Algal ancestor of land plants was preadapted for symbio

Proceedings of the National Academy of Sciences of the Unite 112, 13390-13395

DOI: 10.1073/pnas.1515426112

Citation Report

#	Article	IF	CITATIONS
1	Does a Common Pathway Transduce Symbiotic Signals in Plant–Microbe Interactions?. Frontiers in Plant Science, 2016, 7, 96.	1.7	116
2	Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques. Frontiers in Plant Science, 2016, 7, 678.	1.7	120
3	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. Microbiology Spectrum, 2016, 4, .	1.2	47
4	Chasing unicorns: Nodulation origins and the paradox of novelty. American Journal of Botany, 2016, 103, 1865-1868.	0.8	62
5	<i>Dicranochaete</i> – an enigmatic green alga with surprising adaptive capabilities. Phycologia, 2016, 55, 219-229.	0.6	7
6	Synthesis on Biological Soil Crust Research. Ecological Studies, 2016, , 527-534.	0.4	17
7	Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae. , 2016, , 1-20.		1
8	Recent literature on bryophytes — 119(2). Bryologist, 2016, 119, 193-219.	0.1	1
9	The nonopisthokont septins. Methods in Cell Biology, 2016, 136, 1-19.	0.5	10
10	Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. Journal of Experimental Botany, 2017, 68, erw387.	2.4	55
12	Physiology and Spatio-temporal Relations of Nutrient Acquisition by Roots and Root Symbionts. Progress in Botany Fortschritte Der Botanik, 2016, , 167-233.	0.1	0
14	Streptophyte Terrestrialization in Light of Plastid Evolution. Trends in Plant Science, 2016, 21, 467-476.	4.3	136
15	What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis?. Trends in Plant Science, 2016, 21, 199-208.	4.3	71
16	Functional <scp>PTB</scp> phosphate transporters are present in streptophyte algae and early diverging land plants. New Phytologist, 2017, 214, 1158-1171.	3.5	25
17	Physiological Responses and Gene Co-Expression Network of Mycorrhizal Roots under K ⁺ Deprivation. Plant Physiology, 2017, 173, 1811-1823.	2.3	69
18	Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33.	0.8	113
19	Modern Topics in the Phototrophic Prokaryotes. , 2017, , .		42
20	Cyanobacteria in Terrestrial Symbiotic Systems. , 2017, , 243-294.		25

#	Article	IF	CITATIONS
21	Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annual Review of Microbiology, 2017, 71, 41-60.	2.9	151
22	Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356, .	6.0	333
23	Fungi that Infect Humans. Microbiology Spectrum, 2017, 5, .	1.2	149
24	How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?. Plant and Cell Physiology, 2017, 58, 934-945.	1.5	102
25	Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition, 2017, 63, 127-136.	0.8	27
26	The rice LysM receptorâ€like kinase <i>Os</i> <scp>CERK</scp> 1 is required for the perception of shortâ€chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytologist, 2017, 214, 1440-1446.	3.5	111
27	Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. Molecular Plant-Microbe Interactions, 2017, 30, 489-501.	1.4	38
28	Nuclear Ca ²⁺ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. New Phytologist, 2017, 214, 533-538.	3.5	21
29	Mycorrhizal Symbioses and Pedogenesis Throughout Earth's History. , 2017, , 9-33.		18
30	Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: Morphology and development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22.	0.7	15
30 32		0.7	15 973
	development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171,		
32	development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.		973
32 33	 development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15. Mycorrhizosphere Interactions to Improve a Sustainable Production of Legumes. , 2017, , 199-225. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 100-2017, 100-2017, 100-2017, 201	13.5	973 7
32 33 34	 development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15. Mycorrhizosphere Interactions to Improve a Sustainable Production of Legumes. , 2017, , 199-225. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 29, 2319-2335. Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria 	13.5 3.1	973 7 241
32 33 34 35	 development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15. Mycorrhizosphere Interactions to Improve a Sustainable Production of Legumes. , 2017, , 199-225. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 29, 2319-2335. Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer. Scientific Reports, 2017, 7, 9324. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK 	13.5 3.1 1.6	973 7 241 18
32 33 34 35 36	 development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304,e15. Mycorrhizosphere Interactions to Improve a Sustainable Production of Legumes. , 2017, , 199-225. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 29, 2319-2335. Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer. Scientific Reports, 2017, 7, 9324. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK repertoire in Ostreococcus tauri. Plant Physiology and Biochemistry, 2017, 118, 377-384. 	13.5 3.1 1.6	973 7 241 18 12

#	Article	IF	CITATIONS
40	Rooting for cassava: insights into photosynthesis and associated physiology as aÂroute to improve yield potential. New Phytologist, 2017, 213, 50-65.	3.5	108
41	Comparative phylogenomics of symbiotic associations. New Phytologist, 2017, 213, 89-94.	3.5	40
42	CRISPR/Cas9-based knockouts reveal that CpRLP1 is a negative regulator of the sex pheromone PR-IP in the Closterium peracerosum-strigosum-littorale complex. Scientific Reports, 2017, 7, 17873.	1.6	17
43	Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae. Genome Biology and Evolution, 2017, 9, 3384-3397.	1.1	95
44	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6
45	Fungi that Infect Humans. , 2017, , 811-843.		8
46	Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes. Frontiers in Plant Science, 2017, 8, 366.	1.7	45
47	Lipid transfer from plants to arbuscular mycorrhiza fungi. ELife, 2017, 6, .	2.8	329
48	Shifts in diversification rates and host jump frequencies shaped the diversity of host range among <i>Sclerotiniaceae</i> fungal plant pathogens. Molecular Ecology, 2018, 27, 1309-1323.	2.0	40
49	Great moments in evolution: the conquest of land by plants. Current Opinion in Plant Biology, 2018, 42, 49-54.	3.5	153
50	What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis?. Current Opinion in Plant Biology, 2018, 44, 49-56.	3.5	31
51	The Mycoheterotrophic Symbiosis Between Orchids and Mycorrhizal Fungi Possesses Major Components Shared with Mutualistic Plant-Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2018, 31, 1032-1047.	1.4	32
52	Taking the step: from Evoâ€Devo to plant–microbe interaction evolution with the liverwort <i>Marchantia</i> . New Phytologist, 2018, 218, 882-884.	3.5	3
53	<i>Phytophthora palmivora</i> establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3846-E3855.	3.3	59
54	A novel experimental system using the liverwort <i>Marchantia polymorpha</i> and its fungal endophytes reveals diverse and contextâ€dependent effects. New Phytologist, 2018, 218, 1217-1232.	3.5	54
55	Transcriptional Regulation of Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2018, 59, 678-695.	1.5	86
56	Manipulation of Bryophyte Hosts by Pathogenic and Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 656-665.	1.5	29
57	Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 2018, 220, 1108-1115.	3.5	901

#	ARTICLE	IF	CITATIONS
58	Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant Journal, 2018, 93, 729-746.	2.8	129
59	Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of <i>Perexiflasca tayloriana</i> gen. et sp. nov. ^{â€} . Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160500.	1.8	36
60	Beyond ICOM8: perspectives on advances in mycorrhizal research from 2015 to 2017. Mycorrhiza, 2018, 28, 197-201.	1.3	4
61	Plant evolution: landmarks on the path to terrestrial life. New Phytologist, 2018, 217, 1428-1434.	3.5	236
62	Jasmonic and salicylic acid response in the fern <scp><i>Azolla filiculoides</i></scp> and its cyanobiont. Plant, Cell and Environment, 2018, 41, 2530-2548.	2.8	40
63	Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 2018, 220, 996-1011.	3.5	84
64	Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3471-E3480.	3.3	164
65	The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 2018, 44, 108-116.	3.5	92
66	Out of Water: The Origin and Early Diversification of Plant <i>R</i> -Genes. Plant Physiology, 2018, 177, 82-89.	2.3	117
67	Strigolactones as Regulators of Symbiotrophy of Plants and Microorganisms. Russian Journal of Plant Physiology, 2018, 65, 151-167.	0.5	4
68	The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist, 2018, 220, 1012-1030.	3.5	206
69	Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytologist, 2018, 217, 552-557.	3.5	28
70	Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Critical Reviews in Biotechnology, 2018, 38, 690-703.	5.1	115
71	Evolution of the Symbiosis-Specific GRAS Regulatory Network in Bryophytes. Frontiers in Plant Science, 2018, 9, 1621.	1.7	17
72	Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis. Frontiers in Plant Science, 2018, 9, 923.	1.7	35
73	AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal <i>Lotus japonicus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9239-E9246.	3.3	63
74	Transient genetic transformation of <i>Mougeotia scalaris</i> (Zygnematophyceae) mediated by the endogenous αâ€ŧubulin1 promoter. Journal of Phycology, 2018, 54, 840-849.	1.0	17
75	Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 2018, 220, 1031-1046.	3.5	188

#	Article	IF	CITATIONS
76	Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 2018, 56, 135-160.	3.5	116
77	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	4.7	391
78	On plant defense signaling networks and early land plant evolution. Communicative and Integrative Biology, 2018, 11, 1-14.	0.6	54
79	Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis. Current Opinion in Plant Biology, 2018, 44, 164-174.	3.5	53
80	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16, e2006352.	2.6	236
81	Fossils of Arbuscular Mycorrhizal Fungi Give Insights Into the History of a Successful Partnership With Plants. , 2018, , 461-480.		4
82	Looking for Arbuscular Mycorrhizal Fungi in the Fossil Record. , 2018, , 481-517.		12
83	The Art of Self-Control – Autoregulation of Plant–Microbe Symbioses. Frontiers in Plant Science, 2018, 9, 988.	1.7	42
84	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	13.5	420
85	Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Scientific Reports, 2018, 8, 10698.	1.6	51
86	Comparative genomics of the nonlegume <i>Parasponia</i> reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4700-E4709.	3.3	253
87	Demystifying the liverwort Radula marginata, a critical review on its taxonomy, genetics, cannabinoid phytochemistry and pharmacology. Phytochemistry Reviews, 2019, 18, 953-965.	3.1	19
88	The evolutionary history of LysM-RLKs (LYKs/LYRs) in wild tomatoes. BMC Evolutionary Biology, 2019, 19, 141.	3.2	11
89	Conserved Biochemical Defenses Underpin Host Responses to Oomycete Infection in an Early-Divergent Land Plant Lineage. Current Biology, 2019, 29, 2282-2294.e5.	1.8	77
90	Algal-fungal symbiosis leads to photosynthetic mycelium. ELife, 2019, 8, .	2.8	64
91	Cell Wall Enzymes in Zygnema circumcarinatum UTEX 1559 Respond to Osmotic Stress in a Plant-Like Fashion. Frontiers in Plant Science, 2019, 10, 732.	1.7	13
92	Diversification of the gut fungi Smittium and allies (Harpellales) co-occurred with the origin of complete metamorphosis of their symbiotic insect hosts (lower Diptera). Molecular Phylogenetics and Evolution, 2019, 139, 106550.	1.2	8
93	Multilocus phylogeny of Acrospermaceae: New epibiotic species and placement of <i>Gonatophragmium, Pseudovirgaria</i> , and <i>Phaeodactylium</i> anamorphs. Mycologia, 2019, 111, 1041-1055.	0.8	4

ARTICLE IF CITATIONS # Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell, 2019, 179, 13.5 320 94 1057-1067.e14. Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118. 1.8 The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Current 96 2.3 23 Opinion in Microbiology, 2019, 49, 90-96. Nuclear calcium signatures are associated with root development. Nature Communications, 2019, 10, 98 5.8 4865. Origin of Gibberellin-Dependent Transcriptional Regulation by Molecular Exploitation of a 99 3.5 38 Transactivation Domain in DELLA Proteins. Molecular Biology and Evolution, 2019, 36, 908-918. Origin, evolution and functional characterization of the land plant glycoside hydrolase subfamily 1.2 GH5_11. Molecular Phylogenetics and Evolution, 2019, 138, 205-218. Beneficial Plant Microbe Interactions and Their Effect on Nutrient Uptake, Yield, and Stress Resistance 101 7 of Soybeans., 0, , . The Elaboration of miRNA Regulation and Gene Regulatory Networks in $Plant \hat{e}^{H}$ Microbe Interactions. 1.0 Genes, 2019, 10, 310. Fungal evolution: major ecological adaptations and evolutionary transitions. Biological Reviews, 103 4.7 181 2019, 94, 1443-1476. Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor Perspectives in 104 2.3 Biology, 2019, 11, a034603. A global coexpression network of soybean genes gives insights into the evolution of nodulation in 105 21 3.5 nonlegumes and legumes. New Phytologist, 2019, 223, 2104-2119. Flowering plant immune repertoires expand under mycorrhizal symbiosis. Plant Direct, 2019, 3, e00125. 0.8 Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. Frontiers in Plant 107 1.7 10 Science, 2019, 10, 454. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional 1.6 24 redundancy in resistance to soybean cyst nematode. Scientific Reports, 2019, 9, 1506. The Infection Unit: An Overlooked Conceptual Unit for Arbuscular Mycorrhizal Function., 2019, , . 109 3 <i>Lotus japonicus</i> Symbiosis Genes Impact Microbial Interactions between Symbionts and 1.8 Multikingdom Commensal Communities. MBio, 2019, 10, . Fissures and pores in the capsule walls and hydrophobic elaters in <i>Haplomitrium</i>: a 111 0.4 2 transmission and cryo-scanning electron microscope study. Journal of Bryology, 2019, 41, 301-313. LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. 1.8 Current Biology, 2019, 29, 4249-4259.e5.

	CI	CITATION REPORT		
#	Article		IF	Citations
113	One thousand plant transcriptomes and theÂphylogenomics of green plants. Nature, 2019, 574, 679	-685.	13.7	1,162
114	Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytologist, 2019, 221, 1036-1048.		3.5	38
115	Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of the Total Environment, 2019, 649, 1573-1579.		3.9	36
116	Origin and evolution of the plant immune system. New Phytologist, 2019, 222, 70-83.		3.5	146
117	A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. Plant and Cell Physiology, 2019, 60, 575-586.		1.5	10
118	Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. Phytopathology, 2019, 109, 332-346.		1.1	35
119	Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydrate Polymers, 2020, 229, 115505.		5.1	22
120	At the nexus of three kingdoms: the genome of the mycorrhizal fungus <i>Gigaspora margarita</i> provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22, 122-141.		1.8	84
121	Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Greer Plants. Annual Review of Plant Biology, 2020, 71, 741-765.	۱	8.6	41
122	The genomes of rhizobia. Advances in Botanical Research, 2020, , 213-249.		0.5	17
123	Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nature Plants, 2020, 6, 95-106.		4.7	146
124	PEATmoss (<i>Physcomitrella</i> Expression Atlas Tool): a unified gene expression atlas for the mode plant <i>Physcomitrella patens</i> . Plant Journal, 2020, 102, 165-177.		2.8	74
125	The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 2020, 44, 107614.		6.0	79
126	The Mosaic Architecture of NRPS-PKS in the Arbuscular Mycorrhizal Fungus Gigaspora margarita Shows a Domain With Bacterial Signature. Frontiers in Microbiology, 2020, 11, 581313.		1.5	8
127	Lichen-like association of <i>Chlamydomonas reinhardtii</i> and <i>Aspergillus nidulans</i> protects algal cells from bacteria. ISME Journal, 2020, 14, 2794-2805.		4.4	30
128	Genome-wide identification of lysin motif containing protein family genes in eight rosaceae species, and expression analysis in response to pathogenic fungus Botryosphaeria dothidea in Chinese white pear. BMC Genomics, 2020, 21, 612.		1.2	9
129	Genomic and fossil windows into the secret lives of the most ancient fungi. Nature Reviews Microbiology, 2020, 18, 717-730.		13.6	56
130	VAPYRIN-like is required for development of the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2020, 147, .		1.2	7

#	Article	IF	CITATIONS
131	Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. BioScience, 2020, 70, 548-562.	2.2	11
132	Origin and Diversity of Plant Receptor-Like Kinases. Annual Review of Plant Biology, 2020, 71, 131-156.	8.6	130
133	Clobal analysis of non-animal peroxidases provides insights into the evolution of this gene family in the green lineage. Journal of Experimental Botany, 2020, 71, 3350-3360.	2.4	15
134	<i>Zygnema circumcarinatum</i> UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. Journal of Experimental Botany, 2020, 71, 3361-3373.	2.4	9
135	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	4.7	225
136	The Effect of Plant Geographical Location and Developmental Stage on Root-Associated Microbiomes of Gymnadenia conopsea. Frontiers in Microbiology, 2020, 11, 1257.	1.5	30
137	Are fungiâ€derived genomic regions related to antagonism towards fungi in mosses?. New Phytologist, 2020, 228, 1169-1175.	3.5	8
138	Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota. PLoS ONE, 2020, 15, e0232633.	1.1	8
139	Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. New Phytologist, 2020, 227, 343-351.	3.5	26
140	Zygnematophyceae: from living algae collections to the establishment of future models. Journal of Experimental Botany, 2020, 71, 3296-3304.	2.4	23
141	An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 2020, 6, 280-289.	4.7	150
142	The role of preadaptation, propagule pressure and competition in the colonization of new habitats. Oikos, 2020, 129, 820-829.	1.2	23
143	Evo-physio: on stress responses and the earliest land plants. Journal of Experimental Botany, 2020, 71, 3254-3269.	2.4	107
144	Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza, 2020, 30, 5-22.	1.3	57
145	Plant Evolution: Assembling Land Plants. Current Biology, 2020, 30, R81-R83.	1.8	21
146	A Flexible, Low-Cost Hydroponic Co-Cultivation System for Studying Arbuscular Mycorrhiza Symbiosis. Frontiers in Plant Science, 2020, 11, 63.	1.7	4
147	Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in Plant Science, 2020, 11, 297.	1.7	57
148	Tracking the evolutionary innovations of plant terrestrialization. Gene, 2021, 769, 145203.	1.0	5

#	Article	IF	CITATIONS
149	Flourishing in water: the early evolution and diversification of plant receptorâ€like kinases. Plant Journal, 2021, 106, 174-184.	2.8	22
150	Friends in low places: Soil derived microbial inoculants for biostimulation and biocontrol in crop production. , 2021, , 15-31.		5
151	Fossil Ascomycota and Basidiomycota, With Notes on Fossil Lichens and Nematophytes. , 2021, , 378-395.		2
152	Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. Plant Molecular Biology, 2021, 107, 365-385.	2.0	20
153	Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science, 2021, 371, .	6.0	162
154	A De Novo Transcriptome Assembly of <i>Ceratopteris richardii</i> Provides Insights into the Evolutionary Dynamics of Complex Gene Families in Land Plants. Genome Biology and Evolution, 2021, 13, .	1.1	34
156	Possible role of small secreted peptides (SSPs) in immune signaling in bryophytes. Plant Molecular Biology, 2021, 106, 123-143.	2.0	8
157	Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. Applied Sciences (Switzerland), 2021, 11, 2591.	1.3	6
158	Genome-wide analyses across Viridiplantae reveal the origin and diversification of small RNA pathway-related genes. Communications Biology, 2021, 4, 412.	2.0	22
159	Organellar calcium signaling in plants: An update. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118948.	1.9	48
160	The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Current Biology, 2021, 31, 1570-1577.e4.	1.8	30
161	Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Critical Reviews in Biotechnology, 2022, 42, 46-72.	5.1	34
162	Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372, 864-868.	6.0	90
163	Exogenous Abscisic Acid Confers Salinity Tolerance in <i>Chlamydomonas reinhardtii</i> During Its Life Cycle. Journal of Phycology, 2021, 57, 1323-1334.	1.0	10
164	Evolutionary Origins of Drought Tolerance in Spermatophytes. Frontiers in Plant Science, 2021, 12, 655924.	1.7	13
165	An Ancestry Perspective of the Evolution of PBS1 Proteins in Plants. International Journal of Molecular Sciences, 2021, 22, 6819.	1.8	3
166	Plants acquired a major retrotransposon horizontally from fungi during the conquest ofÂland. New Phytologist, 2021, 232, 11-16.	3.5	3
167	Genetic control of arbuscular mycorrhizal colonization by Rhizophagus intraradices in Helianthus annuus (L.). Mycorrhiza, 2021, 31, 723-734.	1.3	9

#	Article	IF	CITATIONS
168	Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas. Frontiers in Plant Science, 2021, 12, 725939.	1.7	12
169	Exploring the GRAS gene family in common bean (Phaseolus vulgaris L.): characterization, evolutionary relationships, and expression analyses in response to abiotic stresses. Planta, 2021, 254, 84.	1.6	12
170	Fertilizers and Pesticides: Their Impact on Soil Health and Environment. Soil Biology, 2020, , 265-285.	0.6	42
171	Biodiversity, phylogenetic profiling, and mechanisms of colonization of seed microbiomes. , 2020, , 99-125.		4
172	The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell, 2020, 181, 1097-1111.e12.	13.5	153
173	The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato. Journal of Experimental Botany, 2021, 72, 1702-1713.	2.4	15
180	Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. ELife, 2018, 7, .	2.8	51
181	Inhibitory effect of microalgae and cyanobacteria extracts on influenza virus replication and neuraminidase activity. PeerJ, 2018, 6, e5716.	0.9	29
182	New sources of <i>Sym2^A</i> allele in the pea (<i>Pisum sativum</i> L.) carry the unique variant of candidate LysM-RLK gene <i>LykX</i> . PeerJ, 2019, 7, e8070.	0.9	15
183	Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annual Review of Microbiology, 2021, 75, 583-607.	2.9	13
192	Plant-Microbe Interaction: Current Developments and Future Challenges. Microorganisms for Sustainability, 2020, , 1-38.	0.4	3
193	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas. , 2020, , 143-172.		0
194	Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?. Results and Problems in Cell Differentiation, 2020, 69, 409-419.	0.2	0
195	Wild and Traditional Barley Genomic Resources as a Tool for Abiotic Stress Tolerance and Biotic Relations. Agriculture (Switzerland), 2021, 11, 1102.	1.4	4
197	Search for evolutionary roots of land plant arabinogalactanâ€proteins in charophytes: presence of a rhamnogalactanâ€protein in <i>Spirogyra pratensis</i> (Zygnematophyceae). Plant Journal, 2022, 109, 568-584.	2.8	18
200	Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota. Nature Communications, 2022, 13, 406.	5.8	28
201	Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway. IScience, 2022, 25, 103754.	1.9	2
202	Moss transcription factors regulating development and defense responses to stress. Journal of Experimental Botany, 2022, 73, 4546-4561.	2.4	18

#	Article	IF	CITATIONS
203	An overview of bioinformatics, genomics, and transcriptomics resources for bryophytes. Journal of Experimental Botany, 2022, 73, 4291-4305.	2.4	11
204	Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. Journal of Experimental Botany, 2022, 73, 4306-4322.	2.4	16
205	Crossroads in the evolution of plant specialized metabolism. Seminars in Cell and Developmental Biology, 2023, 134, 37-58.	2.3	39
207	The Land–Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. Annual Review of Plant Biology, 2022, 73, 585-616.	8.6	14
242	Chemical Fertilizers and Pesticides: Impacts on Soil Degradation, Groundwater, and Human Health in Bangladesh. Water Science and Technology Library, 2022, , 63-92.	0.2	10
243	Multiple PHT1 family phosphate transporters are recruited for mycorrhizal symbiosis in <i>Eucalyptus grandis</i> and conserved PHT1;4 is a requirement for the arbuscular mycorrhizal symbiosis. Tree Physiology, 2022, , .	1.4	4
244	Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. International Journal of Molecular Sciences, 2022, 23, 5284.	1.8	15
245	The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiological Research, 2022, 261, 127056.	2.5	7
246	Plant–microbe interactions that have impacted plant terrestrializations. Plant Physiology, 2022, 190, 72-84.	2.3	10
247	Cross-kingdom regulation of calcium- and/or calmodulin-dependent protein kinases by phospho-switches that relieve autoinhibition. Current Opinion in Plant Biology, 2022, 68, 102251.	3.5	4
248	Evolutionary history of plant receptor-like kinases. , 2023, , 25-37.		0
251	How plants conquered land: evolution of terrestrial adaptation. Journal of Evolutionary Biology, 2023, 36, 5-14.	0.8	6
252	The origin and early evolution of plants. Trends in Plant Science, 2023, 28, 312-329.	4.3	20
254	The origin of a land flora. Nature Plants, 2022, 8, 1352-1369.	4.7	39
255	Interaction between bacterial endophytes and host plants. Frontiers in Plant Science, 0, 13, .	1.7	12
257	The role of endophytes to boost the plant immunity. , 2023, , 199-223.		1
258	How to build a lichen: from metabolite release to symbiotic interplay. New Phytologist, 2023, 238, 1362-1378.	3.5	10
260	Intraspecific variation in mycorrhizal response is much larger than ecological literature suggests. Ecology, 2023, 104, .	1.5	3

#	Article	IF	CITATIONS
268	Molecular genetics of arbuscular mycorrhizal symbiosis. , 2023, , 67-97.		0
269	Signaling in arbuscular mycorrhizal association. , 2023, , 127-135.		0
279	Roles of Arbuscular Mycorrhizal Fungi for Essential Nutrient Acquisition Under Nutrient Deficiency in Plants. , 2024, , 123-148.		0
283	When Plants and Animals First Met Fungi: Insights from the Evolution of Host Immune Systems. , 2024, , 1-32.		0
288	Algae from Primary Endosymbioses. , 2024, , 101-217.		0