Phase Separation by Low Complexity Domains Promote Pathological Fibrillization

Cell 163, 123-133 DOI: 10.1016/j.cell.2015.09.015

Citation Report

#	Article	IF	CITATIONS
1	Liquids, Fibers, and Gels: The Many Phases of Neurodegeneration. Developmental Cell, 2015, 35, 531-532.	3.1	47
2	RNA Controls PolyQ Protein Phase Transitions. Molecular Cell, 2015, 60, 220-230.	4.5	605
3	Protein droplets in the spotlight. Nature Reviews Molecular Cell Biology, 2015, 16, 639-639.	16.1	8
4	Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Molecular Cell, 2015, 60, 208-219.	4.5	1,298
5	Polymer physics of intracellular phase transitions. Nature Physics, 2015, 11, 899-904.	6.5	1,145
6	The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei. Cell, 2015, 163, 829-839.	13.5	262
7	lt's Raining Liquids: RNA Tunes Viscoelasticity and Dynamics of Membraneless Organelles. Molecular Cell, 2015, 60, 189-192.	4.5	121
8	Distinct stages in stress granule assembly and disassembly. ELife, 2016, 5, .	2.8	593
9	Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories. PLoS Pathogens, 2016, 12, e1005942.	2.1	87
10	A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Research, 2017, 45, gkw872.	6.5	20
11	Compositional Control of Phase-Separated Cellular Bodies. Cell, 2016, 166, 651-663.	13.5	945
12	Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Molecular Cell, 2016, 63, 72-85.	4.5	622
13	The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. Journal of Cell Biology, 2016, 214, 45-59.	2.3	57
14	Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Scientific Reports, 2016, 6, 30498.	1.6	62
15	Mineralization and non-ideality: on nature's foundry. Biophysical Reviews, 2016, 8, 309-329.	1.5	16
16	Higherâ€order oligomerization promotes localization of <scp>SPOP</scp> to liquid nuclear speckles. EMBO Journal, 2016, 35, 1254-1275.	3.5	172
17	Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide. Scientific Reports, 2016, 6, 32124.	1.6	29
18	Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 2016, 6, 25996.	1.6	121

TATION REDO

#	Article	IF	CITATIONS
19	Amyotrophic lateral sclerosis: recent genetic highlights. Current Opinion in Neurology, 2016, 29, 557-564.	1.8	37
20	Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Research, 2016, 1647, 65-78.	1.1	124
21	The Multiple Faces of Disordered Nucleoporins. Journal of Molecular Biology, 2016, 428, 2011-2024.	2.0	82
22	Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nature Chemistry, 2016, 8, 569-575.	6.6	278
23	Stress granules at the intersection of autophagy and ALS. Brain Research, 2016, 1649, 189-200.	1.1	93
24	Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell, 2016, 165, 1686-1697.	13.5	1,463
25	The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Cell, 2016, 165, 1055-1066.	13.5	311
26	Mechanisms and Consequences of Macromolecular Phase Separation. Cell, 2016, 165, 1067-1079.	13.5	272
27	Phase Separation: Linking Cellular Compartmentalization to Disease. Trends in Cell Biology, 2016, 26, 547-558.	3.6	291
28	The new (dis)order in RNA regulation. Cell Communication and Signaling, 2016, 14, 9.	2.7	168
29	Axonal transport defects are a common phenotype in <i>Drosophila</i> models of ALS. Human Molecular Genetics, 2016, 25, ddw105.	1.4	88
30	Phase separation in biology; functional organization of a higher order. Cell Communication and Signaling, 2016, 14, 1.	2.7	571
31	Impaired protein degradation in FTLD and related disorders. Ageing Research Reviews, 2016, 32, 122-139.	5.0	58
32	Droplet organelles?. EMBO Journal, 2016, 35, 1603-1612.	3.5	272
33	To Swap or Not To Swap. Structure, 2016, 24, 1436-1438.	1.6	0
34	RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Langmuir, 2016, 32, 10042-10053.	1.6	238
35	Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. Journal of Biological Chemistry, 2016, 291, 22671-22685.	1.6	145
36	A glass menagerie of low complexity sequences. Current Opinion in Structural Biology, 2016, 38, 18-25.	2.6	29

#	Article	IF	CITATIONS
37	A New Phase in ALS Research. Structure, 2016, 24, 1435-1436.	1.6	6
38	Whole-exome sequencing identifies a missense mutation in <i>hnRNPA1</i> in a family with flail arm ALS. Neurology, 2016, 87, 1763-1769.	1.5	66
39	Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. Proteomics, 2016, 16, 3042-3053.	1.3	69
40	Hierarchical Size Scaling during Multicellular Growth and Development. Cell Reports, 2016, 17, 345-352.	2.9	49
41	InÂVivo Formation of Vacuolated Multi-phase Compartments Lacking Membranes. Cell Reports, 2016, 16, 1228-1236.	2.9	158
42	Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends in Molecular Medicine, 2016, 22, 769-783.	3.5	103
43	Prionâ€like propagation as a pathogenic principle in frontotemporal dementia. Journal of Neurochemistry, 2016, 138, 163-183.	2.1	54
44	Dysregulated axonal <scp>RNA</scp> translation in amyotrophic lateral sclerosis. Wiley Interdisciplinary Reviews RNA, 2016, 7, 589-603.	3.2	23
45	Altered mRNP granule dynamics in FTLD pathogenesis. Journal of Neurochemistry, 2016, 138, 112-133.	2.1	63
46	Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. Journal of Neurochemistry, 2016, 138, 145-162.	2.1	59
47	RNA assemblages orchestrate complex cellular processes. BioEssays, 2016, 38, 674-681.	1.2	23
48	Soluble Oligomers of PolyQ-Expanded Huntingtin Target a Multiplicity of Key Cellular Factors. Molecular Cell, 2016, 63, 951-964.	4.5	181
49	A Surveillance Function of the HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and Dynamism. Molecular Cell, 2016, 63, 796-810.	4.5	244
50	Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism. Cell, 2016, 166, 1572-1584.e16.	13.5	283
51	RNA Remodeling Activity of DEAD Box Proteins Tuned by Protein Concentration, RNA Length, and ATP. Molecular Cell, 2016, 63, 865-876.	4.5	51
52	ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. Structure, 2016, 24, 1537-1549.	1.6	617
53	Liquid–liquid phase separation in cellular signaling systems. Current Opinion in Structural Biology, 2016, 41, 180-186.	2.6	172
54	Are aberrant phase transitions a driver of cellular aging?. BioEssays, 2016, 38, 959-968.	1.2	234

#	Article	IF	CITATIONS
55	Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell, 2016, 166, 1163-1175.e12.	13.5	428
56	A path toward understanding neurodegeneration. Science, 2016, 353, 872-873.	6.0	10
57	Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology. Scientific Reports, 2016, 6, 36219.	1.6	79
58	Decoding ALS: from genes to mechanism. Nature, 2016, 539, 197-206.	13.7	1,533
59	Neurodegeneration: From cellular concepts to clinical applications. Science Translational Medicine, 2016, 8, 364ps18.	5.8	73
60	Dysregulation of mRNA Localization and Translation in Genetic Disease. Journal of Neuroscience, 2016, 36, 11418-11426.	1.7	89
61	Ribonucleoprotein bodies are phased in. Biochemical Society Transactions, 2016, 44, 1411-1416.	1.6	46
62	Mechanistic insights into mammalian stress granule dynamics. Journal of Cell Biology, 2016, 215, 313-323.	2.3	296
63	C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles. Cell, 2016, 167, 774-788.e17.	13.5	577
64	Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. Cell, 2016, 167, 789-802.e12.	13.5	363
65	Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System. Neuron, 2016, 92, 780-795.	3.8	137
66	Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. Soft Matter, 2016, 12, 9142-9150.	1.2	61
67	The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200.	1.6	323
68	Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles. MBio, 2016, 7, .	1.8	37
69	RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD. Advances in Experimental Medicine and Biology, 2016, 907, 263-296.	0.8	45
71	Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathologica, 2016, 132, 159-173.	3.9	109
72	Determinants of affinity and specificity in RNA-binding proteins. Current Opinion in Structural Biology, 2016, 38, 83-91.	2.6	51
73	Prions, amyloids, and RNA: Pieces of a puzzle. Prion, 2016, 10, 182-206.	0.9	29

#	Article	IF	CITATIONS
74	Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity. Cell Reports, 2016, 15, 1455-1466.	2.9	260
75	Principles and Properties of Stress Granules. Trends in Cell Biology, 2016, 26, 668-679.	3.6	1,161
76	Grasping the nature of the cell interior: from <i>Physiological Chemistry</i> to <i>Chemical Biology</i> . FEBS Journal, 2016, 283, 3016-3028.	2.2	17
77	Genetic interaction of hnRNPA2B1 and DNAJB6 in a <i>Drosophila</i> model of multisystem proteinopathy. Human Molecular Genetics, 2016, 25, 936-950.	1.4	25
78	ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell, 2016, 164, 487-498.	13.5	1,213
79	Novel mRNA-silencing bodies at the synapse: A never-ending story. Communicative and Integrative Biology, 2016, 9, e1139251.	0.6	3
80	Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Research, 2016, 1647, 9-18.	1.1	195
81	G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. Journal of Cell Biology, 2016, 212, 845-60.	2.3	480
82	Higher-order assemblies of BAR domain proteins for shaping membranes. Microscopy (Oxford,) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 42
83	Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron, 2016, 89, 433-448.	3.8	74
84	Rapidly Translated Polypeptides Are Preferred Substrates for Cotranslational Protein Degradation. Journal of Biological Chemistry, 2016, 291, 9827-9834.	1.6	16
85	Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles. Trends in Biochemical Sciences, 2016, 41, 46-61.	3.7	343
86	Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: Reversible formation and partitioning in aqueous biphasic systems. Advances in Colloid and Interface Science, 2017, 239, 75-87.	7.0	89
87	Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 884-895.	1.8	203
88	Phase to Phase with TDP-43. Biochemistry, 2017, 56, 809-823.	1.2	68
89	Biological Spectrum of Amyotrophic Lateral Sclerosis Prions. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024133.	2.9	24
90			
	When proteostasis goes bad: Protein aggregation in the cell. IUBMB Life, 2017, 69, 49-54.	1.5	38

#	Article	IF	CITATIONS
92	A PR plug for the nuclear pore in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1445-1447.	3.3	6
93	Shining a Light on Phase Separation in the Cell. Cell, 2017, 168, 11-13.	13.5	42
94	Vesicles Spread Susceptibility to Phages. Cell, 2017, 168, 13-15.	13.5	39
95	Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses. MBio, 2017, 8,	1.8	81
96	Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging. Cell Reports, 2017, 18, 454-467.	2.9	54
97	Independent active and thermodynamic processes govern the nucleolus assembly in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1335-1340.	3.3	90
98	Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18, 285-298.	16.1	3,771
99	Synaptic Vesicle Clusters at Synapses: A Distinct Liquid Phase?. Neuron, 2017, 93, 995-1002.	3.8	89
100	Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell, 2017, 168, 1028-1040.e19.	13.5	674
101	Phase Transitions in Biological Systems with Many Components. Biophysical Journal, 2017, 112, 683-691.	0.2	121
102	Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2466-E2475.	3.3	204
103	Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2206-2211.	3.3	50
104	Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature, 2017, 544, 367-371.	13.7	422
105	Unusual semiâ€extractability as a hallmark of nuclear bodyâ€associated architectural noncoding <scp>RNA</scp> s. EMBO Journal, 2017, 36, 1447-1462.	3.5	107
106	Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathologica, 2017, 134, 187-205.	3.9	288
107	Mechanisms and Functions of Spatial Protein Quality Control. Annual Review of Biochemistry, 2017, 86, 97-122.	5.0	225
108	RNA metabolism in neurodegenerative disease. DMM Disease Models and Mechanisms, 2017, 10, 509-518.	1.2	102
109	Modelling amyotrophic lateral sclerosis: progress and possibilities. DMM Disease Models and Mechanisms, 2017, 10, 537-549.	1.2	156

#	ARTICLE	IF	CITATIONS
110	Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated. Biophysical Journal, 2017, 112, 2043-2046.	0.2	192
111	A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Research, 2017, 45, 6911-6922.	6.5	74
112	Cross-β polymerization and hydrogel formation by low-complexity sequence proteins. Methods, 2017, 126, 3-11.	1.9	19
113	ATP as a biological hydrotrope. Science, 2017, 356, 753-756.	6.0	677
114	Phase separation drives heterochromatin domain formation. Nature, 2017, 547, 241-245.	13.7	1,456
115	A liquid reservoir for silent chromatin. Nature, 2017, 547, 168-169.	13.7	20
116	Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Research, 2017, 45, 7984-7996.	6.5	165
117	Getting stress out of stressedâ€out stress granules. EMBO Journal, 2017, 36, 1647-1649.	3.5	6
118	FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. Journal of Cell Biology, 2017, 216, 1015-1034.	2.3	92
119	Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Developmental Biology, 2017, 428, 310-317.	0.9	43
120	An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO Journal, 2017, 36, 1669-1687.	3.5	370
121	RNA-binding proteins with prion-like domains in health and disease. Biochemical Journal, 2017, 474, 1417-1438.	1.7	347
122	On the origin of non-membrane-bound organelles, and their physiological function. Journal of Theoretical Biology, 2017, 434, 42-49.	0.8	26
123	Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5.	4.5	437
124	Biology and Pathobiology of TDP-43 and Emergent Therapeutic Strategies. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024554.	2.9	56
125	Disruption of Stress Granule Formation by the Multifunctional Cricket Paralysis Virus 1A Protein. Journal of Virology, 2017, 91, .	1.5	22
126	RNA Binding Proteins in Health and Disease. , 2017, , 299-312.		4
127	Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell, 2017, 168, 159-171.e14.	13.5	659

#	Article	IF	CITATIONS
128	An <scp>RNA</scp> â€binding atypical tropomyosin recruits kinesinâ€1 dynamically to <i>oskar </i> <scp>mRNP</scp> s. EMBO Journal, 2017, 36, 319-333.	3.5	60
129	Growth and division of active droplets provides a model for protocells. Nature Physics, 2017, 13, 408-413.	6.5	304
130	Preserving protein function through reversible aggregation. Nature Cell Biology, 2017, 19, 1142-1144.	4.6	2
131	More stressed out with age? Check your RNA granule aggregation. Prion, 2017, 11, 313-322.	0.9	23
132	An inter-domain regulatory mechanism controls toxic activities of PrPC. Prion, 2017, 11, 388-397.	0.9	3
133	The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll–Mr. Hyde― behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy, 2017, 13, 2115-2162.	4.3	48
134	Lost in Transportation: Nucleocytoplasmic Transport Defects in ALS and Other Neurodegenerative Diseases. Neuron, 2017, 96, 285-297.	3.8	208
135	Short Arginine Motifs Drive Protein Stickiness in the <i>Escherichia coli</i> Cytoplasm. Biochemistry, 2017, 56, 5026-5032.	1.2	22
136	Reversible protein aggregation is a protective mechanism to ensure cell cycle restart after stress. Nature Cell Biology, 2017, 19, 1202-1213.	4.6	136
137	Supramolecular catalysis and dynamic assemblies for medicine. Chemical Society Reviews, 2017, 46, 6470-6479.	18.7	137
138	Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nature Communications, 2017, 8, 563.	5.8	141
139	Dysregulated molecular pathways in amyotrophic lateral sclerosis–frontotemporal dementia spectrum disorder. EMBO Journal, 2017, 36, 2931-2950.	3.5	150
140	Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8194-E8203.	3.3	381
141	The intrinsically disordered N-terminal domain of galectin-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. Journal of Biological Chemistry, 2017, 292, 17845-17856.	1.6	54
142	RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes and Development, 2017, 31, 1509-1528.	2.7	177
143	Characterization of Soft Amyloid Cores in Human Prion-Like Proteins. Scientific Reports, 2017, 7, 12134.	1.6	38
144	Manipulating the aggregation activity of human prion-like proteins. Prion, 2017, 11, 323-331.	0.9	9
145	Liquid phase condensation in cell physiology and disease. Science, 2017, 357, .	6.0	2,699

#	Article	IF	CITATIONS
146	Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. Journal of Biological Chemistry, 2017, 292, 19110-19120.	1.6	288
147	Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nature Communications, 2017, 8, 275.	5.8	552
148	Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Reports, 2017, 20, 895-908.	2.9	139
149	Splicing Activation by Rbfox Requires Self-Aggregation through Its Tyrosine-Rich Domain. Cell, 2017, 170, 312-323.e10.	13.5	102
150	Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation. Cell Reports, 2017, 20, 935-948.	2.9	27
151	Genetic mutations in RNA-binding proteins and their roles in ALS. Human Genetics, 2017, 136, 1193-1214.	1.8	168
152	Phosphorylation of the <scp>FUS</scp> low omplexity domain disrupts phase separation, aggregation, and toxicity. EMBO Journal, 2017, 36, 2951-2967.	3.5	544
153	The wisdom of crowds: regulating cell function through condensed states of living matter. Journal of Cell Science, 2017, 130, 2789-2796.	1.2	130
154	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	3.8	493
155	Natural and bio-inspired underwater adhesives: Current progress and new perspectives. APL Materials, 2017, 5, .	2.2	45
156	RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration. Science Translational Medicine, 2017, 9, .	5.8	72
157	Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nature Chemistry, 2017, 9, 1118-1125.	6.6	447
158	Motoneuron Disease: Basic Science. Advances in Neurobiology, 2017, 15, 163-190.	1.3	5
159	Negri bodies are viral factories with properties of liquid organelles. Nature Communications, 2017, 8, 58.	5.8	228
160	Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles. Physical Biology, 2017, 14, 045008.	0.8	11
161	Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nature Communications, 2017, 8, 45.	5.8	242
162	The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Prion, 2017, 11, 249-264.	0.9	14
163	Cross-Î ² Polymerization of Low Complexity Sequence Domains. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023598.	2.3	51

#	Article	IF	CITATIONS
164	Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biology, 2017, 14, 568-586.	1.5	39
165	Protein folding, binding, and droplet formation in cell-like conditions. Current Opinion in Structural Biology, 2017, 43, 28-37.	2.6	45
166	Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain, 2017, 140, 13-26.	3.7	53
167	Charge pattern matching as a â€~fuzzy' mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New Journal of Physics, 2017, 19, 115003.	1.2	96
168	ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions InÂVitro and in Cells. Cell Reports, 2017, 21, 3573-3584.	2.9	161
169	Autophagy-Lysosome Dysfunction in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. , 0, , .		4
170	Ultra-Early Phase pathologies of Alzheimer's disease and other neurodegenerative diseases. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 361-377.	1.6	9
171	Cellular Regulation of Amyloid Formation in Aging and Disease. Frontiers in Neuroscience, 2017, 11, 64.	1.4	70
172	Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK. Antibodies, 2017, 6, 23.	1.2	3
173	The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides. Biomolecules, 2017, 7, 70.	1.8	7
174	The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Frontiers in Molecular Neuroscience, 2017, 10, 35.	1.4	207
175	Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro. Frontiers in Molecular Neuroscience, 2017, 10, 46.	1.4	21
176	Granulostasis: Protein Quality Control of RNP Granules. Frontiers in Molecular Neuroscience, 2017, 10, 84.	1.4	108
177	Dysregulation of RNA Binding Protein Aggregation in Neurodegenerative Disorders. Frontiers in Molecular Neuroscience, 2017, 10, 89.	1.4	117
178	Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype. Frontiers in Molecular Neuroscience, 2017, 10, 370.	1.4	24
179	Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	1.9	87
180	Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. ELife, 2017, 6, .	2.8	514
181	Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genetics, 2017, 13, e1006635.	1.5	157

#	Article	IF	CITATIONS
182	C. elegans SUP-46, an HNRNPM family RNA-binding protein that prevents paternally-mediated epigenetic sterility. BMC Biology, 2017, 15, 61.	1.7	6
183	Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathologica Communications, 2017, 5, 96.	2.4	38
184	mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Research, 2018, 1693, 75-91.	1.1	56
185	Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Biochemistry, 2018, 57, 2499-2508.	1.2	184
186	Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Research, 2018, 28, 405-415.	5.7	325
187	Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions. Molecular Cell, 2018, 69, 965-978.e6.	4.5	257
188	Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. Biochemistry, 2018, 57, 2478-2487.	1.2	273
189	Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. Scientific Reports, 2018, 8, 4049.	1.6	30
190	TAR DNA-binding protein 43 (TDP-43) liquid–liquid phase separation is mediated by just a few aromatic residues. Journal of Biological Chemistry, 2018, 293, 6090-6098.	1.6	195
191	Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO Journal, 2018, 37, .	3.5	696
192	Fuzziness in Protein Interactions—A Historical Perspective. Journal of Molecular Biology, 2018, 430, 2278-2287.	2.0	118
193	Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nature Communications, 2018, 9, 842.	5.8	285
194	Translational Control by Prion-like Proteins. Trends in Cell Biology, 2018, 28, 494-505.	3.6	20
195	Modulation of the secretory pathway by amino-acid starvation. Journal of Cell Biology, 2018, 217, 2261-2271.	2.3	23
196	Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry, 2018, 57, 2405-2414.	1.2	70
197	pH-Responsive Coacervate Droplets Formed from Acid-Labile Methylated Polyrotaxanes as an Injectable Protein Carrier. Biomacromolecules, 2018, 19, 2238-2247.	2.6	23
198	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
199	Amyloid assembly and disassembly. Journal of Cell Science, 2018, 131, .	1.2	138

ARTICLE IF CITATIONS # Neuronal RNP granules: from physiological to pathological assemblies. Biological Chemistry, 2018, 200 1.2 26 399, 623-635. Probing Molecular Basis for Constructing Interface Bionanostructures. Topics in Catalysis, 2018, 61, 1.3 1125-1138. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like 202 13.5 376 Domains. Cell, 2018, 173, 677-692.e20. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell, 2018, 173, 693-705.e22. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell, 204 13.5 484 2018, 173, 706-719.e13. Stress Granule Assembly Disrupts Nucleocytoplasmic Transport. Cell, 2018, 173, 958-971.e17. 13.5 Controlling compartmentalization by non-membrane-bound organelles. Philosophical Transactions 206 1.8 132 of the Royal Society B: Biological Sciences, 2018, 373, 20170193. Neuronal Synapses: Microscale Signal Processing Machineries Formed by Phase Separation?. 1.2 Biochemistry, 2018, 57, 2530-2539. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science, 2018, 360, 208 6.0 837 918-921. miRNA targeting and alternative splicing in the stress response – events hosted by membrane-less 209 1.2 compartments. Journal of Cell Science, 2018, 131, . Liquid-Liquid Phase Separation in an Elastic Network. Physical Review X, 2018, 8, . 210 2.8 57 Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death and 211 5.0 Differentiation, 2018, 25, 648-662. Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules. Cell, 212 13.5 672 2018, 172, 590-604.e13. Guilty by Association: Mapping Out the Molecular Sociology of Droplet Compartments. Molecular Cell, 2018, 69, 349-351. 4.5 Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly. 214 2.9 256 Cell Reports, 2018, 22, 1401-1412. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD 86 models. Human Molecular Genetics, 2018, 27, 1366-1381. A single Nâ€terminal phosphomimic disrupts TDPâ€43 polymerization, phase separation, and RNA splicing. 216 3.5297 EMBŎ Journal, 2018, 37, . Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers. Journal of Biological Chemistry, 2018, 293, 1.6 . 3734-3746.

# 218	ARTICLE P-Bodies: Composition, Properties, and Functions. Biochemistry, 2018, 57, 2424-2431.	lF 1.2	Citations 384
219	Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Molecular Cell, 2018, 69, 465-479.e7.	4.5	312
220	Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science, 2018, 359, 698-701.	6.0	376
221	Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. Journal of Neural Transmission, 2018, 125, 591-613.	1.4	16
222	A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. Journal of Physical Chemistry B, 2018, 122, 5418-5431.	1.2	89
223	Self-assembly of FUS through its low-complexity domain contributes to neurodegeneration. Human Molecular Genetics, 2018, 27, 1353-1365.	1.4	19
224	Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions. Annual Review of Biophysics, 2018, 47, 19-39.	4.5	98
225	p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO Journal, 2018, 37, .	3.5	254
226	Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival. Nature Communications, 2018, 9, 312.	5.8	27
227	Nuclear pores: the gate to neurodegeneration. Nature Neuroscience, 2018, 21, 156-158.	7.1	34
228	A prion-like domain in Hsp42 drives chaperone-facilitated aggregation of misfolded proteins. Journal of Cell Biology, 2018, 217, 1269-1285.	2.3	57
229	Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization. Soft Matter, 2018, 14, 368-378.	1.2	57
230	Functional Implications of Intracellular Phase Transitions. Biochemistry, 2018, 57, 2415-2423.	1.2	189
231	Physical principles of intracellular organization via active and passive phase transitions. Reports on Progress in Physics, 2018, 81, 046601.	8.1	319
232	IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Current Opinion in Structural Biology, 2018, 49, 36-43.	2.6	98
233	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	7.1	404
234	Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews, 2018, 118, 1691-1741.	23.0	577
235	Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359, .	6.0	534

ARTICLE IF CITATIONS # <i>In Aqua Veritas</i>: The Indispensable yet Mostly Ignored Role of Water in Phase Separation and 236 1.2 59 Membrane-less Organelles. Biochemistry, 2018, 57, 2437-2451. Autophagy and lysosomal pathways in nervous system disorders. Molecular and Cellular 1.0 Neurosciences, 2018, 91, 167-208. Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory 238 100 1.6 Components on Protein Droplet Formation. Scientific Reports, 2018, 8, 6728. Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?. Trends in 114 Biochemical Sciences, 2018, 43, 499-516. The physiological and pathological biophysics of phase separation and gelation of RNA binding 240 proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Brain Research, 1.1 63 2018, 1693, 11-23. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. 3.6 Nature Structural and Molecular Biology, 2018, 25, 341-346. Genetic analysis of TIA1 gene in Chinese patients with amyotrophic lateral sclerosis. Neurobiology of 242 1.5 9 Aging, 2018, 67, 201.e9-201.e10. Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018, 28, 420-435. 243 3.6 1,439 Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles. Biochemistry, 244 1.2 82 2018, 57, 2470-2477. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments 245 1.2 122 in Origins of Life Chemistry. Biochemistry, 2018, 57, 2509-2519. Phase Transitions in the Assembly and Function of Human miRISC. Cell, 2018, 173, 946-957.e16. 246 205 13.5Differential solvation of intrinsically disordered linkers drives the formation of spatially organized 1.2 droplets in ternary systems of linear multivalent proteins. New Journal of Physics, 2018, 20, 045002. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in 248 3.7 106 amyotrophic lateral sclerosis. Brain, 2018, 141, 1320-1333. The mTOR-S6 kinase pathway promotes stress granule assembly. Cell Death and Differentiation, 2018, 249 5.0 25, 1766-1780. PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and 250 1.9 15 neurodegenerative diseases. Neurochemistry International, 2018, 119, 17-25. The physical forces mediating self-association and phase-separation in the C-terminal domain of 89 TDP-43. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 214-223. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell 252 23.0 186 Physiology in Health and Disease. Chemical Reviews, 2018, 118, 1092-1136. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. 1.2 Journal of Chemical Physics, 2018, 148, 123305.

#	Article	IF	CITATIONS
254	Organization and Function of Non-dynamic Biomolecular Condensates. Trends in Biochemical Sciences, 2018, 43, 81-94.	3.7	160
255	A Solid-State Conceptualization of Information Transfer from Gene to Message to Protein. Annual Review of Biochemistry, 2018, 87, 351-390.	5.0	113
256	Intracellular production of hydrogels and syntheticÂRNA granules by multivalent molecularÂinteractions. Nature Materials, 2018, 17, 79-89.	13.3	106
257	Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 657-666.	0.9	4
258	Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nature Neuroscience, 2018, 21, 72-80.	7.1	189
259	HIV-1 NC-induced stress granule assembly and translation arrest are inhibited by the dsRNA binding protein Staufen1. Rna, 2018, 24, 219-236.	1.6	27
260	Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Current Opinion in Structural Biology, 2018, 48, 58-67.	2.6	90
261	Simulations of Higher-Order Protein Organizations Using a Fuzzy Framework. Complexity, 2018, 2018, 1-10.	0.9	4
263	Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Physical Chemistry Chemical Physics, 2018, 20, 28558-28574.	1.3	98
264	Chemical physics in living cells — Using light to visualize and control intracellular signal transduction. Chinese Journal of Chemical Physics, 2018, 31, 375-392.	0.6	0
265	Relation Between Stress Granules and Cytoplasmic Protein Aggregates Linked to Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 2018, 18, 107.	2.0	40
266	Controlling Liquid–Liquid Phase Separation of Cold-Adapted Crystallin Proteins from the Antarctic Toothfish. Journal of Molecular Biology, 2018, 430, 5151-5168.	2.0	15
267	Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome. Cell, 2018, 175, 1481-1491.e13.	13.5	490
268	Phase Separation of Intrinsically Disordered Proteins. Methods in Enzymology, 2018, 611, 1-30.	0.4	141
269	ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11904-E11913.	3.3	138
270	Toxic Protein Spread in Neurodegeneration: Reality versus Fantasy. Trends in Molecular Medicine, 2018, 24, 1007-1020.	3.5	26
271	Ubiquilin 2 modulates ALS/FTD-linked FUS–RNA complex dynamics and stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11485-E11494.	3.3	100
272	Methods and Strategies to Quantify Phase Separation of Disordered Proteins. Methods in Enzymology, 2018, 611, 31-50.	0.4	32

#	Article	IF	CITATIONS
273	Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Systems, 2018, 7, 510-520.e4.	2.9	8
274	Probing RNA Structure in Liquid–Liquid Phase Separation Using SHAPE-MaP. Methods in Enzymology, 2018, 611, 67-79.	0.4	11
275	A <i>De NovoRAPGEF2</i> Variant Identified in a Sporadic Amyotrophic Lateral Sclerosis Patient Impairs Microtubule Stability and Axonal Mitochondria Distribution. Experimental Neurobiology, 2018, 27, 550-563.	0.7	10
276	Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. Physical Review Letters, 2018, 121, 258101.	2.9	125
277	A Chemical Chaperone Decouples TDP-43 Disordered Domain Phase Separation from Fibrillation. Biochemistry, 2018, 57, 6822-6826.	1.2	41
278	Transcription-Dependent Formation of Nuclear Granules Containing FUS and RNA Pol II. Biochemistry, 2018, 57, 7021-7032.	1.2	21
279	Towards a Stochastic Paradigm: From Fuzzy Ensembles to Cellular Functions. Molecules, 2018, 23, 3008.	1.7	18
280	The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nature Communications, 2018, 9, 5076.	5.8	89
281	Compositional adaptability in NPM1-SURF6 scaffolding networks enabled by dynamic switching of phase separation mechanisms. Nature Communications, 2018, 9, 5064.	5.8	81
282	Poly(ADP-ribose) Engages the TDP-43 Nuclear-Localization Sequence to Regulate Granulo-Filamentous Aggregation. Biochemistry, 2018, 57, 6923-6926.	1.2	28
283	p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy. Journal of Cell Science, 2018, 131, .	1.2	105
284	Proteome-scale relationships between local amino acid composition and protein fates and functions. PLoS Computational Biology, 2018, 14, e1006256.	1.5	26
285	UPA-seq: prediction of functional lncRNAs using differential sensitivity to UV crosslinking. Rna, 2018, 24, 1785-1802.	1.6	4
286	RGG-box in hnRNPA1 specifically recognizes the telomere G-quadruplex DNA and enhances the G-quadruplex unfolding ability of UP1 domain. Nucleic Acids Research, 2018, 46, 10246-10261.	6.5	58
287	Biomolecular Assemblies: Moving from Observation to Predictive Design. Chemical Reviews, 2018, 118, 11519-11574.	23.0	71
288	Converging pathways in neurodegeneration, from genetics to mechanisms. Nature Neuroscience, 2018, 21, 1300-1309.	7.1	325
289	Linking hnRNP Function to ALS and FTD Pathology. Frontiers in Neuroscience, 2018, 12, 326.	1.4	92
290	Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer's Amyloid-β Oligomers. Molecular Cell, 2018, 72, 426-443.e12.	4.5	87

#	Article	IF	CITATIONS
291	Role of hydrodynamic flows in chemically driven droplet division. New Journal of Physics, 2018, 20, 105010.	1.2	26
292	RNAs, Phase Separation, and Membraneâ€Less Organelles: Are Postâ€Transcriptional Modifications Modulating Organelle Dynamics?. BioEssays, 2018, 40, e1800085.	1.2	48
293	Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10495-E10504.	3.3	52
294	Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Molecular Cell, 2018, 72, 19-36.e8.	4.5	286
295	A New Lens for RNA Localization: Liquid-Liquid Phase Separation. Annual Review of Microbiology, 2018, 72, 255-271.	2.9	108
296	ATP enhances at low concentrations but dissolves at high concentrations liquid-liquid phase separation (LLPS) of ALS/FTD-causing FUS. Biochemical and Biophysical Research Communications, 2018, 504, 545-551.	1.0	60
297	Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9929-9934.	3.3	283
298	Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Letters, 2018, 592, 2948-2972.	1.3	32
299	RNA localization and transport. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 938-951.	0.9	36
300	Influenza virus infection causes global RNAPII termination defects. Nature Structural and Molecular Biology, 2018, 25, 885-893.	3.6	48
301	Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition. ACS Applied Materials & Interfaces, 2018, 10, 32782-32791.	4.0	78
302	Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science, 2018, 361, .	6.0	750
303	Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361, .	6.0	1,687
304	mTOR Regulates Phase Separation of PGL Granules to Modulate Their Autophagic Degradation. Cell, 2018, 174, 1492-1506.e22.	13.5	166
305	Minimalist Prion-Inspired Polar Self-Assembling Peptides. ACS Nano, 2018, 12, 5394-5407.	7.3	37
306	Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nature Structural and Molecular Biology, 2018, 25, 463-471.	3.6	183
307	The RNA face of phase separation. Science, 2018, 360, 859-860.	6.0	41
308	Suppressor of clathrin deficiency (Scd6)—An emerging RGGâ€motif translation repressor. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1479.	3.2	14

#	Article	IF	CITATIONS
309	Phase-separation mechanism forÂC-terminal hyperphosphorylation of RNA polymerase II. Nature, 2018, 558, 318-323.	13.7	428
310	RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease. Journal of Biological Chemistry, 2018, 293, 11047-11066.	1.6	66
311	Organization out of disorder: liquid–liquid phase separation in plants. Current Opinion in Plant Biology, 2018, 45, 68-74.	3.5	84
312	Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Advances, 2018, 8, 19835-19845.	1.7	21
314	Quality Control of Membraneless Organelles. Journal of Molecular Biology, 2018, 430, 4711-4729.	2.0	75
315	A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation. Molecular Cell, 2018, 70, 588-601.e6.	4.5	252
316	Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. Journal of Molecular Biology, 2018, 430, 4619-4635.	2.0	164
317	A User's Guide for Phase Separation Assays with Purified Proteins. Journal of Molecular Biology, 2018, 430, 4806-4820.	2.0	195
318	A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell, 2018, 174, 688-699.e16.	13.5	1,372
319	Synaptic Paths to Neurodegeneration: The Emerging Role of TDP-43 and FUS in Synaptic Functions. Neural Plasticity, 2018, 2018, 1-13.	1.0	55
320	Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cellular and Molecular Life Sciences, 2018, 75, 3907-3929.	2.4	71
321	Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nature Communications, 2018, 9, 2985.	5.8	274
322	Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Letters, 2018, 592, 3040-3053.	1.3	23
323	Disordered Substrates of the 20S Proteasome Link Degradation with Phase Separation. Proteomics, 2018, 18, e1800276.	1.3	3
325	The Disordered Landscape of the 20S Proteasome Substrates Reveals Tight Association with Phase Separated Granules. Proteomics, 2018, 18, e1800076.	1.3	32
326	Amyotrophic lateral sclerosis: the complex path to precision medicine. Journal of Neurology, 2018, 265, 2454-2462.	1.8	36
327	Distinct regions of the intrinsically disordered protein MUT-16 mediate assembly of a small RNA amplification complex and promote phase separation of Mutator foci. PLoS Genetics, 2018, 14, e1007542.	1.5	45
328	Methods for Physical Characterization of Phase-Separated Bodies and Membrane-less Organelles. Journal of Molecular Biology, 2018, 430, 4773-4805.	2.0	124

#	Article	IF	CITATIONS
329	RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathologica Communications, 2018, 6, 71.	2.4	108
330	Robustness and Vulnerability of the Autoregulatory System That Maintains Nuclear TDP-43 Levels: A Trade-off Hypothesis for ALS Pathology Based on in Silico Data. Frontiers in Neuroscience, 2018, 12, 28.	1.4	13
331	What lava lamps and vinaigrette can teach us about cell biology. Nature, 2018, 555, 300-302.	13.7	91
332	The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. International Journal of Molecular Sciences, 2018, 19, 886.	1.8	92
333	Acetylation Disfavors Tau Phase Separation. International Journal of Molecular Sciences, 2018, 19, 1360.	1.8	136
334	Molecular Chaperones Regulating the Dynamics, Composition and Functionality of RNP Granules: Implications for Age-Related Diseases. Heat Shock Proteins, 2018, , 205-222.	0.2	0
335	Abnormal RNA stability in amyotrophic lateral sclerosis. Nature Communications, 2018, 9, 2845.	5.8	113
336	Molecular Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity. Cell Reports, 2018, 24, 529-537.e4.	2.9	74
337	More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change. Journal of Molecular Biology, 2018, 430, 4607-4618.	2.0	42
338	Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Research, 2018, 1693, 109-120.	1.1	14
339	The Role of RNA in Biological Phase Separations. Journal of Molecular Biology, 2018, 430, 4685-4701.	2.0	94
340	Microtubules as platforms for probing liquid-liquid phase separation in cells: application to RNA-binding proteins. Journal of Cell Science, 2018, 131, .	1.2	15
341	Phasing in on the cell cycle. Cell Division, 2018, 13, 1.	1.1	33
342	Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathologica, 2018, 136, 425-443.	3.9	43
343	Assembly of Mitotic Structures through Phase Separation. Journal of Molecular Biology, 2018, 430, 4762-4772.	2.0	34
344	The Retrotransposon storm and the dangers of a Collyer's genome. Current Opinion in Genetics and Development, 2018, 49, 95-105.	1.5	26
345	C9orf72-mediated ALS and FTD: multiple pathways to disease. Nature Reviews Neurology, 2018, 14, 544-558.	4.9	478
346	Protein motion in the nucleus: from anomalous diffusion to weak interactions. Biochemical Society Transactions, 2018, 46, 945-956.	1.6	56

#	Article	IF	CITATIONS
347	RNA polymerase II clustering through carboxy-terminal domain phase separation. Nature Structural and Molecular Biology, 2018, 25, 833-840.	3.6	456
348	Who's In and Who's Out—Compositional Control of Biomolecular Condensates. Journal of Molecular Biology, 2018, 430, 4666-4684.	2.0	255
349	Multiple Modes of Protein–Protein Interactions Promote RNP Granule Assembly. Journal of Molecular Biology, 2018, 430, 4636-4649.	2.0	179
350	Next-Generation Drugs and Probes for Chromatin Biology: From Targeted Protein Degradation to Phase Separation. Molecules, 2018, 23, 1958.	1.7	40
351	Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies. Cell, 2018, 174, 791-802.	13.5	317
352	Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. Molecular Cell, 2018, 71, 703-717.e9.	4.5	309
353	SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia, 2018, 32, 2659-2671.	3.3	68
354	Persistent Replication of a Chikungunya Virus Replicon in Human Cells Is Associated with Presence of Stable Cytoplasmic Granules Containing Nonstructural Protein 3. Journal of Virology, 2018, 92, .	1.5	27
355	Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery. Cell Reports, 2018, 23, 3327-3339.	2.9	183
356	The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. International Journal of Biological Macromolecules, 2018, 117, 1224-1251.	3.6	45
357	Prion-like Domains in Eukaryotic Viruses. Scientific Reports, 2018, 8, 8931.	1.6	43
358	<scp>RNA</scp> â€protein interactions in an unstructured context. FEBS Letters, 2018, 592, 2901-2916.	1.3	53
359	Role of Liquid–Liquid Phase Separation in Assembly of Elastin and Other Extracellular Matrix Proteins. Journal of Molecular Biology, 2018, 430, 4741-4753.	2.0	86
360	RGG/RG Motif Regions in RNA Binding and Phase Separation. Journal of Molecular Biology, 2018, 430, 4650-4665.	2.0	297
361	Stress Granules and ALS: A Case of Causation or Correlation?. Advances in Neurobiology, 2018, 20, 173-212.	1.3	39
362	Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. Advances in Neurobiology, 2018, 20, 213-238.	1.3	5
363	Mechanisms Associated with TDP-43 Neurotoxicity in ALS/FTLD. Advances in Neurobiology, 2018, 20, 239-263.	1.3	25
364	The molecular language of membraneless organelles. Journal of Biological Chemistry, 2019, 294, 7115-7127.	1.6	515

#	Article	IF	CITATIONS
365	Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior. Journal of Biological Chemistry, 2019, 294, 7128-7136.	1.6	178
366	FAM98A is localized to stress granules and associates with multiple stress granule-localized proteins. Molecular and Cellular Biochemistry, 2019, 451, 107-115.	1.4	9
367	Phase separation of 53 <scp>BP</scp> 1 determines liquidâ€like behavior of <scp>DNA</scp> repair compartments. EMBO Journal, 2019, 38, e101379.	3.5	294
368	The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Frontiers in Neuroscience, 2019, 13, 796.	1.4	23
369	Conserved NDR/LATS kinase controls RAS GTPase activity to regulate cell growth and chronological lifespan. Molecular Biology of the Cell, 2019, 30, 2598-2616.	0.9	14
370	The prion-like protein kinase Sky1 is required for efficient stress granule disassembly. Nature Communications, 2019, 10, 3614.	5.8	36
371	Controlling the material properties and rRNA processing function of the nucleolus using light. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17330-17335.	3.3	62
372	3D Chromosomal Landscapes in Hematopoiesis and Immunity. Trends in Immunology, 2019, 40, 809-824.	2.9	21
373	Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. Molecular Cell, 2019, 76, 177-190.e5.	4.5	165
374	The synergic effect of water and biomolecules in intracellular phase separation. Nature Reviews Chemistry, 2019, 3, 552-561.	13.8	58
375	Liquid–Liquid Phase Separation in Disease. Annual Review of Genetics, 2019, 53, 171-194.	3.2	553
376	ATP binds and inhibits the neurodegeneration-associated fibrillization of the FUS RRM domain. Communications Biology, 2019, 2, 223.	2.0	65
377	m6A enhances the phase separation potential of mRNA. Nature, 2019, 571, 424-428.	13.7	460
378	RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nature Communications, 2019, 10, 3230.	5.8	159
379	Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathologica, 2019, 138, 813-826.	3.9	60
380	The regulation, functions and clinical relevance of arginine methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 642-657.	16.1	364
381	RNA–protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biology, 2019, 9, 190096.	1.5	113
382	Experimental studies of binding of intrinsically disordered proteins to their partners. , 2019, , 139-187.		3

#	Article	IF	CITATIONS
383	Liquid–Liquid Phase Separation Is Driven by Large-Scale Conformational Unwinding and Fluctuations of Intrinsically Disordered Protein Molecules. Journal of Physical Chemistry Letters, 2019, 10, 3929-3936.	2.1	113
384	Sequence variants of human tropoelastin affecting assembly, structural characteristics and functional properties of polymeric elastin in health and disease. Matrix Biology, 2019, 84, 68-80.	1.5	19
385	Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription. Cell, 2019, 178, 107-121.e18.	13.5	224
386	Lysine/RNA-interactions drive and regulate biomolecular condensation. Nature Communications, 2019, 10, 2909.	5.8	164
387	Single mRNP Analysis Reveals that Small Cytoplasmic mRNP Granules Represent mRNA Singletons. Cell Reports, 2019, 29, 736-748.e4.	2.9	22
388	Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Frontiers in Pharmacology, 2019, 10, 1047.	1.6	117
389	Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes and Development, 2019, 33, 1619-1634.	2.7	424
390	Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing and Neurodegeneration in Alzheimer's Disease. Cell Reports, 2019, 29, 301-316.e10.	2.9	118
391	Inherited and Sporadic Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degenerations arising from Pathological Condensates of Phase Separating Proteins. Human Molecular Genetics, 2019, 28, R187-R196.	1.4	11
392	The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase. Scientific Reports, 2019, 9, 13530.	1.6	25
393	Myosin VII, USH1C, and ANKS4B or USH1G Together Form Condensed Molecular Assembly via Liquid-Liquid Phase Separation. Cell Reports, 2019, 29, 974-986.e4.	2.9	27
394	Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nature Communications, 2019, 10, 4959.	5.8	55
395	The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2019, 20, 5501.	1.8	155
396	Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics, 2019, 16, 1115-1132.	2.1	30
397	Low-complexity domain of U1-70K modulates phase separation and aggregation through distinctive basic-acidic motifs. Science Advances, 2019, 5, eaax5349.	4.7	48
398	Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization. Nature Communications, 2019, 10, 5078.	5.8	34
399	Phase behavior of blocky charge lattice polymers: Crystals, liquids, sheets, filaments, and clusters. Physical Review E, 2019, 100, 052404.	0.8	13
400	Translation from the Ribosome to the Clinic: Implication in Neurological Disorders and New Perspectives from Recent Advances. Biomolecules, 2019, 9, 680.	1.8	7

#	Article	IF	CITATIONS
401	Phase separation-deficient TDP43 remains functional in splicing. Nature Communications, 2019, 10, 4890.	5.8	117
402	Modes of phase separation affecting chromatin regulation. Open Biology, 2019, 9, 190167.	1.5	30
403	Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2019, 12, 262.	1.4	101
404	The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. International Journal of Molecular Sciences, 2019, 20, 5306.	1.8	29
405	Stressâ€specific aggregation of proteins in the amyloid bodies. FEBS Letters, 2019, 593, 3162-3172.	1.3	23
406	The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. Molecular Cell, 2019, 73, 775-787.e10.	4.5	100
407	Biomolecular condensates in neurodegeneration and cancer. Traffic, 2019, 20, 890-911.	1.3	72
408	Organization and regulation of gene transcription. Nature, 2019, 573, 45-54.	13.7	431
409	Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Molecular Cell, 2019, 75, 875-887.e5.	4.5	153
410	Exploiting mammalian low-complexity domains for liquid-liquid phase separation–driven underwater adhesive coatings. Science Advances, 2019, 5, eaax3155.	4.7	62
411	TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Molecular and Cellular Neurosciences, 2019, 100, 103396.	1.0	62
412	Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates. Scientific Reports, 2019, 9, 12161.	1.6	50
413	Aggregation dynamics of charged peptides in water: Effect of salt concentration. Journal of Chemical Physics, 2019, 151, 074901.	1.2	7
414	Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 2019, 294, 14823-14835.	1.6	149
415	Physiological, Pathological, and Targetable Membraneless Organelles in Neurons. Trends in Neurosciences, 2019, 42, 693-708.	4.2	83
416	On-demand Labeling of SNAP-tagged Viral Protein for Pulse-Chase Imaging, Quench-Pulse-Chase Imaging, and Nanoscopy-based Inspection of Cell Lysates. Bio-protocol, 2019, 9, .	0.2	0
417	Membrane-Bound Meet Membraneless in Health and Disease. Cells, 2019, 8, 1000.	1.8	19
418	New Aspects of Magnesium Function: A Key Regulator in Nucleosome Self-Assembly, Chromatin Folding and Phase Separation. International Journal of Molecular Sciences, 2019, 20, 4232.	1.8	22

#	Article	IF	CITATIONS
419	Core autophagy genes and human diseases. Current Opinion in Cell Biology, 2019, 61, 117-125.	2.6	44
420	Regulation of zebrafish dorsoventral patterning by phase separation of RNA-binding protein Rbm14. Cell Discovery, 2019, 5, 37.	3.1	10
421	Supramolecular Fuzziness of Intracellular Liquid Droplets: Liquid–Liquid Phase Transitions, Membrane-Less Organelles, and Intrinsic Disorder. Molecules, 2019, 24, 3265.	1.7	30
422	Role of physical nucleation theory in understanding conformational conversion between pathogenic and nonpathogenic aggregates of low-complexity amyloid peptides. Research on Chemical Intermediates, 2019, 45, 5357-5373.	1.3	2
423	The Gypsy Endogenous Retrovirus Drives Non-Cell-Autonomous Propagation in a Drosophila TDP-43 Model of Neurodegeneration. Current Biology, 2019, 29, 3135-3152.e4.	1.8	43
424	Role of protein conformation and weak interactions on Î ³ -gliadin liquid-liquid phase separation. Scientific Reports, 2019, 9, 13391.	1.6	18
425	Three archetypical classes of macromolecular regulators of protein liquid–liquid phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19474-19483.	3.3	96
426	The mutational landscape of a prion-like domain. Nature Communications, 2019, 10, 4162.	5.8	116
427	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophysical Journal, 2019, 117, 1285-1300.	0.2	208
428	Stress granules and neurodegeneration. Nature Reviews Neuroscience, 2019, 20, 649-666.	4.9	452
429	Neurons Induced From Fibroblasts of c9ALS/FTD Patients Reproduce the Pathology Seen in the Central Nervous System. Frontiers in Neuroscience, 2019, 13, 935.	1.4	2
430	Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nature Communications, 2019, 10, 4536.	5.8	27
431	C9-ALS/FTD-linked proline–arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death and Disease, 2019, 10, 746.	2.7	31
432	Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nature Cell Biology, 2019, 21, 162-168.	4.6	168
433	Intrinsically Disordered Proteins and Their "Mysterious―(Meta)Physics. Frontiers in Physics, 2019, 7, .	1.0	352
434	Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2019, 12, 25.	1.4	459
435	Phase separation: Bridging polymer physics and biology. Current Opinion in Colloid and Interface Science, 2019, 39, 86-97.	3.4	69
436	Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 2019, 176, 419-434.	13.5	1,739

	CITATION		
#	Article	IF	Citations
437	Phase behavior and morphology of multicomponent liquid mixtures. Soft Matter, 2019, 15, 1297-1311.	1.2	77
438	Thermodynamically driven assemblies and liquid–liquid phase separations in biology. Soft Matter, 2019, 15, 1135-1154.	1.2	77
439	New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. Journal of Cell Science, 2019, 132, .	1.2	15
440	Neuronal ribonucleoprotein granules: Dynamic sensors of localized signals. Traffic, 2019, 20, 639-649.	1.3	59
441	A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. MSphere, 2019, 4, .	1.3	1
442	New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiology of Disease, 2019, 130, 104515.	2.1	60
443	Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid–Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry - A European Journal, 2019, 25, 13049-13069.	1.7	96
444	Perspectives on drug discovery strategies based on IDPs. , 2019, , 275-327.		9
445	First-generation predictors of biological protein phase separation. Current Opinion in Structural Biology, 2019, 58, 88-96.	2.6	119
446	IDPs and IDRs in biomolecular condensates. , 2019, , 209-255.		13
447	Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends in Genetics, 2019, 35, 601-613.	2.9	22
448	Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers, 2019, 11, 990.	2.0	54
449	Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic, 2019, 20, 623-638.	1.3	75
450	Protein phase separation in mitosis. Current Opinion in Cell Biology, 2019, 60, 92-98.	2.6	29
451	Could an Impairment in Local Translation of mRNAs in Glia be Contributing to Pathogenesis in ALS?. Frontiers in Molecular Neuroscience, 2019, 12, 124.	1.4	9
452	Cryo-EM of amyloid fibrils and cellular aggregates. Current Opinion in Structural Biology, 2019, 58, 34-42.	2.6	112
453	A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids. PLoS Biology, 2019, 17, e3000327.	2.6	91
454	The prion-like domain of Drosophila Imp promotes axonal transport of RNP granules in vivo. Nature Communications, 2019, 10, 2593.	5.8	29

#	Article	IF	CITATIONS
455	Increased Aggregation Tendency of Alpha-Synuclein in a Fully Disordered Protein Complex. Journal of Molecular Biology, 2019, 431, 2581-2598.	2.0	22
456	Cellular consequences of arginine methylation. Cellular and Molecular Life Sciences, 2019, 76, 2933-2956.	2.4	99
457	Liquid–liquid phase separation of tau protein: The crucial role of electrostatic interactions. Journal of Biological Chemistry, 2019, 294, 11054-11059.	1.6	155
458	Aberrant Phase Transitions: Side Effects and Novel Therapeutic Strategies in Human Disease. Frontiers in Genetics, 2019, 10, 173.	1.1	52
459	Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation. Trends in Biochemical Sciences, 2019, 44, 716-728.	3.7	94
460	N-terminal sequences in matrin 3 mediate phase separation into droplet-like structures that recruit TDP43 variants lacking RNA binding elements. Laboratory Investigation, 2019, 99, 1030-1040.	1.7	30
461	Osmolyte accumulation regulates the SUMOylation and inclusion dynamics of the prionogenic Cyc8-Tup1 transcription corepressor. PLoS Genetics, 2019, 15, e1008115.	1.5	11
462	Delineating the effect of mutations on the conformational dynamics of N-terminal domain of TDP-43. Biophysical Chemistry, 2019, 250, 106174.	1.5	21
463	Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron, 2019, 102, 294-320.	3.8	176
464	Altered dynamics may drift pathological fibrillization in membraneless organelles. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 988-998.	1.1	17
465	The Upper Hand of the Otu Amyloid Fibers: Increasing Enzymatic Activity and Prolonging Lifespan. Molecular Cell, 2019, 74, 225-226.	4.5	0
466	ALS-Linked Mutations Affect UBQLN2 Oligomerization and Phase Separation in a Position- and Amino Acid-Dependent Manner. Structure, 2019, 27, 937-951.e5.	1.6	75
467	Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communications, 2019, 10, 2006.	5.8	157
468	Requirements for multivalent Yb body assembly in transposon silencing in <i>Drosophila</i> . EMBO Reports, 2019, 20, e47708.	2.0	25
469	Active Protein Neddylation or Ubiquitylation Is Dispensable for Stress Granule Dynamics. Cell Reports, 2019, 27, 1356-1363.e3.	2.9	48
470	The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Frontiers in Neuroscience, 2019, 13, 335.	1.4	135
471	Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature, 2019, 569, 265-269.	13.7	196
472	Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 922-932.	1.1	8

#	Article	IF	CITATIONS
473	Super-enhancers in cancer. , 2019, 199, 129-138.		114
474	Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nature Reviews Neurology, 2019, 15, 272-286.	4.9	150
475	Design rules for encapsulating proteins into complex coacervates. Soft Matter, 2019, 15, 3089-3103.	1.2	69
476	Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death. Neuron, 2019, 102, 339-357.e7.	3.8	331
477	Missing in Action: Dysfunctional RNA Metabolism in Oligodendroglial Cells as a Contributor to Neurodegenerative Diseases?. Neurochemical Research, 2020, 45, 566-579.	1.6	4
478	Emergent functions of proteins in non-stoichiometric supramolecular assemblies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 970-979.	1.1	49
479	Phase Separation, Transition, and Autophagic Degradation of Proteins in Development and Pathogenesis. Trends in Cell Biology, 2019, 29, 417-427.	3.6	84
480	Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nature Structural and Molecular Biology, 2019, 26, 193-203.	3.6	242
481	A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nature Structural and Molecular Biology, 2019, 26, 220-226.	3.6	184
482	Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. Journal of Biological Chemistry, 2019, 294, 6696-6709.	1.6	83
483	Matter over mind: Liquid phase separation and neurodegeneration. Journal of Biological Chemistry, 2019, 294, 7160-7168.	1.6	176
484	α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 890-908.	1.1	241
485	Functional Segments on Intrinsically Disordered Regions in Disease-Related Proteins. Biomolecules, 2019, 9, 88.	1.8	16
486	Complete Phase Diagram for Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2019, 10, 1644-1652.	2.1	204
487	The three faces of Sup35. Yeast, 2019, 36, 465-472.	0.8	13
488	Lipid Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. ACS Omega, 2019, 4, 6551-6559.	1.6	40
489	lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochemical Journal, 2019, 476, 1083-1104.	1.7	26
490	The fitness cost and benefit of phaseâ€separated protein deposits. Molecular Systems Biology, 2019, 15, e8075.	3.2	10

#	Article	IF	CITATIONS
491	Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell, 2019, 177, 697-710.e17.	13.5	73
492	Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain. Cell, 2019, 177, 711-721.e8.	13.5	121
493	ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97. Molecular Cell, 2019, 74, 742-757.e8.	4.5	123
494	Single Amino Acid Substitutions in Stickers, but Not Spacers, Substantially Alter UBQLN2 Phase Transitions and Dense Phase Material Properties. Journal of Physical Chemistry B, 2019, 123, 3618-3629.	1.2	60
495	Contributions of the C-terminal domain to poly(A)-specific ribonuclease (PARN) stability and self-association. Biochemistry and Biophysics Reports, 2019, 18, 100626.	0.7	3
496	Stressâ€induced mRNP granules: Form and function of processing bodies and stress granules. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1524.	3.2	121
497	What Happens to Concussed Animals?. , 2019, , 153-204.		0
498	The proteostasis network and its decline in ageing. Nature Reviews Molecular Cell Biology, 2019, 20, 421-435.	16.1	860
499	Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathologica, 2019, 137, 535-555.	3.9	23
500	Ionic polypeptide tags for protein phase separation. Chemical Science, 2019, 10, 2700-2707.	3.7	57
501	Directed Growth of Biomimetic Microcompartments. Advanced Biology, 2019, 3, e1800314.	3.0	25
502	Ciphers and Executioners: How 3′-Untranslated Regions Determine the Fate of Messenger RNAs. Frontiers in Genetics, 2019, 10, 6.	1.1	72
503	RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43. Neuron, 2019, 102, 321-338.e8.	3.8	365
504	Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules, 2019, 9, 71.	1.8	91
505	The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain. Journal of Biological Chemistry, 2019, 294, 6306-6317.	1.6	238
506	Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Development Growth and Differentiation, 2019, 61, 343-352.	0.6	13
507	Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4218-4227.	3.3	249
508	EGFP insertional mutagenesis reveals multiple FXR2P fibrillar states with differing ribosome association in neurons. Biology Open, 2019, 8, .	0.6	1

		CITATION REPORT		
#	Article	IF	CITATIONS	
509	ATP-Dependent Diffusion Entropy and Homogeneity in Living Cells. Entropy, 2019, 21, 962.	1.1	6	
510	Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Advances in Protein Chemistry and Structural Biology, 2019, 118, 289-331.	1.0	50	
511	RNP Granule Formation: Lessons from P-Bodies and Stress Granules. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 203-215.	2.0	67	
512	The IncRNA <i>hsrï‰</i> regulates arginine dimethylation of FUS to cause its proteasomal degradation in <i>Drosophila</i> . Journal of Cell Science, 2019, 132, .	1.2	18	
513	Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 55-66.	2.0	4	
514	TDP-43 aggregation inside micronuclei reveals a potential mechanism for protein inclusion formation in ALS. Scientific Reports, 2019, 9, 19928.	1.6	19	
515	Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Frontiers in Molecular Neuroscience, 2019, 12, 301.	1.4	86	
516	Intermolecular Charge-Transfer Modulates Liquid–Liquid Phase Separation and Liquid-to-Solid Maturation of an Intrinsically Disordered pH-Responsive Domain. Journal of the American Chemical Society, 2019, 141, 20380-20389.	6.6	54	
517	LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Computational Biology, 2019, 15, e1007028.	1.5	261	
518	Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Frontiers in Genetics, 2019, 10, 1179.	1.1	25	
519	The liquid nucleome $\hat{a} \in $ phase transitions in the nucleus at a glance. Journal of Cell Science, 2019, 132, .	1.2	181	
520	Probing and engineering liquid-phase organelles. Nature Biotechnology, 2019, 37, 1435-1445.	9.4	225	
521	Expression and phase separation potential ofÂheterochromatin proteins during early mouseÂdevelopment. EMBO Reports, 2019, 20, e47952.	2.0	12	
522	The Biology of mRNA: Structure and Function. Advances in Experimental Medicine and Biology, 2019, , .	0.8	3	
523	Cellular Proteostasis in Neurodegeneration. Molecular Neurobiology, 2019, 56, 3676-3689.	1.9	152	
524	Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics. Journal of Biological Chemistry, 2019, 294, 7137-7150.	1.6	275	
525	Physical Chemistry of Cellular Liquidâ€Phase Separation. Chemistry - A European Journal, 2019, 25, 5600-5610.	1.7	44	
526	TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nature Neuroscience, 2019, 22, 65-77.	7.1	143	

#	Article	IF	CITATIONS
527	Single-molecule dynamics of the P granule scaffold MEG-3 in the <i>Caenorhabditis elegans</i> zygote. Molecular Biology of the Cell, 2019, 30, 333-345.	0.9	17
528	Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata). Marine Biotechnology, 2019, 21, 38-51.	1.1	33
529	MAPK- and glycogen synthase kinase 3–mediated phosphorylation regulates the DEAD-box protein modulator Gle1 for control of stress granule dynamics. Journal of Biological Chemistry, 2019, 294, 559-575.	1.6	20
530	RNA Splicing and Disease: Animal Models to Therapies. Trends in Genetics, 2019, 35, 68-87.	2.9	154
531	Protein Phase Separation as a Stress Survival Strategy. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034058.	2.3	112
532	Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response. Molecular Cell, 2019, 73, 946-958.e7.	4.5	125
533	Therapeutic Dissolution of Aberrant Phases by Nuclear-Import Receptors. Trends in Cell Biology, 2019, 29, 308-322.	3.6	55
534	More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Current Genetics, 2019, 65, 691-694.	0.8	58
535	Aggregation of the nucleic acid–binding protein TDP-43 occurs via distinct routes that are coordinated with stress granule formation. Journal of Biological Chemistry, 2019, 294, 3696-3706.	1.6	73
536	Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. International Journal of Biological Macromolecules, 2019, 127, 136-145.	3.6	13
537	Membraneless nuclear organelles and the search for phases within phases. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1514.	3.2	111
538	Novel physics arising from phase transitions in biology. Journal Physics D: Applied Physics, 2019, 52, 023001.	1.3	21
539	RNA Binding Proteins and the Pathogenesis of Frontotemporal Lobar Degeneration. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 469-495.	9.6	32
540	Heavy Metal Neurotoxicants Induce ALS-Linked TDP-43 Pathology. Toxicological Sciences, 2019, 167, 105-115.	1.4	37
541	Aggregation and degradation scales for prion-like domains: sequence features and context weigh in. Current Genetics, 2019, 65, 387-392.	0.8	2
542	Differences between acute and chronic stress granules, and how these differences may impact function in human disease. Biochemical Pharmacology, 2019, 162, 123-131.	2.0	69
543	Acetylation of intrinsically disordered regions regulates phase separation. Nature Chemical Biology, 2019, 15, 51-61.	3.9	190
544	Bacterial FtsZ protein forms phaseâ€separated condensates with its nucleoidâ€essociated inhibitor SlmA. EMBO Reports, 2019, 20, .	2.0	94

#	Article	IF	CITATIONS
545	Intrinsically Disordered Proteins: Polymers Without Structure but With Great Potential for Applications in Food Science. , 2019, , 134-140.		0
546	The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer. Biochemistry, 2019, 58, 608-620.	1.2	16
547	Physiologically Important Electrolytes as Regulators of TDP-43 Aggregation and Droplet-Phase Behavior. Biochemistry, 2019, 58, 590-607.	1.2	24
548	Gle1 mediates stress granule-dependent survival during chemotoxic stress. Advances in Biological Regulation, 2019, 71, 156-171.	1.4	14
549	Autophagy as a common pathway in amyotrophic lateral sclerosis. Neuroscience Letters, 2019, 697, 34-48.	1.0	80
550	Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Seminars in Cell and Developmental Biology, 2019, 86, 150-161.	2.3	24
551	UBAP2L arginine methylation by PRMT1 modulates stress granule assembly. Cell Death and Differentiation, 2020, 27, 227-241.	5.0	59
552	Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2253-2266.	2.0	6
553	Upregulation of ATG7 attenuates motor neuron dysfunction associated with depletion of TARDBP/TDP-43. Autophagy, 2020, 16, 672-682.	4.3	24
554	Cytoplasmic functions of TDP-43 and FUS and their role in ALS. Seminars in Cell and Developmental Biology, 2020, 99, 193-201.	2.3	80
555	Protein aggregation in cell biology: An aggregomics perspective of health and disease. Seminars in Cell and Developmental Biology, 2020, 99, 40-54.	2.3	36
556	Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiology of Disease, 2020, 134, 104639.	2.1	101
557	Loss of Dynamic RNA Interaction and Aberrant Phase Separation Induced by Two Distinct Types of ALS/FTD-Linked FUS Mutations. Molecular Cell, 2020, 77, 82-94.e4.	4.5	119
558	Ageâ€related neurodegenerative diseases. Journal of Cellular Physiology, 2020, 235, 3131-3141.	2.0	19
559	Biomolecular condensation of the microtubule-associated protein tau. Seminars in Cell and Developmental Biology, 2020, 99, 202-214.	2.3	27
560	Phase Separation in Regulation of Aggrephagy. Journal of Molecular Biology, 2020, 432, 160-169.	2.0	37
561	ALS and FTD: Where RNA metabolism meets protein quality control. Seminars in Cell and Developmental Biology, 2020, 99, 183-192.	2.3	39
562	Mechanisms of secretion and spreading of pathological tau protein. Cellular and Molecular Life Sciences, 2020, 77, 1721-1744.	2.4	174

#	Article	IF	CITATIONS
563	The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy. Journal of Biological Chemistry, 2020, 295, 2375-2384.	1.6	87
564	Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization. Biophysical Journal, 2020, 118, 753-764.	0.2	105
565	Interplay between intrinsically disordered proteins inside membraneless protein liquid droplets. Chemical Science, 2020, 11, 1269-1275.	3.7	22
566	The functional diversity of structural disorder in plant proteins. Archives of Biochemistry and Biophysics, 2020, 680, 108229.	1.4	27
567	Ordered structure-forming properties of the intrinsically disordered AB region of hRXRÎ ³ and its ability to promote liquid-liquid phase separation. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105571.	1.2	11
568	Structural Insight into IAPPâ€Derived Amyloid Inhibitors and Their Mechanism of Action. Angewandte Chemie - International Edition, 2020, 59, 5771-5781.	7.2	17
569	Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126942.	1.0	31
570	A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Molecular Cell, 2020, 77, 251-265.e9.	4.5	69
571	Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity. Journal of Molecular Biology, 2020, 432, 828-844.	2.0	19
572	Liquid–liquid phase separation of the Golgi matrix protein GM130. FEBS Letters, 2020, 594, 1132-1144.	1.3	44
573	Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Seminars in Cell and Developmental Biology, 2020, 99, 115-130.	2.3	19
574	Mitotic Implantation of the Transcription Factor Prospero via Phase Separation Drives Terminal Neuronal Differentiation. Developmental Cell, 2020, 52, 277-293.e8.	3.1	62
575	Sky1: at the intersection of prion-like proteins and stress granule regulation. Current Genetics, 2020, 66, 463-468.	0.8	2
576	Structural dissection of amyloid aggregates of TDPâ€43 and its Câ€ŧerminal fragments TDPâ€35 and TDPâ€16. FEBS Journal, 2020, 287, 2449-2467.	2.2	33
577	Liquidâ€liquid phase separation and fibrillation of the prion protein modulated by a highâ€affinity DNA aptamer. FASEB Journal, 2020, 34, 365-385.	0.2	42
578	The cell stress response: extreme times call for postâ€ŧranscriptional measures. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1578.	3.2	20
579	Molecular structure in biomolecular condensates. Current Opinion in Structural Biology, 2020, 60, 17-26.	2.6	91
580	Early Metastable Assembly during the Stress-Induced Formation of Worm-like Amyloid Fibrils of Nucleic Acid Binding Domains of TDP-43. Biochemistry, 2020, 59, 315-328.	1.2	17

#	Article	IF	CITATIONS
581	Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2020, 59, 364-378.	1.2	31
582	NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. Journal of the American Chemical Society, 2020, 142, 2471-2489.	6.6	49
583	Origin and Evolution of Carboxysome Positioning Systems in Cyanobacteria. Molecular Biology and Evolution, 2020, 37, 1434-1451.	3.5	60
584	Beyond aggregation: Pathological phase transitions in neurodegenerative disease. Science, 2020, 370, 56-60.	6.0	231
585	Negri bodies and other virus membrane-less replication compartments. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118831.	1.9	60
586	Liquid Phase Separation Controlled by pH. Biophysical Journal, 2020, 119, 1590-1605.	0.2	43
587	The prion-like nature of amyotrophic lateral sclerosis. Progress in Molecular Biology and Translational Science, 2020, 175, 261-296.	0.9	14
588	Biophysical characterization of intrinsically disordered human Golgi matrix protein GRASP65. International Journal of Biological Macromolecules, 2020, 162, 1982-1993.	3.6	8
589	Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. International Journal of Biological Macromolecules, 2020, 164, 3501-3507.	3.6	20
590	Phase Separation in Cell Division. Molecular Cell, 2020, 80, 9-20.	4.5	56
591			
	Targeting stress granules: A novel therapeutic strategy for human diseases. Pharmacological Research, 2020, 161, 105143.	3.1	36
592		3.1 2.9	36 46
	Research, 2020, 161, 105143.		
592	Research, 2020, 161, 105143. Fyn Kinase Controls Tau Aggregation InÂVivo. Cell Reports, 2020, 32, 108045. Refining All-Atom Protein Force Fields for Polar-Rich, Prion-like, Low-Complexity Intrinsically	2.9	46
592 593	Research, 2020, 161, 105143. Fyn Kinase Controls Tau Aggregation InÂVivo. Cell Reports, 2020, 32, 108045. Refining All-Atom Protein Force Fields for Polar-Rich, Prion-like, Low-Complexity Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2020, 124, 9505-9512. Liquid-liquid phase separation promotes animal desiccation tolerance. Proceedings of the National	2.9 1.2	46 40
592 593 594	 Research, 2020, 161, 105143. Fyn Kinase Controls Tau Aggregation InÂVivo. Cell Reports, 2020, 32, 108045. Refining All-Atom Protein Force Fields for Polar-Rich, Prion-like, Low-Complexity Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2020, 124, 9505-9512. Liquid-liquid phase separation promotes animal desiccation tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27676-27684. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus 	2.9 1.2 3.3	46 40 50
592 593 594 595	Research, 2020, 161, 105143. Fyn Kinase Controls Tau Aggregation InÂVivo. Cell Reports, 2020, 32, 108045. Refining All-Atom Protein Force Fields for Polar-Rich, Prion-like, Low-Complexity Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2020, 124, 9505-9512. Liquid-liquid phase separation promotes animal desiccation tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27676-27684. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses, 2020, 12, 1179. Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human	2.9 1.2 3.3 1.5	46 40 50 34

#	Article	IF	CITATIONS
599	Daily Cycles of Reversible Protein Condensation in Cyanobacteria. Cell Reports, 2020, 32, 108032.	2.9	26
600	Phase Separation in Germ Cells and Development. Developmental Cell, 2020, 55, 4-17.	3.1	52
601	Emerging Roles for Phase Separation in Plants. Developmental Cell, 2020, 55, 69-83.	3.1	84
602	Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Developmental Cell, 2020, 55, 45-68.	3.1	234
603	Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance. Molecular Cell, 2020, 79, 645-659.e9.	4.5	40
604	BAG3 and BAG6 differentially affect the dynamics of stress granules by targeting distinct subsets of defective polypeptides released from ribosomes. Cell Stress and Chaperones, 2020, 25, 1045-1058.	1.2	7
605	Solid-State NMR Reveals the Structural Transformation of the TDP-43 Amyloidogenic Region upon Fibrillation. Journal of the American Chemical Society, 2020, 142, 3412-3421.	6.6	51
606	Critical behavior of charge-regulated macro-ions. Journal of Chemical Physics, 2020, 153, 024901.	1.2	15
607	Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118795.	1.9	22
608	Profilin choreographs actin and microtubules in cells and cancer. International Review of Cell and Molecular Biology, 2020, 355, 155-204.	1.6	32
609	Fast and synchronized fluctuations of cortical actin negatively correlate with nucleoli liquid–liquid phase separation in T cells. European Biophysics Journal, 2020, 49, 409-423.	1.2	4
610	Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid–liquid phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18540-18549.	3.3	150
611	Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angewandte Chemie, 2020, 132, 8215-8219.	1.6	0
612	Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Nature Communications, 2020, 11, 5735.	5.8	76
613	Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Molecular Cell, 2020, 80, 876-891.e6.	4.5	154
614	Coiled-Coil Motifs of RNA-Binding Proteins: Dynamicity in RNA Regulation. Frontiers in Cell and Developmental Biology, 2020, 8, 607947.	1.8	20
615	Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics. ACS Central Science, 2020, 6, 2301-2310.	5.3	32
616	Phase separation of the Cep63•Cep152 complex underlies the formation of dynamic supramolecular self-assemblies at human centrosomes. Cell Cycle, 2020, 19, 3437-3457.	1.3	12

#	Article	IF	CITATIONS
617	Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31123-31133.	3.3	66
618	Identification and Characterization of the Heat-Induced Plastidial Stress Granules Reveal New Insight Into Arabidopsis Stress Response. Frontiers in Plant Science, 2020, 11, 595792.	1.7	24
619	Modeling the Mechanisms by Which Coexisting Biomolecular RNA–Protein Condensates Form. Bulletin of Mathematical Biology, 2020, 82, 153.	0.9	6
620	Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano, 2020, 14, 16220-16240.	7.3	59
621	Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31882-31890.	3.3	70
622	Micellar TIA1 with folded RNA binding domains as a model for reversible stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31832-31837.	3.3	15
623	Liquid–Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus–Host Interactions. International Journal of Molecular Sciences, 2020, 21, 9045.	1.8	110
624	Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. International Journal of Molecular Sciences, 2020, 21, 9186.	1.8	20
625	Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biology, 2020, 37, 101781.	3.9	21
626	The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathologica, 2020, 140, 599-623.	3.9	62
627	Is it accurate to classify ALS as a neuromuscular disorder?. Expert Review of Neurotherapeutics, 2020, 20, 895-906.	1.4	12
628	GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling. Molecular Cell, 2020, 79, 782-796.e6.	4.5	34
629	An InÂVitro Assembly System Identifies Roles for RNA Nucleation and ATP in Yeast Stress Granule Formation. Molecular Cell, 2020, 79, 991-1007.e4.	4.5	23
630	Pathophysiological implications of RNP granules in frontotemporal dementia and ALS. Neurochemistry International, 2020, 140, 104819.	1.9	5
631	Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opinion on Therapeutic Targets, 2020, 24, 971-984.	1.5	3
632	Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules, 2020, 21, 3523-3538.	2.6	12
633	Liquid-Liquid Phase Separation in Neuronal Development and Synaptic Signaling. Developmental Cell, 2020, 55, 18-29.	3.1	77
634	Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Developmental Cell, 2020, 55, 30-44.	3.1	176

# 635	ARTICLE Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Frontiers in Ecology and Evolution, 2020, 8, .	IF 1.1	Citations
636	A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Frontiers in Aging Neuroscience, 2020, 12, 191.	1.7	16
637	The Impact of ALS-Associated Genes hnRNPA1, MATR3, VCP and UBQLN2 on the Severity of TDP-43 Aggregation. Cells, 2020, 9, 1791.	1.8	6
638	Dietary Gluten and Neurodegeneration: A Case for Preclinical Studies. International Journal of Molecular Sciences, 2020, 21, 5407.	1.8	17
639	De novo engineering of intracellular condensates using artificial disordered proteins. Nature Chemistry, 2020, 12, 814-825.	6.6	157
640	Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nature Cell Biology, 2020, 22, 960-972.	4.6	97
641	Stress Granules in Cancer. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 25-52.	0.9	35
642	Phase Separation of Toxic Dipeptide Repeat Proteins Related to C9orf72 ALS/FTD. Biophysical Journal, 2020, 119, 843-851.	0.2	26
643	Latent Models of Molecular Dynamics Data: Automatic Order Parameter Generation for Peptide Fibrillization. Journal of Physical Chemistry B, 2020, 124, 8012-8022.	1.2	6
644	Polymer Stiffness Regulates Multivalent Binding and Liquid-Liquid Phase Separation. Biophysical Journal, 2020, 119, 1849-1864.	0.2	7
645	Microfluidic characterization of macromolecular liquid–liquid phase separation. Lab on A Chip, 2020, 20, 4225-4234.	3.1	20
646	FMRP-PKA Activity Negative Feedback Regulates RNA Binding-Dependent Fibrillation in Brain Learning and Memory Circuitry. Cell Reports, 2020, 33, 108266.	2.9	8
647	MloDisDB: a manually curated database of the relations between membraneless organelles and diseases. Briefings in Bioinformatics, 2021, 22, .	3.2	10
648	Protein phase separation: A novel therapy for cancer?. British Journal of Pharmacology, 2020, 177, 5008-5030.	2.7	13
649	Weak binding to the A2RE RNA rigidifies hnRNPA2 RRMs and reduces liquid–liquid phase separation and aggregation. Nucleic Acids Research, 2020, 48, 10542-10554.	6.5	12
650	Mammalian stress granules and P bodies at a glance. Journal of Cell Science, 2020, 133, .	1.2	198
651	Ubiquitinâ€Modulated Phase Separation of Shuttle Proteins: Does Condensate Formation Promote Protein Degradation?. BioEssays, 2020, 42, e2000036.	1.2	33
652	Revisiting the Concept of Stress in the Prognosis of Solid Tumors: A Role for Stress Granules Proteins?. Cancers, 2020, 12, 2470.	1.7	14

#	Article	IF	Citations
653	Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Research Reviews, 2020, 64, 101172.	5.0	5
654	Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell, 2020, 182, 1531-1544.e15.	13.5	177
655	Unraveling Molecular Interactions in Liquid–Liquid Phase Separation of Disordered Proteins by Atomistic Simulations. Journal of Physical Chemistry B, 2020, 124, 9009-9016.	1.2	103
656	Liquid–Liquid Phase Separation of Viologen Bistriflimide/Benzene Mixtures: Role of the Dual Ionic and Organic Nature of Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 7929-7937.	1.2	9
657	DEPS-1 is required for piRNA-dependent silencing and PIWI condensate organisation in Caenorhabditis elegans. Nature Communications, 2020, 11, 4242.	5.8	16
658	ATP Kinetically Modulates Pathogenic Tau Fibrillations. ACS Chemical Neuroscience, 2020, 11, 3144-3152.	1.7	17
659	lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nature Cell Biology, 2020, 22, 1211-1222.	4.6	100
660	Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Molecular Neurodegeneration, 2020, 15, 51.	4.4	54
661	Dynamic structural order of a low-complexity domain facilitates assembly of intermediate filaments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23510-23518.	3.3	19
662	Liquid–Liquid Phase Separation in Crowded Environments. International Journal of Molecular Sciences, 2020, 21, 5908.	1.8	156
663	Interactions between the Intrinsically Disordered Regions of hnRNP-A2 and TDP-43 Accelerate TDP-43′s Conformational Transition. International Journal of Molecular Sciences, 2020, 21, 5930.	1.8	5
664	The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nature Communications, 2020, 11, 6349.	5.8	33
665	Perspective: Controlling Epidermal Terminal Differentiation with Transcriptional Bursting and RNA Bodies. Journal of Developmental Biology, 2020, 8, 29.	0.9	4
666	Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell Reports, 2020, 33, 108538.	2.9	69
667	Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell, 2020, 183, 1742-1756.	13.5	147
668	Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Molecular Cell, 2020, 80, 1078-1091.e6.	4.5	255
669	New Insights Into Drug Discovery Targeting Tau Protein. Frontiers in Molecular Neuroscience, 2020, 13, 590896.	1.4	78
670	Behavior control of membrane-less protein liquid condensates with metal ion-induced phase separation. Nature Communications, 2020, 11, 5554.	5.8	35

ARTICLE IF CITATIONS Evidence of A Negative Feedback Network Between TDP-43 and miRNAs Dependent on TDP-43 Nuclear 671 2.0 10 Localization. Journal of Molecular Biology, 2020, 432, 166695. MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki 9.4 syndrome. Nature Genetics, 2020, 52, 1397-1411. Changes in subcellular structures and states of Pumilio1 regulate the translation of target 673 1.2 10 <i>Mad2</i> and <i>Cyclin B1</i> mRNAs. Journal of Cell Science, 2020, 133, . A Prion-like Domain in Transcription Factor EBF1 Promotes Phase Separation and Enables B Cell 674 Programming of Progenitor Chromatin. Immunity, 2020, 53, 1151-1167.e6. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nature 675 5.8 96 Communications, 2020, 11, 5574. Amyloids and their untapped potential as hydrogelators. Soft Matter, 2020, 16, 10013-10028. 1.2 Comparative roles of charge, <i>i∈</i> , and hydrophobic interactions in sequence-dependent phase 677 separation of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of 3.3 159 the United States of America, 2020, 117, 28795-28805. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid–Liquid Phase 1.7 Separation. Molecules, 2020, 25, 4705. In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain, 2020, 143, 679 3.7 42 1350-1367. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. Small, 2020, 16, 5.2 e1907671. RNA phase separation–mediated direction of molecular trafficking under conditions of molecular 681 12 1.5 crowding. Biophysical Reviews, 2020, 12, 669-676. Deciphering the structural intricacy in virulence effectors for proton-motive force mediated unfolding in type-III protein secretion. International Journal of Biological Macromolecules, 2020, 159, 3.6 18-33. PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in 683 6.5 71 proteins. Nucleic Acids Research, 2020, 48, W77-W84. ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering 684 2.7 respiratory chain complex mRNAs. Genes and Development, 2020, 34, 785-805. Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug 685 1.6 25 screening in test tubes. Journal of Biological Chemistry, 2020, 295, 11420-11434. Karyopherins and condensates. Current Opinion in Cell Biology, 2020, 64, 112-123. DDX3X Sits at the Crossroads of Liquid–Liquid and Prionoid Phase Transitions Arbitrating Life and 687 0.9 12 Death Cell Fate Decisions in Stressed Cells. DNA and Cell Biology, 2020, 39, 1091-1095. Musashi-1: An Example of How Polyalanine Tracts Contribute to Self-Association in the Intrinsically 688 Disordered Regions of RNA-Binding Proteins. International Journal of Molecular Sciences, 2020, 21, 1.8 2289.

#	Article	IF	CITATIONS
689	Unblending of Transcriptional Condensates in Human Repeat Expansion Disease. Cell, 2020, 181, 1062-1079.e30.	13.5	115
690	Conserved Outer Tegument Component UL11 from Herpes Simplex Virus 1 Is an Intrinsically Disordered, RNA-Binding Protein. MBio, 2020, 11, .	1.8	33
691	Infectious Bronchitis Virus Regulates Cellular Stress Granule Signaling. Viruses, 2020, 12, 536.	1.5	11
692	Liquid–liquid phase separation of type II diabetes-associated IAPP initiates hydrogelation and aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12050-12061.	3.3	57
693	Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends in Biochemical Sciences, 2020, 45, 764-778.	3.7	132
694	The Wide World of Coacervates: From the Sea to Neurodegeneration. Trends in Biochemical Sciences, 2020, 45, 706-717.	3.7	43
695	Cellular polyamines condense hyperphosphorylated Tau, triggering Alzheimer's disease. Scientific Reports, 2020, 10, 10098.	1.6	12
696	Phase transition of RNAâ^`protein complexes into ordered hollow condensates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15650-15658.	3.3	143
697	Proteomic analysis reveals the direct recruitment of intrinsically disordered regions to stress granules. Journal of Cell Science, 2020, 133, .	1.2	15
698	Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences, 2020, 63, 953-985.	2.3	164
699	The ABCF gene family facilitates disaggregation during animal development. Molecular Biology of the Cell, 2020, 31, 1324-1345.	0.9	4
700	α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nature Chemistry, 2020, 12, 705-716.	6.6	440
701	The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. Molecular Cell, 2020, 79, 54-67.e7.	4.5	73
702	Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2020, 13, 78.	1.4	53
703	The involvement of stress granules in aging and agingâ€associated diseases. Aging Cell, 2020, 19, e13136.	3.0	68
704	Liquid-Liquid Phase Transition Drives Intra-chloroplast Cargo Sorting. Cell, 2020, 180, 1144-1159.e20.	13.5	70
705	Aggregation and coacervation with Monte Carlo simulations. Progress in Molecular Biology and Translational Science, 2020, 170, 505-520.	0.9	1
706	Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5826-5835.	3.3	32

#	Article	IF	CITATIONS
707	Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nature Cell Biology, 2020, 22, 453-464.	4.6	209
708	Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angewandte Chemie - International Edition, 2020, 59, 8138-8142.	7.2	18
709	pH-Controlled Coacervate–Membrane Interactions within Liposomes. ACS Nano, 2020, 14, 4487-4498.	7.3	94
710	Liquid-liquid phase separation drives skin barrier formation. Science, 2020, 367, .	6.0	141
711	Liquid–Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. Journal of Molecular Biology, 2020, 432, 1910-1925.	2.0	163
712	TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5883-5894.	3.3	258
713	Liquid-liquid phase separation and extracellular multivalent interactions in the tale of galectin-3. Nature Communications, 2020, 11, 1229.	5.8	66
714	Nuclear immunophilin FKBP39 from Drosophila melanogaster drives spontaneous liquid-liquid phase separation. International Journal of Biological Macromolecules, 2020, 163, 108-119.	3.6	3
715	The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. Progress in Molecular Biology and Translational Science, 2020, 174, 187-223.	0.9	16
716	Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation. Molecular Cell, 2020, 79, 443-458.e7.	4.5	118
717	RBM45 associates with nuclear stress bodies and forms nuclear inclusions during chronic cellular stress and in neurodegenerative diseases. Acta Neuropathologica Communications, 2020, 8, 91.	2.4	9
718	Perturbation of anionic surfactant induced amyloid fibrillation by chemical chaperone: A biophysical study. Journal of Molecular Liquids, 2020, 315, 113717.	2.3	7
719	Modeling UBQLN2-mediated neurodegenerative disease in mice: Shared and divergent properties of wild type and mutant UBQLN2 in phase separation, subcellular localization, altered proteostasis pathways, and selective cytotoxicity. Neurobiology of Disease, 2020, 143, 105016.	2.1	22
720	Salt-induced LCST-type thermal gelation of methylcellulose: quantifying non-specific interactions <i>via</i> fluctuation theory. Physical Chemistry Chemical Physics, 2020, 22, 15999-16006.	1.3	6
721	Organizing the oocyte: RNA localization meets phase separation. Current Topics in Developmental Biology, 2020, 140, 87-118.	1.0	12
722	SATB1-mediated chromatin landscape in T cells. Nucleus, 2020, 11, 117-131.	0.6	20
723	Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science, 2020, 367, 694-699.	6.0	675
724	A synthetic Pur-based peptide binds and alters G-quadruplex secondary structure present in the expanded RNA repeat of C9orf72 ALS/FTD. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118674	1.9	8

#	Article	IF	CITATIONS
725	Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in <i>Saccharomyces cerevisiae</i> . Wiley Interdisciplinary Reviews RNA, 2020, 11, e1591.	3.2	11
726	Nuclear bodies formed by polyQ-ataxin-1 protein are liquid RNA/protein droplets with tunable dynamics. Scientific Reports, 2020, 10, 1557.	1.6	15
727	Structural Insight into IAPPâ€Đerived Amyloid Inhibitors and Their Mechanism of Action. Angewandte Chemie, 2020, 132, 5820-5830.	1.6	3
728	Finite-size scaling analysis of protein droplet formation. Physical Review E, 2020, 101, 022413.	0.8	12
729	Phase Separation and Cytotoxicity of Tau are Modulated by Protein Disulfide Isomerase and S-nitrosylation of this Molecular Chaperone. Journal of Molecular Biology, 2020, 432, 2141-2163.	2.0	28
730	Model for disordered proteins with strongly sequence-dependent liquid phase behavior. Journal of Chemical Physics, 2020, 152, 075101.	1.2	120
731	A guide to regulation of the formation of biomolecular condensates. FEBS Journal, 2020, 287, 1924-1935.	2.2	48
732	Distinct Features of Stress Granule Proteins Predict Localization in Membraneless Organelles. Journal of Molecular Biology, 2020, 432, 2349-2368.	2.0	57
733	Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. Molecular Cell, 2020, 77, 1237-1250.e4.	4.5	137
734	Autonomous Pathway: <i>FLOWERING LOCUS C</i> Repression through an Antisense-Mediated Chromatin-Silencing Mechanism. Plant Physiology, 2020, 182, 27-37.	2.3	79
735	The clinical trial landscape in amyotrophic lateral sclerosis—Past, present, and future. Medicinal Research Reviews, 2020, 40, 1352-1384.	5.0	61
736	Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Scientific Reports, 2020, 10, 580.	1.6	66
737	Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions. ACS Chemical Neuroscience, 2020, 11, 615-627.	1.7	70
738	The G3BP1-Family-USP10 Deubiquitinase Complex Rescues Ubiquitinated 40S Subunits of Ribosomes Stalled in Translation from Lysosomal Degradation. Molecular Cell, 2020, 77, 1193-1205.e5.	4.5	78
739	hnRNPDL Phase Separation Is Regulated by Alternative Splicing and Disease-Causing Mutations Accelerate Its Aggregation. Cell Reports, 2020, 30, 1117-1128.e5.	2.9	47
740	Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Frontiers in Cell and Developmental Biology, 2019, 7, 377.	1.8	141
741	A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes. Journal of Chemical Physics, 2020, 152, 045102.	1.2	45
742	Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annual Review of Biophysics, 2020, 49, 107-133.	4.5	544

#	Article	IF	Citations
π 743	MeCP2 and Chromatin Compartmentalization. Cells, 2020, 9, 878.	1.8	22
740		1.0	22
744	Nuclear hubs built on RNAs and clustered organization of the genome. Current Opinion in Cell Biology, 2020, 64, 67-76.	2.6	39
745	Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cell biology. Current Opinion in Cell Biology, 2020, 63, 194-203.	2.6	24
746	Cloning, expression and purification of the low-complexity region of RanBP9 protein. Protein Expression and Purification, 2020, 172, 105630.	0.6	10
747	Global Approaches in Studying RNA-Binding Protein Interaction Networks. Trends in Biochemical Sciences, 2020, 45, 593-603.	3.7	33
748	Zinc promotes liquid–liquid phase separation of tau protein. Journal of Biological Chemistry, 2020, 295, 5850-5856.	1.6	80
749	Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression. Journal of Virology, 2020, 94, .	1.5	54
750	DDX6 Helicase Behavior and Protein Partners in Human Adipose Tissue-Derived Stem Cells during Early Adipogenesis and Osteogenesis. International Journal of Molecular Sciences, 2020, 21, 2607.	1.8	12
751	Proteome Homeostasis Dysfunction: A Unifying Principle in ALS Pathogenesis. Trends in Neurosciences, 2020, 43, 274-284.	4.2	47
752	Tug of War between Condensate Phases in a Minimal Macromolecular System. Journal of the American Chemical Society, 2020, 142, 8848-8861.	6.6	21
753	Protein assembly systems in natural and synthetic biology. BMC Biology, 2020, 18, 35.	1.7	44
754	Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. Journal of Molecular Biology, 2020, 432, 4270-4286.	2.0	53
755	Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell, 2020, 181, 306-324.e28.	13.5	543
756	Pan-retroviral Nucleocapsid-Mediated Phase Separation Regulates Genomic RNA Positioning and Trafficking. Cell Reports, 2020, 31, 107520.	2.9	82
757	Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties. Annual Review of Physical Chemistry, 2020, 71, 53-75.	4.8	368
758	G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules. Cell, 2020, 181, 325-345.e28.	13.5	697
759	RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell, 2020, 181, 346-361.e17.	13.5	557
760	pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins. Food Hydrocolloids, 2020, 105, 105853.	5.6	20

#	Article	IF	CITATIONS
761	RNA contributions to the form and function of biomolecular condensates. Nature Reviews Molecular Cell Biology, 2021, 22, 183-195.	16.1	353
762	ITSN1 regulates SAM68 solubility through SH3 domain interactions with SAM68 proline-rich motifs. Cellular and Molecular Life Sciences, 2021, 78, 1745-1763.	2.4	7
763	DNA Damage Triggers a New Phase in Neurodegeneration. Trends in Genetics, 2021, 37, 337-354.	2.9	37
764	Full-length TDP-43 and its C-terminal domain form filaments <i>inÂvitro</i> having non-amyloid properties. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2021, 28, 56-65.	1.4	6
765	Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823.	1.9	33
766	How do intrinsically disordered protein regions encode a driving force for liquid–liquid phase separation?. Current Opinion in Structural Biology, 2021, 67, 41-50.	2.6	162
767	Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions. Journal of Molecular Biology, 2021, 433, 166724.	2.0	29
768	Liquid-Liquid Phase Separation of Tau Driven by Hydrophobic Interaction Facilitates Fibrillization of Tau. Journal of Molecular Biology, 2021, 433, 166731.	2.0	75
769	Engineering spatiotemporal organization and dynamics in synthetic cells. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1685.	3.3	19
770	Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nature Cell Biology, 2021, 23, 32-39.	4.6	89
771	PCBP2 Is Downregulated in Degenerating Neurons and Rarely Observed in TDP-43-Positive Inclusions in Sporadic Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2021, 80, 220-228.	0.9	6
772	Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Research, 2021, 49, 636-645.	6.5	48
773	The nucleolus as a multiphase liquid condensate. Nature Reviews Molecular Cell Biology, 2021, 22, 165-182.	16.1	480
774	Role and therapeutic potential of liquid–liquid phase separation in amyotrophic lateral sclerosis. Journal of Molecular Cell Biology, 2021, 13, 15-28.	1.5	23
775	Progress on the Inhibitors of Stress Granules. Hans Journal of Biomedicine, 2021, 11, 40-48.	0.0	0
776	The search for RNA-binding proteins: a technical and interdisciplinary challenge. Biochemical Society Transactions, 2021, 49, 393-403.	1.6	10
777	Protein phase separation: physical models and phase-separation- mediated cancer signaling. Advances in Physics: X, 2021, 6, 1936638.	1.5	2
778	From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies. International Journal of Molecular Sciences, 2021, 22, 1251.	1.8	24

#	Article	IF	CITATIONS
779	Poly(A)-Binding Protein Is an Ataxin-2 Chaperone That Emulsifies Biomolecular Condensates. SSRN Electronic Journal, 0, , .	0.4	0
780	Alteration of Microstructure in Biopolymeric Hydrogels <i>via</i> Compositional Modification of Resilin-Like Polypeptides. ACS Biomaterials Science and Engineering, 2021, 7, 4244-4257.	2.6	11
781	ZSPâ€∃ is a Z granule surface protein required for Z granule fluidity and germline immortality in <i>Caenorhabditis elegans</i> . EMBO Journal, 2021, 40, e105612.	3.5	17
782	CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Science Advances, 2021, 7, .	4.7	52
783	The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. Journal of Biological Chemistry, 2021, 296, 100659.	1.6	27
784	The emerging role of biomolecular condensates in plant immunity. Plant Cell, 2022, 34, 1568-1572.	3.1	10
785	Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit. Methods in Enzymology, 2021, 646, 185-222.	0.4	24
787	Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth. Journal of Cell Science, 2021, 134, .	1.2	11
788	Biophysical underpinnings regarding the formation and the regulation of biomolecular condensates. Journal of the Korean Physical Society, 2021, 78, 393-400.	0.3	1
790	m ⁶ A deposition is regulated by PRMT1â€mediated arginine methylation of METTL14 in its disordered Câ€ŧerminal region. EMBO Journal, 2021, 40, e106309.	3.5	30
791	Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System. Journal of Neuroscience, 2021, 41, 834-844.	1.7	39
792	Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nature Structural and Molecular Biology, 2021, 28, 190-201.	3.6	56
793	Evaluation of Coolingâ€Induced Liquid–Liquid Phase Separation of Ureido Polymers as a Coldâ€Shock Stress Granules Model. Macromolecular Bioscience, 2021, 21, e2000345.	2.1	4
794	The effects of protein charge patterning on complex coacervation. Soft Matter, 2021, 17, 6637-6645.	1.2	18
796	Interplay between tau and αâ€synuclein liquid–liquid phase separation. Protein Science, 2021, 30, 1326-1336.	3.1	53
797	Liquid droplets of protein LAF1 provide a vehicle to regulate storage of the signaling protein K-Ras4B and its transport to the lipid membrane. Physical Chemistry Chemical Physics, 2021, 23, 5370-5375.	1.3	5
798	Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. International Journal of Molecular Sciences, 2021, 22, 904.	1.8	16
799	Formation and Function of Liquid-Like Viral Factories in Negative-Sense Single-Stranded RNA Virus Infections. Viruses, 2021, 13, 126.	1.5	27

#	Article	IF	CITATIONS
800	High-fidelity reconstitution of stress granules and nucleoli in mammalian cellular lysate. Journal of Cell Biology, 2021, 220, .	2.3	56
802	RNA-seeded membraneless bodies: Role of tandemly repeated RNA. Advances in Protein Chemistry and Structural Biology, 2021, 126, 151-193.	1.0	9
803	Shared and divergent phase separation and aggregation properties of brain-expressed ubiquilins. Scientific Reports, 2021, 11, 287.	1.6	17
804	Liquid–liquid phase separation driven compartmentalization of reactive nucleoplasm. Physical Biology, 2021, 18, 015001.	0.8	12
805	Concepts No Membrane, No Problem: Cellular Organization by Biomolecular Condensates. , 2021, , 113-133.		0
806	The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nature Communications, 2021, 12, 502.	5.8	307
807	Interactions between Phase-Separated Liquids and Membrane Surfaces. Applied Sciences (Switzerland), 2021, 11, 1288.	1.3	19
808	RNA-Mediated Metabolic Defects in Microsatellite Expansion Diseases. , 2021, , 153-178.		0
811	Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature Communications, 2021, 12, 1085.	5.8	245
812	Predicting human RNA quadruplex helicases through comparative sequence approaches and helicase mRNA interactome analyses. Biochemistry and Cell Biology, 2021, 99, 1-18.	0.9	0
813	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
814	Fundamental Challenges and Outlook in Simulating Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2021, 12, 1644-1656.	2.1	20
815	Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Research, 2021, 49, 2931-2945.	6.5	81
816	Selfâ€assembly of multiâ€component mitochondrial nucleoids via phase separation. EMBO Journal, 2021, 40, e107165.	3.5	36
819	Tandem RNA binding sites induce self-association of the stress granule marker protein TIA-1. Nucleic Acids Research, 2021, 49, 2403-2417.	6.5	27
820	Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nature Communications, 2021, 12, 872.	5.8	145
821	Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components. Biomolecules, 2021, 11, 278.	1.8	53
822	Predicting protein condensate formation using machine learning. Cell Reports, 2021, 34, 108705.	2.9	70

#	Article	IF	CITATIONS
823	Phase transition of fibrillarin LC domain regulates localization and protein interaction of fibrillarin. Biochemical Journal, 2021, 478, 799-810.	1.7	7
824	Potential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separation. Journal of Biochemistry, 2021, 169, 527-533.	0.9	15
826	Dr. Jekyll and Mr. Hyde? Physiology and Pathology of Neuronal Stress Granules. Frontiers in Cell and Developmental Biology, 2021, 9, 609698.	1.8	9
827	Biomolecular Condensates and Cancer. Cancer Cell, 2021, 39, 174-192.	7.7	157
828	Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nature Communications, 2021, 12, 931.	5.8	24
830	Transiently structured head domains control intermediate filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
831	Biophysics of Phase Separation of Disordered Proteins Is Governed by Balance between Short- And Long-Range Interactions. Journal of Physical Chemistry B, 2021, 125, 2202-2211.	1.2	42
832	Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nature Biomedical Engineering, 2021, 5, 455-466.	11.6	157
833	Thermodynamic stability of <scp>hnRNP A1</scp> low complexity domain revealed by highâ€pressure <scp>NMR</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 781-791.	1.5	1
834	Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Frontiers in Cellular Neuroscience, 2021, 15, 637548.	1.8	29
836	Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 632131.	1.1	6
837	TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proceedings of the United States of America, 2021, 118, .	3.3	72
838	Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives. Viruses, 2021, 13, 366.	1.5	78
839	RNA-Binding Proteins and the Complex Pathophysiology of ALS. International Journal of Molecular Sciences, 2021, 22, 2598.	1.8	11
841	Nâ€ŧerminal acetylation modestly enhances phase separation and reduces aggregation of the Iow omplexity domain of RNAâ€binding protein fused in sarcoma. Protein Science, 2021, 30, 1337-1349.	3.1	27
843	S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
844	The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. International Journal of Molecular Sciences, 2021, 22, 2868.	1.8	2
846	Formation of Biomolecular Condensates: Regulation of Embryogenesis at the Cellular Level. Russian Journal of Developmental Biology, 2021, 52, 65-74.	0.1	0

#	Article	IF	CITATIONS
848	New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Topics in Current Chemistry, 2021, 379, 17.	3.0	15
849	Comparative profiling of stress granule clearance reveals differential contributions of the ubiquitin system. Life Science Alliance, 2021, 4, e202000927.	1.3	25
850	Liquid–Liquid Phase Separation of Tau Protein Is Encoded at the Monomeric Level. Journal of Physical Chemistry Letters, 2021, 12, 2576-2586.	2.1	47
851	Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nature Reviews Neuroscience, 2021, 22, 197-208.	4.9	107
852	Integration of Data from Liquid–Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. International Journal of Molecular Sciences, 2021, 22, 3017.	1.8	29
853	Decoding the physical principles of two-component biomolecular phase separation. ELife, 2021, 10, .	2.8	52
854	Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble. PLoS Computational Biology, 2021, 17, e1008672.	1.5	15
856	Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation. International Journal of Molecular Sciences, 2021, 22, 2909.	1.8	13
857	Illuminating ALS Motor Neurons With Optogenetics in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 640414.	1.8	5
859	Complement Activation in the Central Nervous System: A Biophysical Model for Immune Dysregulation in the Disease State. Frontiers in Molecular Neuroscience, 2021, 14, 620090.	1.4	9
860	Isolating and Analyzing Protein Containing Granules from Cells. Current Protocols, 2021, 1, e35.	1.3	5
861	Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD. Frontiers in Cellular Neuroscience, 2021, 15, 633668.	1.8	8
862	Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Molecular Cell, 2021, 81, 1013-1026.e11.	4.5	83
863	Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology. Bulletin of the Chemical Society of Japan, 2021, 94, 1045-1058.	2.0	24
864	Hsp90â€mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Reports, 2021, 22, e51740.	2.0	41
865	Regulation of Age-Related Protein Toxicity. Frontiers in Cell and Developmental Biology, 2021, 9, 637084.	1.8	12
866	Metal Ions Induce Liquid Condensate Formation by the F Domain of Aedes aegypti Ecdysteroid Receptor. New Perspectives of Nuclear Receptor Studies. Cells, 2021, 10, 571.	1.8	4
867	Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 259-268.	1.5	28

#	Article	IF	CITATIONS
868	Phase separation of Axin organizes the β-catenin destruction complex. Journal of Cell Biology, 2021, 220, .	2.3	59
869	Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. Journal of Experimental Pharmacology, 2021, Volume 13, 359-376.	1.5	7
870	Aberrant phase separation and cancer. FEBS Journal, 2022, 289, 17-39.	2.2	42
871	Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly(ADP-ribose). Nature Communications, 2021, 12, 1353.	5.8	62
872	In vivo reconstitution finds multivalent RNA–RNA interactions as drivers of mesh-like condensates. ELife, 2021, 10, .	2.8	80
873	Identification of the Rigid Core for Aged Liquid Droplets of an RNA-Binding Protein Low Complexity Domain. Journal of the American Chemical Society, 2021, 143, 6657-6668.	6.6	27
874	A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Frontiers in Molecular Biosciences, 2021, 8, 659610.	1.6	58
875	Combating deleterious phase transitions in neurodegenerative disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118984.	1.9	52
876	Regulation of biomolecular condensate dynamics by signaling. Current Opinion in Cell Biology, 2021, 69, 111-119.	2.6	14
878	Mitochondria-dependent phase separation of disease-relevant proteins drives pathological features of age-related macular degeneration. JCI Insight, 2021, 6, .	2.3	18
879	Intrinsically disordered proteins at the nano-scale. Nano Futures, 2021, 5, 022501.	1.0	7
880	Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118986.	1.9	14
881	Sequence effects on internal structure of droplets ofÂassociative polymers. Biophysical Journal, 2021, 120, 1210-1218.	0.2	4
882	The key role of solvent in condensation: Mapping water in liquid-liquid phase-separated FUS. Biophysical Journal, 2021, 120, 1266-1275.	0.2	71
883	Liquid–Liquid Phase Separation Enhances TDP-43 LCD Aggregation but Delays Seeded Aggregation. Biomolecules, 2021, 11, 548.	1.8	18
884	Establishing RNA-RNA interactions remodels IncRNA structure and promotes PRC2 activity. Science Advances, 2021, 7, .	4.7	24
885	Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate. Nature Communications, 2021, 12, 2170.	5.8	16
886	Suppression of liquid–liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Research, 2021, 49, 10524-10541.	6.5	68

#	Article	IF	CITATIONS
887	Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model. Biophysical Journal, 2021, 120, 1219-1230.	0.2	56
888	A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. Journal of Physical Chemistry B, 2021, 125, 4337-4358.	1.2	24
891	Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 4349.	1.8	33
893	Assembling the right type of switch: Protein condensation to signal cell death. Current Opinion in Cell Biology, 2021, 69, 55-61.	2.6	Ο
894	Studying phase separation in confinement. Current Opinion in Colloid and Interface Science, 2021, 52, 101419.	3.4	18
895	A predictive coarse-grained model for position-specific effects of post-translational modifications. Biophysical Journal, 2021, 120, 1187-1197.	0.2	56
896	Subcompartmentalization of polyampholyte species in organelle-like condensates is promoted by charge-pattern mismatch and strong excluded-volume interaction. Physical Review E, 2021, 103, 042406.	0.8	24
897	Phase Separation during Germline Development. Trends in Cell Biology, 2021, 31, 254-268.	3.6	41
899	Spatiotemporal organization of coacervate microdroplets. Current Opinion in Colloid and Interface Science, 2021, 52, 101420.	3.4	21
900	Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein and Cell, 2021, 12, 680-694.	4.8	24
901	Phe-Gly motifs drive fibrillization of TDP-43's prion-like domain condensates. PLoS Biology, 2021, 19, e3001198.	2.6	17
902	Coacervates as models of membraneless organelles. Current Opinion in Colloid and Interface Science, 2021, 52, 101416.	3.4	135
903	Functional Roles of Poly(ADP-Ribose) in Stress Granule Formation and Dynamics. Frontiers in Cell and Developmental Biology, 2021, 9, 671780.	1.8	9
904	Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Frontiers in Cellular Neuroscience, 2021, 15, 664151.	1.8	18
905	Mechanisms and regulation underlying membraneless organelle plasticity control. Journal of Molecular Cell Biology, 2021, 13, 239-258.	1.5	14
908	A Data-Driven Hydrophobicity Scale for Predicting Liquid–Liquid Phase Separation of Proteins. Journal of Physical Chemistry B, 2021, 125, 4046-4056.	1.2	71
909	The role of liquid–liquid phase separation in regulating enzyme activity. Current Opinion in Cell Biology, 2021, 69, 70-79.	2.6	95
910	Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC. Biophysical Journal, 2021, 120, 1276-1287.	0.2	33

#	Article	IF	CITATIONS
912	Prion-like C-Terminal Domain of TDP-43 and α-Synuclein Interact Synergistically to Generate Neurotoxic Hybrid Fibrils. Journal of Molecular Biology, 2021, 433, 166953.	2.0	40
913	Liquid–liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Science, 2021, 30, 1294-1314.	3.1	54
914	Low amounts of heavy water increase the phase separation propensity of a fragment of the androgen receptor activation domain. Protein Science, 2021, 30, 1427-1437.	3.1	16
915	Non-coding RNA suppresses FUS aggregation caused by mechanistic shear stress on pipetting in a sequence-dependent manner. Scientific Reports, 2021, 11, 9523.	1.6	11
916	Fusion protein EWS-FLI1 is incorporated into a protein granule in cells. Rna, 2021, 27, 920-932.	1.6	14
917	Karyopherin abnormalities in neurodegenerative proteinopathies. Brain, 2021, 144, 2915-2932.	3.7	20
918	Liquid–liquid phase separation of Tau by self and complex coacervation. Protein Science, 2021, 30, 1393-1407.	3.1	34
919	Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function. BioEssays, 2021, 43, e2100092.	1.2	5
920	New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Frontiers in Molecular Biosciences, 2021, 8, 668821.	1.6	27
921	N-terminal Domain of TDP43 Enhances Liquid-Liquid Phase Separation of Globular Proteins. Journal of Molecular Biology, 2021, 433, 166948.	2.0	29
923	Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell, 2021, 184, 2649-2664.e18.	13.5	102
924	Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1217-1224.	2.0	7
925	Insight Into Spinocerebellar Ataxia Type 31 (SCA31) From Drosophila Model. Frontiers in Neuroscience, 2021, 15, 648133.	1.4	7
926	<i>In silico</i> prediction of <i>in vitro</i> protein liquid–liquid phase separation experiments outcomes with multi-head neural attention. Bioinformatics, 2021, 37, 3473-3479.	1.8	14
927	(Dis)Solving the problem of aberrant protein states. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	23
928	Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. ELife, 2021, 10, .	2.8	33
929	Reversible Lightâ€Responsive Coacervate Microdroplets with Rapid Regulation of Enzymatic Reaction Rate. ChemSystemsChem, 2021, 3, e2100006.	1.1	13
930	Electrostatic modulation of hnRNPA1 lowâ€complexity domain liquid–liquid phase separation and aggregation. Protein Science, 2021, 30, 1408-1417.	3.1	26

#	Article	IF	CITATIONS
931	An apparent core/shell architecture of polyQ aggregates in the aging <i>Caenorhabditis elegans</i> neuron. Protein Science, 2021, 30, 1482-1486.	3.1	8
932	The Integral Role of RNA in Stress Granule Formation and Function. Frontiers in Cell and Developmental Biology, 2021, 9, 621779.	1.8	71
933	Defining the Caprin-1 Interactome in Unstressed and Stressed Conditions. Journal of Proteome Research, 2021, 20, 3165-3178.	1.8	20
936	Reversible protein aggregation as cytoprotective mechanism against heat stress. Current Genetics, 2021, 67, 849-855.	0.8	9
937	Stress granules safeguard against MAPK signaling hyperactivation by sequestering PKC/Pck2: new findings and perspectives. Current Genetics, 2021, 67, 857-863.	0.8	3
938	Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation?. Cell Death and Disease, 2021, 12, 592.	2.7	74
939	Mechanomorphogenic Films Formed via Interfacial Assembly of Fluorinated Amino Acids. Advanced Functional Materials, 2021, 31, 2104223.	7.8	6
941	Physical theory of biological noise buffering by multicomponent phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
942	Biochemical Timekeeping Via Reentrant Phase Transitions. Journal of Molecular Biology, 2021, 433, 166794.	2.0	22
943	ATP biphasically modulates LLPS of TDP-43 PLD by specifically binding arginine residues. Communications Biology, 2021, 4, 714.	2.0	21
944	Designer Condensates: A Toolkit for the Biomolecular Architect. Journal of Molecular Biology, 2021, 433, 166837.	2.0	39
945	Higher-order organization of biomolecular condensates. Open Biology, 2021, 11, 210137.	1.5	96
947	Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Proliferation, 2021, 54, e13086.	2.4	9
948	Stress Granule-Mediated Oxidized RNA Decay in P-Body: Hypothetical Role of ADAR1, Tudor-SN, and STAU1. Frontiers in Molecular Biosciences, 2021, 8, 672988.	1.6	5
949	Stress Granules and Neurodegenerative Disorders: A Scoping Review. Frontiers in Aging Neuroscience, 2021, 13, 650740.	1.7	22
951	HnRNPA2'in LC(286-291) Domain Fibrili ve Onun D290V Mutasyonu Hakkında Teorik Bir Çalışma. Jour the Institute of Science and Technology, 0, , 1080-1089.	nal of 0.3	0
952	Emerging Solutions for <i>in Vivo</i> Biocatalyst Immobilization: Tailor-Made Catalysts for Industrial Biocatalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8919-8945.	3.2	26
955	The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochemical Society Transactions, 2021, 49, 1099-1108.	1.6	13

	CITATION RE	FURI	
#	Article	IF	CITATIONS
956	Generic nature of the condensed states of proteins. Nature Cell Biology, 2021, 23, 587-594.	4.6	94
957	Finite-size shifts in simulated protein droplet phase diagrams. Journal of Chemical Physics, 2021, 154, 235101.	1.2	9
958	Membraneless condensates by Rapsn phase separation as a platform for neuromuscular junction formation. Neuron, 2021, 109, 1963-1978.e5.	3.8	9
959	Protein-based condensation mechanisms drive the assembly of RNA-rich P granules. ELife, 2021, 10, .	2.8	16
960	Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Genes, 2021, 12, 856.	1.0	26
961	Previously uncharacterized interactions between the folded and intrinsically disordered domains impart asymmetric effects on UBQLN2 phase separation. Protein Science, 2021, 30, 1467-1481.	3.1	24
963	RNA and liquid-liquid phase separation. Non-coding RNA Research, 2021, 6, 92-99.	2.4	52
964	Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates. Biophysics Reviews, 2021, 2, 021302.	1.0	40
965	Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis. Cell Communication and Signaling, 2021, 19, 65.	2.7	12
966	Aggregation of Water Molecules to Phospholipid Head Groups Accompanied with Separation into Water―and Polysaccharideâ€Rich Phases in Waterâ€inâ€Oil Emulsions. ChemistrySelect, 2021, 6, 5435-5440.	0.7	0
967	lt's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nature Structural and Molecular Biology, 2021, 28, 465-473.	3.6	88
968	DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathologica, 2021, 142, 515-536.	3.9	20
969	Karyopherin-βs play a key role as a phase separation regulator. Journal of Biochemistry, 2021, 170, 15-23.	0.9	6
970	Protein phase separation and its role in chromatin organization and diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111520.	2.5	9
971	Mechanistic Inferences From Analysis of Measurements of Protein Phase Transitions in Live Cells. Journal of Molecular Biology, 2021, 433, 166848.	2.0	20
972	Liquid–Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics. International Journal of Molecular Sciences, 2021, 22, 6675.	1.8	9
973	Emerging Roles of Liquid–Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 631486.	1.8	48
975	Prionâ€like proteins: from computational approaches to proteomeâ€wide analysis. FEBS Open Bio, 2021, 11, 2400-2417.	1.0	17

#	Article	IF	CITATIONS
976	Intrinsically disordered proteins and biomolecular condensates as drug targets. Current Opinion in Chemical Biology, 2021, 62, 90-100.	2.8	57
977	SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production. Science Bulletin, 2021, 66, 1194-1204.	4.3	84
978	Mechanical Frustration of Phase Separation in the Cell Nucleus by Chromatin. Physical Review Letters, 2021, 126, 258102.	2.9	50
980	Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in <i>Arabidopsis</i> . EMBO Journal, 2021, 40, e105043.	3.5	37
981	How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?. Viruses, 2021, 13, 1479.	1.5	11
982	Liquid–Liquid Phase Separation in Biology: Specific Stoichiometric Molecular Interactions vs Promiscuous Interactions Mediated by Disordered Sequences. Biochemistry, 2021, 60, 2397-2406.	1.2	28
983	<i>O</i> -Linked- <i>N</i> -Acetylglucosaminylation of the RNA-Binding Protein EWS N-Terminal Low Complexity Region Reduces Phase Separation and Enhances Condensate Dynamics. Journal of the American Chemical Society, 2021, 143, 11520-11534.	6.6	26
984	Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight, 2021, 6, .	2.3	38
986	New Family Members of FG Repeat Proteins and Their Unexplored Roles During Phase Separation. Frontiers in Cell and Developmental Biology, 2021, 9, 708702.	1.8	7
987	FUS and TDP-43 Phases in Health and Disease. Trends in Biochemical Sciences, 2021, 46, 550-563.	3.7	154
988	Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Scientific Reports, 2021, 11, 15241.	1.6	33
989	Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex. Journal of the American Chemical Society, 2021, 143, 11370-11381.	6.6	19
990	Post-Translational Modifications Modulate Proteinopathies of TDP-43, FUS and hnRNP-A/B in Amyotrophic Lateral Sclerosis. Frontiers in Molecular Biosciences, 2021, 8, 693325.	1.6	16
991	The Different Faces of the TDP-43 Low-Complexity Domain: The Formation of Liquid Droplets and Amyloid Fibrils. International Journal of Molecular Sciences, 2021, 22, 8213.	1.8	8
992	Regulation of Liquid-Liquid Phase Separation by Molecular Chaperones. Thermal Medicine, 2021, 37, 31-44.	0.0	0
993	The optineurin/TIA1 pathway inhibits aberrant stress granule formation and reduces ubiquitinated TDP-43. IScience, 2021, 24, 102733.	1.9	12
995	Transcriptional control of CBX5 by the RNA-binding proteins RBMX and RBMXL1 maintains chromatin state in myeloid leukemia. Nature Cancer, 2021, 2, 741-757.	5.7	10
996	G-Quadruplex-Induced Liquid–Liquid Phase Separation in Biomimetic Protocells. Journal of the American Chemical Society, 2021, 143, 11036-11043.	6.6	27

#	Article	IF	CITATIONS
997	Intramolecular interactions play key role in stabilization of pHLIP at acidic conditions. Journal of Computational Chemistry, 2021, 42, 1809-1816.	1.5	1
998	A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nature Communications, 2021, 12, 4513.	5.8	73
999	Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Research, 2021, 49, 8432-8448.	6.5	30
1000	Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. Journal of Cell Science, 2021, 134, .	1.2	29
1001	Selective autophagy as the basis of autophagy-based degraders. Cell Chemical Biology, 2021, 28, 1061-1071.	2.5	20
1002	N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell, 2021, 39, 958-972.e8.	7.7	108
1004	UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. FEBS Journal, 2022, 289, 6132-6153.	2.2	19
1006	How Hierarchical Interactions Make Membraneless Organelles Tick Like Clockwork. Trends in Biochemical Sciences, 2021, 46, 525-534.	3.7	35
1007	The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. Journal of Molecular Biology, 2022, 434, 167157.	2.0	53
1008	DMA-tudor interaction modules control the specificity of inÂvivo condensates. Cell, 2021, 184, 3612-3625.e17.	13.5	40
1009	hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. Biology, 2021, 10, 712.	1.3	18
1010	Liquid-liquid phase separation of the intrinsically disordered AB region of hRXRγ is driven by hydrophobic interactions. International Journal of Biological Macromolecules, 2021, 183, 936-949.	3.6	3
1011	Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules, 2021, 11, 1014.	1.8	26
1012	Biomolecular Condensates and Their Links to Cancer Progression. Trends in Biochemical Sciences, 2021, 46, 535-549.	3.7	51
1014	The kinetics of islet amyloid polypeptide phase-separated system and hydrogel formation are critically influenced by macromolecular crowding. Biochemical Journal, 2021, 478, 3025-3046.	1.7	3
1015	The Emerging Role of Stress Granules in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 9428.	1.8	8
1016	Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-liquid Phase Separation. Journal of Molecular Biology, 2022, 434, 167201.	2.0	62
1018	Molecular and cellular basis of hyperassembly and protein aggregation driven by a rare pathogenic mutation in DDX3X. IScience, 2021, 24, 102841.	1.9	14

	CHATION N	LEPORT	
#	ARTICLE Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry, 2021, 60, 3676-3696.	IF 1.2	Citations 67
1020	C. elegans colony formation as a condensation phenomenon. Nature Communications, 2021, 12, 4947.	5.8	7
1022	Conformational Expansion of Tau in Condensates Promotes Irreversible Aggregation. Journal of the American Chemical Society, 2021, 143, 13056-13064.	6.6	78
1023	Liquid–liquid phase separation in human health and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 290.	7.1	231
1024	Phase separation in genome organization across evolution. Trends in Cell Biology, 2021, 31, 671-685.	3.6	62
1025	Translational regulation in the brain by TDP-43 phase separation. Journal of Cell Biology, 2021, 220, .	2.3	14
1026	Translational control by DHX36 binding to 5′UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nature Communications, 2021, 12, 5043.	5.8	36
1027	A Hypothesis: Linking Phase Separation to Meiotic Sex Chromosome Inactivation and Sex-Body Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 674203.	1.8	9
1028	Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Current Opinion in Colloid and Interface Science, 2021, 54, 101457.	3.4	32
1029	Liquid–liquid phase separation drives the βâ€catenin destruction complex formation. BioEssays, 2021, 43, e2100138.	1.2	8
1030	TDP43 ribonucleoprotein granules: physiologic function to pathologic aggregates. RNA Biology, 2021, 18, 128-138.	1.5	5
1031	Targeted modulation of protein liquid–liquid phase separation by evolution of amino-acid sequence. PLoS Computational Biology, 2021, 17, e1009328.	1.5	21
1032	The nucleolus from a liquid droplet perspective. Journal of Biochemistry, 2021, 170, 153-162.	0.9	14
1034	ALSâ€linked mutations impair UBQLN2 stressâ€induced biomolecular condensate assembly in cells. Journal of Neurochemistry, 2021, 159, 145-155.	2.1	12
1035	HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain. ELife, 2021, 10, .	2.8	42
1036	Tau N-Terminal Inserts Regulate Tau Liquid-Liquid Phase Separation and Condensates Maturation in a Neuronal Cell Model. International Journal of Molecular Sciences, 2021, 22, 9728.	1.8	12
1037	Structural and Functional Insights into $\hat{I}\pm$ -Synuclein Fibril Polymorphism. Biomolecules, 2021, 11, 1419.	1.8	39
1038	Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. Journal of Chemical Physics, 2021, 155, 125103.	1.2	29

#	Article	IF	CITATIONS
1040	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	2.2	22
1041	RNA modulates physiological and neuropathological protein phase transitions. Neuron, 2021, 109, 2663-2681.	3.8	39
1042	Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules, 2021, 11, 1324.	1.8	20
1043	Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. Journal of Biological Chemistry, 2021, 297, 101194.	1.6	32
1044	Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Letters, 2021, 516, 84-98.	3.2	19
1045	A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Developmental Cell, 2021, 56, 2592-2606.e7.	3.1	18
1046	Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles. Nature Communications, 2021, 12, 5488.	5.8	7
1047	Pathologic tau conformer ensembles induce dynamic, liquid-liquid phase separation events at the nuclear envelope. BMC Biology, 2021, 19, 199.	1.7	23
1049	New Insights into Chikungunya Virus Infection and Pathogenesis. Annual Review of Virology, 2021, 8, 327-347.	3.0	30
1050	Formation of Non-Nucleoplasmic Proteasome Foci during the Late Stage of Hyperosmotic Stress. Cells, 2021, 10, 2493.	1.8	7
1051	Charge Segregation in the Intrinsically Disordered Region Governs VRN1 and DNA Liquid-like Phase Separation Robustness. Journal of Molecular Biology, 2021, 433, 167269.	2.0	14
1052	The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell, 2021, 184, 4857-4873.	13.5	166
1053	Heterogeneous distribution of shell matrix proteins in the pearl oyster prismatic layer. International Journal of Biological Macromolecules, 2021, 189, 641-648.	3.6	6
1054	Liquid–liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends in Pharmacological Sciences, 2021, 42, 845-856.	4.0	28
1055	NEAT1 IncRNA and amyotrophic lateral sclerosis. Neurochemistry International, 2021, 150, 105175.	1.9	12
1056	Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. European Journal of Medicinal Chemistry, 2021, 225, 113753.	2.6	3
1057	RNA binding proteins: Linking mechanotransduction and tumor metastasis. Cancer Letters, 2021, 496, 30-40.	3.2	11
1058	Methods for characterizing the material properties of biomolecular condensates. Methods in Enzymology, 2021, 646, 143-183.	0.4	39

#	Article	IF	CITATIONS
1059	Sequestration within biomolecular condensates inhibits $A\hat{l}^2$ -42 amyloid formation. Chemical Science, 2021, 12, 4373-4382.	3.7	33
1060	1,6-Hexanediol, commonly used to dissolve liquid–liquid phase separated condensates, directly impairs kinase and phosphatase activities. Journal of Biological Chemistry, 2021, 296, 100260.	1.6	84
1061	Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments. ELife, 2021, 10, .	2.8	38
1062	Unraveling molecular biology of C9ORF72 repeat expansions in amyotrophic lateral sclerosis-frontotemporal dementia: Implications for therapy. , 2021, , 19-47.		0
1063	Harnessing the power of fluorescence to characterize biomolecular condensates. Methods in Microbiology, 2021, , 1-47.	0.4	1
1064	Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature Reviews Molecular Cell Biology, 2021, 22, 196-213.	16.1	535
1065	Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. Journal of Molecular Cell Biology, 2021, 13, 282-294.	1.5	65
1066	Determination of Protein Phase Diagrams by Centrifugation. Methods in Molecular Biology, 2020, 2141, 685-702.	0.4	28
1067	Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering. Methods in Molecular Biology, 2020, 2141, 715-730.	0.4	14
1068	RNA Granules and Their Role in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, 1203, 195-245.	0.8	19
1069	Tau Condensates. Advances in Experimental Medicine and Biology, 2019, 1184, 327-339.	0.8	11
1070	Liquid-Liquid Phase Separation of Tau Protein in Neurobiology and Pathology. Advances in Experimental Medicine and Biology, 2019, 1184, 341-357.	0.8	13
1071	The Pathophysiology of Tau and Stress Granules in Disease. Advances in Experimental Medicine and Biology, 2019, 1184, 359-372.	0.8	23
1072	Neurodegenerative Diseases and RNA-Mediated Toxicity. , 2018, , 441-475.		4
1073	Amyloid Aggregation under the Lens of Liquid–Liquid Phase Separation. Journal of Physical Chemistry Letters, 2021, 12, 368-378.	2.1	34
1074	Phase separation at the synapse. Nature Neuroscience, 2020, 23, 301-310.	7.1	156
1075	Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochemical Journal, 2020, 477, 3471-3497.	1.7	33
1076	Fuzzy protein theory for disordered proteins. Biochemical Society Transactions, 2020, 48, 2557-2564.	1.6	16

#	Article	IF	CITATIONS
1077	Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerging Topics in Life Sciences, 2020, 4, 307-329.	1.1	159
1078	Arginine-rich dipeptide-repeat proteins as phase disruptors in C9-ALS/FTD. Emerging Topics in Life Sciences, 2020, 4, 293-305.	1.1	26
1079	Therapeutics—how to treat phase separation-associated diseases. Emerging Topics in Life Sciences, 2020, 4, 331-342.	1.1	65
1080	The multiscale and multiphase organization of the transcriptome. Emerging Topics in Life Sciences, 2020, 4, 265-280.	1.1	9
1081	Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule–nucleating protein G3BP1. Journal of Biological Chemistry, 2017, 292, 18886-18896.	1.6	55
1082	Conserved metabolite regulation of stress granule assembly via AdoMet. Journal of Cell Biology, 2020, 219, .	2.3	14
1083	Liquid–liquid phase separation in autophagy. Journal of Cell Biology, 2020, 219, .	2.3	99
1084	The proline-rich domain promotes Tau liquid–liquid phase separation in cells. Journal of Cell Biology, 2020, 219, .	2.3	58
1085	The role of disorder in RNA binding affinity and specificity. Open Biology, 2020, 10, 200328.	1.5	27
1151	TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. Journal of Clinical Investigation, 2018, 128, 1164-1177.	3.9	75
1152	Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Faculty Reviews, 2020, 9, 12.	1.7	17
1153	RNA stores tau reversibly in complex coacervates. PLoS Biology, 2017, 15, e2002183.	2.6	235
1154	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biology, 2020, 18, e3001002.	2.6	12
1155	Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Computational Biology, 2018, 14, e1005941.	1.5	427
1156	Determinants of Amyloid Formation for the Yeast Termination Factor Nab3. PLoS ONE, 2016, 11, e0150865.	1.1	7
1157	Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathogens, 2018, 14, e1006901.	2.1	61
1158	Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function. Molecules and Cells, 2017, 40, 889-896.	1.0	51
1159	RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Molecules and Cells, 2018, 41, 818-829.	1.0	88

#	Article	IF	CITATIONS
1160	Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO Journal, 2021, 40, e105001.	3.5	44
1161	SARS oVâ€2 nucleocapsid protein phaseâ€separates with RNA and with human hnRNPs. EMBO Journal, 2020, 39, e106478.	3.5	194
1162	Enzymatic degradation of <scp>RNA</scp> causes widespread protein aggregation in cell and tissue lysates. EMBO Reports, 2020, 21, e49585.	2.0	26
1163	Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Molecular Systems Biology, 2020, 16, e9469.	3.2	91
1164	Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress, 2020, 4, 76-91.	1.4	35
1165	Transient Intracellular Acidification Regulates the Core Transcriptional Heat Shock Response. SSRN Electronic Journal, 0, , .	0.4	2
1166	Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA-Splicing and Neurodegeneration in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	1
1167	A Non-Amyloid Prion Particle that Activates a Heritable Gene Expression Program. SSRN Electronic Journal, 0, , .	0.4	2
1168	Kinase-Mediated RAS Signaling Via Membraneless Cytoplasmic Protein Granules. SSRN Electronic Journal, 0, , .	0.4	2
1169	Arginine-rich Peptides Can Actively Mediate Liquid-liquid Phase Separation. Bio-protocol, 2017, 7, e2525.	0.2	23
1170	Studying Protein Aggregation in the Context of Liquid-liquid Phase Separation Using Fluorescence and Atomic Force Microscopy, Fluorescence and Turbidity Assays, and FRAP. Bio-protocol, 2020, 10, .	0.2	11
1171	A Quantitative Assay to Measure Stress Granule Association of Proteins and Peptides in Semi-permeabilized Human Cells. Bio-protocol, 2020, 10, e3846.	0.2	4
1172	Dynamic m ⁶ A methylation facilitates mRNA triaging to stress granules. Life Science Alliance, 2018, 1, e201800113.	1.3	136
1173	Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World Journal of Gastroenterology, 2020, 26, 5223-5247.	1.4	13
1174	Identification of Neuregulin-2 as a novel stress granule component. BMB Reports, 2016, 49, 449-454.	1.1	6
1175	Real-time imaging of Huntingtin aggregates diverting target search and gene transcription. ELife, 2016, 5, .	2.8	74
1176	CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. ELife, 2016, 5, .	2.8	45
1177	Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. ELife, 2017, 6, .	2.8	72

ARTICLE IF CITATIONS The liquid structure of elastin. ELife, 2017, 6, . 1178 2.8 137 Matrin 3-dependent neurotoxicity is modified by nucleic acid binding and nucleocytoplasmic 1179 2.8 localization. ELife, 2018, 7, . Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD 1180 2.8 184 pathology. ELife, 2019, 8, . Spatial control of irreversible protein aggregation. ELife, 2019, 8, . 1181 Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. 1182 2.8 111 ELife, 2019, 8, . Proteome-wide signatures of function in highly diverged intrinsically disordered regions. ELife, 2019, 2.8 8, . RNA promotes phase separation of glycolysis enzymes into yeast G bodies in hypoxia. ELife, 2020, 9, . 1184 2.8 70 Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability. ELife, 2019, 8, . 1185 2.8 1186 Protein phase separation and its role in tumorigenesis. ELife, 2020, 9, . 2.8 63 The flexibility-based modulation of DNA nanostar phase separation. Nanoscale, 2021, 13, 17638-17647. 2.8 Assembly and recognition of keratins: A structural perspective. Seminars in Cell and Developmental 1189 2.36 Biology, 2022, 128, 80-89. The interplay of chromatin phase separation and lamina interactions in nuclear organization. Biophysical Journal, 2021, 120, 5005-5017. Destructing biofilms by cationic dextran through phase transition. Carbohydrate Polymers, 2022, 279, 1192 5.1 6 118778. Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nature Cell Biology, 2021, 23, 1085-1094. 4.6 Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin 1194 5.847 compaction. Nature Communications, 2021, 12, 5888. Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization. Journal of Biological Chemistry, 2021, 297, 101306. Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates. 1197 1.2 6 Biochemistry, 2021, 60, 3137-3151. Intracellular Condensates of Oligopeptide for Targeting Lysosome and Addressing Multiple Drug 1198 11.1

CITATION REPORT

Resistance of Cancer. Advanced Materials, 2022, 34, e2104704.

#	Article	IF	CITATIONS
1199	Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils. Biochemistry, 2021, 60, 3213-3222.	1.2	24
1202	ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid–liquid phase separation and liquid-to-solid transition. Journal of Biological Chemistry, 2021, 297, 101284.	1.6	28
1203	Aberrant Phase Separation of FUS Leads to Lysosome Sequestering and Acidification. Frontiers in Cell and Developmental Biology, 2021, 9, 716919.	1.8	6
1204	The cellular modifier MOAGâ€4/SERF drives amyloid formation through charge complementation. EMBO Journal, 2021, 40, e107568.	3.5	15
1206	Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. International Journal of Biological Macromolecules, 2021, 192, 55-63.	3.6	9
1213	Active Protein Neddylation or Ubiquitylation is Dispensable for Stress Granule Dynamics. SSRN Electronic Journal, 0, , .	0.4	0
1215	Prion-Like Propagation in Neurodegenerative Diseases. , 2018, , 189-242.		0
1245	Biological Condensates. Materials and Methods, 0, 9, .	0.0	0
1252	Karyopherin-β2 Inhibits and Reverses Aggregation and Liquid-liquid Phase Separation of the ALS/FTD-Associated Protein FUS. Bio-protocol, 2020, 10, e3725.	0.2	3
1253	In Vitro Transition Temperature Measurement of Phase-Separating Proteins by Microscopy. Methods in Molecular Biology, 2020, 2141, 703-714.	0.4	3
1268	Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nature Structural and Molecular Biology, 2021, 28, 900-908.	3.6	24
1269	Spatiotemporal Dynamic Assembly/Disassembly of Organelleâ€Mimics Based on Intrinsically Disordered Proteinâ€Polymer Conjugates. Advanced Science, 2021, 8, e2102508.	5.6	21
1271	LncRNAs in the Development, Progression, and Therapy Resistance of Hormone-Dependent Cancer. RNA Technologies, 2020, , 255-276.	0.2	0
1273	The Ligand of Ate1 is intrinsically disordered and participates in nucleolar phase separation regulated by Jumonji Domain Containing 6. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2015887118.	3.3	3
1275	Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. International Journal of Molecular Sciences, 2020, 21, 9755.	1.8	14
1276	A systems biology approach to understand the role of TDP-43 in amyotrophic lateral sclerosis. , 2022, , 135-151.		0
1277	Structural dissection of TDP-43. , 2022, , 27-44.		0
1283	Regulation of liquid–liquid phase separation with focus on post-translational modifications. Chemical Communications, 2021, 57, 13275-13287.	2.2	49

#	Article	IF	CITATIONS
1287	How do protein domains of low sequence complexity work?. Rna, 2022, 28, 3-15.	1.6	27
1288	Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation. Frontiers in Molecular Biosciences, 2021, 8, 689687.	1.6	12
1289	Multivalent polymers can control phase boundary, dynamics, and organization of liquid-liquid phase separation. PLoS ONE, 2021, 16, e0245405.	1.1	3
1291	â€~RNA modulation of transport properties and stability in phase-separated condensates. Biophysical Journal, 2021, 120, 5169-5186.	0.2	38
1292	Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans. ELife, 2021, 10, .	2.8	9
1301	Role of liquid-liquid phase separation in cell physiology and diseases. World Chinese Journal of Digestology, 2020, 28, 884-890.	0.0	0
1304	Chromosome Territorial Organization Drives Efficient Protein Complex Formation: A Hypothesis. Yale Journal of Biology and Medicine, 2019, 92, 541-548.	0.2	1
1305	The role of SAF-A/hnRNP U in regulating chromatin structure. Current Opinion in Genetics and Development, 2022, 72, 38-44.	1.5	16
1306	What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?. Rna, 2022, 28, 36-47.	1.6	23
1307	Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the <i>In Vitro</i> Folding Stability. Journal of the American Chemical Society, 2021, 143, 19909-19918.	6.6	14
1308	Specific RNA interactions promote TDPâ€43 multivalent phase separation and maintain liquid properties. EMBO Reports, 2021, 22, e53632.	2.0	50
1309	The stress granule protein G3BP1 promotes preâ€condensation of cGAS to allow rapid responses to DNA. EMBO Reports, 2022, 23, e53166.	2.0	28
1310	Subcellular Localization of Seed-Expressed LEA_4 Proteins Reveals Liquid-Liquid Phase Separation for LEA9 and for LEA48 Homo- and LEA42-LEA48 Heterodimers. Biomolecules, 2021, 11, 1770.	1.8	13
1312	Epitranscriptomic regulation of cognitive development and decline. Seminars in Cell and Developmental Biology, 2021, , .	2.3	0
1313	Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nature Communications, 2021, 12, 6620.	5.8	95
1316	Evolution of CPEB4 Dynamics Across its Liquid–Liquid Phase Separation Transition. Journal of Physical Chemistry B, 2021, 125, 12947-12957.	1.2	10
1317	Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates. Biochemistry, 2021, 60, 3566-3581.	1.2	56
1318	Tracking Stress Granule Dynamics in Live Cells and <i>In Vivo</i> with a Small Molecule. Analytical Chemistry, 2021, 93, 16297-16301.	3.2	7

#	Article	IF	CITATIONS
1319	Transcription Regulators and Membraneless Organelles Challenges to Investigate Them. International Journal of Molecular Sciences, 2021, 22, 12758.	1.8	4
1320	Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. ELife, 2021, 10, .	2.8	70
1321	CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells. Molecules and Cells, 2021, 44, 805-829.	1.0	7
1323	Uncovering Non-random Binary Patterns Within Sequences of Intrinsically Disordered Proteins. Journal of Molecular Biology, 2022, 434, 167373.	2.0	35
1324	Reversible Kinetic Trapping of FUS Biomolecular Condensates. Advanced Science, 2022, 9, e2104247.	5.6	28
1325	Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62/SQSTM1 mutants show reduced inner fluidity. Journal of Biological Chemistry, 2021, 297, 101405.	1.6	13
1326	Phylogenetic convergence of phase separation and mitotic function in the disordered protein <scp>BuGZ</scp> . Protein Science, 2022, 31, 822-834.	3.1	4
1327	Temperature-dependent reentrant phase transition of RNA–polycation mixtures. Soft Matter, 2022, 18, 1342-1349.	1.2	22
1328	Limitations of field-theory simulation for exploring phase separation: The role of repulsion in a lattice protein model. Journal of Chemical Physics, 2022, 156, 015101.	1.2	3
1330	Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophysical Chemistry, 2022, 281, 106736.	1.5	22
1331	Phase separation of FG-nucleoporins in nuclear pore complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119205.	1.9	26
1332	RNA multimerization as an organizing force for liquid–liquid phase separation. Rna, 2022, 28, 16-26.	1.6	27
1333	Pathological phase transitions in ALS-FTD impair dynamic RNA–protein granules. Rna, 2022, 28, 97-113.	1.6	15
1335	The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. International Journal of Molecular Sciences, 2022, 23, 1400.	1.8	8
1336	Matrin3: Disorder and ALS Pathogenesis. Frontiers in Molecular Biosciences, 2021, 8, 794646.	1.6	10
1337	Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Letters, 2022, 22, 612-621.	4.5	49
1339	A Liquid State Perspective on Dynamics of Chromatin Compartments. Frontiers in Molecular Biosciences, 2021, 8, 781981.	1.6	11
1340	Molecular structure of an amyloid fibril formed by FUS low-complexity domain. IScience, 2022, 25, 103701.	1.9	19

#	Article	IF	CITATIONS
1341	Excipients Do Regulate Phase Separation in Lysozyme and Thus Also Its Hydration. Journal of Physical Chemistry Letters, 2022, 13, 931-938.	2.1	15
1342	TDRD3 is an antiviral restriction factor that promotes IFN signaling with G3BP1. PLoS Pathogens, 2022, 18, e1010249.	2.1	18
1343	Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. International Journal of Molecular Sciences, 2022, 23, 923.	1.8	6
1346	YB-1 Structure/Function Relationship in the Packaging of mRNPs and Consequences for Translation Regulation and Stress Granule Assembly in Cells. Biochemistry (Moscow), 2022, 87, S20-S31.	0.7	4
1347	Rich Phase Separation Behavior of Biomolecules. Molecules and Cells, 2022, 45, 6-15.	1.0	12
1348	Condensate Formation by Metabolic Enzymes in Saccharomyces cerevisiae. Microorganisms, 2022, 10, 232.	1.6	4
1349	A natural product targets BRD4 to inhibit phase separation and gene transcription. IScience, 2022, 25, 103719.	1.9	5
1350	RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. Fundamental Research, 2022, 2, 48-55.	1.6	8
1351	Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2022, 9, 826719.	1.6	50
1352	RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Computational Biology, 2022, 18, e1009810.	1.5	25
1353	Charged sequence motifs increase the propensity towards liquid–liquid phase separation. FEBS Letters, 2022, 596, 1013-1028.	1.3	5
1354	Diseaseâ€linked TDPâ€43 hyperphosphorylation suppresses TDPâ€43 condensation and aggregation. EMBO Journal, 2022, 41, e108443.	3.5	68
1355	On the role of phase separation in the biogenesis of membraneless compartments. EMBO Journal, 2022, 41, e109952.	3.5	100
1356	A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation. Cell Reports Physical Science, 2022, 3, 100764.	2.8	5
1357	EGCG Promotes FUS Condensate Formation in a Methylation-Dependent Manner. Cells, 2022, 11, 592.	1.8	3
1358	14-3-3 Proteins are Potential Regulators of Liquid–Liquid Phase Separation. Cell Biochemistry and Biophysics, 2022, 80, 277-293.	0.9	16
1359	Regulation of the activity of the bacterial histidine kinase PleC by the scaffolding protein PodJ. Journal of Biological Chemistry, 2022, 298, 101683.	1.6	9
1360	The crystallization of decanoic acid/dopamine supramolecular self-assemblies in the presence of coacervates. Journal of Colloid and Interface Science, 2022, 615, 759-767.	5.0	2

#	Article	IF	CITATIONS
1361	Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions. Journal of Biological Chemistry, 2022, 298, 101677.	1.6	44
1363	Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biology, 2022, 20, e3001535.	2.6	22
1366	Extended β-Strands Contribute to Reversible Amyloid Formation. ACS Nano, 2022, 16, 2154-2163.	7.3	14
1367	Phase separation of the mammalian prion protein: Physiological and pathological perspectives. Journal of Neurochemistry, 2023, 166, 58-75.	2.1	6
1368	TAPASS: Tool for annotation of protein amyloidogenicity in the context of other structural states. Journal of Structural Biology, 2022, 214, 107840.	1.3	9
1369	Molecular determinants of phase separation for Drosophila DNA replication licensing factors. ELife, 2021, 10, .	2.8	11
1370	Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nature Communications, 2021, 12, 7289.	5.8	27
1371	Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nature Chemistry, 2022, 14, 196-207.	6.6	216
1372	Collective Learnings of Studies of Stress Granule Assembly and Composition. Methods in Molecular Biology, 2022, 2428, 199-228.	0.4	4
1373	Nucleobase Clustering Contributes to the Formation and Hollowing of Repeat-Expansion RNA Condensate. Journal of the American Chemical Society, 2022, 144, 4716-4720.	6.6	14
1374	FXS causing missense mutations disrupt FMRP granule formation, dynamics, and function. PLoS Genetics, 2022, 18, e1010084.	1.5	8
1376	Tau liquid–liquid phase separation in neurodegenerative diseases. Trends in Cell Biology, 2022, 32, 611-623.	3.6	46
1377	Biochemical and subcellular characterization of a squid hnRNPA/B-like protein 2 in osmotic stress activated cells reflects molecular properties conserved in this protein family. Molecular Biology Reports, 2022, 49, 4257-4268.	1.0	0
1380	Emerging Roles for Phase Separation of RNA-Binding Proteins in Cellular Pathology of ALS. Frontiers in Cell and Developmental Biology, 2022, 10, 840256.	1.8	14
1382	Host casein kinase 1-mediated phosphorylation modulates phase separation of a rhabdovirus phosphoprotein and virus infection. ELife, 2022, 11, .	2.8	21
1383	Modeling the Structure and Interactions of Intrinsically Disordered Peptides with Multiple Replica, Metadynamics-Based Sampling Methods and Force-Field Combinations. Journal of Chemical Theory and Computation, 2022, 18, 1915-1928.	2.3	7
1385	A novel missense HNRNPA1 variant in the PY-NLS domain in a patient with late-onset distal myopathy. Neuromuscular Disorders, 2022, 32, 521-526.	0.3	3
1386	Atomic resolution dynamics of cohesive interactions in phase-separated Nup98 FG domains. Nature Communications, 2022, 13, 1494.	5.8	20

#	Article	IF	CITATIONS
1387	Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Developmental Cell, 2022, 57, 583-597.e6.	3.1	45
1390	Binary Matrix Method to Enumerate, Hierarchically Order, and Structurally Classify Peptide Aggregation. Journal of Chemical Information and Modeling, 2022, 62, 1585-1594.	2.5	0
1391	The role of <scp>ATP</scp> in solubilizing <scp>RNA</scp> â€binding protein fused in sarcoma. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1606-1612.	1.5	11
1392	Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Scientific Reports, 2022, 12, 4390.	1.6	20
1393	Modulation of amyloid precursor protein cleavage by Î ³ -secretase activating protein through phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122292119.	3.3	5
1394	Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration. ELife, 2022, 11,	2.8	10
1396	Hyperphosphorylation tunes TDPâ \in 43 solubility. EMBO Journal, 2022, 41, e111062.	3.5	1
1397	Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. EMBO Journal, 2022, 41, e108882.	3.5	33
1400	How do protein aggregates escape quality control in neurodegeneration?. Trends in Neurosciences, 2022, 45, 257-271.	4.2	17
1401	Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles. ACS Macro Letters, 2022, 11, 562-567.	2.3	20
1402	Quantitative BONCAT Allows Identification of Newly Synthesized Proteins after Optic Nerve Injury. Journal of Neuroscience, 2022, 42, 4042-4052.	1.7	6
1403	Temporal and spatial characterisation of protein liquid-liquid phase separation using NMR spectroscopy. Nature Communications, 2022, 13, 1767.	5.8	11
1404	The Possible Role of Prion-Like Viral Protein Domains on the Emergence of Novel Viruses as SARS-CoV-2. Journal of Molecular Evolution, 2022, 90, 227-230.	0.8	6
1405	Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119952119.	3.3	38
1406	SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation. Protein and Cell, 2022, 13, 602-614.	4.8	15
1407	Essence determines phenomenon: Assaying the material properties of biological condensates. Journal of Biological Chemistry, 2022, 298, 101782.	1.6	29
1408	Small Molecules Modulate Liquidâ€ŧoâ€Solid Transitions in Phaseâ€Separated Tau Condensates. Angewandte Chemie, 0, , .	1.6	3
1409	Small Molecules Modulate Liquidâ€toâ€Solid Transitions in Phaseâ€Separated Tau Condensates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16

#	Article	IF	CITATIONS
1410	Minimalist Design of an Intrinsically Disordered Protein-Mimicking Scaffold for an Artificial Membraneless Organelle. ACS Central Science, 2022, 8, 493-500.	5.3	37
1411	Wetting and evaporation of multicomponent droplets. Physics Reports, 2022, 960, 1-37.	10.3	56
1412	The flocculant Saccharomyces cerevisiae strain gains robustness via alteration of the cell wall hydrophobicity. Metabolic Engineering, 2022, 72, 82-96.	3.6	10
1413	Liquid-Liquid Phase Separation Phenomenon on Protein Sorting Within Chloroplasts. Frontiers in Physiology, 2021, 12, 801212.	1.3	4
1414	Regulation of AR mRNA translation in response to acute AR pathway inhibition. Nucleic Acids Research, 2022, 50, 1069-1091.	6.5	18
1415	Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. International Journal of Molecular Sciences, 2021, 22, 13095.	1.8	11
1416	Rapid Determination of Phase Diagrams for Biomolecular Liquid–Liquid Phase Separation with Microfluidics. Analytical Chemistry, 2022, 94, 687-694.	3.2	12
1419	Modulation of Phase Separation by RNA: A Glimpse on N6-Methyladenosine Modification. Frontiers in Cell and Developmental Biology, 2021, 9, 786454.	1.8	16
1422	TDP-43 Oligomerization and Phase Separation Properties Are Necessary for Autoregulation. Frontiers in Neuroscience, 2022, 16, 818655.	1.4	16
1424	Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cellular and Molecular Life Sciences, 2022, 79, 251.	2.4	42
1425	Condensation of Ede1 promotes the initiation of endocytosis. ELife, 2022, 11, .	2.8	29
1426	Macromolecular Crowding-Induced Unusual Liquid–Liquid Phase Separation of Human Serum Albumin via Soft Protein–Protein Interactions. Journal of Physical Chemistry Letters, 2022, 13, 3636-3644.	2.1	14
1435	How can we interpret the relationship between liquid-liquid phase separation and amyotrophic lateral sclerosis?. Laboratory Investigation, 2022, 102, 912-918.	1.7	4
1436	Field theory description of ion association in re-entrant phase separation of polyampholytes. Journal of Chemical Physics, 2022, 156, .	1.2	2
1437	Phase separation driven by interchangeable properties in the intrinsically disordered regions of protein paralogs. Communications Biology, 2022, 5, 400.	2.0	13
1438	Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends in Cell Biology, 2022, 32, 681-695.	3.6	18
1439	PPARÎ ³ phase separates with RXRα at PPREs to regulate target gene expression. Cell Discovery, 2022, 8, 37.	3.1	9
1440	Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nature Communications, 2022, 13, 2306.	5.8	20

68

#	Article	IF	CITATIONS
1441	Sequence Determinants of TDP-43 Ribonucleoprotein Condensate Formation and Axonal Transport in Neurons. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	9
1442	Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Molecular Biomedicine, 2022, 3, 13.	1.7	42
1443	Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nature Communications, 2022, 13, 2429.	5.8	19
1444	Phase Separation in Regulation of Autophagy. Frontiers in Cell and Developmental Biology, 2022, 10, 910640.	1.8	4
1446	Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption of the Nuclear Lamina, TDP-43 Mislocalization and Cell Death. Frontiers in Molecular Neuroscience, 2022, 15, 888420.	1.4	9
1447	Phase Separation: "The Master Key―to Deciphering the Physiological and Pathological Functions of Cells. Advanced Biology, 2022, , 2200006.	1.4	6
1448	Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. IScience, 2022, 25, 104356.	1.9	14
1449	Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics. Nature Chemistry, 2022, 14, 775-785.	6.6	25
1450	F/YGG-motif is an intrinsically disordered nucleic-acid binding motif. RNA Biology, 2022, 19, 622-635.	1.5	7
1451	Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR. Neurochemistry International, 2022, 157, 105345.	1.9	10
1452	The Molecular and Functional Interaction Between Membrane-Bound Organelles and Membrane-Less Condensates. Frontiers in Cell and Developmental Biology, 2022, 10, 896305.	1.8	4
1453	Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. Journal of Molecular Biology, 2023, 435, 167629.	2.0	8
1454	Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. Molecular Cell, 2022, 82, 2588-2603.e9.	4.5	24
1455	Valence-induced jumps in coacervate properties. Science Advances, 2022, 8, eabm4783.	4.7	9
1458	The histone methyltransferase SUVR2 promotes DSB repair via chromatin remodeling and liquid–liquid phase separation. Molecular Plant, 2022, 15, 1157-1175.	3.9	12
1459	Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation. Journal of Biological Chemistry, 2022, 298, 102062.	1.6	30
1460	The Role of Ubiquitin in Regulating Stress Granule Dynamics. Frontiers in Physiology, 2022, 13, .	1.3	11
1461	A General Strategy for the Design and Evaluation of Heterobifunctional Tools: Applications to Protein Localization and Phase Separation. ChemBioChem. 2022, 23	1.3	2

#	Article	IF	Citations
1462	Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194827.	0.9	9
1463	Nuclear translocation of RIG-I promotes cellular apoptosis. Journal of Autoimmunity, 2022, 130, 102840.	3.0	9
1465	Differences in interaction lead to the formation of different types of insulin amyloid. Scientific Reports, 2022, 12, .	1.6	4
1470	The SGYS motif of TAF15 prion-like domain isÂcritical to amyloid fibril formation. Biophysical Journal, 2022, 121, 2613-2623.	0.2	2
1471	Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity. Nature Communications, 2022, 13, .	5.8	35
1472	General Principles Underpinning Amyloid Structure. Frontiers in Neuroscience, 2022, 16, .	1.4	20
1473	Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Molecular Cell, 2022, 82, 2544-2556.	4.5	54
1474	Condensation properties of stress granules and processing bodies are compromised in myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
1475	Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Research, 2022, 32, 715-728.	5.7	12
1476	PQBP1: The Key to Intellectual Disability, Neurodegenerative Diseases, and Innate Immunity. International Journal of Molecular Sciences, 2022, 23, 6227.	1.8	5
1477	ALS-associated A315E and A315pT variants exhibit distinct mechanisms in inducing irreversible aggregation of TDP-43 _{312–317} peptides. Physical Chemistry Chemical Physics, 2022, 24, 16263-16273.	1.3	6
1478	Coacervation of poly-electrolytes in the presence of lipid bilayers: mutual alteration of structure and morphology. Chemical Science, 2022, 13, 7933-7946.	3.7	16
1479	A conceptual framework for understanding phase separation and addressing open questions and challenges. Molecular Cell, 2022, 82, 2201-2214.	4.5	233
1480	Effects of pH alterations on stress- and aging-induced protein phase separation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	20
1481	Aging can transform single-component protein condensates into multiphase architectures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44
1482	Temperature-dependent self-assembly of biofilaments during red blood cell sickling. Journal of Chemical Physics, 2022, 157, .	1.2	0
1483	The physics of liquid-to-solid transitions in multi-domain protein condensates. Biophysical Journal, 2022, 121, 2751-2766.	0.2	20
1484	FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics, 2022, 221, .	1.2	8

#	Article	IF	CITATIONS
1485	Identification of the stress granule transcriptome via RNA-editing in single cells and inÂvivo. Cell Reports Methods, 2022, 2, 100235.	1.4	5
1488	Emerging Roles of RNA-Binding Proteins in Neurodevelopment. Journal of Developmental Biology, 2022, 10, 23.	0.9	10
1489	Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics, leading to cell death. Journal of Cell Science, 2022, 135, .	1.2	9
1491	Effect of <i>In Vitro</i> Solvation Conditions on Inter- and Intramolecular Assembly of Full-Length TDP-43. Journal of Physical Chemistry B, 2022, 126, 4799-4813.	1.2	8
1492	40S hnRNP particles are a novel class of nuclear biomolecular condensates. Nucleic Acids Research, 2022, 50, 6300-6312.	6.5	8
1493	Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. Jacs Au, 2022, 2, 1506-1521.	3.6	19
1494	RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. Frontiers in Plant Science, 0, 13, .	1.7	11
1495	Biomolecular condensates in epithelial junctions. Current Opinion in Cell Biology, 2022, 77, 102089.	2.6	9
1496	Lattice-model analysis of the effect of protein surface charge distribution on amorphous aggregation and condensation. Chemical Physics Letters, 2022, 802, 139767.	1.2	0
1497	RNA binding protein BOULE forms aggregates in mammalian testis. Journal of Biomedical Research, 2022, 36, 255.	0.7	2
1498	Mechanistic insights into enhancement or inhibition of phase separation by different polyubiquitin chains. EMBO Reports, 2022, 23, .	2.0	26
1499	Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discovery, 2022, 8, .	3.1	13
1501	It's Just a Phase: Exploring the Relationship Between mRNA, Biomolecular Condensates, and Translational Control. Frontiers in Genetics, 0, 13, .	1.1	17
1502	Regulation of Cellular Ribonucleoprotein Granules: From Assembly to Degradation via Post-translational Modification. Cells, 2022, 11, 2063.	1.8	9
1506	Mutations linked to neurological disease enhance self-association of low-complexity protein sequences. Science, 2022, 377, .	6.0	41
1507	Stress Granules Determine the Development of Obesity-Associated Pancreatic Cancer. Cancer Discovery, 2022, 12, 1984-2005.	7.7	25
1508	Editorial: Protein Phase Separation and Aggregation in (Patho)Physiology of Neurons. Frontiers in Physiology, 0, 13, .	1.3	0
1509	Mechanisms of mitochondrial respiratory adaptation. Nature Reviews Molecular Cell Biology, 2022, 23, 817-835.	16.1	61

#	Article	IF	CITATIONS
1510	Liquid-liquid Phase Separation of α-Synuclein: A New Mechanistic Insight for α-Synuclein Aggregation Associated with Parkinson's Disease Pathogenesis. Journal of Molecular Biology, 2023, 435, 167713.	2.0	44
1511	Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. Biology, 2022, 11, 1009.	1.3	4
1512	The Multivalent Polyampholyte Domain of Nst1, a P-Body-Associated Saccharomyces cerevisiae Protein, Provides a Platform for Interacting with P-Body Components. International Journal of Molecular Sciences, 2022, 23, 7380.	1.8	2
1513	Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Advanced Biology, 2022, 6, .	1.4	4
1514	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	52
1515	Essential Roles and Risks of C-Quadruplex Regulation: Recognition Targets of ALS-Linked TDP-43 and FUS. Frontiers in Molecular Biosciences, 0, 9, .	1.6	7
1516	ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules. Nature Plants, 2022, 8, 778-791.	4.7	24
1517	Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry, 2022, 61, 2443-2455.	1.2	40
1518	Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends in Genetics, 2022, 38, 1019-1047.	2.9	11
1519	A Feedback Regulatory Loop Involving dTrbd/dTak1 in Controlling IMD Signaling in Drosophila Melanogaster. Frontiers in Immunology, 0, 13, .	2.2	6
1520	Genetic variation associated with condensate dysregulation in disease. Developmental Cell, 2022, 57, 1776-1788.e8.	3.1	41
1521	Regulation of TIA-1 Condensates: Zn2+ and RGG Motifs Promote Nucleic Acid Driven LLPS and Inhibit Irreversible Aggregation. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
1523	The ribonucleoprotein network of the nucleus: a historical perspective. Current Opinion in Genetics and Development, 2022, 75, 101940.	1.5	3
1524	Phase Separation of Heterogeneous Nuclear Ribonucleoprotein A1 upon Specific RNAâ€Binding Observed by Magnetic Resonance. Angewandte Chemie, 0, , .	1.6	0
1525	Phase Separation of Heterogeneous Nuclear Ribonucleoprotein A1 upon Specific RNAâ€Binding Observed by Magnetic Resonance**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
1526	Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. IScience, 2022, 25, 104811.	1.9	7
1527	Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Cell Reports, 2022, 40, 111106.	2.9	26
1528	Androgen receptor signaling and spatial chromatin organization in castration-resistant prostate cancer. Frontiers in Medicine, 0, 9, .	1.2	4

	CHATION N	LPORT	
# 1529	ARTICLE Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discovery, 2022, 12, 2031-2043.	IF 7.7	CITATIONS 3
1531	Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chemical Neuroscience, 2022, 13, 2356-2370.	1.7	6
1532	Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Reports, 2022, 40, 111086.	2.9	9
1533	Modulating biomolecular condensates: a novel approach to drug discovery. Nature Reviews Drug Discovery, 2022, 21, 841-862.	21.5	88
1534	Hyperphosphorylation-Mimetic TDP-43 Drives Amyloid Formation and Possesses Neuronal Toxicity at the Oligomeric Stage. ACS Chemical Neuroscience, 0, , .	1.7	0
1535	Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB Journal, 2022, 36, .	0.2	11
1539	Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends in Pharmacological Sciences, 2022, 43, 820-837.	4.0	26
1540	Molecular mechanisms of steric pressure generation and membrane remodeling byÂdisordered proteins. Biophysical Journal, 2022, 121, 3320-3333.	0.2	8
1541	Transcriptional targets of amyotrophic lateral sclerosis/frontotemporal dementia protein TDP-43 – meta-analysis and interactive graphical database. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
1542	SRRM2 organizes splicing condensates to regulate alternative splicing. Nucleic Acids Research, 2022, 50, 8599-8614.	6.5	28
1543	Tau liquid–liquid phase separation: At the crossroads of tau physiology and tauopathy. Journal of Cellular Physiology, 0, , .	2.0	4
1544	LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science, 2022, 377, .	6.0	53
1546	Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiology Spectrum, 0, , .	1.2	0
1547	Ubiquitination-coupled liquid phase separation regulates the accumulation of the TRIM family of ubiquitin ligases into cytoplasmic bodies. PLoS ONE, 2022, 17, e0272700.	1.1	7
1548	Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau. Nature Communications, 2022, 13, .	5.8	21
1549	Phase separation in epigenetics and cancer stem cells. Frontiers in Oncology, 0, 12, .	1.3	3
1550	Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2022, 126, 5959-5971.	1.2	17
1552	Bloom Syndrome Helicase Compresses Single‧tranded DNA into Phase‧eparated Condensates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6

~			-	
	ΙΤΔΤ	10N	Repo	DL.
<u> </u>	/			IX I

#	Article	IF	CITATIONS
1553	Bloom Syndrome Helicase Compresses Single‣tranded DNA into Phase‣eparated Condensates. Angewandte Chemie, 0, , .	1.6	0
1554	Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Reports, 2022, 40, 111251.	2.9	15
1555	Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. International Journal of Biological Macromolecules, 2022, 220, 703-720.	3.6	15
1557	Affinity and Valence Impact the Extent and Symmetry of Phase Separation of Multivalent Proteins. Physical Review Letters, 2022, 129, .	2.9	8
1558	High-pressure SAXS, deep life, and extreme biophysics. Methods in Enzymology, 2022, , .	0.4	1
1559	Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. International Journal of Biological Sciences, 2022, 18, 5103-5122.	2.6	18
1560	Signaling mechanisms of SARS-CoV-2 Nucleocapsid protein in viral infection, cell death and inflammation. International Journal of Biological Sciences, 2022, 18, 4704-4713.	2.6	26
1561	Basic Concepts and Emergent Disease Mechanisms of Amyotrophic Lateral Sclerosis. , 2023, , 644-665.		1
1562	Protein conformation and biomolecular condensates. Current Research in Structural Biology, 2022, 4, 285-307.	1.1	13
1563	Microfluidics for multiscale studies of biomolecular condensates. Lab on A Chip, 2022, 23, 9-24.	3.1	4
1564	Nonequilibrium Physics of Molecules and Cells. Graduate Texts in Physics, 2022, , 1-59.	0.1	0
1565	Recent trends in studies of biomolecular phase separation BMB Reports, 2022, 55, 363-369.	1.1	3
1566	Stress induced TDP-43 mobility loss independent of stress granules. Nature Communications, 2022, 13, .	5.8	16
1567	Capillary forces generated by biomolecular condensates. Nature, 2022, 609, 255-264.	13.7	92
1568	Liquid to solid transition of elastin condensates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
1569	Aging RNA granule dynamics in neurodegeneration. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
1570	Atomistic Insights into A315E Mutation-Enhanced Pathogenicity of TDP-43 Core Fibrils. ACS Chemical Neuroscience, 2022, 13, 2743-2754.	1.7	4
1573	Protein condensation diseases: therapeutic opportunities. Nature Communications, 2022, 13, .	5.8	38

# 1574	ARTICLE Biomaterial design inspired by membraneless organelles. Matter, 2022, 5, 2787-2812.	IF 5.0	Citations 19
1575	Droplet Microfluidics for the Labelâ€Free Extraction of Complete Phase Diagrams and Kinetics of Liquid–Liquid Phase Separation in Finite Volumes. Small, 2022, 18, .	5.2	10
1576	Emerging Implications of Phase Separation in Cancer. Advanced Science, 2022, 9, .	5.6	9
1577	Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays in Biochemistry, 2022, 66, 915-934.	2.1	7
1578	Cancer Cells Evade Stress-Induced Apoptosis by Promoting HSP70-Dependent Clearance of Stress Granules. Cancers, 2022, 14, 4671.	1.7	1
1579	Liquid–Liquid Phase Separation of Biomacromolecules and Its Roles in Metabolic Diseases. Cells, 2022, 11, 3023.	1.8	5
1580	The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems. Nature Communications, 2022, 13, .	5.8	39
1581	Conformational change of RNA-helicase DHX30 by ALS/FTD-linked FUS induces mitochondrial dysfunction and cytosolic aggregates. Scientific Reports, 2022, 12, .	1.6	4
1583	Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nature Communications, 2022, 13, .	5.8	21
1585	Phase-Separated Nanodroplets Formed below the Cloud Point for the Aqueous Solution of Stereo-Controlled Poly(<i>N</i> -isopropylacrylamide). Langmuir, 2022, 38, 12300-12306.	1.6	5
1586	Heat-shock chaperone HSPB1 regulates cytoplasmic TDP-43 phase separation and liquid-to-gel transition. Nature Cell Biology, 2022, 24, 1378-1393.	4.6	46
1587	Biological colloids: Unique properties of membraneless organelles in the cell. Advances in Colloid and Interface Science, 2022, 310, 102777.	7.0	6
1588	Phase separation of low-complexity domains in cellular function and disease. Experimental and Molecular Medicine, 2022, 54, 1412-1422.	3.2	6
1589	Landscape of biomolecular condensates in heat stress responses. Frontiers in Plant Science, 0, 13, .	1.7	5
1590	SAMHD1 controls innate immunity by regulating condensation of immunogenic self RNA. Molecular Cell, 2022, 82, 3712-3728.e10.	4.5	19
1591	Prion-like low complexity regions enable avid virus-host interactions during HIV-1 infection. Nature Communications, 2022, 13, .	5.8	14
1592	Targeting phase separation on enhancers induced by transcription factor complex formations as a new strategy for treating drug-resistant cancers. Frontiers in Oncology, 0, 12, .	1.3	2
1593	Liquid-Liquid Phase Separation Promotes Protein Aggregation and Its Implications in Ferroptosis in Parkinson's Disease Dementia. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	3

#	Article	IF	CITATIONS
1594	Integrated stress response is involved in the 24(S)-hydroxycholesterol-induced unconventional cell death mechanism. Cell Death Discovery, 2022, 8, .	2.0	2
1596	Controlling liquid–liquid phase separation of G-quadruplex-forming RNAs in a sequence-specific manner. Chemical Communications, 2022, 58, 12931-12934.	2.2	10
1597	Liquid-liquid phase separation: A new perspective to understanding aging and pathogenesis. BioScience Trends, 2022, 16, 359-362.	1.1	3
1598	Modulating liquid–liquid phase separation of FUS: mechanisms and strategies. Journal of Materials Chemistry B, 2022, 10, 8616-8628.	2.9	10
1600	Characterizing Properties of Biomolecular Condensates Below the Diffraction Limit In Vivo. Methods in Molecular Biology, 2023, , 425-445.	0.4	2
1601	The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. International Journal of Molecular Sciences, 2022, 23, 11759.	1.8	5
1603	An Optogenetic Toolkit for the Control of Phase Separation in Living Cells. Methods in Molecular Biology, 2023, , 383-394.	0.4	3
1604	Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes, 2022, 13, 1846.	1.0	9
1606	Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect–based chemical-enrichment method. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
1609	FRAP and FRET Investigation of α-Synuclein Fibrillization via Liquid-Liquid Phase Separation In Vitro and in HeLa Cells. Methods in Molecular Biology, 2023, , 395-423.	0.4	6
1610	PABPN1 functions as a hub in the assembly of nuclear poly(A) domains that are essential for mouse oocyte development. Science Advances, 2022, 8, .	4.7	8
1611	Dynamic assembly of viscoelastic networks by aqueous liquidâ€liquid phase separation and liquidâ€solid phase separation (AqLLâ€LS PS ²). Advanced Materials, 0, , 2205649.	11.1	3
1612	An Optimized Stress Granule Detection Method: Investigation of UBQLN2 Effect on Stress Granule Formation. Methods in Molecular Biology, 2023, , 543-560.	0.4	0
1613	Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD. Journal of Biological Chemistry, 2022, 298, 102631.	1.6	6
1614	Cryo-Electron Tomography of Reconstituted Biomolecular Condensates. Methods in Molecular Biology, 2023, , 297-324.	0.4	4
1615	An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Methods in Molecular Biology, 2023, , 95-116.	0.4	14
1616	Digest it all: the lysosomal turnover of cytoplasmic aggregates. Trends in Biochemical Sciences, 2023, 48, 216-228.	3.7	6
1617	A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Research, 2022, 50, 10817-10838.	6.5	6

#	Article	IF	CITATIONS
1618	Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex. Acta Neuropathologica Communications, 2022, 10, .	2.4	16
1620	Light Microscopy and Dynamic Light Scattering to Study Liquid-Liquid Phase Separation of Tau Proteins In Vitro. Methods in Molecular Biology, 2023, , 225-243.	0.4	4
1622	A Spectrophotometric Turbidity Assay to Study Liquid-Liquid Phase Separation of UBQLN2 In Vitro. Methods in Molecular Biology, 2023, , 515-541.	0.4	4
1623	Mapping Phase Diagram of Tau-RNA LLPS Under Live Cell Coculturing Conditions. Methods in Molecular Biology, 2023, , 269-284.	0.4	0
1624	Small Amphiphile $\hat{a} \in \mathbb{B}$ ased Coacervation. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
1625	Spectrally Resolved FRET Microscopy of α-Synuclein Phase-Separated Liquid Droplets. Methods in Molecular Biology, 2023, , 425-447.	0.4	1
1626	NOP53 undergoes liquid-liquid phase separation and promotes tumor radio-resistance. Cell Death Discovery, 2022, 8, .	2.0	5
1627	RG/RGG repeats in the C. elegans homologs of Nucleolin and GAR1 contribute to sub-nucleolar phase separation. Nature Communications, 2022, 13, .	5.8	12
1629	"Structure―function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Molecular Cell, 2022, 82, 3970-3984.	4.5	40
1630	Intrinsically disordered regions: a platform for regulated assembly of biomolecular condensates. , 2023, , 397-430.		2
1631	Droplets of life: role of phase separation in virus replication and compartmentalization. , 2023, , 567-615.		0
1632	Biochemical and structural biology aspects of liquid–liquid phase separation: an interplay between proteins and RNA. , 2023, , 133-155.		0
1633	Interactions and interplay of MLOs with classical membrane-bound organelles. , 2023, , 375-395.		1
1634	Roles of phase separation and condensates in autophagy. , 2023, , 531-543.		1
1635	Guidelines for experimental characterization of liquid–liquid phase separation inÂvitro. , 2023, , 233-249.		0
1636	Liquid–liquid phase separation in neurodegenerative diseases. , 2023, , 619-650.		1
1637	Stress, membraneless organelles, and liquid–liquid phase separation. , 2023, , 505-529.		1
1638	Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nature Chemical Biology, 2022, 18, 1361-1369.	3.9	28

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
1639	Aggregation controlled by condensate rheology. Biophysical Journal, 2023, 122, 197-214.	0.2	2	4
1640	Biophysical characterization of fullâ€length <scp>TAR DNAâ€binding</scp> protein (<scp>TDP</scp>	scp>â€43) 3.1	L	5
1641	Statistical mechanics of phase transitions in elastic media with vanishing thermal expansion. Phys Review E, 2022, 106, .	ical 0.8	8	5
1642	Different states and the associated fates of biomolecular condensates. Essays in Biochemistry, 20 66, 849-862.)22, 2.1	L	2
1643	DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalyti function. ELife, 0, 11, .	C 2.8	3	4
1645	Bioâ€inspired functional coacervates. Aggregate, 2022, 3, .	5.2	2	10
1646	Phase separation and other forms of $\hat{l}\pm$ -Synuclein self-assemblies. Essays in Biochemistry, O, , .	2.1	L	4
1649	Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions. Journal of Physical Chemistry B, 2022, 126, 9222-9245.	1.2	2	16
1650	Evolution of sequence traits of prion-like proteins linked to amyotrophic lateral sclerosis (ALS). PeerJ, 0, 10, e14417.	0.9	9	2
1651	Come together now: Dynamic body-formation of key regulators integrates environmental cues in plant development. Frontiers in Plant Science, 0, 13, .	1.7	7	1
1652	Phase separation drives the formation of biomolecular condensates in the immune system. Fronti in Immunology, 0, 13, .	ers 2.2	2	3
1653	Biological soft matter: intrinsically disordered proteins in liquid–liquid phase separation and biomolecular condensates. Essays in Biochemistry, 2022, 66, 831-847.	2.1	L	16
1654	Ubiquitin-assisted phase separation of dishevelled-2 promotes Wnt signalling. Journal of Cell Scien 2022, 135, .	nce, 1.2	2	9
1655	Double-strand break repair and mis-repair in 3D. DNA Repair, 2023, 121, 103430.	1.3	3	3
1656	Universality and Identity Ordering in Heteropolymer Coil–Globule Transition. Macromolecules, (D, , . 2.2	2	2
1657	Water-in-water droplet microfluidics: A design manual. Biomicrofluidics, 2022, 16, .	1.2	2	3
1658	The roles of prion-like domains in amyloid formation, phase separation, and solubility. , 2023, , 39	7-426.		0
1660	A Znâ€dependent structural transition of SOD1 modulates its ability to undergo phase separation Journal, 2023, 42, .	η. EMBO 3.ε	5	12

#	Article	IF	CITATIONS
1661	Understanding In Vitro Pathways to Drug Discovery for TDP-43 Proteinopathies. International Journal of Molecular Sciences, 2022, 23, 14769.	1.8	1
1662	Sequence-Based Prediction of Protein Phase Separation: The Role of Beta-Pairing Propensity. Biomolecules, 2022, 12, 1771.	1.8	2
1663	Formation of subcellular compartments by condensation-prone protein OsJAZ2 in Oryza sativa and Nicotiana benthamiana leaf cells. Plant Cell Reports, 0, , .	2.8	0
1665	Role of Proteostasis Regulation in the Turnover of Stress Granules. International Journal of Molecular Sciences, 2022, 23, 14565.	1.8	4
1667	Role of Triggers on the Structural and Functional Facets of TAR DNA-binding Protein 43. Neuroscience, 2023, 511, 110-130.	1.1	1
1668	Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nature Communications, 2022, 13, .	5.8	27
1669	TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nature Neuroscience, 2022, 25, 1608-1625.	7.1	11
1670	Properties of rabies virus phosphoprotein and nucleoprotein biocondensates formed in vitro and in cellulo. PLoS Pathogens, 2022, 18, e1011022.	2.1	9
1672	How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases?. BioScience Trends, 2022, 16, 389-404.	1.1	3
1673	Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nature Communications, 2022, 13, .	5.8	60
1674	Different Intermolecular Interactions Drive Nonpathogenic Liquid–Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43. International Journal of Molecular Sciences, 2022, 23, 15227.	1.8	5
1675	Direct imaging of intracellular RNA, DNA, and liquid–liquid phase separated membraneless organelles with Raman microspectroscopy. Communications Biology, 2022, 5, .	2.0	3
1676	Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nature Communications, 2022, 13, .	5.8	6
1677	Protein Phase Separation: New Insights into Carcinogenesis. Cancers, 2022, 14, 5971.	1.7	0
1679	DNA Droplets: Intelligent, Dynamic Fluid. Advanced Biology, 2023, 7, .	1.4	11
1680	Phase separation of EB1 guides microtubule plus-end dynamics. Nature Cell Biology, 2023, 25, 79-91.	4.6	28
1681	Fused in sarcoma undergoes cold denaturation: Implications for phase separation. Protein Science, 2023, 32, .	3.1	5
1682	A minimal construct of nuclear-import receptor Karyopherin-β2 defines the regions critical for chaperone and disaggregation activity. Journal of Biological Chemistry, 2023, 299, 102806.	1.6	8

#	Article	IF	CITATIONS
1684	Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. Science Advances, 2022, 8, .	4.7	32
1686	Enhanced potency of aggregation inhibitors mediated by liquid condensates. Physical Review Research, 2022, 4, .	1.3	0
1688	Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. Frontiers in Virology, 0, 2, .	0.7	1
1690	Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chemical Reviews, 2023, 123, 2155-2199.	23.0	11
1691	Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid–liquid phase separation. Essays in Biochemistry, 2022, 66, 891-900.	2.1	7
1692	Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Communications Biology, 2022, 5, .	2.0	7
1693	OASL phase condensation induces amyloid-like fibrillation of RIPK3 to promote virus-induced necroptosis. Nature Cell Biology, 2023, 25, 92-107.	4.6	15
1694	DIAPH3 condensates formed by liquid-liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling. Cell Reports, 2023, 42, 111986.	2.9	3
1695	Biomolecular Condensates Regulate Enzymatic Activity under a Crowded Milieu: Synchronization of Liquid–Liquid Phase Separation and Enzymatic Transformation. Journal of Physical Chemistry B, 2023, 127, 180-193.	1.2	9
1696	Cytosolic condensates rich in polyserine define subcellular sites of tau aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1697	Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophyÂD3. Nature Communications, 2023, 14, .	5.8	15
1698	Liquid Droplet Aging and Seeded Fibril Formation of the Cytotoxic Granule Associated RNA Binding Protein TIA1 Low Complexity Domain. Journal of the American Chemical Society, 2023, 145, 1580-1592.	6.6	3
1699	A call to order: Examining structured domains in biomolecular condensates. Journal of Magnetic Resonance, 2023, 346, 107318.	1.2	3
1700	Phosphorylation and specific DNA improved the incorporation ability of p53 into functional condensates. International Journal of Biological Macromolecules, 2023, 230, 123221.	3.6	2
1701	Stress granule formation as a marker of cellular toxicity in lung organoids. Organoid, 0, 2, e28.	0.0	0
1702	A liquid-to-solid phase transition of Cu/Zn superoxide dismutase 1 initiated by oxidation and disease mutation. Journal of Biological Chemistry, 2023, 299, 102857.	1.6	6
1703	Sequence Tendency for the Interaction between Low-Complexity Intrinsically Disordered Proteins. Jacs Au, 2023, 3, 93-104.	3.6	5
1704	Cytosolic stress granules relieve the ubiquitinâ€proteasome system in the nuclear compartment. EMBO Journal, 2023, 42, .	3.5	7

#	Article	IF	CITATIONS
1706	Condensation Goes Viral: A Polymer Physics Perspective. Journal of Molecular Biology, 2023, 435, 167988.	2.0	4
1707	Condensate biology of synaptic vesicle clusters. Trends in Neurosciences, 2023, 46, 293-306.	4.2	22
1708	CPEB3 low-complexity motif regulates local protein synthesis via protein–protein interactions in neuronal ribonucleoprotein granules. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
1711	Heterochromatin organization and phase separation. Nucleus, 2023, 14, .	0.6	9
1712	Liquid-like VASP condensates drive actin polymerization and dynamic bundling. Nature Physics, 2023, 19, 574-585.	6.5	10
1713	Thermodynamic origins of two-component multiphase condensates of proteins. Chemical Science, 2023, 14, 1820-1836.	3.7	12
1714	Liquid–liquid phase separation of amyloid-β oligomers modulates amyloid fibrils formation. Journal of Biological Chemistry, 2023, 299, 102926.	1.6	11
1715	A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chemical Reviews, 2023, 123, 9036-9064.	23.0	22
1716	Coacervate Formation of Elastin-like Polypeptides in Explicit Aqueous Solution Using Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2023, 56, 794-805.	2.2	0
1718	Aggregation of Disordered Proteins Associated with Neurodegeneration. International Journal of Molecular Sciences, 2023, 24, 3380.	1.8	16
1719	Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. Nature Communications, 2023, 14, .	5.8	8
1720	Phase separation in innate immune response and inflammation-related diseases. Frontiers in Immunology, 0, 14, .	2.2	1
1721	Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	1
1722	Biomolecular condensation involving the cytoskeleton. Brain Research Bulletin, 2023, 194, 105-117.	1.4	7
1724	Tau, RNA, and RNA-Binding Proteins: Complex Interactions in Health and Neurodegenerative Diseases. Neuroscientist, 0, , 107385842311545.	2.6	1
1725	HIV-Induced CPSF6 Condensates. Journal of Molecular Biology, 2023, 435, 168094.	2.0	2
1726	Tuning the rheostat of immune gene translation. Stress Biology, 2023, 3, .	1.5	0
1727	Engineering synthetic biomolecular condensates. , 2023, 1, 466-480.		21

#	Article	IF	Citations
1730	De-centralizing the Central Dogma: mRNA translation in space and time. Molecular Cell, 2023, 83, 452-468.	4.5	14
1731	Phase Separation in Biology and Disease; Current Perspectives and Open Questions. Journal of Molecular Biology, 2023, 435, 167971.	2.0	13
1732	Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiology of Disease, 2023, 178, 106011.	2.1	6
1733	Early-Stage Oligomerization of Prion-like Polypeptides Reveals the Molecular Mechanism of Amyloid-Disrupting Capacity by Proline Residues. Journal of Physical Chemistry B, 2023, 127, 1074-1088.	1.2	1
1734	Intracellular Organization of Proteins and Nucleic Acids via Biomolecular Condensates in Human Health and Diseases. Biochem, 2023, 3, 31-46.	0.5	0
1735	Programmable synthetic biomolecular condensates for cellular control. Nature Chemical Biology, 2023, 19, 518-528.	3.9	28
1736	Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature, 0, , .	13.7	9
1737	Spatially non-uniform condensates emerge from dynamically arrested phase separation. Nature Communications, 2023, 14, .	5.8	16
1739	The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition. International Journal of Molecular Sciences, 2023, 24, 3729.	1.8	0
1740	Remodeling of Biomembranes and Vesicles by Adhesion of Condensate Droplets. Membranes, 2023, 13, 223.	1.4	3
1741	Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophysical Chemistry, 2023, 295, 106972.	1.5	2
1742	Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes, 2023, 14, 499.	1.0	4
1745	An Introduction to Phase Separation in Cell Biology. Resonance - Journal of Science Education, 2023, 28, 229-245.	0.2	0
1746	Spontaneous nucleation and fast aggregate-dependent proliferation of α-synuclein aggregates within liquid condensates at neutral pH. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	25
1747	Indissoluble biomolecular condensates via elasticity. Physical Review Research, 2023, 5, .	1.3	1
1749	RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. Science Advances, 2023, 9, .	4.7	9
1750	Liquid-liquid phase separation in hair cell stereocilia development and maintenance. Computational and Structural Biotechnology Journal, 2023, 21, 1738-1745.	1.9	1
1752	Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm, 2023, 4, .	3.1	3

#	Article	IF	CITATIONS
1753	Peptides that Mimic RS repeats modulate phase separation of SRSF1, revealing a reliance on combined stacking and electrostatic interactions. ELife, 0, 12, .	2.8	2
1754	Protein–RNA interactions: from mass spectrometry to drug discovery. Essays in Biochemistry, 2023, 67, 175-186.	2.1	1
1756	Cellular liquid–liquid phase separation: Concept, functions, regulations, and detections. Journal of Cellular Physiology, 0, , .	2.0	0
1757	Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics, 2023, 15, 839.	2.0	10
1758	Construction of Osmotic Pressure Responsive Vacuole-like Bacterial Organelles with Capsular Polysaccharides as Building Blocks. ACS Synthetic Biology, 2023, 12, 750-760.	1.9	3
1759	Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Biophysical Journal, 2023, 122, 2973-2987.	0.2	1
1760	Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells, 2023, 12, 826.	1.8	3
1761	ALS-Linked A315T and A315E Mutations Enhance β-Barrel Formation of the TDP-43 _{307–319} Hexamer: A REST2 Simulation Study. ACS Chemical Neuroscience, 2023, 14, 1310-1320.	1.7	2
1762	Initiation and modulation of Tau protein phase separation by the drug suramin. Scientific Reports, 2023, 13, .	1.6	2
1763	Protein amyloid aggregate: Structure and function. Aggregate, 2023, 4, .	5.2	5
1763 1765	Protein amyloid aggregate: Structure and function. Aggregate, 2023, 4, . Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cellular and Molecular Life Sciences, 2023, 80, .	5.2 2.4	5
	Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43.		
1765	Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cellular and Molecular Life Sciences, 2023, 80, . Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. International	2.4	10
1765 1766	Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cellular and Molecular Life Sciences, 2023, 80, . Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. International Journal of Molecular Sciences, 2023, 24, 5835. Reversible protein assemblies in the proteostasis network in health and disease. Frontiers in	2.4 1.8	10 4
1765 1766 1767	Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cellular and Molecular Life Sciences, 2023, 80, . Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. International Journal of Molecular Sciences, 2023, 24, 5835. Reversible protein assemblies in the proteostasis network in health and disease. Frontiers in Molecular Biosciences, 0, 10, . Quantitative reconstitution of yeast RNA processing bodies. Proceedings of the National Academy of	2.4 1.8 1.6	10 4 3
1765 1766 1767 1770	Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cellular and Molecular Life Sciences, 2023, 80, . Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. International Journal of Molecular Sciences, 2023, 24, 5835. Reversible protein assemblies in the proteostasis network in health and disease. Frontiers in Molecular Biosciences, 0, 10, . Quantitative reconstitution of yeast RNA processing bodies. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Frontiers	2.4 1.8 1.6 3.3	10 4 3 14
1765 1766 1767 1770 1771	Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43. Cellular and Molecular Life Sciences, 2023, 80, . Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. International Journal of Molecular Sciences, 2023, 24, 5835. Reversible protein assemblies in the proteostasis network in health and disease. Frontiers in Molecular Biosciences, 0, 10, . Quantitative reconstitution of yeast RNA processing bodies. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Frontiers in Aging Neuroscience, 0, 15, . Targeting the NEDP1 enzyme to ameliorate ALS phenotypes through stress granule disassembly. Science	2.4 1.8 1.6 3.3 1.7	10 4 3 14 1

		CITATION REPORT		
#	Article		IF	Citations
1776	Biomolecular Liquid–Liquid Phase Separation for Biotechnology. BioTech, 2023, 12, 2	6.	1.3	2
1777	RNA recruitment switches the fate of protein condensates from autophagic degradatior accumulation. Journal of Cell Biology, 2023, 222, .	i to	2.3	3
1778	Enhanced Degradation of Mutant <i>C9ORF72</i> -Derived Toxic Dipeptide Repeat Prot Proteasome Activation Results in Restoration of Proteostasis and Neuroprotection. ACS Neuroscience, 0, , .		1.7	0
1779	Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stres Cell Reports, 2023, 42, 112315.	s response.	2.9	11
1780	Sensitive and selective polymer condensation at membrane surface driven by positive co Proceedings of the National Academy of Sciences of the United States of America, 2023		3.3	3
1782	1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelia Biology, 2023, 21, .	l function. BMC	1.7	5
1783	Phase separation of DDX21 promotes colorectal cancer metastasis via MCM5-depender Oncogene, 2023, 42, 1704-1715.	ıt EMT pathway.	2.6	7
1785	Optimizing the Martini 3 Force Field Reveals the Effects of the Intricate Balance betwee Proteina \in Water Interaction Strength and Salt Concentration on Biomolecular Condens Journal of Chemical Theory and Computation, 2024, 20, 1646-1655.		2.3	5
1786	Morphogenesis and functional organization of viral inclusion bodies. , 2023, 2, 100103.			0
1787	Domain-specific modulatory effects of phosphomimetic substitutions on liquid-liquid ph separation of tau protein. Journal of Biological Chemistry, 2023, 299, 104722.	ase	1.6	3
1789	Label-free autofluorescence lifetime reveals the structural dynamics of ataxin-3 inside dr formed via liquid–liquid phase separation. Scientific Reports, 2023, 13, .	oplets	1.6	0
1815	(Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the and α-synuclein phase separation. Biophysical Reviews, 0, , .	brion protein	1.5	1
1831	Biomolecule-Based Coacervates with Modulated Physiological Functions. Langmuir, 202	3, 39, 8941-8951.	1.6	3
1842	Amyloid formation as a protein phase transition. Nature Reviews Physics, 2023, 5, 379-3	97.	11.9	22
1846	Regulation of Biomolecular Condensates by Poly(ADP-ribose). Chemical Reviews, 2023,	123, 9065-9093.	23.0	3
1878	Amyloid Aggregation and Liquid–Liquid Phase Separation from the Perspective of Pha Journal of Physical Chemistry B, 2023, 127, 6241-6250.	se Transitions.	1.2	3
1896	Protein nanocondensates: the next frontier. Biophysical Reviews, 0, , .		1.5	1
1929	The Multifaceted Regulation of TDP-43 Condensates at the Intersection of Physiology a Implications for Neurodegenerative Diseases. , 2023, , 253-270.	nd Pathology:		0

#	Article	IF	CITATIONS
1930	Phase Separation Orchestrates Cancer Signaling: Stress Granules as a Promising Target for Cancer Therapy. , 2023, , 209-252.		0
1932	Positive and Negative Aspects of Protein Aggregation Induced by Phase Separation. , 2023, , 71-92.		0
1933	FUS Aggregation by Shear Stress on Pipetting and Its Suppression by Non-coding RNA. , 2023, , 3-19.		0
1968	SMALL-MOLECULE INTERACTIONS WITH BIOMOLECULAR CONDENSATES. Medicinal Chemistry Reviews, 0, , 419-443.	0.1	0
2000	Immunofluorescence Combined with Single-Molecule RNA Fluorescence In Situ Hybridization for Concurrent Detection of Proteins and Transcripts in Stress Granules. Methods in Molecular Biology, 2024, , 127-141.	0.4	0
2049	Preparation of Tau Condensates by Liquid–Liquid Phase Separation to Study Tau Amyloid Aggregation. Methods in Molecular Biology, 2024, , 185-192.	0.4	0