CAV-2â€"why a canine virus is a neurobiologist's best fi

Current Opinion in Pharmacology 24, 86-93

DOI: 10.1016/j.coph.2015.08.004

Citation Report

#	Article	IF	CITATIONS
1	Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses, 2015, 7, 6009-6042.	3.3	67
2	Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups. PLoS ONE, 2015, 10, e0133607.	2. 5	17
3	Advanced Fluorescence Protein-Based Synapse-Detectors. Frontiers in Synaptic Neuroscience, 2016, 8, 16.	2.5	16
4	A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron, 2016, 92, 372-382.	8.1	1,007
5	Probing pain pathways with light. Neuroscience, 2016, 338, 248-271.	2.3	19
6	Molecular signatures of neural connectivity in the olfactory cortex. Nature Communications, 2016, 7, 12238.	12.8	86
7	Strategies for targeting primate neural circuits with viral vectors. Journal of Neurophysiology, 2016, 116, 122-134.	1.8	34
8	Coxsackievirus Adenovirus Receptor Loss Impairs Adult Neurogenesis, Synapse Content, and Hippocampus Plasticity. Journal of Neuroscience, 2016, 36, 9558-9571.	3.6	29
9	Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor. International Review of Cell and Molecular Biology, 2016, 322, 331-362.	3.2	23
10	Evaluation of WGA–Cre-dependent topological transgene expression in the rodent brain. Brain Structure and Function, 2017, 222, 717-733.	2.3	16
11	Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala. Cell, 2017, 168, 311-324.e18.	28.9	221
12	What is CAR doing in the middle of the adult neurogenic road?. Neurogenesis (Austin, Tex), 2017, 4, e1304790.	1.5	5
13	AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron, 2017, 93, 33-47.	8.1	547
14	Viral Moulds and Cement: How Interactions among Human Adenovirus Hexons and Their Protein IX Cement May Buttress Human Adenovirus Particles. Journal of Molecular Biology, 2017, 429, 2752-2754.	4.2	4
15	Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory. Neuron, 2017, 95, 1089-1102.e5.	8.1	73
16	Nonhuman Primate Optogenetics: Recent Advances and Future Directions. Journal of Neuroscience, 2017, 37, 10894-10903.	3.6	111
17	Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Current Opinion in Pharmacology, 2017, 32, 56-70.	3.5	92
18	Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife, 2017, 6, .	6.0	178

#	Article	IF	Citations
20	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	8.1	374
21	Gene Therapies for Polyglutamine Diseases. Advances in Experimental Medicine and Biology, 2018, 1049, 395-438.	1.6	16
22	Visceral pain – Novel approaches for optogenetic control of spinal afferents. Brain Research, 2018, 1693, 159-164.	2.2	18
23	A midline thalamic circuit determines reactions to visual threat. Nature, 2018, 557, 183-189.	27.8	128
24	Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annual Review of Neuroscience, 2018, 41, 323-348.	10.7	127
25	Emerging role of viral vectors for circuit-specific gene interrogation and manipulation in rodent brain. Pharmacology Biochemistry and Behavior, 2018, 174, 2-8.	2.9	23
26	Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates. Journal of Neural Transmission, 2018, 125, 547-563.	2.8	64
27	DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine AxonÂTargeting in Adolescence. Biological Psychiatry, 2018, 83, 181-192.	1.3	81
28	Neural systems mediating the inhibition of cocaine-seeking behaviors. Pharmacology Biochemistry and Behavior, 2018, 174, 53-63.	2.9	14
29	Optogenetics: A Roadmap. Neuromethods, 2018, , .	0.3	5
30	Employing Optogenetics in Memory Research. Neuromethods, 2018, , 219-256.	0.3	0
31	Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Current Opinion in Neurobiology, 2018, 48, 17-29.	4.2	23
32	A Neural Circuit for Gut-Induced Reward. Cell, 2018, 175, 665-678.e23.	28.9	436
33	Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat. ELife, 2018, 7, .	6.0	69
34	Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Frontiers in Cellular Neuroscience, 2018, 12, 151.	3.7	23
35	Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Structure and Function, 2018, 223, 3011-3043.	2.3	42
36	What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders. Neurobiology of Stress, 2018, 9, 271-285.	4.0	31
37	A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons. Neuron, 2018, 98, 905-917.e5.	8.1	68

#	Article	IF	Citations
38	Evaluation of retrograde labeling profiles of HSV1 H129 anterograde tracer. Journal of Chemical Neuroanatomy, 2019, 100, 101662.	2.1	15
39	Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. Journal of Neuroscience, 2019, 39, 8239-8249.	3.6	132
40	A Student's Guide to Neural Circuit Tracing. Frontiers in Neuroscience, 2019, 13, 897.	2.8	107
41	Optogenetic approaches to study the mammalian brain. Current Opinion in Structural Biology, 2019, 57, 157-163.	5.7	42
42	CAV-2 Vector Development and Gene Transfer in the Central and Peripheral Nervous Systems. Frontiers in Molecular Neuroscience, 2019, 12, 71.	2.9	37
43	A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nature Neuroscience, 2019, 22, 657-668.	14.8	155
44	An Intersectional Approach to Target Neural Circuits With Cell- and Projection-Type Specificity: Validation in the Mesolimbic Dopamine System. Frontiers in Molecular Neuroscience, 2019, 12, 49.	2.9	9
45	Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 10.	2.9	14
46	Targeting Reciprocally Connected Brain Regions Through CAV-2 Mediated Interventions. Frontiers in Molecular Neuroscience, 2019, 12, 303.	2.9	5
47	Canine adenovirus type 1 causing neurological signs in a 5-week-old puppy. BMC Veterinary Research, 2019, 15, 418.	1.9	11
48	Dendritic spines: Revisiting the physiological role. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 161-193.	4.8	165
49	Rabies Virus Pseudotyped with CVS-N2C Glycoprotein as a Powerful Tool for Retrograde Neuronal Network Tracing. Neuroscience Bulletin, 2020, 36, 202-216.	2.9	29
50	Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction. Journal of Neuroscience Methods, 2020, 345, 108887.	2.5	21
51	Functional interrogation of neural circuits with virally transmitted optogenetic tools. Journal of Neuroscience Methods, 2020, 345, 108905.	2.5	13
52	Viral tools for neuroscience. Nature Reviews Neuroscience, 2020, 21, 669-681.	10.2	93
53	Cell Bank Origin of MDCK Parental Cells Shapes Adaptation to Serum-Free Suspension Culture and Canine Adenoviral Vector Production. International Journal of Molecular Sciences, 2020, 21, 6111.	4.1	4
54	The Lateral Preoptic Area and Its Projection to the VTA Regulate VTA Activity and Drive Complex Reward Behaviors. Frontiers in Systems Neuroscience, 2020, 14, 581830.	2.5	6
55	Targeted Transgene Expression in Cholinergic Interneurons in the Monkey Striatum Using Canine Adenovirus Serotype 2 Vectors. Frontiers in Molecular Neuroscience, 2020, 13, 76.	2.9	8

#	ARTICLE	IF	Citations
56	Location of the Cell Adhesion Molecule "Coxsackievirus and Adenovirus Receptor―in the Adult Mouse Brain. Frontiers in Neuroanatomy, 2020, 14, 28.	1.7	10
57	Using loss- and gain-of-function approaches to target amygdala-projecting serotonergic neurons in the dorsal raphe nucleus that enhance anxiety-related and conditioned fear behaviors. Journal of Psychopharmacology, 2020, 34, 400-411.	4.0	7
58	Canine Adenovirus 2: A Natural Choice for Brain Circuit Dissection. Frontiers in Molecular Neuroscience, 2020, 13, 9.	2.9	10
59	Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. PLoS ONE, 2020, 15, e0224301.	2.5	15
60	Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. Journal of Neuroscience Methods, 2020, 335, 108629.	2.5	6
61	Neuroanatomical tract-tracing techniques that did go viral. Brain Structure and Function, 2020, 225, 1193-1224.	2.3	59
62	Viral vectors for neuronal cell type-specific visualization and manipulations. Current Opinion in Neurobiology, 2020, 63, 67-76.	4.2	16
63	CAV-2-Mediated GFP and LRRK2G2019S Expression in the Macaca fascicularis Brain. Frontiers in Molecular Neuroscience, 2020, 13, 49.	2.9	2
64	A primer to gene therapy: Progress, prospects, and problems. Journal of Inherited Metabolic Disease, 2021, 44, 54-71.	3.6	9
66	Evolution of in vivo dopamine monitoring techniques. Pharmacology Biochemistry and Behavior, 2021, 200, 173078.	2.9	4
67	Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. Journal of Neuroscience Methods, 2021, 348, 109004.	2.5	2
68	The biological characteristics of the canine adenovirus type 1 from fox and the transcriptome analysis of the infected MDCK cell. Cell Biology International, 2021, 45, 936-947.	3.0	5
69	Optimized Parameters for Transducing the Locus Coeruleus Using Canine Adenovirus Type 2 (CAV2) Vector in Rats for Chemogenetic Modulation Research. Frontiers in Neuroscience, 2021, 15, 663337.	2.8	3
70	Multiplexing viral approaches to the study of the neuronal circuits. Journal of Neuroscience Methods, 2021, 357, 109142.	2.5	1
71	Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Frontiers in Systems Neuroscience, 2021, 15, 688673.	2.5	4
72	Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Molecular Psychiatry, 2022, 27, 422-435.	7.9	2
74	Exogenous LRRK2G2019S induces parkinsonian-like pathology in a nonhuman primate. JCI Insight, 2018, 3,	5.0	24
75	Cellular birthdate predicts laminar and regional cholinergic projection topography in the forebrain. ELife, 2020, 9, .	6.0	20

#	Article	IF	CITATIONS
81	Viral Vectors for Studying Drug-Seeking Behavior. Neuromethods, 2021, , 233-261.	0.3	0
83	A Locus Coeruleus- Dorsal CA1 Dopaminergic Circuit Modulates Memory Linking. SSRN Electronic Journal, 0, , .	0.4	1
85	Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Frontiers in Neuroanatomy, 2021, 15, 787601.	1.7	11
87	Virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq) defines projection neurons involved in sensorimotor integration. Cell Reports, 2021, 37, 110131.	6.4	9
91	Strategies for Targeting Neural Circuits: How to Manipulate Neurons Using Virus Vehicles. Frontiers in Neural Circuits, 2022, 16, 882366.	2.8	4
92	Lighting Up Neural Circuits by Viral Tracing. Neuroscience Bulletin, 2022, 38, 1383-1396.	2.9	8
95	Feasibility of Canine Adenovirus Type 2 (CAV2) Based Vector for the Locus Coeruleus Optogenetic Activation in Non-Transgenic Rats: Implications for Functional Studies. Brain Sciences, 2022, 12, 904.	2.3	0
96	A locus coeruleus-dorsal CA1 dopaminergic circuit modulates memory linking. Neuron, 2022, 110, 3374-3388.e8.	8.1	37
97	An Open Science Model to Accelerate the Generation, Implementation and Distribution of Optogenetics and Viral Tools. , 2023, , 17-26.		0
98	HiRet/NeuRet Vectors: Lentiviral System for Highly Efficient Gene Transfer Through Retrograde Axonal Transport. Neuromethods, 2023, , 17-27.	0.3	0
99	Viral vector–mediated expression of NaV1.1, after seizure onset, reduces epilepsy in mice with Dravet syndrome. Journal of Clinical Investigation, 2023, 133, .	8.2	5
101	Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anatomical Science International, 0 , , .	1.0	1
103	Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses. Translational Psychiatry, 2024, 14, .	4.8	0
104	Obesogenic diet induces circuit-specific memory deficits in mice. ELife, 0, 13, .	6.0	O