The Magnitude and Causes of Global Drought Changes i Low–Moderate Emissions Scenario

Journal of Climate 28, 4490-4512

DOI: 10.1175/jcli-d-14-00363.1

Citation Report

#	Article	IF	CITATIONS
1	Distribution, abundance and population structure of the threatened western saw-shelled turtle, Myuchelys bellii, in New South Wales, Australia. Australian Journal of Zoology, 2015, 63, 245.	1.0	9
2	Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters, 2015, 42, 6819-6828.	4.0	464
3	Impacts of warming and elevated <scp>CO</scp> ₂ on a semiâ€arid grassland are nonâ€additive, shift with precipitation, and reverse over time. Ecology Letters, 2016, 19, 956-966.	6.4	127
4	Simulated responses of terrestrial aridity to black carbon and sulfate aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 785-794.	3.3	19
5	Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2857-2873.	3.3	35
6	Aridity over a semiarid zone in northern China and responses to the East Asian summer monsoon. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,901.	3.3	41
7	Natural hazards in Australia: droughts. Climatic Change, 2016, 139, 37-54.	3.6	174
9	Plant responses to increasing CO ₂ reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10019-10024.	7.1	399
10	The Physics of Drought in the U.S. Central Great Plains. Journal of Climate, 2016, 29, 6783-6804.	3.2	78
11	Terrestrial water flux responses to global warming in tropical rainforest areas. Earth's Future, 2016, 4, 210-224.	6.3	14
12	Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A Science of the Total Environment, 2016, 554-555, 142-154.	8.0	47
13	Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895. Science of the Total Environment, 2016, 544, 792-796.	8.0	11
14	The Influence of Climate Model Biases on Projections of Aridity and Drought. Journal of Climate, 2016, 29, 1269-1285.	3.2	36
15	Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change, 2017, 144, 519-533.	3.6	191
16	Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China. Journal of Climate, 2017, 30, 1381-1396.	3.2	80
17	Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems. Atmospheric Research, 2017, 193, 173-183.	4.1	18
18	Increased Chances of Drought in Southeastern Periphery of the Tibetan Plateau Induced by Anthropogenic Warming. Journal of Climate, 2017, 30, 6543-6560.	3.2	38
19	Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity. Journal of Climate, 2017, 30, 6883-6904.	3.2	20

#	ARTICLE	IF	CITATIONS
20	Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming. Journal of Climate, 2017, 30, 6593-6609.	3.2	73
21	Divergent surface and total soil moisture projections under global warming. Geophysical Research Letters, 2017, 44, 236-244.	4.0	206
22	Anthropogenic warming has caused hot droughts more frequently in China. Journal of Hydrology, 2017, 544, 306-318.	5 . 4	113
23	Analyzing the uncertainty of ensemble-based gridded observations in land surface simulations and drought assessment. Journal of Hydrology, 2017, 555, 557-568.	5 . 4	24
24	Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 2017, 55, 719-778.	23.0	507
25	Quantifying the contributions of anthropogenic and natural forcings to climate changes over arid-semiarid areas during 1946–2005. Climatic Change, 2017, 144, 505-517.	3.6	11
26	Insights from a New High-Resolution Drought Atlas for the Caribbean Spanning 1950–2016. Journal of Climate, 2017, 30, 7801-7825.	3.2	66
27	Changes in aridity in response to the global warming hiatus. Journal of Meteorological Research, 2017, 31, 117-125.	2.4	32
28	Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Climatic Change, 2017, 144, 535-548.	3.6	133
29	The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dynamics, 2017, 49, 279-296.	3.8	38
30	Centennial drought outlook over the <scp>CONUS</scp> using <scp>NASAâ€NEX</scp> downscaled climate ensemble. International Journal of Climatology, 2017, 37, 2477-2491.	3 . 5	76
31	Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014. Hydrology and Earth System Sciences, 2017, 21, 4989-5007.	4.9	34
32	Plants and Drought in a Changing Climate. Current Climate Change Reports, 2018, 4, 192-201.	8.6	66
33	Drought Indices, Drought Impacts, CO2, and Warming: a Historical and Geologic Perspective. Current Climate Change Reports, 2018, 4, 202-209.	8.6	28
34	Climate Change and Drought: the Soil Moisture Perspective. Current Climate Change Reports, 2018, 4, 180-191.	8.6	170
35	Characteristics of meteorological drought pattern and risk analysis for maize production in Xinjiang, Northwest China. Theoretical and Applied Climatology, 2018, 133, 1269-1278.	2.8	17
36	Global Changes in Drought Conditions Under Different Levels of Warming. Geophysical Research Letters, 2018, 45, 3285-3296.	4.0	442
37	ENSO Transition from La Niña to El Niño Drives Prolonged Spring–Summer Drought over North China. Journal of Climate, 2018, 31, 3509-3523.	3. 2	52

#	ARTICLE	IF	CITATIONS
38	Assessment of droughts and wheat yield loss on the North China Plain with an aggregate drought index (ADI) approach. Ecological Indicators, 2018, 87, 107-116.	6.3	58
39	Past and future drought in Mongolia. Science Advances, 2018, 4, e1701832.	10.3	91
40	Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 2018, 50, 1177-1192.	3.8	137
41	Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States. Journal of Environmental Economics and Management, 2018, 87, 224-241.	4.7	27
42	Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere. Journal of Climate, 2018, 31, 251-266.	3.2	90
43	Genome-Wide Association Mapping of Major Root Length QTLs Under PEG Induced Water Stress in Wheat. Frontiers in Plant Science, 2018, 9, 1759.	3 . 6	34
44	Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. International Journal of Molecular Sciences, 2018, 19, 4089.	4.1	131
45	Drivers, timing and some impacts of global aridity change. Environmental Research Letters, 2018, 13, 104010.	5.2	50
46	Changing the retention properties of catchments and their influence on runoff under climate change. Environmental Research Letters, 2018, 13, 094019.	5.2	21
47	Precipitation enhancement by cloud seeding using the shell structured TiO2/NaCl aerosol as revealed by new model for cloud seeding experiments. Atmospheric Research, 2018, 212, 202-212.	4.1	11
48	Parental Drought-Priming Enhances Tolerance to Post-anthesis Drought in Offspring of Wheat. Frontiers in Plant Science, 2018, 9, 261.	3.6	75
49	Apprehensive Drought Characteristics over Iraq: Results of a Multidecadal Spatiotemporal Assessment. Geosciences (Switzerland), 2018, 8, 58.	2.2	46
50	Evaluating CMIP5 Model Agreement for Multiple Drought Metrics. Journal of Hydrometeorology, 2018, 19, 969-988.	1.9	59
51	Climate Change and Drought: a Precipitation and Evaporation Perspective. Current Climate Change Reports, 2018, 4, 301-312.	8.6	303
52	Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmospheric Research, 2018, 214, 364-374.	4.1	146
53	Drivers of Variability in Atmospheric Evaporative Demand: Multiscale Spectral Analysis Based on Observations and Physically Based Modeling. Water Resources Research, 2018, 54, 3510-3529.	4.2	20
54	Components and Mechanisms of Hydrologic Cycle Changes over North America at the Last Glacial Maximum. Journal of Climate, 2018, 31, 7035-7051.	3.2	20
55	Future drought and aridity monitoring using multi-model approach under climate change in Hintalo Wejerat district, Ethiopia. Sustainable Water Resources Management, 2019, 5, 1963-1972.	2.1	11

#	Article	IF	Citations
56	Implementation of a novel seeding material (NaCl/TiO2) for precipitation enhancement in WRF: Description of the model and spatiotemporal window tests. Atmospheric Research, 2019, 230, 104638.	4.1	6
57	Progress in Semi-arid Climate Change Studies in China. Advances in Atmospheric Sciences, 2019, 36, 922-937.	4.3	94
58	Historical reconstruction unveils the risk of mass mortality and ecosystem collapse during pancontinental megadrought. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15580-15589.	7.1	23
59	European warm-season temperature and hydroclimate since 850 CE. Environmental Research Letters, 2019, 14, 084015.	5.2	52
60	Future Intensification of the Water Cycle with an Enhanced Annual Cycle over Global Land Monsoon Regions. Journal of Climate, 2019, 32, 5437-5452.	3.2	51
61	The aridity Index under global warming. Environmental Research Letters, 2019, 14, 124006.	5.2	124
62	Intercomparison of the Surface Energy Partitioning in CMIP5 Simulations. Atmosphere, 2019, 10, 602.	2.3	7
63	Projected Changes in Daily Variability and Seasonal Cycle of Near-Surface Air Temperature over the Globe during the Twenty-First Century. Journal of Climate, 2019, 32, 8537-8561.	3.2	26
64	Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environmental Research Letters, 2019, 14, 094006.	5.2	103
65	Impact of climate model resolution on soil moisture projections in central-western Europe. Hydrology and Earth System Sciences, 2019, 23, 191-206.	4.9	22
66	The contribution of internal climate variability to climate change impacts on droughts. Science of the Total Environment, 2019, 684, 229-246.	8.0	51
67	Three-Dimensional Modelling of Precipitation Enhancement by Cloud Seeding in Three Different Climate Zones. Atmosphere, 2019, 10, 294.	2.3	11
68	Combining phosphorus placement and water saving technologies enhances rice production in phosphorus-deficient lowlands. Field Crops Research, 2019, 236, 177-189.	5.1	25
69	Historic and Projected Changes in Coupling Between Soil Moisture and Evapotranspiration (ET) in CMIP5 Models Confounded by the Role of Different ET Components. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5791-5806.	3.3	15
70	CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Canadian Water Resources Journal, 2019, 44, 90-107.	1.2	48
71	Spatial and temporal patterns of drought in Zambia. Journal of Arid Land, 2019, 11, 180-191.	2.3	28
72	Seasonal Changes in Water and Energy Balances over the Appalachian Region and Beyond throughout the Twenty-First Century. Journal of Applied Meteorology and Climatology, 2019, 58, 1079-1102.	1.5	13
73	Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews, 2019, 193, 146-161.	9.1	210

#	Article	IF	CITATIONS
74	Risk-Yuck Factor Nexus in Reclaimed Wastewater for Irrigation: Comparing Farmers' Attitudes and Public Perception. Water (Switzerland), 2019, 11, 187.	2.7	34
75	Future projection of droughts over major river basins in Southern Africa at specific global warming levels. Theoretical and Applied Climatology, 2019, 137, 1785-1799.	2.8	63
76	Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. Journal of Climate, 2019, 32, 737-748.	3.2	40
77	Climate-Smart Agricultural Value Chains: Risks and Perspectives. , 2019, , 235-245.		9
78	Environmental Remote Sensing and GIS in Iraq. Springer Water, 2020, , .	0.3	22
79	Multimodel ensemble projection of meteorological drought scenarios and connection with climate based on spectral analysis. International Journal of Climatology, 2020, 40, 3360-3379.	3.5	15
80	Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1407.	6.5	79
81	Seasonal Covariability of Dryness or Wetness in China and Global Sea Surface Temperature. Journal of Climate, 2020, 33, 727-747.	3.2	3
82	Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.	3.2	230
83	Projected Changes in Reference Evapotranspiration in California and Nevada: Implications for Drought and Wildland Fire Danger. Earth's Future, 2020, 8, e2020EF001736.	6.3	27
84	Favorable Circulation Patterns and Moisture Sources for Wintertime Extreme Precipitation Events Over the Balkhashâ€Junggar Region. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032275.	3.3	2
85	Quantifying future drought change and associated uncertainty in southeastern Australia with multiple potential evapotranspiration models. Journal of Hydrology, 2020, 590, 125394.	5.4	25
86	Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmospheric and Oceanic Science Letters, 2020, 13, 568-575.	1.3	29
87	Response of Natural Vegetation to Climate in Dryland Ecosystems: A Comparative Study between Xinjiang and Arizona. Remote Sensing, 2020, 12, 3567.	4.0	21
88	Agroforestry: An Appropriate and Sustainable Response to a Changing Climate in Southern Africa?. Sustainability, 2020, 12, 6796.	3.2	39
89	Analysis of Long-Term Variations of Drought Characteristics Using Standardized Precipitation Index over Zambia. Atmosphere, 2020, 11, 1268.	2.3	33
90	Global pattern of shortâ€ŧerm concurrent hot and dry extremes and its relationship to largeâ€scale climate indices. International Journal of Climatology, 2020, 40, 5906-5924.	3.5	16
91	Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Science of the Total Environment, 2020, 734, 139311.	8.0	29

#	Article	IF	CITATIONS
92	Climatic change impacts on Chinese sugarcane planting: Benefits and risks. Physics and Chemistry of the Earth, 2020, 116, 102856.	2.9	10
93	Increased Drought Risk in South Asia under Warming Climate: Implications of Uncertainty in Potential Evapotranspiration Estimates. Journal of Hydrometeorology, 2020, 21, 2979-2996.	1.9	44
94	Regional Climatological Drought: An Assessment Using High-Resolution Data. Hydrology, 2020, 7, 33.	3.0	9
95	Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2020, 21, 1513.	4.1	157
96	Physiological evaluation of nitrogen use efficiency of different apple cultivars under various nitrogen and water supply conditions. Journal of Integrative Agriculture, 2020, 19, 709-720.	3.5	9
97	Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting, 2020, 2, 59-84.	2.8	32
98	Accelerated dryland expansion regulates future variability in dryland gross primary production. Nature Communications, 2020, 11 , 1665 .	12.8	158
99	Nanomaterials and soil health for agricultural crop production: current status and future prospects., 2020,, 289-312.		2
100	Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. International Journal of Climatology, 2021, 41, 278-294.	3.5	30
101	Effects of 1.5°C and 2°C of warming on regional reference evapotranspiration and drying: A case study of the Yellow River Basin, China. International Journal of Climatology, 2021, 41, 791-810.	3.5	7
102	Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. Theoretical and Applied Genetics, 2021, 134, 191-212.	3.6	23
103	Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Science of the Total Environment, 2021, 758, 143599.	8.0	48
104	Model evaluation and uncertainties in projected changes of drought over northern China based on CMIP5 models. International Journal of Climatology, 2021, 41, E3085.	3.5	9
105	Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 2021, 68, 711-728.	1.6	47
106	It depends on the rain: Smallholder farmers' perceptions on the seasonality of feed gaps and how it affects livestock in semi-arid and arid regions in Southern Africa. Climate Risk Management, 2021, 34, 100362.	3.2	10
107	The impact of snow loss and soil moisture on convective precipitation over the Rocky Mountains under climate warming. Climate Dynamics, 2021, 56, 2915-2939.	3.8	9
108	Can smart nutrient applications optimize the plant's hidden half to improve drought resistance?. Physiologia Plantarum, 2021, 172, 1007-1015.	5 . 2	15
109	CMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levels. Environmental Research Letters, 2021, 16, 044053.	5.2	31

#	Article	IF	CITATIONS
110	Risk and vulnerability of Mongolian grasslands under climate change. Environmental Research Letters, 2021, 16, 034035.	5.2	46
111	Hydroclimatic trends during 1950–2018 over global land. Climate Dynamics, 2021, 56, 4027-4049.	3.8	43
112	CO ₂ -plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environmental Research Letters, 2021, 16, 034018.	5.2	20
113	Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, waterâ€use efficiency and productivity. New Phytologist, 2021, 230, 1378-1393.	7. 3	56
114	Assessing Future Impacts of Climate Change on Streamflow within the Alabama River Basin. Climate, 2021, 9, 55.	2.8	16
115	Microâ€dose placement of phosphorus induces deep rooting of upland rice. Plant and Soil, 2021, 463, 187-204.	3.7	8
116	Spatioâ€temporal characteristics of meteorological drought under changing climate in semiâ€arid region of northern Ethiopia. Environmental Systems Research, 2021, 10, .	3.7	11
118	Nitrogen Use Efficiency in Rice under Abiotic Stress: Plant Breeding Approach. , 0, , .		O
119	Development of an integrated weighted drought index and its application for agricultural drought monitoring. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	7
120	The scenario-based variations and causes of future surface soil moisture across China in the twenty-first century. Environmental Research Letters, 2021, 16, 034061.	5.2	10
121	Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone. Scientific Reports, 2021, 11, 4935.	3.3	10
122	Spatial and Temporal Variability of Drought Patterns over the Continental United States from Observations and Regional Climate Models. Journal of Meteorological Research, 2021, 35, 295-312.	2.4	4
123	Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics, 2021, 59, e2019RG000683.	23.0	126
124	Evaluating spatial patterns of Asian meteorological drought variations and associated SST anomalies in CMIP6 models. Theoretical and Applied Climatology, 2021, 145, 345-361.	2.8	1
125	Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California. Climate, 2021, 9, 82.	2.8	1
126	A novel method to detect drought and flood years in Indian rainfall associated with weak and strong monsoon. Theoretical and Applied Climatology, 2021, 145, 747-761.	2.8	3
127	Future changes in the frequency of extreme droughts over China based on two large ensemble simulations. Journal of Climate, 2021 , , 1 .	3.2	8
128	In vitro effect of polyethylene glycol and sorbitol on two banana varieties viz. Grand naine and Nalla bontha to study drought stress. Journal of Applied and Natural Science, 2021, 13, 482-490.	0.4	1

#	Article	IF	Citations
129	Climate change impacts on water security in global drylands. One Earth, 2021, 4, 851-864.	6.8	64
130	Observed and projected changes in extreme drought and flood-prone regions over India under CMIP5 RCP8.5 using a new vulnerability index. Climate Dynamics, 2021, 57, 2595.	3.8	1
131	Postdrought Recovery Time Across Global Terrestrial Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005699.	3.0	11
132	Long-term climatic water availability trends and variability across the African continent. Theoretical and Applied Climatology, 2021, 146, 1-17.	2.8	6
133	Global exposure of population and landâ€use to meteorological droughts under different warming levels and <scp>SSPs</scp> : A <scp>CORDEX</scp> â€based study. International Journal of Climatology, 2021, 41, 6825-6853.	3.5	26
134	Multi-criteria, time dependent sensitivity analysis of an event-oriented, physically-based, distributed sediment and runoff model. Journal of Hydrology, 2021, 598, 126268.	5.4	9
135	Future Changes in Wet and Dry Season Characteristics in CMIP5 and CMIP6 simulations. Journal of Hydrometeorology, 2021, , .	1.9	20
136	Emerging satellite observations for diurnal cycling of ecosystem processes. Nature Plants, 2021, 7, 877-887.	9.3	62
137	Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing. Forests, 2021, 12, 974.	2.1	14
138	Genetic Dissection of Seedling Root System Architectural Traits in a Diverse Panel of Hexaploid Wheat through Multi-Locus Genome-Wide Association Mapping for Improving Drought Tolerance. International Journal of Molecular Sciences, 2021, 22, 7188.	4.1	20
139	Mediterranean-Scale Drought: Regional Datasets for Exceptional Meteorological Drought Events during 1975–2019. Atmosphere, 2021, 12, 941.	2.3	27
140	Genome-Wide Association Mapping for Stomata and Yield Indices in Bread Wheat under Water Limited Conditions. Agronomy, 2021, 11, 1646.	3.0	13
141	Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells, 2021, 10, 2537.	4.1	84
142	Global warming induces significant changes in the fraction of stored precipitation in the surface soil. Global and Planetary Change, 2021, 205, 103616.	3.5	12
143	Impact of Climate Change on the Production of Coffea arabica at Mt. Kilimanjaro, Tanzania. Agriculture (Switzerland), 2021, 11, 53.	3.1	16
144	Drought monitoring based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the arid zone of Balochistan province, Pakistan. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	28
145	Agricultural Drought Monitoring Over Iraq Utilizing MODIS Products. Springer Water, 2020, , 253-278.	0.3	13
146	Effects of temperature and exercise on metabolism of three species of Australian freshwater turtles: implications for responses to climate change. Australian Journal of Zoology, 2018, 66, 317.	1.0	5

#	Article	IF	CITATIONS
147	Dynamical Downscaling for Southeast Alaska: Historical Climate and Future Projections. Journal of Applied Meteorology and Climatology, 2020, 59, 1607-1623.	1.5	8
148	Moisture and Temperature Covariability over the Southeastern Tibetan Plateau during the Past Nine Centuries. Journal of Climate, 2020, 33, 6583-6598.	3.2	10
149	Future Precipitation-Driven Meteorological Drought Changes in the CMIP5 Multimodel Ensembles under 1.5°C and 2°C Global Warming. Journal of Hydrometeorology, 2020, 21, 2177-2196.	1.9	22
150	Using climate information for drought planning. Climate Research, 2016, 70, 251-263.	1.1	23
151	Historical analysis (1981-2017) of drought severity and magnitude over a predominantly arid region of Pakistan. Climate Research, 2019, 78, 189-204.	1.1	30
153	Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. Climate, 2021, 9, 154.	2.8	29
155	The 2010–2020 'megadrought' drives reduction in lake surface area in the Andes of central Chile (32º -) Tj E	TQq0 0 0 1	rgBT/Overlocl
156	Root system architectural and growth responses of crop plants to mineral nutrition under moisture stress and its implications in drought tolerance., 2022, , 171-207.		2
157	Estimation of a trend of meteorological and hydrological drought over Qinhuai River Basin. Theoretical and Applied Climatology, 2022, 147, 1065-1078.	2.8	12
158	CMIP6 Model-projected Hydroclimatic and Drought Changes and Their Causes in the 21st Century. Journal of Climate, 2021, , 1-58.	3.2	19
159	Northern Hemisphere drought risk in a warming climate. Npj Climate and Atmospheric Science, 2021, 4,	6.8	47
160	Future changes in aridity in the Upper Indus Basin during the twenty-first century. Climate Research, 2022, 87, 117-132.	1.1	1
161	Can Electrophysiological Parameters Substitute for Growth, and Photosynthetic Parameters to Characterize the Response of Mulberry and Paper Mulberry to Drought?. Plants, 2021, 10, 1772.	3.5	6
162	Evaluation of high-resolution WRF model forecasts and their use for cloud seeding decisions. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 228, 105825.	1.6	4
163	Soil moisture droughts in East Africa: Spatiotemporal patterns and climate drivers. Journal of Hydrology: Regional Studies, 2022, 40, 101013.	2.4	10
164	Global water availability and its distribution under the Coupled Model Intercomparison Project Phase Six scenarios. International Journal of Climatology, 2022, 42, 5748-5767.	3.5	9
165	Designing Genomic Solutions to Enhance Abiotic Stress Resistance in Flax. , 2022, , 251-283.		2
166	Spatiotemporal Changes of sc-PDSI and Its Dynamic Drivers in Yellow River Basin. Atmosphere, 2022, 13, 399.	2.3	4

#	ARTICLE	IF	CITATIONS
168	Future Changes in Drought Frequency Due To Changes in the Mean and Shape of the PDSI Probability Density Function Under RCP4.5 Scenario. Frontiers in Earth Science, 2022, 10, .	1.8	13
169	Spatial Drought Patterns in East Africa. , 2022, , 47-64.		0
170	Factors controlling spatio-temporal variations of sandy deserts during the past 110ÂYears in Xinjiang, Northwestern China. Journal of Arid Environments, 2022, 201, 104749.	2.4	7
171	Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100. Atmosphere, 2021, 12, 1704.	2.3	3
174	Observed Changes in Crop Yield Associated with Droughts Propagation via Natural and Human-Disturbed Agro-Ecological Zones of Pakistan. Remote Sensing, 2022, 14, 2152.	4.0	10
175	Challenges in drought monitoring and assessment in India. Water Security, 2022, 16, 100120.	2.5	5
176	Climate Change Increases the Severity and Duration of Soil Water Stress in the Temperate Forest of Eastern North America. Frontiers in Forests and Global Change, 2022, 5, .	2.3	7
177	The Rise of Atmospheric Evaporative Demand Is Increasing Flash Droughts in Spain During the Warm Season. Geophysical Research Letters, 2022, 49, .	4.0	12
178	Implications of changes in climate and human development on 21st-century global drought risk. Journal of Environmental Management, 2022, 317, 115378.	7.8	17
179	Hydrological Drought Evaluation Using Grace Satellite-Based Drought Index Over the Lake Basins, East Africa. SSRN Electronic Journal, 0, , .	0.4	0
180	Drought in Indian perspective, its impact on major crops and livestock and remedial measures. Environment Conservation Journal, 2022, 23, 290-301.	0.2	1
181	Spatiotemporal Variability in Water-Use Efficiency in Tianshan Mountains (Xinjiang, China) and the Influencing Factors. Sustainability, 2022, 14, 8191.	3.2	5
182	Effect of different dwarfing interstocks on the vegetative growth and nitrogen utilization efficiency of apple trees under low-nitrate and drought stress. Scientia Horticulturae, 2022, 305, 111369.	3.6	9
183	Why do the Global Warming Responses of Landâ€Surface Models and Climatic Dryness Metrics Disagree?. Earth's Future, 2022, 10, .	6.3	5
184	Spatiotemporal climate variability and meteorological drought characterization in Ethiopia. Geomatics, Natural Hazards and Risk, 2022, 13, 2049-2085.	4.3	7
185	Integrated transcriptome and metabolome analyses reveal the adaptation of Antarctic moss Pohlia nutans to drought stress. Frontiers in Plant Science, $0,13,.$	3.6	1
186	Future changes in drought over Central Asia under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies, 2022, 43, 101191.	2.4	8
187	Evolution of land surface feedbacks on extreme heat: Adapting existing coupling metrics to a changing climate. Frontiers in Environmental Science, 0, 10, .	3.3	7

#	Article	IF	Citations
188	Hydrological drought evaluation using GRACE satellite-based drought index over the lake basins, East Africa. Science of the Total Environment, 2022, 852, 158425.	8.0	9
189	A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. International Journal of Molecular Sciences, 2022, 23, 11232.	4.1	16
190	Hydrological drought impacts on water storage variations: a focus on the role of vegetation changes in the East Africa region. A systematic review. Environmental Science and Pollution Research, 2022, 29, 80237-80256.	5.3	3
191	Temporal and Spatial Variability of Dryness Conditions in Kazakhstan during 1979–2021 Based on Reanalysis Data. Climate, 2022, 10, 144.	2.8	3
192	Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios. Climatic Change, 2022, 174, .	3.6	9
193	Evolution and Trends of Meteorological Drought and Wet Events over the Republic of Djibouti from 1961 to 2021. Climate, 2022, 10, 148.	2.8	6
194	Climate warming accelerates surface soil moisture drying in the Yellow River Basin, China. Journal of Hydrology, 2022, 615, 128735.	5.4	4
195	Improvement of low flows simulation in the SASER hydrological modeling chain. Journal of Hydrology X, 2023, 18, 100147.	1.6	1
196	Early Drought Stress Warning in Plants: Color Pictures of Photosystem II Photochemistry. Climate, 2022, 10, 179.	2.8	24
197	Future Changes in Global Runoff and Runoff Coefficient From CMIP6 Multiâ€Model Simulation Under SSP1â€2.6 and SSP5â€8.5 Scenarios. Earth's Future, 2022, 10, .	6.3	3
198	P-dipping improved NERICA 4 rice seedling resilience to water and nutrient stresses under rainfed-like conditions. Rhizosphere, 2023, 26, 100688.	3.0	1
200	Monitoring Drought Stress in Common Bean Using Chlorophyll Fluorescence and Multispectral Imaging. Plants, 2023, 12, 1386.	3.5	2
201	Future changes of dryâ€wet climate regions and its contributing climatic factors in China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2023, 43, 3570-3589.	3.5	0
202	Influence of anthropogenic and natural forcings on future changes in precipitation projected by the <scp>CMIP6–DAMIP</scp> models. International Journal of Climatology, 2023, 43, 3892-3906.	3.5	1
203	The Great Green Wall Initiatives and Opportunities for Integration of Dryland Agroforestry to Mitigate Desertification., 2023,, 175-206.		1
204	Standardized precipitation evapotranspiration index (SPEI) for Canada: assessment of probability distributions. Canadian Water Resources Journal, 2023, 48, 283-299.	1.2	2
205	Wetting and drying trends under climate change. , 2023, 1, 502-513.		17
206	Identical hierarchy of physical drought types for climate change signals and uncertainty. Weather and Climate Extremes, 2023, 41, 100573.	4.1	O

#	Article	IF	CITATIONS
207	Different Responses to Water Deficit of Two Common Winter Wheat Varieties: Physiological and Biochemical Characteristics. Plants, 2023, 12, 2239.	3.5	1
208	Attribution of air temperature and precipitation to the future global drought events. Environmental Research Communications, 2023, 5, 061005.	2.3	0
209	Characterization and Propagation of Historical and Projected Droughts in the Umatilla River Basin, Oregon, USA. Advances in Atmospheric Sciences, 2024, 41, 247-262.	4.3	2
210	Flood risk and corporate future orientation: Evidence from sea level rise risk. Journal of Business Finance and Accounting, 2024, 51, 555-594.	2.7	4
211	Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. International Journal of Molecular Sciences, 2023, 24, 9573.	4.1	6
212	Reforestation policies around 2000 in southern China led to forest densification and expansion in the 2010s. Communications Earth & Environment, 2023, 4, .	6.8	0
213	Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. Biosensors, 2023, 13, 796.	4.7	13
214	Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat. BMC Plant Biology, 2023, 23, .	3.6	3
215	Impact of climate extreme events and their causality on maize yield in South Africa. Scientific Reports, $2023,13,\ldots$	3.3	4
216	Climate Change and Threats to Water Security: A Review. Water Resources, 2023, 50, 645-663.	0.9	1
217	Increasing vapor pressure deficit accelerates land drying. Journal of Hydrology, 2023, 625, 130062.	5.4	3
218	<scp>CMIP6â€ /scp>projected changes in drought over Xinjiang, Northwest China. International Journal of Climatology, 2023, 43, 6560-6577.</scp>	3.5	0
219	Future Drought Changes in China Projected by the CMIP6 Models: Contributions from Key Factors. Journal of Meteorological Research, 2023, 37, 454-468.	2.4	1
220	Divergent impacts of VPD and SWC on ecosystem carbon-water coupling under different dryness conditions. Science of the Total Environment, 2023, 905, 167007.	8.0	3
221	Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits. Plant Growth Regulation, 0, , .	3.4	0
222	The severity of dry and hot climate extremes and their related impacts on vegetation in Madagascar. IScience, 2024, 27, 108658.	4.1	0
223	Inter-decadal shift of spring drought over China around the late 1990s and the possible mechanisms. Atmospheric Research, 2024, 299, 107197.	4.1	0
224	Weakened Increase in Global Nearâ€Surface Water Vapor Pressure During the Last 20ÂYears. Geophysical Research Letters, 2024, 51, .	4.0	1

#	Article	IF	CITATIONS
225	Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones. Hydrology and Earth System Sciences, 2024, 28, 321-339.	4.9	0
226	Evaluating the future total water storage change and hydrological drought under climate change over lake basins, East Africa. Journal of Cleaner Production, 2024, 447, 141552.	9.3	O