Spatial and temporal mapping of heterogeneity in lipos distribution in an orthotopic tumor xenograft model

Journal of Controlled Release 207, 101-111 DOI: 10.1016/j.jconrel.2015.04.006

Citation Report

#	Article	IF	CITATIONS
3	In vivo small animal micro-CT using nanoparticle contrast agents. Frontiers in Pharmacology, 2015, 6, 256.	1.6	122
4	Spatio-temporal heterogeneity in tumor liposome uptake: Characterization of macro- and microdistribution. Journal of Controlled Release, 2015, 207, 164.	4.8	0
5	The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation. Journal of Controlled Release, 2015, 211, 163-170.	4.8	65
6	Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. Journal of Controlled Release, 2015, 220, 715-726.	4.8	19
7	Integration of imaging into clinical practice to assess the delivery and performance of macromolecular and nanotechnology-based oncology therapies. Journal of Controlled Release, 2015, 219, 295-312.	4.8	11
8	Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on Tissue Penetration in 3D Cell Culture Models of Ovarian Cancer Residual Disease. Molecular Pharmaceutics, 2015, 12, 3973-3985.	2.3	24
9	Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose. Journal of Controlled Release, 2015, 220, 406-413.	4.8	15
10	Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer. PLoS ONE, 2016, 11, e0152718.	1.1	32
11	Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2073-2106.	1.2	0
12	Delivery of bevacizumab to atheromatous porcine carotid tissue using echogenic liposomes. Drug Delivery, 2016, 23, 3594-3605.	2.5	8
13	Accumulating nanoparticles by EPR: A route of no return. Journal of Controlled Release, 2016, 238, 58-70.	4.8	172
14	Image-Guided Radiotherapy Targets Macromolecules through Altering the Tumor Microenvironment. Molecular Pharmaceutics, 2016, 13, 3457-3467.	2.3	19
15	Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Block Copolymers via Controlled Conjugation in Aqueous Media. ACS Omega, 2016, 1, 93-107.	1.6	31
16	Nanomedicine and tumor heterogeneity: Concept and complex reality. Nano Today, 2016, 11, 402-414.	6.2	59
17	Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. Journal of Controlled Release, 2016, 231, 77-85.	4.8	119
18	Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery. Advanced Drug Delivery Reviews, 2017, 109, 119-130.	6.6	126
19	Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 2017, 108, 25-38.	6.6	881
20	Fibrinolytic Enzyme Cotherapy Improves Tumor Perfusion and Therapeutic Efficacy of Anticancer Nanomedicine. Cancer Research, 2017, 77, 1465-1475.	0.4	28

#	Article	IF	CITATIONS
21	Molecular imaging in nanomedicine – A developmental tool and a clinical necessity. Journal of Controlled Release, 2017, 261, 23-30.	4.8	21
22	Pretargeting with bispecific fusion proteins facilitates delivery of nanoparticles to tumor cells with distinct surface antigens. Journal of Controlled Release, 2017, 255, 73-80.	4.8	15
23	Enhancing Tumor Penetration of Nanomedicines. Biomacromolecules, 2017, 18, 1449-1459.	2.6	157
24	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
25	Activatable fluorescence: From small molecule to nanoparticle. Advanced Drug Delivery Reviews, 2017, 113, 97-121.	6.6	75
26	Identification of a characteristic vascular belt zone in human colorectal cancer. PLoS ONE, 2017, 12, e0171378.	1.1	14
27	Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy. PLoS Computational Biology, 2017, 13, e1005724.	1.5	38
28	Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano, 2018, 12, 2106-2121.	7.3	117
29	Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. Journal of Controlled Release, 2018, 279, 292-305.	4.8	34
30	Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials, 2018, 156, 217-237.	5.7	290
31	Evaluation of dynamic contrast-enhanced MRI biomarkers for stratified cancer medicine: How do permeability and perfusion vary between human tumours?. Magnetic Resonance Imaging, 2018, 46, 98-105.	1.0	20
32	Quantification of tumor angiogenesis with contrast-enhanced x-ray imaging in preclinical studies: a review. Biomedical Physics and Engineering Express, 2018, 4, 062001.	0.6	6
33	Development of lipopolyplexes for gene delivery: A comparison of the effects of differing modes of targeting peptide display on the structure and transfection activities of lipopolyplexes. Journal of Peptide Science, 2018, 24, e3131.	0.8	11
34	Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Applied Microbiology and Biotechnology, 2018, 102, 9449-9470.	1.7	54
35	Targeted Nanotheranostics for Selective Drug Delivery in Cancer. , 2018, , 245-277.		5
36	Radiation and Heat Improve the Delivery and Efficacy of Nanotherapeutics by Modulating Intratumoral Fluid Dynamics. ACS Nano, 2018, 12, 7583-7600.	7.3	55
37	Integrating nanomedicine into clinical radiotherapy regimens. Advanced Drug Delivery Reviews, 2019, 144, 35-56.	6.6	32
38	Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo. Cancers, 2019, 11, 1512.	1.7	28

CITITION	Depart
CITATION	REDUBT
CHARLON	

#	ARTICLE	IF	CITATIONS
39	Nanoagents Based on Poly(ethylene glycol)â€ <i>b</i> â€Poly(<scp>l</scp> â€thyroxine) Block Copolypeptide for Enhanced Dualâ€Modality Imaging and Targeted Tumor Radiotherapy. Small, 2019, 15, e1902577.	5.2	15
40	CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1579-1591.	1.1	24
41	F×rster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics, 2019, 138, 111314.	5.3	148
42	Nanoliposomes Co-Encapsulating CT Imaging Contrast Agent and Photosensitizer for Enhanced, Imaging Guided Photodynamic Therapy of Cancer. Theranostics, 2019, 9, 1323-1335.	4.6	64
43	Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics, 2019, 9, 8091-8108.	4.6	70
44	Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Molecular Cancer Therapeutics, 2019, 18, 213-226.	1.9	33
45	The power of integrating imaging throughout the drug development process. Journal of Controlled Release, 2020, 317, 386-388.	4.8	0
46	High-resolution 3D visualization of nanomedicine distribution in tumors. Theranostics, 2020, 10, 880-897.	4.6	13
47	Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. , 2020, , 37-53.		39
48	Expression and clinical significance of aquaporin-1, vascular endothelial growth factor and microvessel density in gastric cancer. Medicine (United States), 2020, 99, e21883.	0.4	5
49	Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Advances in Colloid and Interface Science, 2020, 284, 102261.	7.0	83
50	Determining critical parameters that influence in vitro performance characteristics of a thermosensitive liposome formulation of vinorelbine. Journal of Controlled Release, 2020, 328, 551-561.	4.8	16
51	Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Advanced Drug Delivery Reviews, 2020, 163-164, 98-124.	6.6	77
52	Quantitative Imaging Parameters of Contrast-Enhanced Micro-Computed Tomography Correlate with Angiogenesis and Necrosis in a Subcutaneous C6 Glioma Model. Cancers, 2020, 12, 3417.	1.7	2
53	<p>Noninvasive Molecular Imaging of the Enhanced Permeability and Retention Effect by ⁶⁴Cu-Liposomes: In vivo Correlations with ⁶⁸Ga-RGD, Fluid Pressure, Diffusivity and ¹⁸F-FDG</p> . International Journal of Nanomedicine, 2020, Volume 15, 8571-8581.	3.3	15
54	A framework for designing delivery systems. Nature Nanotechnology, 2020, 15, 819-829.	15.6	305
55	A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents' safety and relevant design considerations. Photochemical and Photobiological Sciences, 2020, 19, 1134-1144.	1.6	9
56	Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment. Bioconjugate Chemistry, 2020, 31, 1784-1794.	1.8	9

#	Article	IF	CITATIONS
57	Estimating Tumor Vascular Permeability of Nanoparticles Using an Accessible Diffusive Flux Model. ACS Biomaterials Science and Engineering, 2020, 6, 2879-2892.	2.6	7
58	Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano, 2020, 14, 3075-3095.	7.3	157
59	Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics, 2020, 10, 1884-1909.	4.6	30
60	Orally delivered legumain-activated nanovehicles improve tumor accumulation and penetration for combinational photothermal-chemotherapy. Journal of Controlled Release, 2020, 323, 59-70.	4.8	14
61	Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model. ACS Nano, 2020, 14, 4698-4715.	7.3	20
62	Doxorubicin liposomes cell penetration enhancement and its potential drawbacks for the tumor targeting efficiency. International Journal of Pharmaceutics, 2021, 592, 120012.	2.6	12
63	3D Microfluidic Platform and Tumor Vascular Mapping for Evaluating Anti-Angiogenic RNAi-Based Nanomedicine. ACS Nano, 2021, 15, 338-350.	7.3	34
64	Principles of Micro X-ray Computed Tomography. , 2021, , 47-64.		Ο
65	CHAPTER 6. Liposomes for Hyperthermia Triggered Drug Release. RSC Drug Discovery Series, 2018, , 137-163.	0.2	1
66	Challenges and future directions. , 2022, , 139-201.		0
66 67	Challenges and future directions. , 2022, , 139-201. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics, 2022, 12, 2162-2174.	4.6	0 9
	Multi-modal molecular imaging maps the correlation between tumor microenvironments and	4.6 6.9	
67	Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics, 2022, 12, 2162-2174.		9
67 68	Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics, 2022, 12, 2162-2174. Modulation of Tumor Vasculature Network: Key Strategies. Small Structures, 2022, 3, . Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration.	6.9	9 7
67 68 69	Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics, 2022, 12, 2162-2174. Modulation of Tumor Vasculature Network: Key Strategies. Small Structures, 2022, 3, . Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. Journal of Controlled Release, 2022, 346, 392-404. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Advanced Drug Delivery	6.9 4.8	9 7 7
67 68 69 70	Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics, 2022, 12, 2162-2174. Modulation of Tumor Vasculature Network: Key Strategies. Small Structures, 2022, 3, . Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. Journal of Controlled Release, 2022, 346, 392-404. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Advanced Drug Delivery Reviews, 2022, 189, 114447. Pre-treatment of oncolytic reovirus improves tumor accumulation and intratumoral distribution of	6.9 4.8 6.6	9 7 7 24
67 68 69 70 72	Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics, 2022, 12, 2162-2174. Modulation of Tumor Vasculature Network: Key Strategies. Small Structures, 2022, 3, . Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. Journal of Controlled Release, 2022, 346, 392-404. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Advanced Drug Delivery Reviews, 2022, 189, 114447. Pre-treatment of oncolytic reovirus improves tumor accumulation and intratumoral distribution of PEG-liposomes. Journal of Controlled Release, 2023, 354, 35-44. Triggered release from thermosensitive liposomes improves tumor targeting of vinorelbine. Journal	6.9 4.8 6.6 4.8	9 7 7 24 6

#	Article	IF	CITATIONS
76	Targeted Fusogenic Liposomes for Effective Tumor Delivery and Penetration of Lipophilic Cargoes. ACS Biomaterials Science and Engineering, 2023, 9, 1919-1927.	2.6	1
77	Accuracy and Precision of Iodine Quantification in Subtracted Micro-Computed Tomography: Effect of Reconstruction and Noise Removal Algorithms. Molecular Imaging and Biology, 0, , .	1.3	0