Water Footprint of Hydraulic Fracturing

Environmental Science and Technology Letters 2, 276-280

DOI: 10.1021/acs.estlett.5b00211

Citation Report

#	Article	IF	CITATIONS
1	An Alternative to Conventional Rock Fragmentation Methods Using SCDA: A Review. Energies, 2016, 9, 958.	1.6	61
2	Evaluating the Feasibility of Using Produced Water from Oil and Natural Gas Production to Address Water Scarcity in California's Central Valley. Sustainability, 2016, 8, 1318.	1.6	26
3	Water Availability for Shale Gas Development in Sichuan Basin, China. Environmental Science & Technology, 2016, 50, 2837-2845.	4.6	56
4	Brine Spills Associated with Unconventional Oil Development in North Dakota. Environmental Science & Technology, 2016, 50, 5389-5397.	4.6	204
5	Recent Trends in Water Use and Production for California Oil Production. Environmental Science & Technology, 2016, 50, 7904-7912.	4.6	15
6	Water acquisition and use during unconventional oil and gas development and the existing data challenges: Weld and Garfield counties, CO. Journal of Environmental Management, 2016, 181, 36-47.	3.8	15
7	Managing the Increasing Water Footprint of Hydraulic Fracturing in the Bakken Play, United States. Environmental Science & Technology, 2016, 50, 10273-10281.	4.6	37
8	Global boron cycle in the Anthropocene. Global Biogeochemical Cycles, 2016, 30, 219-230.	1.9	34
9	Is There Scientific Evidence to Support the Selection of Hydraulic Fracturing Rules?. , 2016, , .		4
10	Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160135.	1.6	97
11	Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. Science of the Total Environment, 2017, 579, 1781-1793.	3.9	124
12	Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S Science of the Total Environment, 2017, 581-582, 369-377.	3.9	92
13	Design and optimization of shale gas energy systems: Overview, research challenges, and future directions. Computers and Chemical Engineering, 2017, 106, 699-718.	2.0	91
14	Multi-Well, Multi-Phase Flowing Material Balance. , 2017, , .		13
15	Comparative analysis of hydraulic fracturing wastewater practices in unconventional shale development: Water sourcing, treatment and disposal practices. Canadian Water Resources Journal, 2017, 42, 105-121.	0.5	73
16	The foodâ€energyâ€water nexus: Transforming science for society. Water Resources Research, 2017, 53, 3550-3556.	1.7	180
17	Incorporation of Formation Water into Rate-Transient Analysis of Tight Oil Wells with High Water-Oil Ratio: A Field Example from North America. , 2017, , .		6
18	Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2017, 51, 5377-5385.	4.6	71

#	Article	IF	CITATIONS
19	An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water. Journal of Environmental Management, 2017, 200, 511-529.	3.8	75
20	Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well. Science of the Total Environment, 2017, 596-597, 369-377.	3.9	115
21	Water Flowback Analysis and Hydraulic Fracture Characterization in Marcellus Unconventional Reservoir. , 2017, , .		1
22	Current Water Management Practices, Challenges, and Innovations for US Unconventional Oil and Gas Development. Current Sustainable/Renewable Energy Reports, 2017, 4, 209-218.	1.2	5
23	A new approach to predict field-scale performance of friction reducer based on laboratory measurements. Journal of Petroleum Science and Engineering, 2017, 159, 927-933.	2.1	26
24	Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses. Environmental Research Letters, 2017, 12, 094019.	2.2	11
25	Comparative Human Toxicity Impact of Electricity Produced from Shale Gas and Coal. Environmental Science & Technology, 2017, 51, 13018-13027.	4.6	16
26	Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: Selectivity and implications for treatment. Journal of Membrane Science, 2017, 543, 319-327.	4.1	34
27	Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study. Environmental Science & Technology, 2017, 51, 14453-14461.	4.6	29
28	Water Issues Related to Transitioning from Conventional to Unconventional Oil Production in the Permian Basin. Environmental Science & amp; Technology, 2017, 51, 10903-10912.	4.6	129
29	Oil, Gas, and Crime. , 2017, , .		10
30	Water use in unconventional oil and gas development: an assessment on water use metric evaluation and selection. Clean Technologies and Environmental Policy, 2017, 19, 2417-2429.	2.1	1
31	Is Oil-Well Produced Water Effective in Abating Road Dust?. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	5
32	Organic compounds in hydraulic fracturing fluids and wastewaters: A review. Water Research, 2017, 123, 536-548.	5.3	150
33	Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania. Environmental Science & Technology, 2017, 51, 8851-8860.	4.6	65
34	Debating Unconventional Energy: Social, Political, and Economic Implications. Annual Review of Environment and Resources, 2017, 42, 241-266.	5.6	33
35	Quantity of flowback and produced waters from unconventional oil and gas exploration. Science of the Total Environment, 2017, 574, 314-321.	3.9	230
36	Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale. Water Research, 2017, 108, 1-24.	5.3	118

		CITATION REP	ORT	
#	Article		IF	CITATIONS
37	Plasma-Liquid Interaction For Treatment Of Hydraulic Fracturing Wastewater. , 2017, , .			0
38	The Water Footprint of Heavy Oil Extraction in Colombia: A Case Study. Water (Switzerland), 2 340.	2017, 9,	1.2	7
39	Well Test Workflow to Characterize Sustainable Water Sources for the Permian Basin Unconventional Development. , 2017, , .			0
40	Fracking, Farming, and Water. SSRN Electronic Journal, 0, , .		0.4	3
41	The Nexus of Energy and Water Quality. , 2017, , .			1
42	Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities. Applied and Environmental Microbiology, 2018, 84, .		1.4	15
43	The water footprint of hydraulic fracturing in Sichuan Basin, China. Science of the Total Environment, 2018, 630, 349-356.		3.9	61
44	Microbial communities in Bakken region produced water. FEMS Microbiology Letters, 2018, 36	55,.	0.7	27
45	Regulating under conditions of uncertainty and risk: Lessons learned from state regulation of hydraulic fracturing. Environmental Practice, 2018, 20, 68-79.		0.3	6
46	Establishing the linkages among watershed threats, in-stream alterations and biological respor remains a challenge: Fayetteville Shale as a case study. Current Opinion in Environmental Scier Health, 2018, 3, 27-32.	ises ice and	2.1	5
47	The Waterâ€Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil a Extraction. Earth's Future, 2018, 6, 745-756.	nd Gas	2.4	61
48	Evaluation and optimization of degradable-fiber-assisted slurry for fracturing thick and tight formation with high stress. Journal of Petroleum Science and Engineering, 2018, 165, 81-89.		2.1	29
49	Optimal water utilization and allocation in industrial sectors based on water footprint account in Dalian City, China. Journal of Cleaner Production, 2018, 176, 1283-1291.	ing	4.6	45
50	Characterising the vertical separation of shale-gas source rocks and aquifers across England an Wales (UK). Hydrogeology Journal, 2018, 26, 1975-1987.	ld .	0.9	9
51	Agenda‣etting at the Energyâ€Water Nexus: Constructing and Maintaining a Policy Monop Hydraulic Fracturing Regulation. Review of Policy Research, 2018, 35, 439-465.	oly in U.S.	2.8	11
52	Energy-Environmental Implications Of Shale Gas Exploration In ParanÃ; Hydrological Basin, Bra Renewable and Sustainable Energy Reviews, 2018, 90, 56-69.	zil.	8.2	16
53	A spatially-resolved inventory analysis of the water consumed by the coal-to-gas transition of Pennsylvania. Journal of Cleaner Production, 2018, 184, 366-374.		4.6	12
54	Compatibility and Rheology of High-pH Borate Gels Prepared With Produced Water for Hydraulic-Fracturing Applications. SPE Production and Operations, 2018, 33, 179-195.		0.4	14

#	Article	IF	Citations
55	Multiwell, Multiphase Flowing Material Balance. SPE Reservoir Evaluation and Engineering, 2018, 21, 445-461.	1.1	35
56	Investigation of the Interaction of Surfactant at Variable Salinity with Permian Basin Rock Samples: Completion Enhancement and Application for Enhanced Oil Recovery. , 2018, , .		3
57	Origin of Flowback and Produced Waters from Sichuan Basin, China. Environmental Science & Technology, 2018, 52, 14519-14527.	4.6	46
58	How much is enough? Approaches to public participation in shale gas regulation across England, France, and Algeria. The Extractive Industries and Society, 2018, 5, 427-440.	0.7	20
59	Adaptable Fabrication Techniques for Mechanically Durable Superliquiphobic/philic Surfaces. Springer Series in Materials Science, 2018, , 327-427.	0.4	0
60	Life Cycle Impact and Benefit Trade-Offs of a Produced Water and Abandoned Mine Drainage Cotreatment Process. Environmental Science & Technology, 2018, 52, 13995-14005.	4.6	7
61	Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability. Journal of Membrane Science, 2018, 567, 199-208.	4.1	101
62	High-TDS Produced Water-Based, Low-Damaging Fracturing Fluids for Applications at 300°F or Higher. , 2018, , .		3
63	Numerical representation of multi-component gas flow in stimulated shale reservoirs. Journal of Natural Gas Science and Engineering, 2018, 56, 579-592.	2.1	16
64	Study on Fluid-Rock Interaction and Reuse of Flowback Fluid for Gel Fracturing in Desert Area. Geofluids, 2018, 2018, 1-9.	0.3	8
65	Mapping the energy footprint of produced water management in New Mexico. Environmental Research Letters, 2018, 13, 024008.	2.2	8
66	Exceptional Drought and Unconventional Energy Production. Sustainability, 2018, 10, 1218.	1.6	2
67	Why does industry structure matter for unconventional oil and gas development? Examining revenue sharing outcomes in North Dakota. Energy Research and Social Science, 2018, 44, 371-384.	3.0	3
68	The integrated feasibility analysis of water reuse management in the petroleum exploration performances of unconventional shale reservoirs. Applied Water Science, 2018, 8, 1.	2.8	14
69	The intensification of the water footprint of hydraulic fracturing. Science Advances, 2018, 4, eaar5982.	4.7	159
70	Towards bridging the water gap in Texas: A water-energy-food nexus approach. Science of the Total Environment, 2019, 647, 449-463.	3.9	51
71	Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Research, 2019, 164, 114942.	5.3	64
72	Sensitivity analysis of reservoir and rock properties during low salinity water injection. Energy Reports, 2019, 5, 1001-1009.	2.5	12

#	ARTICLE	IF	CITATIONS
73	Oxidative Breakers Can Stimulate Halogenation and Competitive Oxidation in Guar-Gelled Hydraulic Fracturing Fluids. Environmental Science & amp; Technology, 2019, 53, 8216-8226.	4.6	22
74	Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	44
75	Reuse of shale gas flowback and produced water: Effects of coagulation and adsorption on ultrafiltration, reverse osmosis combined process. Science of the Total Environment, 2019, 689, 47-56.	3.9	55
76	Water Availability Assessment of Shale Gas Production in the Weiyuan Play, China. Sustainability, 2019, 11, 940.	1.6	15
77	Water scarcity assessment based on estimated ultimate energy recovery and water footprint framework during shale gas production in the Changning play. Journal of Cleaner Production, 2019, 241, 118312.	4.6	23
78	Forecasting concentrations of organic chemicals in the vadose zone caused by spills of hydraulic fracturing wastewater. Science of the Total Environment, 2019, 696, 133911.	3.9	8
79	Radium in hydraulic fracturing wastewater: distribution in suspended solids and implications to its treatment by sulfate co-precipitation. Environmental Sciences: Processes and Impacts, 2019, 21, 339-351.	1.7	8
80	Characterization and implications of solids associated with hydraulic fracturing flowback and produced water from the Duvernay Formation, Alberta, Canada. Environmental Sciences: Processes and Impacts, 2019, 21, 242-255.	1.7	26
81	Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well. Ecotoxicology and Environmental Safety, 2019, 180, 600-609.	2.9	35
82	Evaluating the performance of gravity-driven membrane filtration as desalination pretreatment of shale gas flowback and produced water. Journal of Membrane Science, 2019, 587, 117187.	4.1	48
83	Economic Model-Based Controller Design Framework for Hydraulic Fracturing To Optimize Shale Gas Production and Water Usage. Industrial & Engineering Chemistry Research, 2019, 58, 12097-12115.	1.8	17
84	Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: The effects of backwash water. Environment International, 2019, 130, 104869.	4.8	32
85	Conventional Oil—The Forgotten Part of the Waterâ€Energy Nexus. Ground Water, 2019, 57, 669-677.	0.7	21
86	Impact of shale gas development on regional water resources in China from water footprint assessment view. Science of the Total Environment, 2019, 679, 317-327.	3.9	27
87	The osmotic effect of hyper-saline hydraulic fracturing fluid on rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 2019, 211, 1-10.	1.9	18
88	A High Temperature and Salt Resistance Supramolecular Thickening System. , 2019, , .		1
89	The RAPID Manufacturing Institute – Reenergizing US efforts in process intensification and modular chemical processing. Chemical Engineering and Processing: Process Intensification, 2019, 138, 49-54.	1.8	38
90	The Food-Energy-Water Nexus, Regional Sustainability, and Hydraulic Fracturing: An Integrated Assessment of the Denver Region. Case Studies in the Environment, 2019, 3, 1-21.	0.4	6

#	Article	IF	CITATIONS
91	Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 2019, 28, 222-239.	2.6	387
92	Dispersion of Gravel Road Fine-Fractions as Influenced by Oil-Well Produced Water and Simulated Solutions of Various SAR, EC, and Ca/Mg Ratios. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	3
93	The Unknown Risks of Fracking. , 2019, , .		2
94	Impact of Thermal Maturity on Water Production in Organic-Rich Mudrocks. , 2019, , .		1
95	Towards Quantifying the Likelihood of Water Resource Impacts from Unconventional Gas Development. Ground Water, 2019, 57, 547-561.	0.7	12
96	Toward creating an environment of cooperation between water, energy, and food stakeholders in San Antonio. Science of the Total Environment, 2019, 651, 2913-2926.	3.9	57
97	Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration. Desalination, 2019, 454, 82-90.	4.0	92
98	Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination, 2019, 455, 34-57.	4.0	233
99	An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water. Separation and Purification Technology, 2019, 211, 310-321.	3.9	98
100	Algal treatment of wastewater generated during oil and gas production using hydraulic fracturing technology. Environmental Technology (United Kingdom), 2019, 40, 1027-1034.	1.2	14
101	Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chemical Engineering Journal, 2020, 382, 123001.	6.6	86
102	Expected wastewater volumes associated with unconventional oil and gas exploitation in South Africa and the management thereof. Bulletin of Engineering Geology and the Environment, 2020, 79, 711-728.	1.6	4
103	Investigation of the Interaction of Surfactant at Variable Salinity with Permian Basin Rock Samples: Completion Enhancement and Application for Enhanced Oil Recovery. SPE Drilling and Completion, 2020, 35, 100-113.	0.9	6
104	Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis. Chemical Engineering Journal, 2020, 392, 123743.	6.6	60
105	Implications for Heavy Metal Extractions from Hyper Saline Brines with [NTf2]â^ lonic Liquids: Performance, Solubility, and Cost. Industrial & Engineering Chemistry Research, 2020, 59, 12536-12544.	1.8	7
106	Future of Hydraulic Fracturing Application in Terms of Water Management and Environmental Issues: A Critical Review. , 2020, , .		14
107	Fracking, farming, and water. Energy Policy, 2020, 146, 111799.	4.2	6
108	An outlier detection approach for water footprint assessments in shale formations: case Eagle Ford play (Texas). Environmental Earth Sciences, 2020, 79, 1.	1.3	2

#	Article	IF	CITATIONS
109	Impacts of coal mining and coal seam gas extraction on groundwater and surface water. Journal of Hydrology, 2020, 591, 125281.	2.3	11
110	A Public Health Frame for Fracking? Predicting Public Support for Hydraulic Fracturing. Sociological Quarterly, 0, , 1-25.	0.8	5
111	Evaluating the spatiotemporal variability of water recovery ratios of shale gas wells and their effects on shale gas development. Journal of Cleaner Production, 2020, 276, 123171.	4.6	20
112	Growing Picochlorum oklahomensis in Hydraulic Fracturing Wastewater Supplemented with Animal Wastewater. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
113	Problem Uncertainty, Institutional Insularity, and Modes of Learning in Canadian Provincial Hydraulic Fracturing Regulation. Review of Policy Research, 2020, 37, 765-796.	2.8	5
114	The Water Footprint of the United States. Water (Switzerland), 2020, 12, 3286.	1.2	21
115	Water management in hydraulic fracturing technology. IOP Conference Series: Earth and Environmental Science, 2020, 467, 012138.	0.2	4
116	Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel, 2020, 272, 117621.	3.4	51
117	Quantifying source contributions of volatile organic compounds under hydraulic fracking moratorium. Science of the Total Environment, 2020, 732, 139322.	3.9	4
118	Freshwater footprint of fossil fuel production and thermal electricity generation and water stresses across the National Electricity Market (NEM) region of Australia. Journal of Cleaner Production, 2020, 267, 122085.	4.6	8
119	Removal of organics from shale gas fracturing flowback fluid using expanded granular sludge bed and moving bed biofilm reactor. Environmental Technology (United Kingdom), 2021, 42, 3736-3746.	1.2	6
120	A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment. Environmental Sciences: Processes and Impacts, 2020, 22, 945-955.	1.7	4
121	Spatially Allocating Life Cycle Water Use for US Coalâ€Fired Electricity across Producers, Generators, and Consumers. Energy Technology, 2020, 8, 1901497.	1.8	8
122	Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 2020, 173, 115467.	5.3	71
123	Evolution and Future Needs of Food Chemistry in a Changing World. Journal of Agricultural and Food Chemistry, 2020, 68, 12956-12971.	2.4	7
124	How far can hydraulic fractures go? A comparative analysis of water flowback, tracer, and microseismic data from the Horn River Basin. Marine and Petroleum Geology, 2020, 115, 104259.	1.5	15
126	Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective. Reviews of Environmental Contamination and Toxicology, 2020, 254, 1-56.	0.7	2
127	Reactive Transport Modeling of Shale–Fluid Interactions after Imbibition of Fracturing Fluids. Energy & Fuels, 2020, 34, 5511-5523.	2.5	25

#	Article	IF	CITATIONS
128	Response of aquatic microbial communities and bioindicator modelling of hydraulic fracturing flowback and produced water. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
129	Reversible adhesion surface coating proppant. Chinese Chemical Letters, 2021, 32, 553-556.	4.8	7
130	Optimization of hydraulic fracturing wastewater management alternatives: A hybrid multi-objective linear programming model. Journal of Cleaner Production, 2021, 286, 124950.	4.6	12
131	Changes to hepatic nutrient dynamics and energetics in rainbow trout (Oncorhynchus mykiss) following exposure to and recovery from hydraulic fracturing flowback and produced water. Science of the Total Environment, 2021, 764, 142893.	3.9	12
132	Watershed-scale assessment of surface water-related risks from shale gas development in mountainous areas, China. Journal of Environmental Management, 2021, 279, 111589.	3.8	7
133	Biomineralization of hypersaline produced water using microbially induced calcite precipitation. Water Research, 2021, 190, 116753.	5.3	39
134	Self-Regenerating Hybrid Anion Exchange Process for Removing Radium, Barium, and Strontium from Marcellus-Produced Wastewater Using Only Acid Mine Drainage. ACS ES&T Water, 2021, 1, 195-204.	2.3	2
135	Geochemical controls on CO ₂ interactions with deep subsurface shales: implications for geologic carbon sequestration. Environmental Sciences: Processes and Impacts, 2021, 23, 1278-1300.	1.7	16
136	Toxicity of hydraulic fracturing wastewater from black shale natural-gas wells influenced by well maturity and chemical additives. Environmental Sciences: Processes and Impacts, 2021, 23, 621-632.	1.7	9
137	Modification of RTA methods for unconventional reservoirs, Part 3: Tight and shale reservoirs exhibiting multiphase flow. , 2021, , 799-980.		0
138	The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs. Energy and Environmental Science, 2021, 14, 4203-4227.	15.6	84
139	Kinetic analysis applied to ferrous ions with hydrogen peroxide in acidified hydraulic fracturing reflux fluid model containing representative organic additives. Arabian Journal of Chemistry, 2021, 14, 103008.	2.3	0
140	Comparative geochemistry of flowback chemistry from the Utica/Point Pleasant and Marcellus formations. Chemical Geology, 2021, 564, 120041.	1.4	11
141	Irrigation of wheat with select hydraulic fracturing chemicals: Evaluating plant uptake and growth impacts. Environmental Pollution, 2021, 273, 116402.	3.7	10
142	Creating Value for the High-Saline Bakken Produced Water by Optimizing its Viscoelastic Properties and Proppant Carrying Tendency with High-Viscosity Friction Reducers. , 2021, , .		2
143	Multiphase Multicomponent Numerical Modeling for Hydraulic Fracturing with N-Heptane for Efficient Stimulation in a Tight Gas Reservoir of Germany. Energies, 2021, 14, 3111.	1.6	7
144	Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. Environmental Science & Technology, 2021, 55, 7167-7185.	4.6	57
145	Organic compounds in Weiyuan shale gas produced water: Identification, detection and rejection by ultrafiltration-reverse osmosis processes. Chemical Engineering Journal, 2021, 412, 128699.	6.6	31

#	Article	IF	Citations
146	Characterizing mineralization on low carbon steel exposed to aerated and degassed synthetic hydraulic fracture fluids. Journal of Petroleum Science and Engineering, 2021, 202, 108514.	2.1	1
147	Large-sample evidence on the impact of unconventional oil and gas development on surface waters. Science, 2021, 373, 896-902.	6.0	46
148	Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential. Canadian Journal of Chemical Engineering, 2022, 100, 1178-1186.	0.9	18
149	Hydrophobic epoxy resin coated proppants with ultra-high self-suspension ability and enhanced liquid conductivity. Petroleum Science, 2021, 18, 1753-1759.	2.4	11
150	Impacts of Hydraulic Fracturing on Surface and Groundwater Water Resources: Case Study from Louisiana. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	2
151	Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater?. Science of the Total Environment, 2021, 797, 149181.	3.9	12
152	Facile preparation of antifouling nanofiltration membrane by grafting zwitterions for reuse of shale gas wastewater. Separation and Purification Technology, 2021, 276, 119310.	3.9	24
153	Evaluation of strontium isotope tracers of produced water sources from multiple stacked reservoirs in Appalachian, Williston and Permian basins. Journal of Geochemical Exploration, 2022, 232, 106887.	1.5	1
154	Understanding controls on the geochemistry of hydrocarbon produced waters from different basins across the US. Environmental Sciences: Processes and Impacts, 2021, 23, 28-47.	1.7	2
155	Wells to wheels: Environmental implications of natural gas as a transportation fuel. Energy Policy, 2017, 109, 565-578.	4.2	39
156	A screening approach to improve water management practices in undeveloped shale plays, with application to the transboundary Eagle Ford Formation in northeast Mexico. Journal of Environmental Management, 2019, 236, 146-162.	3.8	7
157	Defining the Boom. , 2017, , 11-40.		1
158	The Impact of Salinity on Water Dynamics, Hydrocarbon Recovery and Formation Softening in Shale: Experimental study. , 2017, , .		7
161	Beyond treatment technology: Understanding motivations and barriers for wastewater treatment and reuse in unconventional energy production. Resources, Conservation and Recycling, 2022, 177, 106011.	5.3	14
163	lonic Strength and pH Effects on Water–Rock Interaction in an Unconventional Siliceous Reservoir: On the Use of Formation Water in Hydraulic Fracturing. Energy & Fuels, 2021, 35, 18414-18429.	2.5	13
165	Activity and Water Footprint of Unconventional Energy Production under Hydroclimate Variation in Colorado. ACS ES&T Water, 2021, 1, 281-290.	2.3	2
166	Sustainability in natural gas reservoir drilling: A review on environmentally and economically friendly fluids and optimal waste management. , 2022, , 269-304.		3
167	Effects of Carbonate Minerals on Shale-Hydraulic Fracturing Fluid Interactions in the Marcellus Shale. Frontiers in Earth Science, 2021, 9, .	0.8	10

#	Article	IF	Citations
168	Securing Fuel Demand with Unconventional Oils: A Metabolic Perspective. SSRN Electronic Journal, 0, , .	0.4	0
169	Early insights on the fracking impacts to the water-energy nexus in Brazil: is there a risk of water scarcity in the shale gas prospective areas?. Journal of Cleaner Production, 2022, 336, 130390.	4.6	4
170	Assessing cumulative water impacts from shale oil and gas production: Permian Basin case study. Science of the Total Environment, 2022, 811, 152306.	3.9	11
171	Unraveling the Complex Composition of Produced Water by Specialized Extraction Methodologies. Environmental Science & Technology, 2022, 56, 2334-2344.	4.6	17
172	Toxicological characterization of produced water from the Permian Basin. Science of the Total Environment, 2022, 815, 152943.	3.9	11
173	Oilfield-produced water treatment using conventional and membrane-based technologies for beneficial reuse: A critical review. Journal of Environmental Management, 2022, 308, 114556.	3.8	38
174	Advances in flowback analysis: fracturing water production obeys a simple decline model. , 2022, , 299-321.		0
175	Technical Analysis of Freshwater Use as Part of a Responsibly Sourced Gas ESG Strategy. Journal of Water Resource and Protection, 2022, 14, 292-303.	0.3	2
176	Not All Unconventional Reservoirs Are Similar: MENA Regional vs. Global Anisotropic Rock Index and Mechanical Characterization $\hat{a} \in $ Part 1. , 2022, , .		2
177	Synergies and Trade-Offs in Reducing Impacts of Unconventional Oil and Gas Development on Wildlife and Human Health. BioScience, 2022, 72, 472-480.	2.2	3
178	Maximizing the Proppant Carrying and Viscoelastic Properties of the Bakken Hypersaline-Produced Water with High-Viscosity Friction Reducers for Sustainable Applications. SPE Journal, 2022, 27, 3688-3703.	1.7	3
179	Unlocking the potential of hydraulic fracturing flowback and produced water for CO2 removal via mineral carbonation. Applied Geochemistry, 2022, 142, 105345.	1.4	4
180	Isotopic characteristics of the excess hydraulic fracturing flowback fluid in tight oil reservoir: Implication for source, composition, and flowback stage division. Journal of Petroleum Science and Engineering, 2022, 214, 110545.	2.1	0
181	Catholic Sisters and Cornfield Activism. Journal for the Study of Religion, Nature and Culture, 0, , .	0.2	0
182	Granular activated carbon (GAC) fixed bed adsorption combined with ultrafiltration for shale gas wastewater internal reuse. Environmental Research, 2022, 212, 113486.	3.7	4
183	Cationic Stabilized Layered Graphene Oxide (Go) Membrane For Shale Gas Wastewater Treatment: An Atomistic Insight. SSRN Electronic Journal, 0, , .	0.4	0
184	The water footprint of hydraulic fracturing under different hydroclimate conditions in the Central and Western United States. Science of the Total Environment, 2022, 840, 156651.	3.9	5
186	The Effects of Shale Gas Development on Forest Landscapes and Ecosystems in the Appalachian Basin. , 2022, , 363-385.		0

#	Article	IF	CITATIONS
187	High-Temperature-Resistant, Clean, and Environmental-Friendly Fracturing Fluid System and Performance Evaluation of Tight Sandstone. Journal of Environmental and Public Health, 2022, 2022, 1-7.	0.4	9
188	From water analysis to scale and corrosion control improvements: A Permian Basin example. Chemical Geology, 2022, 610, 121077.	1.4	0
189	Securing fuel demand with unconventional oils: A metabolic perspective. Energy, 2022, 261, 125256.	4.5	4
190	Typical organic fouling in the electrodialysis concentration/desalination process of shale gas fracturing flowback water. Environmental Science: Water Research and Technology, 2022, 8, 2254-2264.	1.2	1
191	Effect of oxidative breakers on organic matter degradation, contaminant mobility and critical mineral release during shale-fracturing fluid interactions in the Marcellus Shale. Fuel, 2023, 331, 125678.	3.4	6
192	Chemical and isotopic evolution of flowback fluids from the Utica Gas Shale Play, Eastern Ohio USA. Chemical Geology, 2022, 614, 121186.	1.4	2
193	A review of community impacts of boom-bust cycles in unconventional oil and gas development. Energy Research and Social Science, 2022, 93, 102843.	3.0	6
194	Optimization of Anti-Collapse Drilling Fluid Systems with High Potassium Content. Fluid Dynamics and Materials Processing, 2023, .	0.5	0
195	Flow alterations in rivers due to unconventional oil and gas development in the Ohio River basin. Science of the Total Environment, 2023, 856, 159126.	3.9	1
196	Coupling iron-carbon micro-electrolysis with persulfate advanced oxidation for hydraulic fracturing return fluid treatment. Chemosphere, 2023, 313, 137415.	4.2	3
197	Exploring the benefits of utilizing small modular device for sustainable and flexible shale gas water management. Journal of Cleaner Production, 2023, 384, 135282.	4.6	5
198	Towards efficient water management in large-scale shale gas fields of China. Journal of Water Reuse and Desalination, 2022, 12, 451-459.	1.2	0
199	Mechanism analysis of hydroxypropyl guar gum degradation in fracture flowback fluid by homogeneous sono-Fenton process. Ultrasonics Sonochemistry, 2023, 93, 106298.	3.8	5
200	Groundwater stress induced by shale resources development in the US: Evolution, response, and mitigation. Applied Energy, 2023, 340, 121037.	5.1	2
202	Water footprint of shale gas development in China in the carbon neutral era. Journal of Environmental Management, 2023, 331, 117238.	3.8	8
203	The Minderoo-Monaco Commission on Plastics and Human Health. Annals of Global Health, 2023, 89, .	0.8	48

213 Geochemistry of groundwater: Major and trace elements. , 2024, , .