Waste ostrich- and chicken-eggshells as heterogeneous production from used cooking oil: Catalyst characteriza performance

Applied Energy 160, 58-70

DOI: 10.1016/j.apenergy.2015.09.023

Citation Report

#	Article	IF	Citations
1	PRODUCTION OF BIODIESEL FROM PALM OIL USING EGG SHELL WASTE AS HETEROGENEOUS CATALYST. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	5
2	Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell. Journal of Renewable Energy, 2016, 2016, 1-8.	2.1	43
3	Feedstocks and challenges toÂbiofuel development. , 2016, , 85-118.		5
4	Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Management, 2016, 52, 367-374.	3.7	110
5	Removal of phosphate and hexavalent chromium from aqueous solutions by engineered waste eggshell. RSC Advances, 2016, 6, 35332-35339.	1.7	20
6	Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production. Energy Conversion and Management, 2016, 119, 453-462.	4.4	121
7	Synthesis and characterization of Fe2O3/CaO derived from Anadara Granosa for methyl ester production. Energy Conversion and Management, 2016, 126, 124-131.	4.4	50
8	K2O supported on sol-gel CeO2-Al2O3 and La2O3-Al2O3 catalysts for the transesterification reaction of canola oil. Journal of Molecular Catalysis A, 2016, 423, 503-510.	4.8	17
9	Cutting Cost Technology for the Preparation of Biodiesel Using Environmentally Benign and Cheaper Catalyst. Catalysis Letters, 2016, 146, 2313-2323.	1.4	12
10	Improvement of the performance of encapsulated CaO and active carbon powders for rapeseed oil methanolysis to fatty acid methyl esters under condensed light irradiation. Fuel Processing Technology, 2016, 154, 197-203.	3.7	4
11	Catalytic applications of calcium rich waste materials for biodiesel: Current state and perspectives. Energy Conversion and Management, 2016, 127, 273-283.	4.4	67
12	Jojoba oil: A state of the art review and future prospects. Energy Conversion and Management, 2016, 129, 293-304.	4.4	72
13	Biodiesel production from waste cooking oil for use as fuel in artisanal fishing boats: Integrating environmental, economic and social aspects. Journal of Cleaner Production, 2016, 135, 679-688.	4.6	68
14	Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesterification Reaction Parameters. Energy & Samp; Fuels, 2016, 30, 334-343.	2.5	99
15	Valorization of agro-industrial by-products: analysis of biodiesel production from porcine fat waste. Journal of Cleaner Production, 2016, 112, 2553-2559.	4.6	18
16	Safe and Green Modified Ostrich Eggshell Membranes as Dual Functional Fuel Cell Membranes. Energy & En	2.5	22
17	Highly stable gasified straw slag as a novel solid base catalyst for the effective synthesis of biodiesel: Characteristics and performance. Applied Energy, 2017, 190, 703-712.	5.1	64
18	Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production. Waste Management, 2017, 61, 276-282.	3.7	49

#	Article	IF	CITATIONS
19	Low cost guinea fowl bone derived recyclable heterogeneous catalyst for microwave assisted transesterification of Annona squamosa L . seed oil. Energy Conversion and Management, 2017, 138, 627-637.	4.4	50
20	Active Heterogeneous CaO Catalyst Synthesis from <i>Anadara granosa</i> (Kerang) Seashells for Jatropha Biodiesel Production. MATEC Web of Conferences, 2017, 87, 02008.	0.1	4
21	Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. Journal of Environmental Management, 2017, 198, 319-329.	3.8	177
22	Optimization of a batch CaO-catalyzed transesterification of used domestic waste oil with methanol and elucidation of a mathematical correlation between biodiesel yield and percent conversion. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1013-1028.	1.2	5
23	Experimental assessment of electrolysis method in production of biodiesel from waste cooking oil using zeolite/chitosan catalyst with a focus on waste biorefinery. Energy Conversion and Management, 2017, 147, 145-154.	4.4	66
24	Green fuel as alternative fuel for diesel engine: A review. Renewable and Sustainable Energy Reviews, 2017, 80, 694-709.	8.2	187
25	Production of biodiesel from three indigenous feedstock: Optimization of process parameters and assessment of various fuel properties. Environmental Progress and Sustainable Energy, 2017, 36, 788-795.	1.3	18
26	A novel peat biochar supported catalyst for the transesterification reaction. Energy Conversion and Management, 2017, 139, 89-96.	4.4	57
27	Performance and Emission Characteristics of Diesel Engine Fuelled with Waste Frying Oil Derived Biodiesel-Petroleum Diesel Blend. International Journal of Engineering Research in Africa, 0, 32, 100-111.	0.7	11
28	Enhanced FAME production using green catalyst with superior profile from the isolated halophilic Aphanothece halophytica grown in raceway ponds. Energy Conversion and Management, 2017, 151, 63-72.	4.4	8
29	Synthesis and application of waste egg shell derived CaO supported W-Mo mixed oxide catalysts for FAME production from waste cooking oil: Effect of stoichiometry. Energy Conversion and Management, 2017, 151, 216-226.	4.4	55
30	Methyl transesterification of waste cooking oil using a laboratory synthesized reusable heterogeneous base catalyst: Process optimization and homogeneity study of catalyst. Energy Conversion and Management, 2017, 148, 1438-1452.	4.4	59
31	Calcium Rich Food Wastes Based Catalysts for Biodiesel Production. Waste and Biomass Valorization, 2017, 8, 1699-1707.	1.8	42
32	Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renewable Energy, 2017, 114, 437-447.	4.3	156
33	Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Applied Energy, 2017, 185, 376-409.	5.1	115
34	Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions. Energy Conversion and Management, 2017, 132, 54-64.	4.4	119
35	Low cost heterogenous catalyst from (Achatina Fulica) snail shell and its application for biodiesel conversion via microwave irradiation. Journal of Physics: Conference Series, 2017, 909, 012082.	0.3	1
36	Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production. Energies, 2017, 10, 877.	1.6	26

#	Article	IF	CITATIONS
37	Active Razor Shell CaO Catalyst Synthesis for Jatropha Methyl Ester Production via Optimized Two-Step Transesterification. Journal of Chemistry, 2017, 2017, 1-20.	0.9	9
38	PRODUCTION OF BIODIESEL FROM PALM OIL USING COCKLE SHELL WASTE AS HETEROGENEOUS CATALYST. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.3	4
39	Ostrich Eggshell as an Alternative Source of Calcium Ions for Biomaterials Synthesis. Materials Research, 2017, 20, 413-417.	0.6	12
40	Biodiesel Fuel Production Using CaO-loaded Alginate Capsules. Journal of the Japan Petroleum Institute, 2017, 60, 170-185.	0.4	3
41	UTILIZATION OF EGGSHELL-DERIVED MATERIAL AS A SOLID BASE CATALYST FOR EFFICIENT SYNTHESIS OF SUBSTITUTED CHALCONES. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.3	3
42	Biodiesel production from date seed oil (Phoenix dactylifera L.) via egg shell derived heterogeneous catalyst. Chemical Engineering Research and Design, 2018, 132, 644-651.	2.7	66
43	Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor. Energy, 2018, 148, 888-895.	4.5	41
44	Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management, 2018, 158, 400-415.	4.4	222
45	Solid base catalysts derived from Ca–Al–X (X = F ^{â^'} , Cl ^{â^'} and Br ^{â^'}) layered double hydroxides for methanolysis of propylene carbonate. RSC Advances, 2018, 8, 785-791.	1.7	12
46	Magnetic recyclable eggshell-based mesoporous catalyst for biodiesel production from crude neem oil: Process optimization by central composite design and artificial neural network. Comptes Rendus Chimie, 2018, 21, 684-695.	0.2	40
47	Hydrogel-Templated Solid Base Catalysts for Transesterification of Soybean Oil. Journal of Oleo Science, 2018, 67, 355-367.	0.6	2
48	Recent trends in biodiesel production from commonly used animal fats. International Journal of Energy Research, 2018, 42, 885-902.	2.2	40
49	Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy, 2018, 143, 25-34.	4. 5	98
50	A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, 2018, 82, 390-401.	8.2	214
51	Efficient waste Gallus domesticus shell derived calcium-based catalyst for biodiesel production. Fuel, 2018, 211, 67-75.	3.4	60
52	A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Management, 2018, 72, 240-254.	3.7	183
53	Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renewable and Sustainable Energy Reviews, 2018, 82, 3645-3655.	8.2	159
54	Biofuel Synthesis from Waste Cooking Oils and Ethyl Acetate via Interesterification under CaO Catalyst from Waste Eggshells. , 2018, , .		0

#	ARTICLE	IF	Citations
55	Modelling and optimization of transesterification of palm kernel oil catalysed by calcium oxide derived from hen eggshell wastes. Ife Journal of Science, 2018, 20, 127.	0.1	11
56	Study of calcined eggshell as potential catalyst for biodiesel formation using used cooking oil. Open Chemistry, 2018, 16, 1166-1175.	1.0	20
57	Physicochemical property enhancement of biodiesel synthesis from hybrid feedstocks of waste cooking vegetable oil and Beauty leaf oil through optimized alkaline-catalysed transesterification. Waste Management, 2018, 80, 435-449.	3.7	63
58	Catalysts from renewable resources for biodiesel production. Energy Conversion and Management, 2018, 178, 277-289.	4.4	133
59	Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies, 2018, 11, 2132.	1.6	197
60	Optimization of Biodiesel Production over Chicken Eggshell-Derived CaO Catalyst in a Continuous Centrifugal Contactor Separator. Industrial & Engineering Chemistry Research, 2018, 57, 12742-12755.	1.8	45
61	Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production. Renewable Energy, 2018, 128, 142-154.	4.3	117
62	Valorization of harmful algae E.Âcompressa for biodiesel production in presence of chicken waste derived catalyst. Renewable Energy, 2018, 129, 132-140.	4.3	30
63	Preparation of a CaO Nanocatalyst and Its Application for Biodiesel Production Using <i>Butea monosperma</i> Oil: An Optimization Study. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 635-649.	0.8	16
64	Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics. Waste Management, 2018, 79, 169-178.	3.7	89
65	General Concepts for Catalytic Synthesis of Biodiesel from Waste Cooking Oil. Green Energy and Technology, 2018, , 429-455.	0.4	2
66	Process optimization and catalyst poisoning study of biodiesel production from kusum oil using potassium aluminum oxide as efficient and reusable heterogeneous catalyst. Journal of Cleaner Production, 2018, 199, 593-602.	4.6	39
67	Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm. Sustainability, 2018, 10, 707.	1.6	60
68	Synthesis of Alumina-Supported Chicken Eggshell Catalyst for Transesterification of Waste Cooking Oil. IOP Conference Series: Earth and Environmental Science, 2018, 173, 012041.	0.2	1
69	Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based BrÃ,nsted-Lewis solid acid and co-solvent. Energy Conversion and Management, 2018, 166, 534-544.	4.4	70
70	Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	56
71	Response surface modeling and optimization of heterogeneous methanolysis of beef tallow. AIP Conference Proceedings, 2019, , .	0.3	1
72	Catalytic synthesis of biodiesel from waste cooking oil and corn oil over zirconia-based metal oxide nanocatalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 443-459.	0.8	21

#	ARTICLE	IF	CITATIONS
73	Corrosion of the metal parts of diesel engines in biodiesel-based fuels. International Journal of Renewable Energy Development, 2019, 8, 119-132.	1.2	18
74	Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor., 0,,.		0
75	Waste Frying Oil as a Feedstock for Biodiesel Production., 0,,.		1
76	Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101317.	1.5	99
77	Low-energy synthesis of kaliophilite catalyst from circulating fluidized bed fly ash for biodiesel production. Fuel, 2019, 257, 116041.	3.4	32
78	A Low-Cost, Well-Designed Catalytic System Derived from Household Waste "Egg Shell― Applications in Organic Transformations. Topics in Current Chemistry, 2019, 377, 6.	3.0	9
79	Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renewable Energy, 2019, 136, 856-864.	4.3	49
80	A green route for biodiesel production from waste cooking oil over base heterogeneous catalyst. International Journal of Energy Research, 2019, 43, 5438-5446.	2.2	23
81	Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renewable and Sustainable Energy Reviews, 2019, 112, 195-252.	8.2	76
82	Gas Chromatography and Fourier Transform Infrared Analysis of Biodiesel from Used and Unused Palm Olein Oil. International Journal of Engineering Research in Africa, 0, 42, 47-64.	0.7	10
83	Biodiesel production using heterogeneous catalyst based on volcanic ash of Mount Sinabung. AIP Conference Proceedings, 2019, , .	0.3	4
84	Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale. Renewable Energy, 2019, 141, 1042-1053.	4.3	17
85	Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization Studies. Catalysis Letters, 2019, 149, 1772-1787.	1.4	66
86	Effective catalysts derived from waste ostrich eggshells for glycolysis of post-consumer PET bottles. Chemical Papers, 2019, 73, 1547-1560.	1.0	28
87	Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy, 2019, 139, 696-706.	4.3	133
88	Efficient Catalytic Production of Biodiesel with Acid-Base Bifunctional Rod-Like Ca-B Oxides by the Sol-Gel Approach. Materials, 2019, 12, 83.	1.3	24
89	Catalysts used in biodiesel production: a review. Biofuels, 2021, 12, 885-898.	1.4	55
90	Palm biodiesel production using by heterogeneous catalyst based corn cobs. IOP Conference Series: Materials Science and Engineering, 2019, 505, 012153.	0.3	О

#	Article	IF	Citations
91	Development of CaO From Natural Calcite as a Heterogeneous Base Catalyst in the Formation of Biodiesel: Review. Journal of Renewable Materials, 2019, 7, 915-939.	1.1	18
92	Outstanding performance of waste chicken eggshell derived CaO as a green catalyst in biodiesel production: Optimization of calcination conditions. Journal of Physics: Conference Series, 2019, 1349, 012051.	0.3	3
93	Kinetic Study of Waste-derived Solid Hydroxy Sodalite Catalyst during Transesterification of Animal Fat Oil to Biodiesel in a Batch Reactor. Journal of Physics: Conference Series, 2019, 1378, 032081.	0.3	2
94	Soybean Oil Transesterification for Biodiesel Production with Micro-Structured Calcium Oxide (CaO) from Natural Waste Materials as a Heterogeneous Catalyst. Energies, 2019, 12, 4670.	1.6	21
95	Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel, 2019, 235, 1238-1244.	3.4	151
96	Process optimization for biodiesel production from <i>Moringa oleifera</i> oil using conch shells as heterogeneous catalyst. Environmental Progress and Sustainable Energy, 2019, 38, e13015.	1.3	32
97	Optimization of Biodiesel Production from Waste Cooking Oil Using S–TiO2/SBA-15 Heterogeneous Acid Catalyst. Catalysts, 2019, 9, 67.	1.6	31
98	Biodiesel production from cotton oil using heterogeneous CaO catalysts from eggshells prepared at different calcination temperatures. Green Processing and Synthesis, 2019, 8, 235-244.	1.3	18
99	Recycling of Solid Waste to Heterogeneous Catalyst for Production of Valuable Fuel Additives. , 2019, , 947-959.		1
100	Modified Malleus malleus Shells for Biodiesel Production from Waste Cooking Oil: An Optimization Study Using Box–Behnken Design. Waste and Biomass Valorization, 2020, 11, 793-806.	1.8	35
101	A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 2923-2943.	1.2	58
102	Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renewable Energy, 2020, 146, 2255-2269.	4.3	109
103	The feasibility and optimization of biodiesel production from <i>Celtis australis</i> L. oil using chicken bone catalyst and ultrasonic waves. Biofuels, 2020, 11, 513-521.	1.4	16
104	AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renewable Energy, 2020, 147, 25-34.	4.3	84
105	Bisimulation and bisimilarity for fuzzy description logics under the $G\tilde{A}\P$ del semantics. Fuzzy Sets and Systems, 2020, 388, 146-178.	1.6	24
106	Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Management, 2020, 102, 212-221.	3.7	70
107	Mini-review of waste shell-derived materials' applications. Waste Management and Research, 2020, 38, 514-527.	2.2	60
108	Fish-Bone-Doped Sea Shell for Biodiesel Production from Waste Cooking Oil. Journal of the Institution of Engineers (India): Series E, 2020, 101, 53-60.	0.5	8

#	ARTICLE	IF	CITATIONS
109	Valorization of Eggshell Waste into Supported Copper Catalysts for Partial Oxidation of Methane. International Journal of Environmental Research, 2020, 14, 61-70.	1.1	7
110	A cleaner process for green biodiesel synthesis from waste cooking oil using recycled waste oyster shells as a sustainable base heterogeneous catalyst under the microwave heating system. Sustainable Chemistry and Pharmacy, 2020, 17, 100310.	1.6	45
111	Biodiesel potential of used vegetable oils transesterified with biological catalysts. Energy Reports, 2020, 6, 2861-2871.	2.5	23
112	Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation. Waste Management, 2020, 118, 626-636.	3.7	58
113	Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends in Food Science and Technology, 2020, 106, 78-90.	7.8	117
114	Optimization of biodiesel production from waste cooking oil using eggshell catalyst. Materials Today: Proceedings, 2020, 31, 324-328.	0.9	12
115	Transesterification Catalytic Performance of Mechanically Alloyed Eggshell Ash, Magnesium and Aluminum Oxides for Sustainable Biodiesel Production. Key Engineering Materials, 2020, 833, 139-143.	0.4	1
116	Pawpaw (Carica papaya) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study. Energies, 2020, 13, 5834.	1.6	24
117	The present state of the use of eggshell powder in concrete: A review. Journal of Building Engineering, 2020, 32, 101583.	1.6	44
118	Recent advances on the catalytic conversion of waste cooking oil. Molecular Catalysis, 2020, 494, 111128.	1.0	33
119	Transactions on Engineering Technologies. , 2020, , .		0
120	Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Conversion and Management, 2020, 223, 113296.	4.4	137
121	Repeated Biodiesel Production from Waste Coffee Grounds via a One-step Direct Process with a Cartridge Containing Solid Catalysts Manufactured from Waste Eggshells. Biotechnology and Bioprocess Engineering, 2020, 25, 623-632.	1.4	5
122	Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon, 2020, 6, e05283.	1.4	50
123	Response Surface Methodology and Artificial Neural Networks for Optimization of Catalytic Esterification of Lactic Acid. Chemical Engineering and Technology, 2020, 43, 2315-2324.	0.9	5
124	Production and Characterization of Biodiesel from Hevea Brasiliensis and Diesel like Fuel from Waste Engine Oil. IOP Conference Series: Materials Science and Engineering, 2020, 923, 012071.	0.3	0
125	Production of environment friendly diesel fuel from sunflower oil over Iraqi limestone synthesized catalyst. IOP Conference Series: Materials Science and Engineering, 2020, 737, 012203.	0.3	0
126	Modified mesoporous graphitic carbon nitride: a novel high-performance heterogeneous base catalyst for transesterification reaction. Sustainable Energy and Fuels, 2020, 4, 3537-3545.	2.5	25

#	Article	IF	CITATIONS
127	Thermal Transformations of Petroleum Residue Components in the Presence of Power-Plant Flyash Ferrospheres and Sunflower Oil. Petroleum Chemistry, 2020, 60, 348-357.	0.4	2
128	Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash. Applied Energy, 2020, 264, 114735.	5.1	45
129	A Highly Active, Readily Synthesized and Easily Separated Graphene Oxide (GO)/Polyethersulfone (PES) Catalytic Membrane for Biodiesel Production. ChemistrySelect, 2020, 5, 1676-1682.	0.7	16
130	Supermagnetic Nano-Bifunctional Catalyst from Rice Husk: Synthesis, Characterization and Application for Conversion of Used Cooking Oil to Biodiesel. Catalysts, 2020, 10, 225.	1.6	43
131	Waste <scp> <i>Balanites aegyptiaca</i> </scp> seed oil as a potential source for biodiesel production in the presence of a novel mixed metallic oxide catalyst. International Journal of Energy Research, 2021, 45, 17189-17202.	2.2	12
132	Biodiesel production from waste cooking oil using nickel doped onto eggshell catalyst. Materials Today: Proceedings, 2020, 31, 342-346.	0.9	11
133	Thermal modification of chicken eggshell as heterogeneous catalyst for palm kernel biodiesel production in an optimization process. Biomass Conversion and Biorefinery, 2021, 11, 2599-2615.	2.9	22
134	Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil. Renewable Energy, 2020, 153, 1272-1282.	4.3	54
135	Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Management, 2020, 105, 373-383.	3.7	113
136	Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Bioresource Technology, 2020, 302, 122872.	4.8	186
137	Critical insight into biowasteâ€derived biocatalyst for biodiesel production. Environmental Progress and Sustainable Energy, 2020, 39, e13391.	1.3	14
138	Effectiveness of biogenic wasteâ€derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels, Bioproducts and Biorefining, 2020, 14, 620-649.	1.9	51
139	SiO2-Rich Sugar Cane Bagasse Ash Catalyst for Transesterification of Palm Oil. Bioenergy Research, 2020, 13, 986-997.	2.2	29
140	Eco-friendly synthesis of biodiesel from WCO by using electrolysis technique with graphite electrodes. Fuel, 2020, 270, 117582.	3.4	25
141	Waste quail beaks as renewable source for synthesizing novel catalysts for biodiesel production. Renewable Energy, 2020, 154, 1035-1043.	4.3	31
142	Nonâ€catalytic and heterogeneous acid/baseâ€catalyzed biodiesel production: Recent and future developments. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2490.	0.8	14
143	Use of a solar low-cost open-source controlled plant for WCOEE synthesis based on eggshell catalyst. Bioresource Technology Reports, 2020, 11, 100430.	1.5	1
144	Solar irradiation assisted synthesis of biodiesel from waste cooking oil using calcium oxide derived from chicken eggshell. Fuel, 2020, 273, 117778.	3.4	22

#	Article	IF	CITATIONS
145	Functionalized magnetic nanosized materials for efficient biodiesel synthesis ⟨i⟩via⟨ i⟩ acid–base enzyme catalysis. Green Chemistry, 2020, 22, 2977-3012.	4.6	70
146	Glycerolysis of Palm Fatty Acid Distillate (PFAD) as Biodiesel Feedstock Using Heterogeneous Catalyst. Waste and Biomass Valorization, 2021, 12, 735-744.	1.8	8
147	Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel, 2021, 284, 118983.	3.4	70
148	An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies. Fuel, 2021, 285, 119117.	3.4	121
149	Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production. Renewable Energy, 2021, 165, 405-419.	4.3	24
150	Efficient reaction for biodiesel manufacturing using bi-functional oxide catalyst. Catalysis Communications, 2021, 149, 106201.	1.6	32
151	Repeated Biodiesel Production Using a Cartridge Containing Solid Catalysts Manufactured from Waste Scallop Shells for Simultaneous Lipid Extraction and Transesterification Process. Biotechnology and Bioprocess Engineering, 2021, 26, 145-155.	1.4	5
152	State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry. Frontiers in Bioengineering and Biotechnology, 2020, 8, 612567.	2.0	38
153	Utilization of Waste Chicken Eggshell as Heterogeneous CaO Nanoparticle for Biodiesel Production. Journal of Biochemical Technology, 2021, 12, 49-57.	0.1	1
154	Esterification catalyzed by an efficient solid acid synthesized from PTSA and UiO-66(Zr) for biodiesel production. Faraday Discussions, 2021, 231, 342-355.	1.6	12
155	Optimization of Biodiesel Production from Marine Fish Waste Oil Using Calcined Chicken Eggshell as a Cost-Effective Catalyst by Response Surface Methodology. SSRN Electronic Journal, 0, , .	0.4	1
156	Potential of advanced photocatalytic technology for biodiesel production from waste oil., 2021,, 49-76.		3
157	Process optimization of microwave irradiationâ€nided transesterification of kariya seed oil by Taguchi orthogonal array: pawpaw trunk as a novel biocatalyst. Biofuels, Bioproducts and Biorefining, 2021, 15, 1006-1020.	1.9	7
158	Comparison of CaO-NPs and Chicken Eggshell-Derived CaO in the Production of Biodiesel from Schinziophyton rautanenii (Mongongo) Nut Oil. Journal of Chemistry, 2021, 2021, 1-15.	0.9	1
159	Biodiesel production from preutilized cooking oil using a renewable heterogeneous eggshellâ€coconut pith catalyst: Process optimization and characterization. Environmental Progress and Sustainable Energy, 2021, 40, e13632.	1.3	8
160	Eggshell and Seashells Biomaterials Sorbent for Carbon Dioxide Capture. , 0, , .		8
161	Animal bone affluence in environmental reclamation: Biodiesel production, petroâ€diesel biodesulfurization and wastewater photoâ€treatment. Biofuels, Bioproducts and Biorefining, 2021, 15, 770-792.	1.9	6
162	Development of Bi-Functional Heterogeneous Catalyst for Transesterification of Waste Cooking Oil to Biodiesel: Optimization Studies. Advanced Materials Research, 0, 1163, 128-147.	0.3	O

#	Article	IF	Citations
163	Box–Behnken design-based optimization for biodiesel production from waste cooking oil using Mahogany (Swietenia macrophylla) fruit shell derived activated carbon as a heterogeneous base catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 117-138.	0.8	14
164	Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst. Renewable Energy, 2021, 168, 1207-1216.	4.3	99
165	Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts. Renewable Energy, 2021, 168, 815-828.	4.3	30
166	Transesterification of used cooking oil at ambient temperature using novel solvent: experimental investigations and optimisation by response surface methodology. International Journal of Ambient Energy, 2022, 43, 4801-4811.	1.4	6
167	Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat. Bioresource Technology Reports, 2021, 14, 100658.	1.5	32
168	Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renewable Energy, 2021, 170, 302-314.	4.3	50
169	Algal oil extraction-cum-biodiesel conversion in a novel batch reactor and its compatibility analysis in IC engine at various CRs. Fuel, 2021, 293, 120449.	3.4	13
170	Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 2021, 98, 60-81.	2.9	127
172	Fossil eggshells of amniotes as a paleothermometry tool. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571, 110376.	1.0	12
173	Eggshell as a biomaterial can have a sorption capability on its surface: A spectroscopic research. Royal Society Open Science, 2021, 8, 210100.	1.1	9
174	Comparison of waste plastic fuel, waste cooking oil biodiesel, and ultra-low sulfur diesel using a Well-to-Exhaust framework. International Journal of Environmental Science and Technology, 2022, 19, 5857-5876.	1.8	9
175	A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization. Renewable Energy, 2021, 172, 1035-1045.	4.3	17
176	Process Design, Techno-Economic Modelling, and Uncertainty Analysis of Biodiesel Production from Palm Kernel Oil. Bioenergy Research, 2022, 15, 1355-1369.	2.2	8
177	Biodiesel production from poultry wastes: Waste chicken fat and eggshell. Journal of Environmental Chemical Engineering, 2021, 9, 105654.	3.3	47
178	A review on the utilization of calcium oxide as a base catalyst in biodiesel production. Journal of Environmental Chemical Engineering, 2021, 9, 105741.	3.3	50
179	Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel. Energy, 2021, 230, 120738.	4.5	16
180	Synthesis of novel eco-friendly CaO/C photocatalyst from coffee and eggshell wastes for dye degradation. Journal of Materials Research and Technology, 2021, 14, 3140-3149.	2.6	39
182	Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis. Energy Reports, 2021, 7, 4022-4034.	2.5	52

#	Article	IF	CITATIONS
183	Valorization of lipidic food waste for enhanced biodiesel recovery through two-step conversion: A novel microalgae-integrated approach. Bioresource Technology, 2021, 342, 125966.	4.8	29
184	Oleic acid esterification with methanol to methyl oleate under light irradiation using modified alginate capsules loaded with a solid acid catalyst. Chemical Engineering Journal, 2022, 429, 132524.	6.6	6
185	Base Transesterification of Ineffectual Soybean Oil Using Lab Scale Synthesized CaO Catalyst. Lecture Notes in Mechanical Engineering, 2020, , 735-743.	0.3	2
186	Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel. Fuel, 2020, 266, 117149.	3.4	49
187	An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. Journal of Industrial and Engineering Chemistry, 2020, 88, 58-77.	2.9	79
188	A review on solid base heterogeneous catalysts: preparation, characterization and applications. Chemical Engineering Communications, 2022, 209, 433-484.	1.5	24
189	Production of Biodiesel from Nyamplung (Calophyllum inophyllum L.) using Microwave with CaO Catalyst from Eggshell Waste: Optimization of Transesterification Process Parameters. Open Chemistry, 2019, 17, 1185-1197.	1.0	31
190	BIODIESEL SYNTHESIS FROM WASTE COOKING OIL USING A VARIETY OF WASTE MARBLE AS HETEROGENEOUS CATALYSTS. Brazilian Journal of Chemical Engineering, 2019, 36, 1487-1500.	0.7	7
191	Adsorption of Ni(II) Ion onto Calcined Eggshells: A Study of Equilibrium Adsorption Isotherm. Indonesian Journal of Chemistry, 2019, 19, 143.	0.3	7
192	A Review on Application of Heterogeneous Catalyst in the Production of Biodiesel from Vegetable Oils. Journal of Applied Science & Process Engineering, 2017, 4, 142-157.	0.0	31
193	Preparation and Characterization of Composite Anthill-Chicken Eggshell Adsorbent: Optimization Study on Heavy Metals Adsorption Using Response Surface Methodology. Journal of Environmental Science and Technology, 2017, 10, 120-130.	0.3	12
194	Equilibrium, Kinetic and Thermodynamic Studies of the Adsorption of Heavy Metals from Aqueous Solution by Thermally Treated Quail Eggshell. Journal of Environmental Science and Technology, 2017, 10, 245-257.	0.3	11
195	Advancement in the Utilization of Biomass-Derived Heterogeneous Catalysts in Biodiesel Production. Green and Sustainable Chemistry, 2018, 08, 74-91.	0.8	12
196	Effect of Cobalt Doping on the Stability of CaOâ€Based Catalysts for Dimethyl Carbonate Synthesis via the Transesterification of Propylene Carbonate with Methanol. ChemistrySelect, 2021, 6, 10226-10237.	0.7	6
197	Caracterização do catalisador e casca de ovo in natura pelo método do indicador de Hammett. , 0, , .		0
198	Application of K-Impregnated Staghorn Coral as Catalyst in the Transesterification of Waste Cooking Oil. Sains Malaysiana, 2019, 48, 803-811.	0.3	O
199	Biodiesel production from waste frying oils in the presence of zeolite synthesized from steel furnace slag. International Journal of Environmental Analytical Chemistry, 2023, 103, 814-827.	1.8	5
200	Efficient W-Mo mixed oxide supported CaO catalyst for the production of biodiesel from high FFA waste cooking oil: Stoichiometric effect. IOP Conference Series: Materials Science and Engineering, 0, 932, 012016.	0.3	O

#	Article	IF	CITATIONS
201	Synthesis and Process Variables Optimization of Al2O3-CaO Catalyst (from Eggshell) for Biodiesel Production., 2020, , 186-194.		0
202	Modeling and Control of a Biodiesel Transesterification Reactor. Advances in Chemical Engineering and Science, 2020, 10, 210-224.	0.2	2
203	Biomassâ€based heterogeneous catalysts for biodiesel production: A comprehensive review. International Journal of Energy Research, 2022, 46, 3782-3809.	2.2	20
204	Effect of hydrothermal treatment on properties of Calcium Oxide from eggshells used as biodiesel catalyst. Chemical Engineering and Technology, 0, , .	0.9	0
205	The influence of fatty acid composition on the kinetics of the vegetable oil methanolysis reaction. Advanced Technologies, 2021, 10, 24-31.	0.2	2
206	Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst. Journal of Environmental Management, 2022, 304, 114319.	3.8	26
207	A novel heterogeneous catalyst synthesis from agrowastes mixture and application in transesterification of yellow oleander-rubber oil: Optimization by Taguchi approach. Fuel, 2022, 312, 122999.	3.4	17
208	Production of biodiesel from salvia mirzayanii oil via electrolysis using KOH/Clinoptilolite as catalyst. Journal of Environmental Health Science & Engineering, 2022, 20, 187-204.	1.4	4
209	Optimization of biodiesel production from used cooking oil using modified calcium oxide as catalyst and N-Hexane as solvent. Materials Today: Proceedings, 2022, 63, S32-S39.	0.9	5
210	Room-temperature selective hydrogenation of unsaturated biomass feedstocks enabled by hydrosilane and eggshell-derived catalyst with enhanced basicity and hydrophobicity. Biomass Conversion and Biorefinery, 2024, 14, 1663-1677.	2.9	0
211	Assessment of heterogeneous catalysts obtained from chicken egg shells and diatomite for biodiesel production. Biofuels, 0 , $1 \cdot 11$.	1.4	1
212	Process optimization of ultrasonic-assisted biodiesel production from waste cooking oil using waste chicken eggshell-derived CaO as a green heterogeneous catalyst. Biomass and Bioenergy, 2022, 158, 106357.	2.9	61
213	Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production. Renewable Energy, 2022, 187, 450-462.	4.3	26
214	Waste-to-biodiesel. , 2022, , 119-135.		0
215	Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: A review. Fuel, 2022, 314, 122749.	3.4	43
216	CaO derived from waste shell materials as catalysts in synthesis of biodiesel., 2022,, 91-118.		1
217	Pathways for Sustainable Utilization of Waste Chicken Eggshell. Journal of Renewable Materials, 2022, 10, 2217-2246.	1.1	1
218	Sulfonated biochar catalyst derived from eucalyptus tree shed bark: synthesis, characterization and its evaluation in oleic acid esterification. RSC Advances, 2022, 12, 10237-10248.	1.7	17

#	ARTICLE	IF	CITATIONS
219	Performance Analysis of An Automated Biodiesel Processor. Environmental and Climate Technologies, 2022, 26, 84-97.	0.5	5
220	Catalytically active metal oxides studies for the conversion technology of carboxylic acids and bioresource based fatty acids to ketones: A review. Bioresource Technology Reports, 2022, 17, 100988.	1.5	8
221	Synthesis of biodiesel via methanolysis of waste frying oil by biowaste-derived catalyst: process optimization and biodiesel blends characterization. Biomass Conversion and Biorefinery, 2024, 14, 1781-1792.	2.9	4
222	Biodiesel production enhanced by ultrasound-assisted esterification and transesterification of inedible olive oil. Grasas Y Aceites, 2022, 73, e447.	0.3	1
223	Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel, 2022, 317, 123525.	3.4	30
224	Triglyceride Conversion of Waste Frying Oil up to 98.46% Using Low Concentration K ⁺ /CaO Catalysts Derived from Eggshells. ACS Omega, 2021, 6, 35679-35691.	1.6	5
226	Optimized biodiesel production from waste cooking oil using a functionalized bio-based heterogeneous catalyst. Cleaner Engineering and Technology, 2022, 8, 100501.	2.1	14
227	Biodiesel from waste oil under mild conditions by a combination of calciumâ€strontium oxide nanocatalyst and ultrasonic waves. International Journal of Energy Research, 2022, 46, 13781-13800.	2.2	3
228	An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 2022, 6, 100086.	3.3	26
229	Simultaneous refining of biodiesel-derived crude glycerol and synthesis of value-added powdered catalysts for biodiesel production: A green chemistry approach for sustainable biodiesel industries. Journal of Cleaner Production, 2022, 363, 132448.	4.6	9
231	Potential use of waste eggshells in cement-based materials: A bibliographic analysis and review of the material properties. Construction and Building Materials, 2022, 344, 128143.	3.2	29
233	The role of antioxidants in improving biodiesel's oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review. Heliyon, 2022, 8, e09846.	1.4	25
234	Utilization of Dairy Scum Waste as a Feedstock for Biodiesel Production via Different Heating Sources for Catalytic Transesterification. ChemBioEng Reviews, 2022, 9, 605-632.	2.6	3
235	Valorization of marine fish waste biomass and Gallus gallus eggshells as feedstock and catalyst for biodiesel production. International Journal of Environmental Science and Technology, 2023, 20, 7993-8016.	1.8	4
236	Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production. Renewable Energy, 2022, 197, 1151-1162.	4.3	17
237	Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 2023, 332, 126166.	3.4	31
238	Coal fly ash supported ZnO catalyzed transesterification of Jatropha curcas oil: Optimization by response surface methodology. Energy Conversion and Management: X, 2022, 16, 100302.	0.9	0
240	Methanolysis of fresh and used soybean oil to biodiesel under mild conditions: Process optimization, fuel quality characterization and thermal stability studies. Chemical Engineering and Processing: Process Intensification, 2022, 182, 109177.	1.8	11

#	Article	IF	CITATIONS
241	Sonosynthesis of super-alkaline calcium-strontium oxide nanoparticles: Size, morphology, and crystallinity affected the catalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116060.	1.7	5
242	Power of recycling waste cooking oil into biodiesel via green CaO-based eggshells/Ag heterogeneous nanocatalyst. Renewable Energy, 2023, 202, 1412-1423.	4.3	15
243	Production optimization, scale-up, and characterization of biodiesel from marine fishmeal plant oil using Portunus sanguinolentus crab shell derived heterogeneous catalyst. Biocatalysis and Agricultural Biotechnology, 2023, 47, 102571.	1.5	9
244	Kinetics, thermodynamic studies, and parametric effects of supercritical CO2 extraction of banana peel wastes. Sustainable Chemistry and Pharmacy, 2023, 31, 100912.	1.6	4
245	Advances in production & Description of marine macroalgae-derived biochar catalyst for sustainable biodiesel production. Fuel, 2023, 337, 127215.	3.4	19
246	Optimization of biodiesel production from Allamanda Seed Oil using design of experiment. Fuel Communications, 2023, 14, 100081.	2.0	13
247	Preparation and application of heterogeneous catalyst based on KOH impregnated activated carbon from rubber seed kernel for biodiesel synthesis. IOP Conference Series: Earth and Environmental Science, 2022, 1115, 012081.	0.2	0
248	Experimental investigation of influence of methyl, ethyl and methyl-ethyl ester blends of used cooking oil on engine performances and emissions. Energy Conversion and Management: X, 2023, 17, 100346.	0.9	3
249	Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective. Energies, 2023, 16, 1739.	1.6	10
250	A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. Chemosphere, 2023, 319, 138003.	4.2	6
251	Characterization, bioactivity evaluation, thermo-kinetic studies of mango (Mangifera indica L.) peel extract, and its applicability in oxidative stabilization of biodiesel. Biomass Conversion and Biorefinery, 0, , .	2.9	4
252	Application of ultrasound technology in the intensification of biodiesel production from bitter almond oil (BAO) in the presence of biocompatible heterogeneous catalyst synthesized from camel bone. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 4064-4086.	1.2	1
253	Design of a sodium peroxide/sulfonic acid functionalized SBA-16 bi-functional catalyst for improving the conversion of waste cooking oil to biodiesel. Fuel, 2023, 346, 128274.	3.4	1
262	Grease Biomass Characterization and Exploitation. , 2023, , .		0
266	Biomass derived heterogeneous catalysts used for sustainable biodiesel production: a systematic review. Brazilian Journal of Chemical Engineering, 0 , , .	0.7	0