U-BIOPRED severe asthma project. Journal of Breath Research, 2019, 13, 016001.	1.5	20
184	Systematic Literature Review of Systemic Corticosteroid Use for Asthma Management. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 276-293.	2.5	182
185	Exhaled volatile organic compounds as markers for medication use in asthma. European Respiratory Journal, 2020, 55, 1900544.	3.1	27

#	Article	IF	CITATIONS
186	Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatric Respiratory Reviews, 2020, 34, 67-74.	1.2	16
187	Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 370-380.	2.7	37
188	The presence of <i>Aspergillus fumigatus</i> in asthmatic airways is not clearly related to clinical disease severity. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1146-1154.	2.7	16
189	Asthma similarities across ProAR (Brazil) and U-BIOPRED (Europe) adult cohorts of contrasting locations, ethnicity and socioeconomic status. Respiratory Medicine, 2020, 161, 105817.	1.3	13
190	The impact of comorbidities on severe asthma. Current Opinion in Pulmonary Medicine, 2020, 26, 47-55.	1.2	40
191	Integrated genomics analysis highlights important SNPs and genes implicated in moderate-to-severe asthma based on GWAS and eQTL datasets. BMC Pulmonary Medicine, 2020, 20, 270.	0.8	20
192	Rapid effect of benralizumab for severe asthma with chronic rhinosinusitis with nasal polyps. Pulmonary Pharmacology and Therapeutics, 2020, 64, 101965.	1.1	16
193	Management of severe asthma: summary of the European Respiratory Society/American Thoracic Society task force report. Breathe, 2020, 16, 200058.	0.6	5
194	PatologÃa respiratoria en la era del big data. Open Respiratory Archives, 2020, 2, 284-288.	0.0	0
195	eNose breath prints as a surrogate biomarker for classifying patients with asthma by atopy. Journal of Allergy and Clinical Immunology, 2020, 146, 1045-1055.	1.5	22
196	Short-Acting \hat{I}^2 2-Agonist Use Could Be a Confounding Factor for Interpreting Increased IL-6. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1324-1324.	2.5	0
197	Reply to P. B. et al., to Fahim and Rosewarne, and to Reich. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1322-1324.	2.5	0
198	Plasmacytoid dendritic cells and asthma: a review of current knowledge. Expert Review of Respiratory Medicine, 2020, 14, 1095-1106.	1.0	4
199	An update on the role of chronic rhinosinusitis with nasal polyps as a co-morbidity in severe asthma. Expert Review of Respiratory Medicine, 2020, 14, 1197-1205.	1.0	15
200	<p>Anti-IL5 Therapies for Severe Eosinophilic Asthma: Literature Review and Practical Insights</p> . Journal of Asthma and Allergy, 2020, Volume 13, 301-313.	1.5	15
201	Impact of comorbid conditions on asthmatic adults and children. Npj Primary Care Respiratory Medicine, 2020, 30, 36.	1.1	40
202	World Lung Day: what, why, and where to?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L527-L533.	1.3	6
203	Predicting atopic asthma by using eNose breath profiles with machine learning. Journal of Allergy and Clinical Immunology, 2020, 146, 1010-1012.	1.5	2

#	Article	IF	CITATIONS
204	Épidémiologie et physiopathologie de l'inflammation de type 2 dans l'asthme sévère. Revue Des N Respiratoires Actualites, 2020, 12, 2S385-2S391.	∕laladies	0
205	Définition et évaluation de l'asthme sévère. Revue Des Maladies Respiratoires Actualites, 2020, 12, S3	-\$60	0
206	Observational studies assessing the pharmacological treatment of obstructive lung disease: strengths, challenges and considerations for study design. ERJ Open Research, 2020, 6, 00044-2020.	1.1	4
208	The Link between Asthma and Bronchiectasis: State of the Art. Respiration, 2020, 99, 463-476.	1.2	32
209	Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 146, 821-830.	1.5	33
210	Vitamin D Metabolism Is Dysregulated in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 371-382.	2.5	56
211	Involvement of the epidermal growth factor receptor in ILâ€13–mediated corticosteroidâ€resistant airway inflammation. Clinical and Experimental Allergy, 2020, 50, 672-686.	1.4	9
212	Effectiveness of omalizumab in patients with severe allergic asthma with and without chronic rhinosinusitis with nasal polyps: a PROXIMA study post hoc analysis. Clinical and Translational Allergy, 2020, 10, 25.	1.4	20
213	Phenotyping severe asthma: a rationale for biologic therapy. Expert Review of Precision Medicine and Drug Development, 2020, 5, 265-274.	0.4	6
214	How real patients with severe asthma experience their disease: An ethnographic study. Atencion Primaria Practica, 2020, 2, 100057.	0.0	2
215	How do biologicals and other novel therapies effect clinically used biomarkers in severe asthma?. Clinical and Experimental Allergy, 2020, 50, 994-1006.	1.4	11
216	Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI Guidelines ―recommendations on the use of biologicals in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1043-1057.	2.7	85
217	Omics for the future in asthma. Seminars in Immunopathology, 2020, 42, 111-126.	2.8	29
218	Current and Future Treatments of Rhinitis and Sinusitis. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1522-1531.	2.0	41
219	Kids, Difficult Asthma and Fungus. Journal of Fungi (Basel, Switzerland), 2020, 6, 55.	1.5	21
220	A real-world assessment of asthma with chronic rhinosinusitis. Annals of Allergy, Asthma and Immunology, 2020, 125, 65-71.	0.5	16
221	Needs for Systems Approaches to Better Treat Individuals With Severe Asthma: Predicting Phenotypes and Responses to Treatments. Frontiers in Medicine, 2020, 7, 98.	1.2	16
222	Clinical characteristics of the BREATHE cohort $\hat{a}\in$ a real-life study on patients with asthma and COPD. European Clinical Respiratory Journal, 2020, 7, 1736934.	0.7	16

#	Article	IF	Citations
223	Perception of oral corticosteroids in adult patients with asthma in France. Journal of Asthma, 2021, 58, 946-957.	0.9	7
224	Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. Journal of Allergy and Clinical Immunology, 2021, 147, 123-134.	1.5	51
225	Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clinical Reviews in Allergy and Immunology, 2021, 60, 200-219.	2.9	18
226	Severe asthma: oral corticosteroid alternatives and the need for optimal referral pathways. Journal of Asthma, 2021, 58, 448-458.	0.9	30
227	Longitudinal Outcomes of Severe Asthma: Real-World Evidence of Multidimensional Analyses. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1285-1294.e6.	2.0	13
228	Sputum macrophage diversity and activation in asthma: Role of severity and inflammatory phenotype. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 775-788.	2.7	25
229	Increased nasal mucosal interferon and CCL13 response to a TLR7/8 agonist in asthma and allergic rhinitis. Journal of Allergy and Clinical Immunology, 2021, 147, 694-703.e12.	1.5	23
230	Urinary Leukotriene E ₄ and Prostaglandin D ₂ Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 37-53.	2.5	49
231	Management of patients with chronic rhinosinusitis during the COVIDâ€19 pandemicâ€"An EAACI position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 677-688.	2.7	33
232	Severe Adult Asthmas: Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 809-821.	2.5	72
233	Type 2″ow asthma phenotypes by integration of sputum transcriptomics and serum proteomics. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 380-383.	2.7	20
234	Advances in asthma genetics. Advances in Genetics, 2021, 107, 1-32.	0.8	5
235	Applying personalized medicine to adult severe asthma. Allergy and Asthma Proceedings, 2021, 42, e8-e16.	1.0	4
236	Airway Elastin is increased in severe asthma and relates to proximal wall area: histological and computed tomography findings from the Uâ€BIOPRED severe asthma study. Clinical and Experimental Allergy, 2021, 51, 296-304.	1.4	8
237	Implication of Cluster Analysis in Childhood Asthma. Allergy, Asthma and Immunology Research, 2021, 13, 1.	1.1	3
238	Biomarkers for Severe Asthma: Lessons From Longitudinal Cohort Studies. Allergy, Asthma and Immunology Research, 2021, 13, 375.	1.1	40
239	Diagnosis and Management of Severe Asthma in Switzerland: Analysis of Survey Results Conducted with Specialists and General Practitioners. Respiration, 2021, 100, 476-487.	1.2	3
240	Association of endopeptidases, involved in SARSâ€CoVâ€2 infection, with microbial aggravation in sputum of severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1917-1921.	2.7	3

#	Article	IF	Citations
241	Asthma and stroke: a narrative review. Asthma Research and Practice, 2021, 7, 3.	1.2	18
242	Heterogeneity within and between physician-diagnosed asthma and/or COPD: NOVELTY cohort. European Respiratory Journal, 2021, 58, 2003927.	3.1	43
243	Clinical and inflammatory characteristics of patients with asthma in the Spanish MEGA project cohort. Clinical and Translational Allergy, 2021, 11, e12001.	1.4	10
244	Asthma and Chronic Rhinosinusitis: How Similar Are They in Pathogenesis and Treatment Responses?. International Journal of Molecular Sciences, 2021, 22, 3340.	1.8	27
245	Nutritional Factors in Occupational Lung Disease. Current Allergy and Asthma Reports, 2021, 21, 24.	2.4	2
246	Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 89-101.	1.5	22
247	Dupilumab for the treatment of chronic rhinosinusitis with nasal polyposis. Expert Opinion on Biological Therapy, 2021, 21, 575-585.	1.4	16
250	Long-term efficacy and safety of omalizumab in patients with allergic asthma: A real-life study. Allergy and Asthma Proceedings, 2021, 42, 235-242.	1.0	15
251	Managing Corticosteroid-Related Comorbidities in Severe Asthma. Chest, 2021, 160, 1614-1623.	0.4	8
252	$ROR\hat{l}^3$ t inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma. Respiratory Research, 2021, 22, 158.	1.4	13
253	Is there clinical value in performing capsaicin cough challenges in patients with severe asthma?. Breathe, 2021, 17, 210034.	0.6	1
254	Neutrophilic Asthma Is Associated With Smoking, High Numbers of IRF5+, and Low Numbers of IL10+ Macrophages. Frontiers in Allergy, 2021, 2, 676930.	1.2	2
255	Novel therapeutic approaches targeting endotypes of severe airway disease. Expert Review of Respiratory Medicine, 2021, 15, 1303-1316.	1.0	9
256	Blood eosinophil counts in the general population and airways disease: a comprehensive review and meta-analysis. European Respiratory Journal, 2022, 59, 2004590.	3.1	37
257	Con: Access to advanced therapies for severe asthma should be restricted to patients with satisfactory adherence to maintenance treatment. Breathe, 2021, 17, 210049.	0.6	1
258	Airway gene expression identifies subtypes of type 2 inflammation in severe asthma. Clinical and Experimental Allergy, 2022, 52, 59-69.	1.4	11
259	The relationship between asthma, eosinophilia, and outcomes in coronavirus disease 2019 infection. Annals of Allergy, Asthma and Immunology, 2021, 127, 42-48.	0.5	43
260	Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules, 2021, 11, 1084.	1.8	9

#	Article	IF	CITATIONS
261	Medication Adherence in Patients With Severe Asthma Prescribed Oral Corticosteroids in the U-BIOPRED Cohort. Chest, 2021, 160, 53-64.	0.4	10
262	A feasibility trial of a digital mindfulness-based intervention to improve asthma-related quality of life for primary care patients with asthma. Journal of Behavioral Medicine, 2022, 45, 133-147.	1.1	8
263	Sputum mast cell/basophil gene expression relates to inflammatory and clinical features of severe asthma. Journal of Allergy and Clinical Immunology, 2021, 148, 428-438.	1.5	33
264	GLCCI1 Deficiency Induces Glucocorticoid Resistance via the Competitive Binding of IRF1:GRIP1 and IRF3:GRIP1 in Asthma. Frontiers in Medicine, 2021, 8, 686493.	1.2	6
265	A Wearable Ultrathin Flexible Sensor Inserted Into Nasal Cavity for Precise Sleep Respiratory Monitoring. IEEE Transactions on Electron Devices, 2021, 68, 4090-4097.	1.6	8
266	Efficacy of Tezepelumab in Patients with Severe, Uncontrolled Asthma and Perennial Allergy. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4334-4342.e6.	2.0	23
267	Severe Asthma in a General Population Study: Prevalence and Clinical Characteristics. Journal of Asthma and Allergy, 2021, Volume 14, 1105-1115.	1.5	26
268	Future Directions for Clinical Respiratory Fungal Research. Mycopathologia, 2021, 186, 685-696.	1.3	3
271	Intrabreath oscillometry is a sensitive test for assessing disease control in adults with severe asthma. Annals of Allergy, Asthma and Immunology, 2021, 127, 372-377.	0.5	12
272	Treatment Response Biomarkers in Asthma and COPD. Diagnostics, 2021, 11, 1668.	1.3	5
273	Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight, 2021, 6, .	2.3	12
274	Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicology and Environmental Safety, 2021, 220, 112408.	2.9	16
275	An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1204-1215.	2.7	14
276	Severe asthma in Kuwait population: Phenotype-based approach. Respiratory Medicine, 2021, 187, 106586.	1.3	1
277	Anti-Interleukin-5 in the Management of Eosinophilic Asthma: A Review of Effectiveness, Safety, and Budgetary Impact From the Perspective of the Brazilian Health System. Value in Health Regional Issues, 2021, 26, 169-181.	0.5	0
278	Diagnosing, Monitoring and Treating Asthma. , 2022, , 270-287.		0
279	Adult Severe Asthma. , 2022, , 383-399.		0
280	Current Drug Treatments for Allergy. , 2022, , 477-490.		1

#	ARTICLE	IF	CITATIONS
281	Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respiratory Research, 2021, 22, 10.	1.4	27
282	New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opinion on Pharmacotherapy, 2017, 18, 283-293.	0.9	3
283	Clinical phenotyping., 2020,, 321-334.		1
284	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	2.0	210
286	Advances in understanding and reducing the burden of severe asthma in children. Lancet Respiratory Medicine, the, 2020, 8, 1032-1044.	5.2	73
288	Exacerbation-Prone Asthma: A Separate Bioclinical Phenotype?. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 275-277.	2.5	18
289	The contribution of comorbidities, psychosocial factors and adherence to the presentation of severe asthma., 2019,, 30-47.		1
290	Clinical biomarkers and noninvasive assessment of severe asthma. , 2019, , 93-112.		2
291	Evaluation and management of severe asthma in children. , 2019, , 246-264.		1
292	Severe eosinophilic bronchial asthma: new therapeutic options. Meditsinskiy Sovet, 2018, , 44-52.	0.1	7
293	Type 2 immunityâ€driven diseases: Towards a multidisciplinary approach. Clinical and Experimental Allergy, 2021, 51, 1538-1552.	1.4	11
294	Glutathione-S-transferase P promotes glycolysis in asthma in association with oxidation of pyruvate kinase M2. Redox Biology, 2021, 47, 102160.	3.9	23
298	The lessons from U-BIOPRED. , 2019, , 152-166.		0
299	Precision medicine applications for severe asthma. LymphoSign Journal, 2019, 6, 117-135.	0.1	0
300	Clinical features and associated factors with severe asthma in Salvador, Brazil. Jornal Brasileiro De Pneumologia, 2020, 46, e20180341-e20180341.	0.4	3
301	Bronchial wall thickening is associated with severity of chronic rhinosinusitis. Respiratory Medicine, 2020, 170, 106024.	1.3	6
302	Characterization and burden of severe eosinophilic asthma in New Zealand: Results from the HealthStat Database. Multidisciplinary Respiratory Medicine, 2020, 15, 662.	0.6	4
303	ARIA-ITALY multidisciplinary consensus on nasal polyposis and biological treatments. World Allergy Organization Journal, 2021, 14, 100592.	1.6	17

#	Article	IF	Citations
304	A systematic literature review of burden of illness in adults with uncontrolled moderate/severe asthma. Respiratory Medicine, 2022, 191, 106670.	1.3	23
305	Obesity and bronchial asthma: two diseases with common aspects of pathogenesis. Profilakticheskaya Meditsina, 2020, 23, 126.	0.2	2
306	Neutrophilic asthma: a complex phenotype of severe asthma. Journal of Lung, Pulmonary & Respiratory Research, 2020, 7, 18-24.	0.3	3
307	Weighted gene co-expression network analysis to identify key modules and hub genes associated with paucigranulocytic asthma. BMC Pulmonary Medicine, 2021, 21, 343.	0.8	7
308	Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. European Respiratory Journal, 2022, 59, 2100142.	3.1	10
309	Nasal polyposis and asthma: the otorhinolaryngologist's view. , 0, , 87-104.		0
310	Nasal polyposis and asthma: the chest physician's view. , 0, , 105-121.		1
311	The impact of rhinosinusitis in clinical practice: an Italian Survey. Acta Biomedica, 2020, 91, 28-35.	0.2	0
312	Asthma phenotypes and endotypes. Minerva Medica, 2021, 112, 547-563.	0.3	14
313	Severe asthma: One disease and multiple definitions. World Allergy Organization Journal, 2021, 14, 100606.	1.6	18
314	Association of Differential Mast Cell Activation with Granulocytic Inflammation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 397-411.	2.5	30
315	Combined approach to define the clinical impact and decision making in asthmatics. Minerva Medica, 2021, 112, 539-541.	0.3	3
316	Treating Neutrophilic Inflammation in Airways Diseases. Archivos De Bronconeumologia, 2022, 58, 463-465.	0.4	18
317	Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. European Respiratory Journal, 2022, 59, 2101733.	3.1	13
318	An Overview of the Obese-Asthma Phenotype in Children. International Journal of Environmental Research and Public Health, 2022, 19, 636.	1.2	17
319	Clinical evolution of a severe asthmatics group in the use of immunobiological therapy in a Brazilian Public Hospital. Revista Da Associação Médica Brasileira, 2021, 67, 931-936.	0.3	0
320	Missing sputum samples are common in asthma intervention studies and successful collection at follow-up is related to improvement in clinical outcomes. ERJ Open Research, 2022, 8, 00612-2021.	1.1	0
321	Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. Frontiers in Allergy, 2022, 3, 806391.	1.2	8

#	ARTICLE	IF	CITATIONS
322	Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. Journal of Personalized Medicine, 2021, 11, 1299.	1.1	9
325	Dupilumab Reduces Oral Corticosteroid Use in Patients With Corticosteroid-Dependent Severe Asthma. Chest, 2022, 162, 46-55.	0.4	19
326	Severe eosinophilic asthma in Chinese Câ€BIOPRED asthma cohort. Clinical and Translational Medicine, 2022, 12, e710.	1.7	4
327	Impact of former smoking exposure on airway eosinophilic activation and autoimmunity in patients with severe asthma. European Respiratory Journal, 2022, 60, 2102446.	3.1	15
328	The Korean Severe Asthma Registry (KoSAR): real world research in severe asthma. Korean Journal of Internal Medicine, 2022, 37, 249-260.	0.7	6
329	Dupilumab Efficacy in Steroid-Dependent Severe Asthma by Baseline Oral Corticosteroid Dose. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1835-1843.	2.0	4
330	Real-Life Effectiveness of Benralizumab, Mepolizumab and Omalizumab in Severe Allergic Asthma Associated with Nasal Polyps. Clinical Reviews in Allergy and Immunology, 2023, 64, 179-192.	2.9	8
332	Clinical and transcriptomic features of persistent exacerbationâ€prone severe asthma in Uâ€BIOPRED cohort. Clinical and Translational Medicine, 2022, 12, e816.	1.7	11
333	Segmental Bronchial Allergen Challenge Elicits Distinct Metabolic Phenotypes in Allergic Asthma. Metabolites, 2022, 12, 381.	1.3	2
334	Microbiomics-focused Data Integration: A Fresh Solve for the Rubik's Cube of Endophenotyping?. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 365-368.	2.5	6
335	The Clinical Efficacy of Type 2 Inflammation-Specific Agents Targeting Interleukins in Reducing Exacerbations in Severe Asthma: A Meta-Analysis. Yonsei Medical Journal, 2022, 63, 511.	0.9	2
336	Paucigranulocytic Asthma: Potential Pathogenetic Mechanisms, Clinical Features and Therapeutic Management. Journal of Personalized Medicine, 2022, 12, 850.	1.1	8
337	Benralizumab in Patients With Severe Eosinophilic Asthma With and Without Chronic Rhinosinusitis With Nasal Polyps: An ANANKE Study post-hoc Analysis. Frontiers in Allergy, 2022, 3, .	1.2	9
338	Increase in FeNO Levels Following IL5/IL5R-Targeting Therapies in Severe Asthma: A Case Series. Journal of Asthma and Allergy, 0, Volume 15, 691-701.	1.5	5
339	Characteristics, phenotypes, mechanisms and management of severe asthma. Chinese Medical Journal, 2022, 135, 1141-1155.	0.9	12
340	Cumulative corticosteroid-sparing effect of anti-interleukin-5/5Ra in eosinophilic asthma. European Respiratory Journal, 2022, 60, 2102983.	3.1	7
341	REALITI-A Study: Real-World Oral Corticosteroid-Sparing Effect of Mepolizumab in Severe Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2646-2656.	2.0	24
342	Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts. Respirology, 2022, 27, 730-738.	1.3	3

#	Article	IF	CITATIONS
343	Continuous positive airway pressure therapy suppresses inflammatory cytokines and improves glucocorticoid responsiveness in patients with obstructive sleep apnea and asthma: A case–control study. Annals of Thoracic Medicine, 2022, 17, 166.	0.7	3
345	Classifications of moderate to severe asthma phenotypes in Japan and analysis of serum biomarkers: A Nationwide Cohort Study in Japan (NHOM Asthma Study). Allergology International, 2023, 72, 63-74.	1.4	6
346	Predictors and associations of the persistent airflow limitation phenotype in asthma: a post-hoc analysis of the ATLANTIS study. Lancet Respiratory Medicine, the, 2023, 11, 55-64.	5.2	19
347	The early career researcher collaboration mindset. Breathe, 2022, 18, 220016.	0.6	0
348	Type 2 inflammation in asthma and other airway diseases. ERJ Open Research, 2022, 8, 00576-2021.	1.1	62
349	Allergic sensitization impairs lung resident memory CD8 T-cell response and virus clearance. Journal of Allergy and Clinical Immunology, 2022, 150, 1415-1426.e9.	1.5	2
350	Indicating biologics for chronic rhinosinusitis with nasal polyps (CRSwNP). Allergo Journal International, 2022, 31, 149-160.	0.9	8
351	<scp>IL1RAP</scp> expression and the enrichment of <scp>IL</scp> â€33 activation signatures in severe neutrophilic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 156-167.	2.7	12
352	NF-κB: A novel therapeutic pathway for gastroesophageal reflux disease?. World Journal of Clinical Cases, 2022, 10, 8436-8442.	0.3	0
353	Use of Dupilumab in Glucocorticoid-Dependent Asthma. Southern Medical Journal, 2022, 115, 611-615.	0.3	1
354	<scp>CEACAM5</scp> is an <scp>IL</scp> â€13â€regulated epithelial gene that mediates transcription in typeâ€2 (<scp>T2</scp>) high severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3463-3466.	2.7	2
355	Within- and cross-tissue gene regulations were disrupted by PM2.5 nitrate exposure and associated with respiratory functions. Science of the Total Environment, 2022, 850, 157977.	3.9	1
356	Eosinophilic inflammation: An Appealing Target for Pharmacologic Treatments in Severe Asthma. Biomedicines, 2022, 10, 2181.	1.4	10
357	A retrospective observational study on pheno-endotypes of severe asthma among adults attending asthma clinic in a tertiary care centre in India. Lung India, 2022, 39, 393.	0.3	0
358	Prevalence of the eosinophilic phenotype among severe asthma patients in Brazil: the BRAEOS study. Jornal Brasileiro De Pneumologia, 0, , e20210367.	0.4	3
360	Current evaluation and management of patients with chronic rhinosinusitis and nasal polyps. Expert Review of Clinical Immunology, 2022, 18, 1253-1263.	1.3	4
361	Critical evaluation of asthma biomarkers in clinical practice. Frontiers in Medicine, 0, 9, .	1.2	19
362	Current Limitations and Recent Advances in the Management of Asthma. Disease-a-Month, 2023, 69, 101483.	0.4	3

#	Article	IF	CITATIONS
363	Phenotyping, Precision Medicine, and Asthma. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 739-751.	0.8	1
365	Clinical impact and management of comorbidities in severe asthma. Alergologia, 2022, 3, 129.	0.1	0
366	Well Known and Unknown Asthma Phenotype: Allergic Asthma. European Medical Journal Allergy & Immunology, 0, , 76-87.	0.0	0
367	Impact of Baseline Lung Function on Future Exacerbations in Patients with Moderate-to-Severe Asthma. Journal of Asthma and Allergy, 0, Volume 15, 1639-1644.	1.5	1
368	Macrophage migration inhibitory factor promotes glucocorticoid resistance of neutrophilic inflammation in a murine model of severe asthma. Thorax, 2023, 78, 661-673.	2.7	8
369	Epithelial Barrier Dysfunction in Type 2 Inflammatory Diseases. EMJ Dermatology, 0, , 44-51.	0.0	0
370	A genome-wide association study implicates the pleiotropic effect of NMUR2 on asthma and COPD. Scientific Reports, 2022, 12, .	1.6	1
371	Prescription changes in patients with gastrointestinal disorders after withdrawal of ranitidine: as nationwide population-based cohort study. Current Medical Research and Opinion, 0, , 1-14.	0.9	0
372	Relevance of Smoking Habit in Severe Asthma Patients: Evidence from the Severe Asthma Network in Italy (SANI) Registry. Journal of Clinical Medicine, 2022, 11, 7465.	1.0	1
373	A Randomized Trial of a Composite T2-Biomarker Strategy Adjusting Corticosteroid Treatment in Severe Asthma: A Post Hoc Analysis by Sex. Journal of Allergy and Clinical Immunology: in Practice, 2023, 11, 1233-1242.e5.	2.0	6
374	Type 2 Inflammation and the Evolving Profile of Uncontrolled Persistent Asthma. European Medical Journal (Chelmsford, England), 0, , 24-33.	3.0	2
375	Causal relationships between potential risk factors and chronic rhinosinusitis: a bidirectional two-sample Mendelian randomization study. European Archives of Oto-Rhino-Laryngology, 2023, 280, 2785-2793.	0.8	9
376	A Multi-Center Study of the Prevalence and Characteristics of Eosinophilic Phenotype and High IgE Levels Among Chinese Patients with Severe Asthma. Journal of Asthma and Allergy, 0, Volume 16, 173-182.	1.5	1
377	Toward a better understanding of severe asthma phenotypes in Latin America: results from the PREPARE study. Current Medical Research and Opinion, 2023, 39, 627-638.	0.9	0
378	Prevalence and management of severe asthma in the Nordic countries: findings from the NORDSTAR cohort. ERJ Open Research, 2023, 9, 00687-2022.	1.1	6
379	A Charter to Fundamentally Change the Role of Oral Corticosteroids in the Management of Asthma. Advances in Therapy, 2023, 40, 2577-2594.	1.3	2
380	Ferroptosis-related genes are involved in asthma and regulate the immune microenvironment. Frontiers in Pharmacology, 0, 14, .	1.6	0
381	Anxiety, depression and quality of life in industry: what are the existing intersections?. GeSec, 2023, 14, 2938-2962.	0.1	1

#	Article	IF	CITATIONS
382	Stratification of asthma by lipidomic profiling of induced sputum supernatant. Journal of Allergy and Clinical Immunology, 2023, 152, 117-125.	1.5	5
383	Clinical phenotypes of chronic cough categorised by cluster analysis. PLoS ONE, 2023, 18, e0283352.	1.1	4
384	What bothers severe asthma patients most? A paired patient–clinician study across seven European countries. ERJ Open Research, 2023, 9, 00717-2022.	1.1	4
385	Attention deficit disorder, sleep disorders, and school impact in children with asthma., 0, 2, 10.		O
386	Asthma Prevalence and Phenotyping in the General Population: The LEAD (Lung, hEart, sociAl, boDy) Study. Journal of Asthma and Allergy, 0, Volume 16, 367-382.	1.5	3
387	Lead Optimisation: What You Should Know!. , 2023, , 720-768.		O
388	A systematic approach to assessing complex breathlessness. , 2022, , 61-74.		0
390	Editorial: Impact of system biology and molecular medicine on the management of complex immune mediated respiratory diseases, volume II. Frontiers in Medicine, 0, 10 , .	1.2	O
395	Definition, Phenotyping of Severe Asthma, Including Cluster Analysis. Advances in Experimental Medicine and Biology, 2023, , 239-252.	0.8	1
396	Clinical Trial Design Innovations for Precision Medicine in Asthma. Advances in Experimental Medicine and Biology, 2023, , 395-412.	0.8	1
397	Systems Biology in Asthma. Advances in Experimental Medicine and Biology, 2023, , 215-235.	0.8	2
399	The benefits and pitfalls of machine learning for biomarker discovery. Cell and Tissue Research, 2023, 394, 17-31.	1.5	7