Host-Mediated Bioactivation of Pyrazinamide: Implicat Therapeutic Alternatives

ACS Infectious Diseases 1, 203-214 DOI: 10.1021/id500028m

Citation Report

#	Article	IF	CITATIONS
1	Antiinfectives targeting enzymes and the proton motive force. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7073-82.	3.3	138
2	The association between sterilizing activity and drug distribution into tuberculosis lesions. Nature Medicine, 2015, 21, 1223-1227.	15.2	387
3	Xanthine Oxidoreductase in Drug Metabolism: Beyond a Role as a Detoxifying Enzyme. Current Medicinal Chemistry, 2016, 23, 4027-4036.	1.2	73
4	Fragment-Based Whole Cell Screen Delivers Hits against M. tuberculosis and Non-tuberculous Mycobacteria. Frontiers in Microbiology, 2016, 7, 1392.	1.5	20
5	Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infectious Diseases, 2016, 2, 616-626.	1.8	83
6	High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4197-4205.	1.4	21
7	Inhaled Pyrazinoic Acid Esters for the Treatment of Tuberculosis. Pharmaceutical Research, 2016, 33, 2495-2505.	1.7	10
8	Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in <i>Mycobacterium tuberculosis</i> Infected C3HeB/FeJ Mice. ACS Infectious Diseases, 2016, 2, 251-267.	1.8	111
9	Selective Inactivity of Pyrazinamide against Tuberculosis in C3HeB/FeJ Mice Is Best Explained by Neutral pH of Caseum. Antimicrobial Agents and Chemotherapy, 2016, 60, 735-743.	1.4	62
10	Global Urine Metabolomics in Patients Treated with First-Line Tuberculosis Drugs and Identification of a Novel Metabolite of Ethambutol. Antimicrobial Agents and Chemotherapy, 2016, 60, 2257-2264.	1.4	21
11	Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infectious Diseases, 2016, 2, 231-239.	1.8	37
12	Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Advances in Medical Sciences, 2016, 61, 63-71.	0.9	79
13	Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time. Nature Communications, 2017, 8, 14183.	5.8	53
14	In Vivo-Selected Pyrazinoic Acid-Resistant <i>Mycobacterium tuberculosis</i> Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1. ACS Infectious Diseases, 2017, 3, 492-501.	1.8	33
15	QSAR based therapeutic management of M. tuberculosis. Archives of Pharmacal Research, 2017, 40, 676-694.	2.7	13
16	A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. Current Opinion in Systems Biology, 2017, 3, 170-185.	1.3	61
17	Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infectious Diseases, 2017, 3, 807-819.	1.8	52
18	Update of Antitubercular Prodrugs from a Molecular Perspective: Mechanisms of Action, Bioactivation Pathways, and Associated Resistance. ChemMedChem, 2017, 12, 1657-1676.	1.6	26

#	Article	IF	Citations
19	A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nature Communications, 2017, 8, 588.	5.8	87
20	Anti-tubercular Activity of Pyrazinamide is Independent of trans-Translation and RpsA. Scientific Reports, 2017, 7, 6135.	1.6	48
21	Coadministration of Allopurinol To Increase Antimycobacterial Efficacy of Pyrazinamide as Evaluated in a Whole-Blood Bactericidal Activity Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	14
22	Drug Design: Principles and Applications. , 2017, , .		5
23	Strategies for Tackling Drug Resistance in Tuberculosis. , 2017, , 89-112.		1
24	Preclinical Efficacy Testing of New Drug Candidates. Microbiology Spectrum, 2017, 5, .	1.2	49
25	Long-Chain Fatty Acyl Coenzyme A Ligase FadD2 Mediates Intrinsic Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	19
26	Missense Mutations in the Unfoldase ClpC1 of the Caseinolytic Protease Complex Are Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	31
27	New prodrugs against tuberculosis. Drug Discovery Today, 2017, 22, 519-525.	3.2	35
28	Preclinical Efficacy Testing of New Drug Candidates. , 0, , 269-293.		3
29	Hit Generation in TB Drug Discovery: From Genome to Granuloma. Chemical Reviews, 2018, 118, 1887-1916.	23.0	80
30	Modelling the effects of bacterial cell state and spatial location on tuberculosis treatment: Insights from a hybrid multiscale cellular automaton model. Journal of Theoretical Biology, 2018, 446, 87-100.	0.8	23
31	Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	49
32	Efficacy of pyrazinoic acid dry powder aerosols in resolving necrotic and non-necrotic granulomas in a guinea pig model of tuberculosis. PLoS ONE, 2018, 13, e0204495.	1.1	9
33	Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental Medicine, 2018, 215, 1975-1986.	4.2	29
34	Risk factors for extrapulmonary dissemination of tuberculosis and associated mortality during treatment for extrapulmonary tuberculosis. Emerging Microbes and Infections, 2018, 7, 1-14.	3.0	82
35	Persister Cells and Infectious Disease. , 2019, , .		16
36	Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends in Pharmacological Sciences, 2019, 40, 930-940.	4.0	35

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Why Wait? The Case for Treating Tuberculosis with Inhaled Drugs. Pharmaceutical Research, 2019, 36, 166.	1.7	34
38	Pharmacokinetics of pyrazinamide during the initial phase of tuberculous meningitis treatment. International Journal of Antimicrobial Agents, 2019, 54, 371-374.	1.1	6
39	Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine, 2019, 49, 374-380.	2.7	20
40	Galleria mellonella: An Infection Model for Screening Compounds Against the Mycobacterium tuberculosis Complex. Frontiers in Microbiology, 2019, 10, 2630.	1.5	20
41	MODS-Wayne, a Colorimetric Adaptation of the Microscopic-Observation Drug Susceptibility (MODS) Assay for Detection of <i>Mycobacterium tuberculosis</i> Pyrazinamide Resistance from Sputum Samples. Journal of Clinical Microbiology, 2019, 57, .	1.8	13
42	Population Pharmacokinetic Modelling of Pyrazinamide and Pyrazinoic Acid in Patients with Multi-Drug Resistant Tuberculosis. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44, 519-530.	0.6	9
43	Impact of Target-Based Drug Design in Anti-bacterial Drug Discovery for the Treatment of Tuberculosis. Challenges and Advances in Computational Chemistry and Physics, 2019, , 307-346.	0.6	3
44	Designing inhalable metal organic frameworks for pulmonary tuberculosis treatment and theragnostics <i>via</i> spray drying. Chemical Communications, 2020, 56, 13339-13342.	2.2	9
45	Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay. Journal of Clinical Microbiology, 2020, 58, .	1.8	6
46	The Bewildering Antitubercular Action of Pyrazinamide. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	37
47	N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents—the Synthesis and Biological Evaluation of Enantiomers. Molecules, 2020, 25, 1518.	1.7	5
48	Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annual Review of Pharmacology and Toxicology, 2021, 61, 495-516.	4.2	30
49	Consideration of Metal Organic Frameworks for Respiratory Delivery. KONA Powder and Particle Journal, 2021, 38, 136-154.	0.9	3
51	Metabolism and Hepatotoxicity of Pyrazinamide, an Antituberculosis Drug. Drug Metabolism and Disposition, 2021, 49, 679-682.	1.7	20
52	Factors Affecting the Pharmacokinetics of Pyrazinamide and Its Metabolites in Patients Coinfected with HIV and Implications for Individualized Dosing. Antimicrobial Agents and Chemotherapy, 2021, 65, e0004621.	1.4	5
53	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
54	The biodistribution of 5-[18F]fluoropyrazinamide in Mycobacterium tuberculosis-infected mice determined by positron emission tomography. PLoS ONE, 2017, 12, e0170871.	1.1	16
55	Pyrazinamide clearance is impaired among HIV/tuberculosis patients with high levels of systemic immune activation. PLoS ONE, 2017, 12, e0187624.	1.1	12

#	Article	IF	CITATIONS
56	Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605662.	1.8	16
57	No implication of HIV coinfection on the plasma exposure to rifampicin, pyrazinamide, and ethambutol in tuberculosis patients. Clinical and Translational Science, 2021, , .	1.5	5
59	PYRAZINAMIDE/PYRAZINOIC ACID RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS: RECENT FINDINGS AND IMPLICATIONS FOR IMPROVING THE TREATMENT OF TUBERCULOSIS. Russian Journal of Infection and Immunity, 2019, 8, 425-434.	0.2	0
60	Nutrient Depletion and Bacterial Persistence. , 2019, , 99-132.		3
61	Immunological detection of pyrazine-2-carboxylic acid for the detection of pyrazinamide resistance in Mycobacterium tuberculosis. PLoS ONE, 2020, 15, e0241600.	1.1	2
62	Pyrazinamide Susceptibility Is Driven by Activation of the SigE-Dependent Cell Envelope Stress Response in Mycobacterium tuberculosis. MBio, 2022, 13, e0043921.	1.8	10
63	Interleukin-13-Overexpressing Mice Represent an Advanced Preclinical Model for Detecting the Distribution of Antimycobacterial Drugs within Centrally Necrotizing Granulomas. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0158821.	1.4	2
65	Antibioticâ€Derived Radiotracers for Positron Emission Tomography: Nuclear or "Unclear―Infection Imaging?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
66	Antibioticâ€Derived Radiotracers for Positron Emission Tomography: Nuclear or "Unclear―Infection Imaging?. Angewandte Chemie, 2022, 134, .	1.6	0
67	Applicability of a Host-mediated <i>In Vivo</i> / <i>In Vitro</i> Model in Screening for the Carcinogenic Potential of Chemicals. Anticancer Research, 2022, 42, 4199-4206.	0.5	0
69	Chemotherapy for Drug-Susceptible Tuberculosis. Integrated Science, 2023, , 229-255.	0.1	0

CITATION REPORT