Mobility Models, Traces and Impact of Mobility on Opp Survey

IEEE Communications Surveys and Tutorials 17, 1679-1707 DOI: 10.1109/comst.2015.2419819

Citation Report

#	Article	IF	CITATIONS
1	An energy-efficient routing protocol for mobile opportunistic network. , 2016, , .		1
2	A Cooperation-Based Routing Algorithm in Mobile Opportunistic Networks. , 2016, , .		0
3	A Mobility Analytical Framework for Big Mobile Data in Densely Populated Area. IEEE Transactions on Vehicular Technology, 2017, 66, 1443-1455.	3.9	78
4	Link Modeling and Delay Analysis in Networks with Disruptive Links. ACM Transactions on Sensor Networks, 2017, 13, 1-25.	2.3	7
5	EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra Dense Networks. IEEE Journal on Selected Areas in Communications, 2017, 35, 2637-2646.	9.7	330
6	Understanding the role of mobility in real mobile ad-hoc networks connectivity. , 2017, , .		5
7	Mobility-assisted device to device communications for Content Transmission. , 2017, , .		11
8	Comparing tactical and commercial MANETs design strategies and performance evaluations. , 2017, , .		3
9	Quality of Information in Mobile Crowdsensing. ACM Transactions on Sensor Networks, 2017, 13, 1-43.	2.3	129
10	Impact of Sink Mobility on Quality of Service Performance and Energy Consumption in Wireless Sensor Network with Cluster Based Routing Protocols. , 2017, , .		6
11	Compromises between energy consumption and quality of service metrics in wireless sensor networks with mobile sink and cluster based routing protocols. , 2017, , .		3
12	Perception of delay tolerant network behavior with cognitive sonfication controller. , 2017, , .		1
13	Mobility Assisted Content Transmission For Device-to-Device Communication Underlaying Cellular Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 6410-6423.	3.9	25
14	Analysis of effective capacity for visible light communication systems with mobility support. AEU - International Journal of Electronics and Communications, 2018, 88, 38-43.	1.7	1
15	A Survey on Socially Aware Device-to-Device Communications. IEEE Communications Surveys and Tutorials, 2018, 20, 2169-2197.	24.8	103
16	A Comprehensive Survey on Multi-hop Wireless Networks: Milestones, Changing Trends and Concomitant Challenges. Wireless Personal Communications, 2018, 101, 677-722.	1.8	23
17	A Blockchain Based Truthful Incentive Mechanism for Distributed P2P Applications. IEEE Access, 2018, 6, 27324-27335.	2.6	155
18	Unicast QoS Routing Algorithms for SDN: A Comprehensive Survey and Performance Evaluation. IEEE Communications Surveys and Tutorials, 2018, 20, 388-415.	24.8	121

TION RE

#	Article	IF	CITATIONS
19	Simulating Opportunistic Networks: Survey and Future Directions. IEEE Communications Surveys and Tutorials, 2018, 20, 1547-1573.	24.8	76
20	A Survey on Human-Centric Communications in Non-Cooperative Wireless Relay Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 914-944.	24.8	36
21	Egocentric network focused community aware multicast routing for DTNs. Wireless Networks, 2018, 24, 1217-1235.	2.0	1
22	Neighbor Discovery for Unmanned Aerial Vehicle Networks. IEEE Access, 2018, 6, 68288-68301.	2.6	19
23	Leveraging the Power of the Crowd and Offloading Urban IoT Networks to Extend their Lifetime. , 2018, , .		3
24	Connectivity Probability Based Spray and Wait Routing Algorithm in Mobile Opportunistic Networks. , 2018, , .		3
25	Spatial Relation Expiration Time to Select Multipoint Relays in Smart City Environments. , 2018, , .		1
26	User identification from mobility traces. Journal of Ambient Intelligence and Humanized Computing, 2018, , 1.	3.3	2
27	Detecting and Reducing Biases in Cellular-Based Mobility Data Sets. Entropy, 2018, 20, 736.	1.1	5
28	Smart Collection of Real-Time Vehicular Mobility Traces. Future Internet, 2018, 10, 78.	2.4	6
29	Movement path modelling for node mobility handling. , 2018, , .		0
30	Tradeâ€off between selfâ€healing and energy consumption in mobile unattended WSNs. IET Information Security, 2018, 12, 285-292.	1.1	3
31	Movement-Aware Relay Selection for Delay-Tolerant Information Dissemination in Wildlife Tracking and Monitoring Applications. IEEE Internet of Things Journal, 2018, 5, 3079-3090.	5.5	15
32	Air-Ground Integrated Vehicular Network Slicing With Content Pushing and Caching. IEEE Journal on Selected Areas in Communications, 2018, 36, 2114-2127.	9.7	95
33	Routing in Multi-Hop Cellular Device-to-Device (D2D) Networks: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 2622-2657.	24.8	115
34	Flexible synthetic mobility modeling to discover trajectories for complex areas of mobile wireless networks. Journal of Ambient Intelligence and Humanized Computing, 2019, , 1.	3.3	5
35	Exploiting Delay Budget Flexibility for Efficient Group Delivery in the Internet of Things, IEEE Internet		
	of Things Journal, 2019, 6, 6593-6605.	5.5	3

#	Article	IF	CITATIONS
37	Steady-State Analysis of Buffer Occupancy for Different Forwarding Strategies in Mobile Opportunistic Network. IEEE Transactions on Vehicular Technology, 2019, 68, 6951-6963.	3.9	11
38	A Survey of Human Mobility Models. IEEE Access, 2019, 7, 125711-125731.	2.6	35
39	Evaluating Forwarding Protocols in Opportunistic Networks: Trends, Advances, Challenges and Best Practices. Future Internet, 2019, 11, 113.	2.4	22
40	A MIN-MAX SCHEDULING LOAD BALANCED APPROACH TO ENHANCE ENERGY EFFICIENCY AND PERFORMANCE OF MOBILE ADHOC NETWORKS. International Journal of Computer Networks and Communications, 2019, 11, 85-96.	0.3	1
41	Reliability evaluation of mobile ad hoc networks by considering link expiration time and border time. International Journal of Systems Assurance Engineering and Management, 2019, 10, 399-415.	1.5	12
43	Multipoint Relays Selection Through Spatial Relation Expiration Time in Mobile Ad Hoc Networks. Lecture Notes in Intelligent Transportation and Infrastructure, 2019, , 1188-1203.	0.3	0
44	On modeling and impact of geographic restrictions for human mobility in opportunistic networks. Performance Evaluation, 2019, 130, 17-31.	0.9	6
45	Leveraging Tactile Internet Cognizance and Operation via IoT and Edge Technologies. Proceedings of the IEEE, 2019, 107, 364-375.	16.4	42
46	Mobility prediction in mobile ad hoc networks using eye of coverage approach. Cluster Computing, 2019, 22, 14991-14998.	3.5	7
47	Efficient Mobile Base Station Placement for First Responders in Public Safety Networks. Lecture Notes in Networks and Systems, 2020, , 634-644.	0.5	6
48	A Comprehensive Survey on Mobility-Aware D2D Communications: Principles, Practice and Challenges. IEEE Communications Surveys and Tutorials, 2020, 22, 1863-1886.	24.8	95
49	Mobility Management in Emerging Ultra-Dense Cellular Networks: A Survey, Outlook, and Future Research Directions. IEEE Access, 2020, 8, 183505-183533.	2.6	30
50	Impacts of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey. IEEE Access, 2020, 8, 167779-167829.	2.6	36
51	Heterogeneous User-Centric Cluster Migration Improves the Connectivity-Handover Trade-Off in Vehicular Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 16027-16043.	3.9	21
52	Opportunistic routing metrics: A timely one-stop tutorial survey. Journal of Network and Computer Applications, 2020, 171, 102802.	5.8	3
53	Low-cost wireless testbed for Internet of Things ad hoc networks prototyping and evaluation. , 2020,		0
54	Path Planning for UAV-Mounted Mobile Edge Computing With Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2020, 69, 5723-5728.	3.9	149
55	Identification and eradication of attacker node in a mobile ad-hoc network environment using prediction model on delay factor. Evolving Systems, 2021, 12, 233-238.	2.4	Ο

CITICI	DEDODE
(ITATION	REDUDT
CILATION	KLI OKI

#	Article	IF	CITATIONS
56	LEACH-R: LEACH Relay With Cache Strategy for Mobile Robot Swarms. IEEE Wireless Communications Letters, 2021, 10, 406-410.	3.2	14
57	Popularity-Aware Online Task Offloading for Heterogeneous Vehicular Edge Computing Using Contextual Clustering of Bandits. IEEE Internet of Things Journal, 2022, 9, 5422-5433.	5.5	19
58	Weighted-based path rediscovery routing algorithm for improving the routing decision in wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	3.3	2
59	Deep Reinforcement Learning based Path Planning for UAV-assisted Edge Computing Networks. , 2021, , .		10
60	The Realistic 3D Group Mobility Model Based on Spiral Line for Aerial Backbone Network. IEEE Transactions on Vehicular Technology, 2021, 70, 3817-3830.	3.9	3
61	Trajectory Mining-Based City-Level Mobility Model for 5G NB-IoT Networks. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	4
62	Servo relays as distributed controllable-mobility network to maintain long-term stable links for mobile robot swarms. Ad Hoc Networks, 2021, 117, 102497.	3.4	2
63	A Comprehensive Review on Edge Caching from the Perspective of Total Process: Placement, Policy and Delivery. Sensors, 2021, 21, 5033.	2.1	16
64	Attentional Markov Model for Human Mobility Prediction. IEEE Journal on Selected Areas in Communications, 2021, 39, 2213-2225.	9.7	14
65	Semi-Stochastic Aircraft Mobility Modelling for Aeronautical Networks: An Australian Case-Study Based on Real Flight Data. IEEE Transactions on Vehicular Technology, 2021, 70, 10763-10779.	3.9	2
66	A Bitcoin Based Incentive Mechanism for Distributed P2P Applications. Lecture Notes in Computer Science, 2017, , 457-468.	1.0	5
67	Studying the Effect of Human Mobility on MANET Topology and Routing. , 2015, , .		2
68	Application of RPGM Model in Wireless Ad-Hoc Network. SSRN Electronic Journal, 0, , .	0.4	2
70	IOT BASED MULTI-HOMING APPLICATIONS - A REVIEW. IRO Journal on Sustainable Wireless Systems, 2019, 01, 31-41.	1.4	2
71	Experimental Synthesis of Routing Protocols and Synthetic Mobility Modeling for MANET. , 2017, , .		1
72	Message Overhead Control Using P-Epidemic Routing Method in Resource-Constrained Heterogeneous DTN. , 2021, , .		0
73	Recurrent origin–destination network for exploration of human periodic collective dynamics. Transactions in GIS, 0, , .	1.0	3
74	Collaborative Editing over Opportunistic Networks: State of the Art and Challenges. International Journal of Advanced Computer Science and Applications, 2017, 8, .	0.5	1

		CITATION REPOR	Т	
#	Article	IF	(Citations
75	Development of an Improved Intrusion Detection based Secured Robust Header Compression Technique. International Journal of Computer Applications, 2017, 161, 22-29.	0.2	2 (D
76	Dynamic Placement Algorithm for Multiple Classes of Mobile Base Stations in Public Safety Net Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunicatic Engineering, 2019, , 112-125.	works. ons 0.2	2 (D
77	A REVIEW OF MULTI HOMING AND ITS ASSOCIATED RESEARCH AREAS ALONG WITH INTERNET (IOT). IRO Journal on Sustainable Wireless Systems, 2019, 01, 69-76.	OF THINGS 1.4	. 2	2
78	Time Varying Communication Networks: Modelling, Reliability Evaluation and Optimization. Spi Series in Reliability Engineering, 2020, , 1-30.	inger 0.3	3 1	L
79	On Modeling and Performability Evaluation of Time Varying Communication Networks. , 2021,	, 161-189.	(0
80	Modified device key generation algorithm and A* algorithm to optimize the security measures b trust value in device-to-device communications. Soft Computing, 0, , 1.	based on 2.1	1	L
81	Reliable Routing Design in Predictable Wireless Networks with Unreliable Links. , 2020, , .		1	1
82	BonnMotion 4 â \in " Taking Mobility Generation to the Next Level. , 2020, , .		4	4
83	Double deep Q-learning network-based path planning in UAV-assisted wireless powered NOMA communication networks. , 2021, , .		1	1
84	Optimization for Node Cooperation in Hierarchical Federated Learning. , 2021, , .		0	O
85	Online Trajectory and Resource Optimization for Stochastic UAV-Enabled MEC Systems. IEEE Transactions on Wireless Communications, 2022, 21, 5629-5643.	6.1	. 4	22
86	Mobility Models for Internet of Vehicles: A Survey. Wireless Personal Communications, 2022, 1 1857-1881.	25, <u>1.8</u>	8	8
87	Computation Offloading in Multi-UAV-Enhanced Mobile Edge Networks: A Deep Reinforcement Approach. Wireless Communications and Mobile Computing, 2022, 2022, 1-11.	Learning 0.8	3 2	2
88	Computation Bits Maximization in UAV-Assisted MEC Networks With Fairness Constraint. IEEE of Things Journal, 2022, 9, 20997-21009.	Internet 5.5	1	14
89	Energy-Efficient Data Transmission in Mobility-Aware Wireless Networks. Wireless Communicat and Mobile Computing, 2022, 2022, 1-11.	ions 0.8	3 (0
90	Understanding mobility in networks. Performance Evaluation Review, 2022, 49, 124-130.	0.4	+ (D
91	A Load-Balanced and Energy-Efficient Navigation Scheme for UAV-Mounted Mobile Edge Comp IEEE Transactions on Network Science and Engineering, 2022, 9, 3659-3674.	uting. 4.1	. 1	15
92	Quotaâ€based routing and buffer management with heuristic strategies in opportunistic ad ho networks. International Journal of Communication Systems, 0, , .	c 1.6	(0

#	Article	IF	CITATIONS
93	Deep Reinforcement Learning Based Freshness-Aware Path Planning for UAV-Assisted Edge Computing Networks with Device Mobility. Remote Sensing, 2022, 14, 4016.	1.8	7
94	Deep Recurrent Q-Network Methods for mmWave Beam Tracking systems. IEEE Transactions on Vehicular Technology, 2022, 71, 13429-13434.	3.9	2
95	Multiple-Objective Packet Routing Optimization for Aeronautical Ad-Hoc Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 1002-1016.	3.9	3
96	Drone Swarm Path Planning for Mobile Edge Computing in Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2023, 19, 6836-6848.	7.2	14
97	Decentralized Computation Offloading with Cooperative UAVs: Multi-Agent Deep Reinforcement Learning Perspective. IEEE Wireless Communications, 2022, 29, 24-31.	6.6	6
98	Delay-aware Joint Resource Allocation in Cell-Free Mobile Edge Computing. , 2022, , .		1
99	A MEC architecture for a better quality of service in an Autonomous Vehicular Network. Computer Networks, 2022, 219, 109454.	3.2	6
100	IRS Assisted NOMA Aided Mobile Edge Computing With Queue Stability: Heterogeneous Multi-Agent Reinforcement Learning. IEEE Transactions on Wireless Communications, 2023, 22, 4296-4312.	6.1	7
101	Joint Adaptive Mobility Prediction and Signal Strength Prediction Based Cell Selection Algorithm in Ultra-Dense Networks. , 2022, , .		0
102	Uplink Throughput Maximization in UAV-Aided Mobile Networks: A DQN-Based Trajectory Planning Method. Drones, 2022, 6, 378.	2.7	2
103	Deep Reinforcement Learning Approach for UAV-Assisted Mobile Edge Computing Networks. , 2022, , .		4
104	Multi-Agent Reinforcement Learning for Energy-Efficiency Edge Association in Internet of Vehicles. , 2022, , .		1
105	Privacy-Preserving Joint Edge Association and Power Optimization for the Internet of Vehicles via Federated Multi-Agent Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2023, 72, 8256-8261.	3.9	1
109	Edge-Assisted Service Allocation and Delivery for Connected Vehicles with Variable Velocities. , 2023, ,		0
110	Energy-Efficient Online Node Cooperation Strategy for Hierarchical Federated Learning. , 2022, , .		0
111	Learning-Aided Multi-UAV Online Trajectory Coordination and Resource Allocation for Mobile WSNs. , 2023, , .		0
112	Mobility-Aware Joint User Scheduling and Resource Allocation for Low Latency Federated Learning. , 2023, , .		0
113	Optimizing the Deployment of UAV for Mesh Access Network Coverage. , 2023, , .		0

#	Article	IF	CITATIONS
115	Self-Organizing UAV Swarm Placement via Layered Loose Coupling and User Prioritization. , 2023, , .		1
116	Simulation Models for Opportunistic Networks. , 2024, , 81-99.		0