Conditional mutual inclusive information enables accur in gene regulatory networks

Nucleic Acids Research 43, e31-e31 DOI: 10.1093/nar/gku1315

Citation Report

#	Article	IF	CITATIONS
1	Detecting disease genes of non-small lung cancer based on consistently differential interactions. Cancer and Metastasis Reviews, 2015, 34, 195-208.	5.9	1
2	Inferring Sequential Order of Somatic Mutations during Tumorgenesis based on Markov Chain Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1094-1103.	3.0	6
3	Cluster serial analysis of gene expression data with maximal information coefficient model. International Journal of Hybrid Intelligent Systems, 2016, 13, 27-37.	1.2	0
4	Inference of Gene Regulatory Network Based on Local Bayesian Networks. PLoS Computational Biology, 2016, 12, e1005024.	3.2	114
5	Part mutual information for quantifying direct associations in networks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5130-5135.	7.1	181
6	Personalized characterization of diseases using sample-specific networks. Nucleic Acids Research, 2016, 44, e164-e164.	14.5	226
7	CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data. BMC Bioinformatics, 2016, 17, 535.	2.6	26
8	ChIP-PIT: Enhancing the Analysis of ChIP-Seq Data Using Convex-Relaxed Pair-Wise Interaction Tensor Decomposition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 55-63.	3.0	61
9	Incorporating prior information into differential network analysis using non-paranormal graphical models. Bioinformatics, 2017, 33, 2436-2445.	4.1	40
10	Node-based learning of differential networks from multi-platform gene expression data. Methods, 2017, 129, 41-49.	3.8	16
11	Individual-specific edge-network analysis for disease prediction. Nucleic Acids Research, 2017, 45, e170-e170.	14.5	70
12	Local network component analysis for quantifying transcription factor activities. Methods, 2017, 124, 25-35.	3.8	14
13	Enhanced construction of gene regulatory networks using hub gene information. BMC Bioinformatics, 2017, 18, 186.	2.6	71
14	Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. Journal of Molecular Cell Biology, 2017, 9, 489-503.	3.3	64
15	Protein network construction using reverse phase protein array data. Methods, 2017, 124, 89-99.	3.8	5
16	Identifying differential networks based on multi-platform gene expression data. Molecular BioSystems, 2017, 13, 183-192.	2.9	14
17	Improving GRN re onstruction by mining hidden regulatory signals. IET Systems Biology, 2017, 11, 174-181.	1.5	2
18	Comparison of software packages for Bayesian network learning in gene regulatory relationship mining. , 2017, , .		0

#	Article	IF	CITATIONS
19	Quantifying Gene Regulatory Relationships with Association Measures: A Comparative Study. Frontiers in Genetics, 2017, 8, 96.	2.3	26
20	Verification of Three-Phase Dependency Analysis Bayesian Network Learning Method for Maize Carotenoid Gene Mining. BioMed Research International, 2017, 2017, 1-10.	1.9	0
21	Network perturbation by recurrent regulatory variants in cancer. PLoS Computational Biology, 2017, 13, e1005449.	3.2	5
22	Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network. PLoS Computational Biology, 2017, 13, e1005816.	3.2	15
23	Accelerated parallel algorithm for gene network reverse engineering. BMC Systems Biology, 2017, 11, 83.	3.0	13
24	Differential gene regulatory networks in development and disease. Cellular and Molecular Life Sciences, 2018, 75, 1013-1025.	5.4	78
25	Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm. Genes, 2018, 9, 342.	2.4	7
26	An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator. Expert Systems With Applications, 2018, 113, 544-554.	7.6	17
27	PBMarsNet: A Multivariate Adaptive Regression Splines Based Method to Reconstruct Gene Regulatory Networks. Lecture Notes in Computer Science, 2018, , 38-48.	1.3	0
28	Ensemble stacking mitigates biases in inference of synaptic connectivity. Network Neuroscience, 2018, 2, 60-85.	2.6	6
29	A robust gene regulatory network inference method base on Kalman filter and linear regression. PLoS ONE, 2018, 13, e0200094.	2.5	37
30	A Composite Mode Differential Gene Regulatory Architecture based on Temporal Expression Profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1785-1793.	3.0	1
31	Mathematical Modeling of Gene Networks. , 2019, , 33-55.		1
32	Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks. Frontiers in Genetics, 2019, 10, 623.	2.3	11
33	RNDEtree: Regulatory Network With Differential Equation Based on Flexible Neural Tree With Novel Criterion Function. IEEE Access, 2019, 7, 58255-58263.	4.2	9
34	A Stable, Unified Density Controlled Memetic Algorithm for Gene Regulatory Network Reconstruction Based on Sparse Fuzzy Cognitive Maps. Neural Processing Letters, 2019, 50, 2843-2870.	3.2	1
35	HC-HDSD: A method of hypergraph construction and high-density subgraph detection for inferring high-order epistatic interactions. Computational Biology and Chemistry, 2019, 78, 440-447.	2.3	4
36	GeNeCK: a web server for gene network construction and visualization. BMC Bioinformatics, 2019, 20, 12.	2.6	29

#	Article	IF	CITATIONS
37	Two stage approach to functional network reconstruction for binary time-series. European Physical Journal B, 2019, 92, 1.	1.5	1
38	Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis. BMC Plant Biology, 2019, 19, 11.	3.6	17
39	Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Scientific Reports, 2019, 9, 16904.	3.3	4
40	Detecting direct associations in a network by information theoretic approaches. Science China Mathematics, 2019, 62, 823-838.	1.7	12
41	Applying Bayesian Network Approach to Determine the Association Between Morphological Features Extracted from Prostate Cancer Images. IEEE Access, 2019, 7, 1586-1601.	4.2	17
42	BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks. Bioinformatics, 2019, 35, 1893-1900.	4.1	59
43	Inferring and analyzing module-specific IncRNA–mRNA causal regulatory networks in human cancer. Briefings in Bioinformatics, 2019, 20, 1403-1419.	6.5	33
44	Efficient Mining Multi-Mers in a Variety of Biological Sequences. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 949-958.	3.0	5
45	An effective approach for causal variables analysis in diesel engine production by using mutual information and network deconvolution. Journal of Intelligent Manufacturing, 2020, 31, 1661-1671.	7.3	12
46	Quantifying Direct Dependencies in Biological Networks by Multiscale Association Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 449-458.	3.0	9
47	LiPLike: towards gene regulatory network predictions of high certainty. Bioinformatics, 2020, 36, 2522-2529.	4.1	16
48	PFBNet: a priori-fused boosting method for gene regulatory network inference. BMC Bioinformatics, 2020, 21, 308.	2.6	9
49	Multiview Alignment and Generation in CCA via Consistent Latent Encoding. Neural Computation, 2020, 32, 1936-1979.	2.2	2
50	LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks. BMC Bioinformatics, 2020, 21, 318.	2.6	7
51	Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data. Entropy, 2020, 22, 773.	2.2	20
52	RWRNET: A Gene Regulatory Network Inference Algorithm Using Random Walk With Restart. Frontiers in Genetics, 2020, 11, 591461.	2.3	6
53	Critical transitions and tipping points in EMT. Quantitative Biology, 2020, 8, 195-202.	0.5	4
54	Predicting TF-DNA Binding Motifs from ChIP-seq Datasets Using the Bag-Based Classifier Combined With a Multi-Fold Learning Scheme. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1743-1751.	3.0	3

#	Article	IF	CITATIONS
55	Globally learning gene regulatory networks based on hidden atomic regulators from transcriptomic big data. BMC Genomics, 2020, 21, 711.	2.8	1
56	Gene expression analysis reveals the tipping points during infant brain development for human and chimpanzee. BMC Genomics, 2020, 21, 74.	2.8	7
57	Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Science, 2020, 296, 110471.	3.6	62
58	Molecular networks in Network Medicine: Development and applications. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1489.	6.6	128
59	An Ensemble Method to Reconstruct Gene Regulatory Networks Based on Multivariate Adaptive Regression Splines. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 347-354.	3.0	17
60	Gene Regulatory Networks: Dissecting Structure and Dynamics. , 2021, , 77-85.		1
61	A Joint Graphical Model for Inferring Gene Networks Across Multiple Subpopulations and Data Types. IEEE Transactions on Cybernetics, 2021, 51, 1043-1055.	9.5	10
62	A Data-Driven and Data-Based Framework for Online Voltage Stability Assessment Using Partial Mutual Information and Iterated Random Forest. Energies, 2021, 14, 715.	3.1	19
63	A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Briefings in Bioinformatics, 2021, 22, .	6.5	54
65	Network Inference from Gene Expression Data with Distance Correlation and Network Topology Centrality. Algorithms, 2021, 14, 61.	2.1	1
66	Inference of gene regulatory networks using pseudo-time series data. Bioinformatics, 2021, 37, 2423-2431.	4.1	18
67	Multiscale part mutual information for quantifying nonlinear direct associations in networks. Bioinformatics, 2021, 37, 2920-2929.	4.1	0
68	Nonparametric-copula-entropy and network deconvolution method for causal discovery in complex manufacturing systems. Journal of Intelligent Manufacturing, 2022, 33, 1699-1713.	7.3	14
69	XGRN: Reconstruction of Biological Networks Based on Boosted Trees Regression. Computation, 2021, 9, 48.	2.0	4
70	An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests. Scientific Reports, 2021, 11, 7605.	3.3	7
71	Inferring and analyzing gene regulatory networks from multi-factorial expression data: a complete and interactive suite. BMC Genomics, 2021, 22, 387.	2.8	22
72	Identifying Key Somatic Copy Number Alterations Driving Dysregulation of Cancer Hallmarks in Lower-Grade Glioma. Frontiers in Genetics, 2021, 12, 654736.	2.3	6
73	Integrated Inference of Asymmetric Protein Interaction Networks Using Dynamic Model and Individual Patient Proteomics Data. Symmetry, 2021, 13, 1097.	2.2	3

#	Article	IF	CITATIONS
74	DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data. Briefings in Bioinformatics, 2021, 22, .	6.5	28
75	Inferring Gene Regulatory Networks Using the Improved Markov Blanket Discovery Algorithm. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 168-181.	3.6	46
76	Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zoological Research, 2021, 42, 135-137.	2.1	5
77	Inference of Gene Regulatory Network Through Adaptive Dynamic Bayesian Network Modeling. ICSA Book Series in Statistics, 2019, , 91-113.	0.2	1
78	Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes. PLoS ONE, 2016, 11, e0154953.	2.5	16
79	Prophetic Granger Causality to infer gene regulatory networks. PLoS ONE, 2017, 12, e0170340.	2.5	10
80	Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis. Oncotarget, 2016, 7, 60053-60073.	1.8	36
81	Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method. Oncotarget, 2017, 8, 80373-80392.	1.8	14
82	Reconstructing gene regulatory networks in single-cell transcriptomic data analysis. Zoological Research, 2020, 41, 599-604.	2.1	8
83	Genome-wide dynamic network analysis reveals the potential genes for MeJA-induced growth-to-defense transition. BMC Plant Biology, 2021, 21, 450.	3.6	9
84	Tailored graphical lasso for data integration in gene network reconstruction. BMC Bioinformatics, 2021, 22, 498.	2.6	2
86	Cene Regulatory Network Inference Using Maximal Information Coefficient. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2015, 5, 296-310.	0.2	1
88	PCM: A Pairwise Correlation Mining Package for Biological Network Inference. Lecture Notes in Computer Science, 2018, , 227-231.	1.3	0
89	Maize Gene Regulatory Relationship Mining Using Association Rule. Communications in Computer and Information Science, 2018, , 249-258.	0.5	0
91	Inference Method for Reconstructing Regulatory Networks Using Statistical Path-Consistency Algorithm and Mutual Information. Lecture Notes in Computer Science, 2020, , 45-56.	1.3	2
92	A non-linear reverse-engineering method for inferring genetic regulatory networks. PeerJ, 2020, 8, e9065.	2.0	4
93	NetExtractor: Extracting a Cerebellar Tissue Gene Regulatory Network Using Differentially Expressed High Mutual Information Binary RNA Profiles. G3: Genes, Genomes, Genetics, 2020, 10, 2953-2963.	1.8	2
94	Kinase–substrate Edge Biomarkers Provide A More Accurate Prognostic Prediction in ER-negative Breast Cancer. Genomics, Proteomics and Bioinformatics, 2020, 18, 525-538.	6.9	0

#	Article	IF	Citations
95	Gene Regulatory Relationship Mining Using Improved Three-Phase Dependency Analysis Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 339-346.	3.0	0
96	A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings in Bioinformatics, 2022, 23, .	6.5	20
97	NSCGRN: a network structure control method for gene regulatory network inference. Briefings in Bioinformatics, 2022, 23, .	6.5	13
99	RSNET: inferring gene regulatory networks by a redundancy silencing and network enhancement technique. BMC Bioinformatics, 2022, 23, 165.	2.6	6
100	Inference of Molecular Regulatory Systems Using Statistical Path-Consistency Algorithm. Entropy, 2022, 24, 693.	2.2	0
101	Signed and unsigned partial information decompositions of continuous network interactions. Journal of Complex Networks, 2022, 10, .	1.8	0
102	dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data. Briefings in Bioinformatics, 2022, 23, .	6.5	4
103	Dynamic Network Biomarker Analysis Reveals the Critical Phase Transition of Fruit Ripening in Grapevine. Genes, 2022, 13, 1851.	2.4	3
104	An approach of gene regulatory network construction using mixed entropy optimizing context-related likelihood mutual information. Bioinformatics, 2023, 39, .	4.1	2
105	Accurate determination of causalities in gene regulatory networks by dissecting downstream target genes. Frontiers in Genetics, 0, 13, .	2.3	2
106	Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets. Cells, 2023, 12, 101.	4.1	0
107	Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch). BMC Plant Biology, 2023, 23, .	3.6	4
108	KtreeGRN: A Method of Gene Regulatory Network Construction Based on k-tree Sampling and Decomposition. , 2022, , .		0
109	Inferring sparse genetic regulatory networks based on maximum-entropy probability model and multi-objective memetic algorithm. Memetic Computing, O, , .	4.0	0
110	STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data. Bioinformatics, 2023, 39, .	4.1	9
112	NSRGRN: a network structure refinement method for gene regulatory network inference. Briefings in Bioinformatics, 2023, 24, .	6.5	11
113	P-CSN: single-cell RNA sequencing data analysis by partial cell-specific network. Briefings in Bioinformatics, 2023, 24, .	6.5	1
114	MICFuzzy: A maximal information content based fuzzy approach for reconstructing genetic networks. PLoS ONE, 2023, 18, e0288174.	2.5	0

#	Article	IF	CITATIONS
115	EIEPCF: accurate inference of functional gene regulatory networks by eliminating indirect effects from confounding factors. Briefings in Functional Genomics, 0, , .	2.7	1
116	Quantifying direct associations between variables. Fundamental Research, 2023, , .	3.3	0
117	Topologically Overlapped Fused LASSO Measure for Reconstructing Gene Regulation Networks. IETE Journal of Research, 0, , 1-11.	2.6	0
118	Inhibitory effects of Acanthopanax sessiliflorus Harms extract on the etiology of rheumatoid arthritis in a collagen-induced arthritis mouse model. Arthritis Research and Therapy, 2024, 26, .	3.5	0
119	Gene regulatory network inference from gene expression data based on knowledge matrix and improved rotation forest. Biomedical Signal Processing and Control, 2024, 92, 105992.	5.7	0