CITATION REPORT List of articles citing

A perspective on gaseous biofuel production from micro-algae generated from CO 2 from a coal-fired power plant

DOI: 10.1016/j.apenergy.2015.03.077 Applied Energy, 2015, 148, 396-402.

Source: https://exaly.com/paper-pdf/62366002/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
29	ChemInform Abstract: A Perspective on Gaseous Biofuel Production from Micro-Algae Generated from CO2 from a Coal-Fired Power Plant. <i>ChemInform</i> , 2015 , 46, no-no		
28	All in One - Complete Issue: ChemInform 51/2015. ChemInform, 2015, 46, no-no		
27	Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. <i>RSC Advances</i> , 2016 , 6, 91111-91120	3.7	35
26	CO2 capture with aqueous solution of sodium glycinate: Modeling using an ensemble method. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 62, 23-30	4.2	16
25	Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions. <i>Applied Energy</i> , 2017 , 197, 63-82	10.7	23
24	Cascading biomethane energy systems for sustainable green gas production in a circular economy. <i>Bioresource Technology</i> , 2017 , 243, 1207-1215	11	53
23	An overview of marine macroalgae as bioresource. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 91, 165-179	16.2	118
22	Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate. <i>Energy</i> , 2018 , 151, 760-770	7.9	22
21	An overview of the effects of fuel molecular structure on the combustion and emissions characteristics of compression ignition engines. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,</i> 2018 , 232, 90-105	1.4	46
20	Evaluating Algae as an Alternative Fuel for Chemical Looping Combustion. <i>PAM Review Energy Science & Technology</i> , 2018 , 5, 37-55	0	
19	Sustainability Analysis of Microalgae Production Systems: A Review on Resource with Unexploited High-Value Reserves. <i>Environmental Science & Environmental Science & Environm</i>	10.3	40
18	Characterizing CO2 capture with aqueous solutions of LysK and the mixture of MAPA DEEA using soft computing methods. <i>Energy</i> , 2018 , 164, 664-675	7.9	8
17	Microbial Hazards in Treated Wastewater: Challenges and Opportunities for Their Reusing in Egypt. <i>Handbook of Environmental Chemistry</i> , 2018 , 313-336	0.8	
16	Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. <i>Science of the Total Environment</i> , 2019 , 688, 112-128	10.2	98
15	A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. <i>Journal of Cleaner Production</i> , 2019 , 210, 445-458	10.3	46
14	Carbon Capture, Utilization and Storage (CCUS). Applied Energy, 2019, 235, 1289-1299	10.7	86
13	Bio-combustion of petroleum coke: The process integration with photobioreactors. Part II Sustainability metrics and bioeconomy. <i>Chemical Engineering Science</i> , 2020 , 213, 115412	4.4	17

CITATION REPORT

12	The Perspective of Large-Scale Production of Algae Biodiesel. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8181	2.6	39
11	Production of Bio-Hydrogen from Agricultural residues : A Contemporary Review. <i>IOP Conference Series: Earth and Environmental Science</i> , 2020 , 573, 012007	0.3	
10	Sustainable technologies for seaweed conversion to biofuels and bioproducts. 2020 , 643-661		1
9	Improving flashing light frequency and CO2 fixation rate with vortex movement of algal cells in raceway pond with conic baffles. <i>Chemical Engineering Science</i> , 2020 , 216, 115536	4.4	8
8	Technical insights into the production of green fuel from CO sequestered algal biomass: A conceptual review on green energy. <i>Science of the Total Environment</i> , 2021 , 755, 142636	10.2	32
7	Valorization of microalgal biomass for biohydrogen generation: A review. <i>Bioresource Technology</i> , 2021 , 322, 124533	11	10
6	Fecitrate converted from FeO particles in coal-fired flue gas promoted microalgal biomass and lipid productivities. <i>Science of the Total Environment</i> , 2021 , 760, 143405	10.2	1
5	Review on the recent structural advances in open and closed systems for carbon capture through algae. <i>Energy Nexus</i> , 2021 , 100032		5
4	A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. <i>Carbon Capture Science & Technology</i> , 2022 , 3, 100044		13
3	A critical overview of upstream cultivation and downstream processing of algae-based biofuels: Opportunity, technological barriers and future perspective <i>Journal of Biotechnology</i> , 2022 ,	3.7	1
2	Microalgal biofuel production: Potential challenges and prospective research. 2023, 332, 126199		2
1	Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. 2023 , 96, 101071		О