Cancer across the tree of life: cooperation and cheating

Philosophical Transactions of the Royal Society B: Biological Society 20140219

DOI: 10.1098/rstb.2014.0219

Citation Report

#	Article	IF	CITATIONS
1	Peto's paradox and human cancers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150104.	1.8	50
2	Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140220.	1.8	43
3	Peto's paradox and the promise of comparative oncology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140177.	1.8	58
4	Cancer's Darwinian dilemma: an evolutionary tale in three acts. BMJ, The, 2015, 351, h6581.	3.0	5
5	Evolutionary Determinants of Cancer. Cancer Discovery, 2015, 5, 806-820.	7.7	350
6	Evolutionary Adaptations to Risk of Cancer. JAMA - Journal of the American Medical Association, 2015, 314, 1806.	3.8	11
7	Learning about the Importance of Mutation Prevention from Curable Cancers and Benign Tumors. Journal of Cancer, 2016, 7, 436-445.	1.2	13
8	The role of cell replacement in benthic–pelagic coupling by suspension feeders. Royal Society Open Science, 2016, 3, 160484.	1.1	22
9	Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis. Biology, 2016, 5, 29.	1.3	18
10	Psychopathology, Sleep, and Culture. , 2016, , 269-284.		0
11	High metabolic demand in neural tissues: Information and control theory perspectives on the synergism between rate and stability. Journal of Theoretical Biology, 2016, 409, 86-96.	0.8	7
12	Contextual organismality: Beyond pattern to process in the emergence of organisms. Evolution; International Journal of Organic Evolution, 2016, 70, 2669-2677.	1.1	10
13	Principles of cooperation across systems: from human sharing to multicellularity and cancer. Evolutionary Applications, 2016, 9, 17-36.	1.5	37
14	An Evolutionary Genetic Perspective on Cancer Biology. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 25-49.	3.8	10
15	Measuring intratumor heterogeneity by network entropy using RNA-seq data. Scientific Reports, 2016, 6, 37767.	1.6	57
16	Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Annals of the New York Academy of Sciences, 2016, 1372, 20-28.	1.8	36
17	Malagular Maghaniama of Cignaling in Muyagagaya yanthua Dayalanmant Jaymal of Malagular		
	Biology, 2016, 428, 3805-3830.	2.0	56

#	Article	lF	CITATIONS
20	An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo. Developmental Biology, 2016, 416, 173-186.	0.9	8
21	Pleiotropy and the low cost of individual traits promote cooperation. Evolution; International Journal of Organic Evolution, 2016, 70, 488-494.	1.1	25
22	The evolution of failure: explaining cancer as an evolutionary process. Biology and Philosophy, 2016, 31, 39-57.	0.7	21
23	The evolutionary ecology of transmissible cancers. Infection, Genetics and Evolution, 2016, 39, 293-303.	1.0	58
24	Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular Cancer, 2017, 16, 10.	7.9	383
25	A framework for how environment contributes to cancer risk. Ecology Letters, 2017, 20, 117-134.	3.0	57
26	Evolution of cancer suppression as revealed by mammalian comparative genomics. Current Opinion in Genetics and Development, 2017, 42, 40-47.	1.5	49
27	Revisiting Seed and Soil: Examining the Primary Tumor and Cancer Cell Foraging in Metastasis. Molecular Cancer Research, 2017, 15, 361-370.	1.5	79
28	Life history, immunity, Peto's paradox and tumours in birds. Journal of Evolutionary Biology, 2017, 30, 960-967.	0.8	24
29	Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6406-6411.	3.3	159
30	Tumor Immunology Viewed from Alternative Animal Models—the Xenopus Story. Current Pathobiology Reports, 2017, 5, 49-56.	1.6	10
31	The Evolutionary Origins of Cancer andÂof Its Control by Immune PolicingÂand Genetic Suppression. , 2017, , 1-9.		3
32	Does high relatedness promote cheaterâ€free multicellularity in synthetic lifecycles?. Journal of Evolutionary Biology, 2017, 30, 985-993.	0.8	10
33	Marine Molluskâ€Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Medicinal Research Reviews, 2017, 37, 702-801.	5.0	46
34	Innovation: an emerging focus from cells to societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160414.	1.8	28
35	Cooperation and cheating as innovation: insights from cellular societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160421.	1.8	12
36	Cancer and intercellular cooperation. Royal Society Open Science, 2017, 4, 170470.	1.1	13
37	Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence. Nature Communications, 2017, 8, 15707.	5.8	21

#	Article	IF	CITATIONS
38	PhyloOncology: Understanding cancer through phylogenetic analysis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 101-108.	3.3	22
39	Cancer: A disease at the crossroads of tradeâ€offs. Evolutionary Applications, 2017, 10, 215-225.	1.5	46
40	Evolution of Cancer Defense Mechanisms Across Species. , 2017, , 99-110.		15
41	Evolutionary Origins of Cancer Driver Genes and Implications for Cancer Prognosis. Genes, 2017, 8, 182.	1.0	17
42	Evolutionary Perspective of Tumorigenesis and Antitumor Immunity: A Comparative Approach. , 2017, , 119-135.		1
43	Evolution of the p53-MDM2 pathway. BMC Evolutionary Biology, 2017, 17, 177.	3.2	23
44	Peto's Paradox: how has evolution solved the problem of cancer prevention?. BMC Biology, 2017, 15, 60.	1.7	60
45	Understanding Ancient Legacies to Expose and Exploit Cancer's Evolutionary Vulnerabilities. , 2017, , 203-209.		1
46	Atavism Theory—An Introductory Discourse. , 2017, , 211-218.		2
47	Towards physical principles of biological evolution. Physica Scripta, 2018, 93, 043001.	1.2	26
48	Paleo-oncology in the Dakhleh Oasis, Egypt: Case studies and a paleoepidemiological perspective. International Journal of Paleopathology, 2018, 21, 96-110.	0.8	13
49	From humans to hydra: patterns of cancer across the tree of life. Biological Reviews, 2018, 93, 1715-1734.	4.7	97
50	Phylostratigraphic analysis of tumor and developmental transcriptomes reveals relationship between oncogenesis, phylogenesis and ontogenesis. Convergent Science Physical Oncology, 2018, 4, 025002.	2.6	18
51	Characterization of a group I Nme protein of Capsaspora owczarzaki—a close unicellular relative of animals. Laboratory Investigation, 2018, 98, 304-314.	1.7	6
52	Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. Journal of Biosciences, 2018, 43, 189-223.	0.5	38
53	A survey of metastasis suppressors in Metazoa. Laboratory Investigation, 2018, 98, 554-570.	1.7	7
54	How the evolution of multicellularity set the stage for cancer. British Journal of Cancer, 2018, 118, 145-152.	2.9	89
55	The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160452.	1.8	148

#	Article	IF	CITATIONS
56	Genetic Regulatory Mechanisms of Evolution and Embryogenesis in a Distorting Mirror of Carcinogenesis. Russian Journal of Genetics, 2018, 54, 145-156.	0.2	4
57	Are Planaria Individuals? What Regenerative Biology is Telling Us About the Nature of Multicellularity. Evolutionary Biology, 2018, 45, 237-247.	0.5	38
58	How Research on Microbiomes is Changing Biology: A Discussion on the Concept of the Organism. Foundations of Science, 2018, 23, 603-620.	0.4	17
59	Multilevel Selection in the Filamentous AscomyceteNeurospora tetrasperma. American Naturalist, 2018, 191, 290-305.	1.0	14
60	Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biology, 2018, 16, e2006671.	2.6	38
61	Are aggressive epithelial cancers â€~a disease' of Eutherian mammals?. Ecancermedicalscience, 2018, 12, 840.	0.6	10
62	An ecosystem framework for understanding and treating disease. Evolution, Medicine and Public Health, 2018, 2018, 270-286.	1.1	11
63	Stop eating plastic, molecular signaling of bisphenol A in breast cancer. Environmental Science and Pollution Research, 2018, 25, 23624-23630.	2.7	38
64	lonizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Frontiers in Plant Science, 2018, 9, 847.	1.7	110
65	Co-delivery of 5-Fluorouracil and Curcumin Nanohybrid Formulations for Improved Chemotherapy Against Oral Squamous Cell Carcinoma. Journal of Maxillofacial and Oral Surgery, 2018, 17, 597-610.	0.6	23
66	Sponges: A Reservoir of Genes Implicated in Human Cancer. Marine Drugs, 2018, 16, 20.	2.2	17
67	Cancer initiation and progression within the cancer microenvironment. Clinical and Experimental Metastasis, 2018, 35, 361-367.	1.7	30
68	Nothing in cancer makes sense except…. BMC Biology, 2018, 16, 22.	1.7	24
69	Unsolvable Problems of Biology: It Is Impossible to Create Two Identical Organisms, to Defeat Cancer, or to Map Organisms onto Their Genomes. Biochemistry (Moscow), 2018, 83, 370-380.	0.7	6
71	Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Communicative and Integrative Biology, 2019, 12, 119-132.	0.6	12
72	Introduction. Immunological Investigations, 2019, 48, 680-681.	1.0	1
73	Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 2019, 7, e7565.	0.9	89
74	From tumors to species: a SCANDAL hypothesis. Biology Direct, 2019, 14, 3.	1.9	11

#	Article	IF	CITATIONS
75	Enforcement is central to the evolution of cooperation. Nature Ecology and Evolution, 2019, 3, 1018-1029.	3.4	61
76	Transmissible cancer and the evolution of sex. PLoS Biology, 2019, 17, e3000275.	2.6	12
77	Evolutionary framework of the human interactome: Unicellular and multicellular giant clusters. BioSystems, 2019, 181, 82-87.	0.9	15
78	Feedback loops in the major evolutionary transition to eusociality: the status and potential of theoretical approaches. Current Opinion in Insect Science, 2019, 34, 85-90.	2.2	3
79	The replicator dynamics for multilevel selection in evolutionary games. Journal of Mathematical Biology, 2019, 79, 101-154.	0.8	25
80	Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3193-3201.	3.3	52
81	Contrasting Patterns of Rapid Molecular Evolution within the <i>p53</i> Network across Mammal and Sauropsid Lineages. Genome Biology and Evolution, 2019, 11, 629-643.	1.1	7
82	Energy oversupply to tissues: a single mechanism possibly underlying multiple cancer risk factors. Evolution, Medicine and Public Health, 2019, 2019, 9-16.	1.1	6
83	The Role of the Microbiome in Cancer Initiation and Progression: How Microbes and Cancer Cells Utilize Excess Energy and Promote One Another's Growth. Current Nutrition Reports, 2019, 8, 42-51.	2.1	80
84	Evolutionarily novel genes are expressed in transgenic fish tumors and their orthologs are involved in development of progressive traits in humans. Infectious Agents and Cancer, 2019, 14, 46.	1.2	8
85	Paradoxes of tumour complexity: somatic selection, vulnerability by design, or infectious aetiology?. Biological Reviews, 2019, 94, 1075-1088.	4.7	1
86	Genetics and Molecular Mechanisms in Oral Cancer Progression. , 2019, , 29-80.		1
87	Adaptation, chance, and history in experimental evolution reversals to unicellularity. Evolution; International Journal of Organic Evolution, 2019, 73, 73-83.	1.1	19
88	aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene, 2020, 726, 144174.	1.0	16
89	Ecoâ€evolutionary perspectives of the dynamic relationships linking senescence and cancer. Functional Ecology, 2020, 34, 141-152.	1.7	14
90	Improving Cancer Drug Discovery by Studying Cancer across the Tree of Life. Molecular Biology and Evolution, 2020, 37, 11-17.	3.5	20
91	Distinct interactions between epithelial and mesenchymal cells control cell morphology and collective migration during sponge epithelial to mesenchymal transition. Journal of Morphology, 2020, 281, 183-195.	0.6	3
92	Will urbanisation affect the expression level of genes related to cancer of wild great tits?. Science of the Total Environment, 2020, 714, 135793.	3.9	7

#	Article	IF	CITATIONS
93	Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of Butterflies. American Naturalist, 2020, 195, 485-503.	1.0	6
94	Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 2020, 225, 1852-1872.	3.5	42
95	Comparative Oncology: New Insights into an Ancient Disease. IScience, 2020, 23, 101373.	1.9	23
96	Transmissible Cancers in an Evolutionary Perspective. IScience, 2020, 23, 101269.	1.9	33
97	Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Frontiers in Cell and Developmental Biology, 2020, 8, 598112.	1.8	6
98	Stepping From Modeling Cancer Plasticity to the Philosophy of Cancer. Frontiers in Genetics, 2020, 11, 579738.	1.1	4
99	Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. International Journal of Molecular Sciences, 2020, 21, 8759.	1.8	29
100	Ecological and Evolutionary Consequences of Anticancer Adaptations. IScience, 2020, 23, 101716.	1.9	10
101	MCF7 Spheroid Development: New Insight about Spatio/Temporal Arrangements of TNTs, Amyloid Fibrils, Cell Connections, and Cellular Bridges. International Journal of Molecular Sciences, 2020, 21, 5400.	1.8	17
102	First cancer in an extinct Quaternary non-human mammal. Historical Biology, 2020, , 1-5.	0.7	3
103	Why isn't sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Communicative and Integrative Biology, 2020, 13, 170-183.	0.6	8
104	Harnessing hypoxia as an evolutionary driver of complex multicellularity. Interface Focus, 2020, 10, 20190101.	1.5	14
105	The evolution of metapopulation dynamics and the number of stem cells in intestinal crypts and other tissue structures in multicellular bodies. Evolutionary Applications, 2020, 13, 1771-1783.	1.5	3
106	A Similar Speciation Process Relying on Cellular Stochasticity in Microbial and Cancer Cell Populations. IScience, 2020, 23, 101531.	1.9	14
107	From zygote to a multicellular soma: Body size affects optimal growth strategies under cancer risk. Evolutionary Applications, 2020, 13, 1593-1604.	1.5	8
108	The Evolution of Human Cancer Gene Duplications acrossÂMammals. Molecular Biology and Evolution, 2020, 37, 2875-2886.	3.5	31
109	Leukemia-Like Cancer in Bivalves. Russian Journal of Marine Biology, 2020, 46, 59-67.	0.2	9
110	A Devil of a Transmissible Cancer. Tropical Medicine and Infectious Disease, 2020, 5, 50.	0.9	8

#	Article	IF	CITATIONS
111	Analysis of Multilevel Replicator Dynamics for General Two-Strategy Social Dilemma. Bulletin of Mathematical Biology, 2020, 82, 66.	0.9	9
112	The issues with tissues: the wide range of cell fate separation enables the evolution of multicellularity and cancer. Medical Oncology, 2020, 37, 62.	1.2	5
113	The role of innate immunity in the protection conferred by a bacterial infection against cancer: study of an invertebrate model. Scientific Reports, 2020, 10, 10106.	1.6	7
114	Lifetime cancer prevalence and life history traits in mammals. Evolution, Medicine and Public Health, 2020, 2020, 187-195.	1.1	56
115	Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. PLoS Pathogens, 2020, 16, e1008375.	2.1	28
116	Elucidation of Biochemical Pathways Underlying VOCs Production in A549 Cells. Frontiers in Molecular Biosciences, 2020, 7, 116.	1.6	18
117	Emergence of metabolic heterogeneity in cell populations: lessons from budding yeast. , 2020, , 335-360.		3
118	Cellâ€cycle dependence of transcriptome gene modules: comparison of regression lines. FEBS Journal, 2020, 287, 4427-4439.	2.2	14
119	The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules, 2020, 10, 128.	1.8	88
120	Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology. Journal of Cancer, 2020, 11, 2887-2920.	1.2	4
121	Predation shapes the impact of cancer on population dynamics and the evolution of cancer resistance. Evolutionary Applications, 2020, 13, 1733-1744.	1.5	15
122	Cancer risk landscapes: A framework to study cancer in ecosystems. Science of the Total Environment, 2021, 763, 142955.	3.9	23
123	Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sciences, 2021, 265, 118766.	2.0	5
124	Do microenvironmental changes disrupt multicellular organisation with ageing, enacting and favouring the cancer cell phenotype?. BioEssays, 2021, 43, e2000126.	1.2	8
125	Transmissible cancers in mammals and bivalves: How many examples are there?. BioEssays, 2021, 43, e2000222.	1.2	27
126	Can natural selection and druggable targets synergize? Of nutrient scarcity, cancer, and the evolution of cooperation. BioEssays, 2021, 43, e2000160.	1.2	5
127	The ecology of cancer differentiation therapy. Journal of Theoretical Biology, 2021, 511, 110552.	0.8	7
128	Exploring the Diversity of the Marine Environment for New Anti-cancer Compounds. Frontiers in Marine Science, 2021, 7, .	1.2	22

ARTICLE IF CITATIONS # Madison's Missing Branch. SSRN Electronic Journal, 0, , . 129 0.4 0 The Immune System and Responses to Cancer: Coordinated Evolution. F1000Research, 2015, 4, 552. 0.8 Cancer and the breakdown of multicellularity: What <i>Dictyostelium discoideum </i>, a social 131 1.2 9 amoeba, can teach us. BioEssays, 2021, 43, e2000156. The Capacitive Coupling Modalities for Oncological Hyperthermia. Open Journal of Biophysics, 2021, 11, 252-313. The Role of Biosemiosis and Dysfunctional Signaling Processes in Human Pathology. Biosemiotics 133 0.3 2 Bookseries, 2021, , 155-182. The Archaeology and Philosophy of Health: Navigating the New Normal Problem. Synthese Library, 2021, , 101-122. 0.1 Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite 136 2.8 11 unfavorable conditions. ELife, 2021, 10, . Is cancer a matter of luck?. Biology and Philosophy, 2021, 36, 1. 137 Identifying key questions in the ecology and evolution of cancer. Evolutionary Applications, 2021, 14, 138 58 1.5 877-892. Positive selection and gene duplications in tumour suppressor genes reveal clues about how 1.2 cetaceans resist cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202592. Cancers as rare diseases: Terminological, theoretical, and methodological biases. International 141 12 0.8 Journal of Paleopathology, 2021, 32, 111-122. The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive 1.0 Multicellularity. Genes, 2021, 12, 661. The Hallmarks of Cancer as Ecologically Driven Phenotypes. Frontiers in Ecology and Evolution, 2021, 144 1.1 24 9. . Genetic diversity through social heterosis can increase virulence in RNA viral infections and cancer 145 1.1 progression. Royal Society Open Science, 2021, 8, 202219. Population dynamics of microbial cross-feeding are determined by co-localization probabilities and 146 4.4 12 cooperation-independent cheater growth. ISME Journal, 2021, 15, 3050-3061. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discovery, 2021, 11, 1886-1895. Cancer progression as a sequence of atavistic reversions. BioEssays, 2021, 43, e2000305. 148 1.2 37 149 An Ancient Approach of Understanding Cancer: Atavism Hypothesis., 2021, 2, 01-03.

#	Article	IF	CITATIONS
151	Osseous paleopathologies of Bonapartesaurus rionegrensis (Ornithopoda, Hadrosauridae) from Allen Formation (Upper Cretaceous) of Patagonia Argentina. Cretaceous Research, 2021, 124, 104800.	0.6	3
152	Machine learning is a powerful tool to study the effect of cancer on species and ecosystems. Methods in Ecology and Evolution, 2021, 12, 2310-2323.	2.2	1
153	Reverting to single-cell biology: The predictions of the atavism theory of cancer. Progress in Biophysics and Molecular Biology, 2021, 165, 49-55.	1.4	12
154	The evolution of barriers to exploitation: Sometimes the Red Queen can take a break. Evolutionary Applications, 2021, 14, 2179-2188.	1.5	2
155	The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer. Dynamic Games and Applications, 2022, 12, 313-342.	1.1	42
156	On the need for integrating cancer into the One Health perspective. Evolutionary Applications, 2021, 14, 2571-2575.	1.5	9
157	The enigmatic Placozoa part 2: Exploring evolutionary controversies and promising questions on earth and in space. BioEssays, 2021, 43, 2100083.	1.2	3
158	Tumors (re)shape biotic interactions within ecosystems: Experimental evidence from the freshwater cnidarian Hydra. Science of the Total Environment, 2022, 803, 149923.	3.9	17
161	Endless Forms Most Beautiful: A Garden Shows That Cancer Is a Part of Life. Leonardo, 2021, 54, 398-401.	0.2	0
162	Tumor Microenvironment– Selective Pressures Boosting Cancer Progression. Advances in Experimental Medicine and Biology, 2020, 1219, 35-49.	0.8	16
163	Gut Microbiota and Cancer of the Host: Colliding Interests. Advances in Experimental Medicine and Biology, 2020, 1219, 93-107.	0.8	21
164	Integration of Evolutionary Theory into Cancer Biology and Caspase Signaling. , 2019, , 131-155.		2
165	Parallel Causation in Oncogenic and Anthropogenic Degradation and Extinction. Biological Theory, 2020, 15, 12-24.	0.8	4
167	The evolution of multicellularity and cancer: views and paradigms. Biochemical Society Transactions, 2020, 48, 1505-1518.	1.6	22
168	Ancestral gene regulatory networks drive cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6160-6162.	3.3	46
172	The Immune System and Responses to Cancer: Coordinated Evolution. F1000Research, 2015, 4, 552.	0.8	5
173	Transmissible cancers and the evolution of sex under the Red Queen hypothesis. PLoS Biology, 2020, 18, e3000916.	2.6	3
174	"To Promote the General Welfare― Addressing Political Corruption in America. British Journal of American Legal Studies, 2016, 5, 3-55.	0.1	1

#	Article	IF	CITATIONS
175	Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. ELife, 2019, 8, .	2.8	50
176	Predicted glycosyltransferases promote development and prevent spurious cell clumping in the choanoflagellate S. rosetta. ELife, 2018, 7, .	2.8	36
177	Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. ELife, 2020, 9, .	2.8	23
178	Improving cancer treatments via dynamical biophysical models. Physics of Life Reviews, 2021, 39, 1-48.	1.5	31
179	Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens, 2021, 10, 1295.	1.2	16
180	A scaling law of multilevel evolution: how the balance between within- and among-collective evolution is determined. Genetics, 2022, 220, .	1.2	3
181	Evolution of irreversible somatic differentiation. ELife, 2021, 10, .	2.8	3
187	Sleep, Psychopathology, and Culture. , 2017, , 105-128.		0
189	Identity fusion and fitness interdependence. Behavioral and Brain Sciences, 2018, 41, e199.	0.4	0
191	The ecological and evolutionary meaning of cancer. MOJ Anatomy & Physiology, 2018, 5, .	0.2	1
193	Norms in the Evolution of Social Order. , 2019, , .		0
194	An Evolutionary Perspective of Neoplastic Diseases in the Universe. Cureus, 2019, 11, e4030.	0.2	2
198	The evolution and ecology of benign tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188643.	3.3	23
202	Ancestral cancer genes shaping evo-devo: An integrated biochemical and computational approach (Review). World Academy of Sciences Journal, 0, , .	0.4	0
208	Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of Trichoplax adhaerens. PLoS Biology, 2021, 19, e3001471.	2.6	9
209	The Coevolution of Placentation and Cancer. Annual Review of Animal Biosciences, 2022, 10, 259-279.	3.6	20
210	Social conflicts in Dictyostelium discoideum : a matter of scales. , 0, 1, .		5
211	Time-Fractal Modulation—Possible Modulation Effects in Human Therapy. Open Journal of Biophysics, 2022, 12, 38-87.	0.7	4

#	ARTICLE Mammalian tumor-like organs 1. The role of tumor-like normal organs and atypical tumor organs in	IF	CITATIONS
212	the evolution of development (carcino-evo-devo). Infectious Agents and Cancer, 2022, 17, 2.	1.2	4
213	Transformations. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
214	Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. Journal of Biosciences, 2018, 43, 189-223.	0.5	8
215	Stimulation and Control of Homeostasis. Open Journal of Biophysics, 2022, 12, 89-131.	0.7	3
216	Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the "Perfect Storm―Theory. Pathogens, 2022, 11, 241.	1.2	3
217	Two lineages of bivalve transmissible neoplasia affect the blue mussel <i>Mytilus trossulus</i> Gould in the subarctic Sea of Okhotsk. Environmental Epigenetics, 2023, 69, 91-102.	0.9	5
218	Increased risk of cancer in dogs and humans: A consequence of recent extension of lifespan beyond evolutionarily determined limitations?. Aging and Cancer, 2022, 3, 3-19.	0.5	11
221	Decoding the Oncogenic Signals from the Long Non-Coding RNAs. Onco, 2021, 1, 176-206.	0.2	7
233	Inflammation: A New Look at an Old Problem. International Journal of Molecular Sciences, 2022, 23, 4596.	1.8	27
234	Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Reports, 2022, 39, 110771.	2.9	5
235	Telomeres, the loop tying cancer to organismal lifeâ€histories. Molecular Ecology, 2022, 31, 6273-6285.	2.0	6
236	Bet-hedging in innate and adaptive immune systems. Evolution, Medicine and Public Health, 2022, 10, 256-265.	1.1	1
237	Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells, 2022, 11, 1838.	1.8	11
238	A personal cost of cheating can stabilize reproductive altruism during the early evolution of clonal multicellularity. Biology Letters, 2022, 18, .	1.0	7
240	Ready to migrate? Reading cellular signs of migration in an epithelial to mesenchymal transition model. Biocell, 2022, 46, 2353-2356.	0.4	0
241	Architects of Pituitary Tumour Growth. Frontiers in Endocrinology, 0, 13, .	1.5	2
243	Multicellularity in animals: The potential for within-organism conflict. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
244	Supportive and Palliative Care in Cancer Therapies—Path from Tumor-Driven Therapies to Patient-Driven Ones. International Journal of Clinical Medicine, 2022, 13, 287-359.	0.1	1

#	Article	IF	CITATIONS
245	Targeting PD-1/PD-L1 in cancer immunotherapy: An effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes and Diseases, 2023, 10, 1318-1350.	1.5	11
246	Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics. , 2022, 39, .		1
247	Gut cancer increases the risk of Drosophila being preyed upon by hunting spiders. Animal Behaviour, 2022, 192, 1-7.	0.8	2
248	Tumors alter life history traits in the freshwater cnidarian, Hydra oligactis. IScience, 2022, 25, 105034.	1.9	10
249	Metabolism and Multicellularity Revisited. , 2022, , 85-96.		0
250	Cellular Biogenetic Law and Its Distortion by Protein Interactions: A Possible Unified Framework for Cancer Biology and Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 11486.	1.8	3
251	Evo-devo perspectives on cancer. Essays in Biochemistry, 2022, 66, 797-815.	2.1	2
253	The need for evolutionary theory in cancer research. European Journal of Epidemiology, 2023, 38, 1259-1264.	2.5	5
254	Wild animals as an underused treasure trove for studying the genetics of cancer. BioEssays, 0, , 2200188.	1.2	1
255	A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto's Paradox. Genetics and Molecular Biology, 2022, 45, .	0.6	4
256	Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
257	Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. ELife, 0, 11, ·	2.8	2
259	Both age and social environment shape the phenotype of ant workers. Scientific Reports, 2023, 13, .	1.6	1
260	The Mystery of Cancer Resistance: A Revelation Within Nature. Journal of Molecular Evolution, 2023, 91, 133-155.	0.8	3
262	Editorial: Cancer evolution. Frontiers in Genetics, 0, 14, .	1.1	0
263	Cancer spares no one: First record of neoplasm in parasitic barnacles (Arthropoda: Rhizocephala). Journal of Invertebrate Pathology, 2023, 198, 107913.	1.5	0
264	Telomerase as a possible key to bypass reproductive cost. Molecular Ecology, 2023, 32, 2134-2143.	2.0	5
267	Modeling cancer's ecological and evolutionary dynamics. , 2023, 40, .		4

#	Article	IF	CITATIONS
268	The future of evolutionary medicine: sparking innovation in biomedicine and public health. , 2023, 1, .		11
270	Control and Information Theory Perspectives on the Environmental Induction of Cancer. , 2022, , 1-23.		0
271	Agent-Based Model for Studying the Effects of Solid Stress and Nutrient Supply on Tumor Growth. Mathematics, 2023, 11, 1900.	1.1	1
272	Vitamin K and the Visual Systemâ \in "A Narrative Review. Nutrients, 2023, 15, 1948.	1.7	0
273	Minor variations in multicellular life cycles have major effects on adaptation. PLoS Computational Biology, 2023, 19, e1010698.	1.5	0
285	Virtual screening of natural product as TAM family of RTK inhibitor. , 2024, , 233-251.		0
289	Mathematical Modelling of Cancer Growth and Drug Treatments: Taking Into Account Cell Population Heterogeneity and Plasticity. , 2023, , .		1
297	The first embryo, the origin of cancer and animal phylogeny. II. The neoplastic process as an evolutionary engine. Journal of Biosciences, 2024, 49	0.5	0