Viraemia suppressed in HIV-1-infected humans by broa

Nature

522, 487-491

DOI: 10.1038/nature14411

Citation Report

#	Article	IF	CITATIONS
2	HIV-1 functional cure: will the dream come true?. BMC Medicine, 2015, 13, 284.	2.3	39
3	A constant threat for HIV: Fcâ€engineering to enhance broadly neutralizing antibody activity for immunotherapy of the acquired immunodeficiency syndrome. European Journal of Immunology, 2015, 45, 2183-2190.	1.6	3
4	Toward a cure for HIVâ€"Seeking effective therapeutic vaccine strategies. European Journal of Immunology, 2015, 45, 3215-3221.	1.6	12
5	The role of Fc receptors in <scp>HIV</scp> prevention and therapy. Immunological Reviews, 2015, 268, 296-310.	2.8	41
6	Fc \hat{I}^3 receptor pathways during active and passive immunization. Immunological Reviews, 2015, 268, 88-103.	2.8	108
7	Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clinical and Experimental Immunology, 2015, 182, 289-301.	1.1	222
8	Exceptional Antibodies Produced by Successive Immunizations. PLoS Biology, 2015, 13, e1002321.	2.6	0
9	A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. PLoS Pathogens, 2015, 11, e1005238.	2.1	43
10	Hematopoietic Stem and Immune Cells in Chronic HIV Infection. Stem Cells International, 2015, 2015, 1-7.	1.2	7
11	Antibody shows promise as treatment for HIV. Nature, 2015, , .	13.7	O
12	Novel immunological strategies for HIV-1 eradication. Journal of Virus Eradication, 2015, 1, 232-236.	0.3	6
13	Can we design drugs for HIV/AIDS that are less susceptible to resistance?. Future Medicinal Chemistry, 2015, 7, 2301-2304.	1.1	1
14	HIV-specific B cell response in patients with broadly neutralizing serum activity. Science, 2015, 350, 1175-1176.	6.0	2
15	Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Science Translational Medicine, 2015, 7, 319ra206.	5.8	390
17	Toward an HIV vaccine: A scientific journey. Science, 2015, 349, 386-387.	6.0	22
18	Blockage of CD59 Function Restores Activities of Neutralizing and Nonneutralizing Antibodies in Triggering Antibody-Dependent Complement-Mediated Lysis of HIV-1 Virions and Provirus-Activated Latently Infected Cells. Journal of Virology, 2015, 89, 9393-9406.	1.5	12
19	Tailored immunogens for rationally designed antibody-based HIV-1 vaccines. Trends in Immunology, 2015, 36, 437-439.	2.9	8
20	Early antiretroviral therapy in children perinatally infected with HIV: a unique opportunity to implement immunotherapeutic approaches to prolong viral remission. Lancet Infectious Diseases, The,		

#	Article	IF	CITATIONS
21	Structure-Guided Design of an Anti-dengue Antibody Directed to a Non-immunodominant Epitope. Cell, 2015, 162, 493-504.	13.5	111
23	Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12675-12680.	3.3	44
24	A Shot in the Arm for HIV Prevention? Recent Successes and Critical Thresholds. AIDS Research and Human Retroviruses, 2015, 31, 1055-1059.	0.5	3
25	Is it time to abandon single intervention cure trials?. Lancet HIV,the, 2015, 2, e410-e411.	2.1	8
26	Dose–response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nature Communications, 2015, 6, 8443.	5.8	44
27	Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents?. Trends in Microbiology, 2015, 23, 653-665.	3.5	97
28	Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization. Journal of Virology, 2015, 89, 12501-12512.	1.5	83
29	The role of Fc–FcγR interactions in IgG-mediated microbial neutralization. Journal of Experimental Medicine, 2015, 212, 1361-1369.	4.2	132
30	Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env. Cell, 2015, 162, 1379-1390.	13.5	132
31	Highlights from the Seventh International Workshop on HIV Persistence during Therapy, 8–11 December 2015, Miami, Florida, USA. Journal of Virus Eradication, 2016, 2, 57-65.	0.3	7
32	HIV-1 prophylactic vaccines: state of the art. Journal of Virus Eradication, 2016, 2, 5-11.	0.3	12
35	Broadly neutralizing antibodies for therapy of viral infections. Antibody Technology Journal, 2016, , 1.	0.0	2
36	Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. International Journal of Molecular Sciences, 2016, 17, 1901.	1.8	14
37	Perspectives for immunotherapy: which applications might achieve an HIV functional cure?. Oncotarget, 2016, 7, 38946-38958.	0.8	12
38	Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ETC	Qq <mark>8,9</mark> 0 rg	gBT ₁ /Overlock
39	Increased frequencies of CD8+CD57+T cells are associated with antibody neutralization breadth against HIV in viraemic controllers. Journal of the International AIDS Society, 2016, 19, 21136.	1.2	6
40	Structural basis for germline antibody recognition of HIV-1 immunogens. ELife, 2016, 5, .	2.8	68
41	Recent update in HIV vaccine development. Clinical and Experimental Vaccine Research, 2016, 5, 6.	1.1	26

#	Article	IF	CITATIONS
42	AIDS Vaccines. , 2016, , 401-422.		1
43	Recent Progress toward Engineering HIV-1-Specific Neutralizing Monoclonal Antibodies. Frontiers in Immunology, 2016, 7, 391.	2.2	9
44	Patterns of HIV/SIV Prevention and Control by Passive Antibody Immunization. Frontiers in Microbiology, 2016, 7, 1739.	1.5	6
46	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	2.1	150
47	Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults. JAMA - Journal of the American Medical Association, 2016, 316, 191.	3.8	533
48	International AIDS Society global scientific strategy: towards an HIV cure 2016. Nature Medicine, 2016, 22, 839-850.	15.2	395
49	Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts―2015 Workshop Summary. AIDS Research and Human Retroviruses, 2016, 32, 109-119.	0.5	57
50	Passive immunization with <scp>HIV</scp> â€1â€neutralizing antibodies: is it effective and safe?. Oral Diseases, 2016, 22, 460-462.	1.5	0
51	Gene Therapy to Cure HIV: Where to from Here?. AIDS Patient Care and STDs, 2016, 30, 531-533.	1.1	6
52	Therapeutic vaccines and immunological intervention in HIV infection. Current Opinion in HIV and AIDS, 2016, 11, 576-584.	1.5	40
53	Immunological strategies to target HIV persistence. Current Opinion in HIV and AIDS, 2016, 11, 402-408.	1.5	8
54	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	2.7	47
55	Current status and prospects of HIV treatment. Current Opinion in Virology, 2016, 18, 50-56.	2.6	249
56	Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. Journal of Experimental Medicine, 2016, 213, 469-481.	4.2	299
57	Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants. EBioMedicine, 2016, 8, 237-247.	2.7	22
58	Accelerated actin filament polymerization from microtubule plus ends. Science, 2016, 352, 1004-1009.	6.0	172
59	HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science, 2016, 352, 997-1001.	6.0	263
60	Enhanced clearance of HIV-1–infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science, 2016, 352, 1001-1004.	6.0	302

#	Article	IF	Citations
61	Assessment of the antiviral capacity of primary natural killer cells by optimized in vitro quantification of HIV-1 replication. Journal of Immunological Methods, 2016, 434, 53-60.	0.6	5
62	Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Advanced Drug Delivery Reviews, 2016, 103, 5-19.	6.6	26
63	A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature, 2016, 533, 105-109.	13.7	281
64	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	1.5	62
65	Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. Annual Review of Immunology, 2016, 34, 635-659.	9.5	500
66	Antibodies and tuberculosis. Tuberculosis, 2016, 101, 102-113.	0.8	131
67	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	13.5	230
68	Determinants of HIV-1 broadly neutralizing antibody induction. Nature Medicine, 2016, 22, 1260-1267.	15.2	133
69	Twist in the Tail: Escape from HIV Neutralising Antibodies at a Single Site Confers Broad Susceptibility to Others. EBioMedicine, 2016, 12, 14-15.	2.7	1
70	Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology, 2016, 13, 70.	0.9	10
71	Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nature Reviews Drug Discovery, 2016, 15, 823-834.	21.5	51
72	Micro-/nanoscale electroporation. Lab on A Chip, 2016, 16, 4047-4062.	3.1	90
73	Immunotherapeutic strategies for sexually transmitted viral infections: HIV, HSV and HPV. Cellular Immunology, 2016, 310, 1-13.	1.4	2
74	CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies. Journal of Virology, 2016, 90, 7822-7832.	1.5	14
75	Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play. Emerging Microbes and Infections, 2016, 5, 1-9.	3.0	36
76	Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from Latency in CD4 ⁺ T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving Suppressive Combined Antiretroviral Therapy, Journal of Virology, 2016, 90, 9712-9724.	1.5	83
77	Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7908-E7916.	3.3	164
78	CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge. Scientific Reports, 2016, 6, 34829.	1.6	7

#	Article	IF	Citations
79	Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16068.	1.8	48
80	Neutralization resistant HIV-1 primary isolates from antiretroviral na \tilde{A} -ve chronically infected children in India. Virology, 2016, 499, 105-113.	1.1	7
81	Remaining Challenges in Pediatric HIV-1 Infection. Current Pediatrics Reports, 2016, 4, 63-73.	1.7	1
82	Maximising HIV prevention by balancing the opportunities of today with the promises of tomorrow: a modelling study. Lancet HIV,the, 2016, 3, e289-e296.	2.1	62
83	HIV Broadly Neutralizing Antibodies: Taking Good Care Of The 98%. Immunity, 2016, 45, 958-960.	6.6	13
84	Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nature Communications, 2016, 7, 10844.	5.8	201
85	Enhancing Virion Tethering by BST2 Sensitizes Productively and Latently HIV-infected T cells to ADCC Mediated by Broadly Neutralizing Antibodies. Scientific Reports, 2016, 6, 37225.	1.6	22
86	Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. New England Journal of Medicine, 2016, 375, 2037-2050.	13.9	391
87	Broadly Neutralizing Antibodies for HIV-1 Prevention or Immunotherapy. New England Journal of Medicine, 2016, 375, 2019-2021.	13.9	66
88	Expression of HIV-1 broadly neutralizing antibodies mediated by recombinant adeno-associated virus 8 in vitro and in vivo. Molecular Immunology, 2016, 80, 68-77.	1.0	4
89	Ongoing Clinical Trials of Human Immunodeficiency Virus Latency-Reversing and Immunomodulatory Agents. Open Forum Infectious Diseases, 2016, 3, ofw189.	0.4	72
90	Differences in Allelic Frequency and CDRH3 Region Limit the Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody Precursors. Cell Reports, 2016, 17, 1560-1570.	2.9	42
91	Modulating Antibody Functionality in Infectious Disease and Vaccination. Trends in Molecular Medicine, 2016, 22, 969-982.	3.5	71
92	Genome-wide analyses reveal a highly conserved Dengue virus envelope peptide which is critical for virus viability and antigenic in humans. Scientific Reports, 2016, 6, 36339.	1.6	8
93	Stem-cell Based Engineered Immunity Against HIV Infection in the Humanized Mouse Model. Journal of Visualized Experiments, 2016, , .	0.2	12
94	Breadth and magnitude of antigen-specific antibody responses in the control of plasma viremia in simian immunodeficiency virus infected macaques. Virology Journal, 2016, 13, 200.	1.4	11
95	Novel approaches in preclinical HIV vaccine research. Current Opinion in HIV and AIDS, 2016, 11, 601-606.	1.5	2
96	New concepts in HIV-1 vaccine development. Current Opinion in Immunology, 2016, 41, 39-46.	2.4	77

#	ARTICLE	IF	CITATIONS
97	Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency. Cell, 2016, 165, 1609-1620.	13.5	130
98	Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell, 2016, 165, 1621-1631.	13.5	157
99	Colonic Crypts: Safe Haven from Microbial Products. Cell, 2016, 165, 1564-1566.	13.5	6
100	Broadly Neutralizing Antibodies: Magic Bullets against HIV?. Immunity, 2016, 44, 1253-1254.	6.6	3
101	Report of the Cent Gardes HIV Vaccines Conference. Part 1: The antibody response; Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine, 2016, 34, 3557-3561.	1.7	2
102	HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature, 2016, 535, 556-560.	13.7	400
103	Hope of post-treatment control after perinatal infection?. Lancet HIV, the, 2016, 3, e6-e8.	2.1	0
104	Bispecific Antibodies Against HIV. Cell, 2016, 165, 1563-1564.	13.5	15
105	C-type lectin receptors in the control of T helper cell differentiation. Nature Reviews Immunology, 2016, 16, 433-448.	10.6	200
106	B cells in HIV pathogenesis. Current Opinion in Infectious Diseases, 2016, 29, 23-30.	1.3	10
107	Reversal of Latency as Part of a Cure for HIV-1. Trends in Microbiology, 2016, 24, 90-97.	3.5	88
108	HIV immunotherapy comes of age: implications for prevention, treatment and cure. Expert Review of Clinical Immunology, 2016, 12, 91-94.	1.3	10
109	Approaches to preventative and therapeutic HIV vaccines. Current Opinion in Virology, 2016, 17, 104-109.	2.6	72
110	Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nature Medicine, 2016, 22, 362-368.	15.2	163
111	Status of vaccine research and development of vaccines for HIV-1. Vaccine, 2016, 34, 2921-2925.	1.7	21
113	Detection of Broadly Neutralizing Activity within the First Months of HIV-1 Infection. Journal of Virology, 2016, 90, 5231-5245.	1.5	31
114	Fc receptor-mediated phagocytosis in tissues as a potent mechanism for preventive and therapeutic HIV vaccine strategies. Mucosal Immunology, 2016, 9, 1584-1595.	2.7	92
115	Conformational Epitope-Specific Broadly Neutralizing Plasma Antibodies Obtained from an HIV-1 Clade C-Infected Elite Neutralizer Mediate Autologous Virus Escape through Mutations in the V1 Loop. Journal of Virology, 2016, 90, 3446-3457.	1.5	29

#	ARTICLE	IF	CITATIONS
116	Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nature Biotechnology, 2016, 34, 401-409.	9.4	108
117	Demonstration of the Blood-Stage <i>Plasmodium falciparum</i> Controlled Human Malaria Infection Model to Assess Efficacy of the <i>P. falciparum</i> Journal of Infectious Diseases, 2016, 213, 1743-1751.	1.9	95
118	Engineering broadly neutralizing antibodies for HIV prevention and therapy. Advanced Drug Delivery Reviews, 2016, 103, 157-173.	6.6	17
119	Progress Toward HIV Eradication: Case Reports, Current Efforts, and the Challenges Associated with Cure. Annual Review of Medicine, 2016, 67, 215-228.	5.0	75
120	Paediatric HIV infection: the potential for cure. Nature Reviews Immunology, 2016, 16, 259-271.	10.6	97
121	Broadly Neutralizing Antibodies for HIV Eradication. Current HIV/AIDS Reports, 2016, 13, 31-37.	1.1	72
122	Follicular Helper T Cells. Annual Review of Immunology, 2016, 34, 335-368.	9.5	912
123	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	5.1	143
124	Improving the CH1-CK heterodimerization and pharmacokinetics of 4Dm2m, a novel potent CD4-antibody fusion protein against HIV-1. MAbs, 2016, 8, 761-774.	2.6	17
125	Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. Journal of Virology, 2016, 90, 2021-2030.	1.5	53
126	Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies. Antimicrobial Agents and Chemotherapy, 2016, 60, 437-450.	1.4	6
127	A systems approach to HIV-1 vaccines. Nature Biotechnology, 2016, 34, 44-46.	9.4	2
128	Getting rid of PERVs. Nature Biotechnology, 2016, 34, 46-46.	9.4	3
129	Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. Journal of Virology, 2016, 90, 1321-1332.	1.5	68
130	Gain-of-Function Research and the Relevance to Clinical Practice. Journal of Infectious Diseases, 2016, 213, 1364-1369.	1.9	10
131	HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution. Virus Research, 2016, 218, 57-70.	1.1	14
132	Systemic administration of an HIV-1 broadly neutralizing dimeric IgA yields mucosal secretory IgA and virus neutralization. Mucosal Immunology, 2017, 10, 228-237.	2.7	34
133	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	5. 8	128

#	Article	IF	CITATIONS
134	<scp>HIV</scp> antibodies for treatment of <scp>HIV</scp> infection. Immunological Reviews, 2017, 275, 313-323.	2.8	59
135	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	2.8	131
136	Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. Journal of Virology, 2017, 91, .	1.5	63
137	Antiâ€retroviral antibody FcγRâ€mediated effector functions. Immunological Reviews, 2017, 275, 285-295.	2.8	46
138	Germlineâ€ŧargeting immunogens. Immunological Reviews, 2017, 275, 203-216.	2.8	105
139	Antibody gene transfer with adenoâ€associated viral vectors as a method for <scp>HIV</scp> prevention. Immunological Reviews, 2017, 275, 324-333.	2.8	51
140	Beyond Viral Neutralization. AIDS Research and Human Retroviruses, 2017, 33, 760-764.	0.5	36
141	Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nature Medicine, 2017, 23, 185-191.	15.2	399
142	Mechanisms of <scp>HIV</scp> persistence in <scp>HIV</scp> reservoirs. Reviews in Medical Virology, 2017, 27, e1924.	3.9	42
143	Predicting evolution. Nature Ecology and Evolution, 2017, 1, 77.	3.4	272
144	A recombinant multi-epitope protein MEP1 elicits efficient long-term immune responses against HIV-1 infection. Human Vaccines and Immunotherapeutics, 2017, 13, 1466-1474.	1.4	5
145	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	1.7	15
146	New challenges in therapeutic vaccines against HIV infection. Expert Review of Vaccines, 2017, 16, 587-600.	2.0	28
147	B-cell abnormalities and impact on antibody response in HIV infection. Current Opinion in HIV and AIDS, 2017, 12, 203-208.	1.5	9
148	Hunting Down the HIV-1 Reservoir: A Starring Role for Antibodies?. Immunity, 2017, 46, 527-529.	6.6	5
149	Two Strings in One Bow: PD-1 Negatively Regulates via Co-receptor CD28 on T Cells. Immunity, 2017, 46, 529-531.	6.6	23
150	Broad and potent cross clade neutralizing antibodies with multiple specificities in the plasma of HIV-1 subtype C infected individuals. Scientific Reports, 2017, 7, 46557.	1.6	9
151	Guiding the long way to broad HIV neutralization. Current Opinion in HIV and AIDS, 2017, 12, 257-264.	1.5	15

#	Article	IF	CITATIONS
152	Engineering antibody-like inhibitors to prevent and treat HIV-1 infection. Current Opinion in HIV and AIDS, 2017, 12, 294-301.	1.5	18
153	Effective HIV vaccine. Current Opinion in HIV and AIDS, 2017, 12, 191-194.	1.5	0
154	Signaling by Antibodies: Recent Progress. Annual Review of Immunology, 2017, 35, 285-311.	9.5	167
155	Universal antiretroviral regimens. Current Opinion in HIV and AIDS, 2017, 12, 343-350.	1.5	30
156	Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. Journal of Infectious Diseases, 2017, 215, S160-S171.	1.9	24
157	Antibody-mediated immunotherapy against chronic hepatitis B virus infection. Human Vaccines and Immunotherapeutics, 2017, 13, 1768-1773.	1.4	32
158	HIV-1 Epitope Variability Is Associated with T Cell Receptor Repertoire Instability and Breadth. Journal of Virology, 2017, 91, .	1.5	5
159	Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir. Journal of Virology, 2017, 91, .	1.5	33
160	Exosomes in HIV infection: A review and critical look. Infection, Genetics and Evolution, 2017, 53, 146-154.	1.0	52
161	Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2017, 91, .	1.5	40
162	Further Characterization of the Bifunctional HIV Entry Inhibitor sCD4-FI T45. Molecular Therapy - Nucleic Acids, 2017, 7, 387-395.	2.3	5
163	IFN- $\hat{l}\pm$ augments natural killer-mediated antibody-dependent cellular cytotoxicity of HIV-1-infected autologous CD4+ T cells regardless of major histocompatibility complex class 1 downregulation. Aids, 2017, 31, 613-622.	1.0	22
164	Comprehensive Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host and Microbe, 2017, 21, 777-787.e4.	5.1	88
165	Broadly Neutralizing Antibodies as Treatment: Effects on Virus and Immune System. Current HIV/AIDS Reports, 2017, 14, 54-62.	1.1	18
166	Progress in HIV-1 antibody research using humanized mice. Current Opinion in HIV and AIDS, 2017, 12, 285-293.	1.5	12
167	Cross-neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site and N332 glycan identified from a recombinant phage library. Scientific Reports, 2017, 7, 45163.	1.6	18
168	Profiling the neutralizing antibody response in chronically HIV-1 CRF07_BC-infected intravenous drug users na \tilde{A} -ve to antiretroviral therapy. Scientific Reports, 2017, 7, 46308.	1.6	6
169	Early antibody therapy can induce long-lasting immunity to SHIV. Nature, 2017, 543, 559-563.	13.7	244

#	Article	IF	Citations
170	Progress toward active or passive HIV-1 vaccination. Journal of Experimental Medicine, 2017, 214, 3-16.	4.2	118
171	HIV incidence among gay men and other men who have sex with men in 2020: where is the epidemic heading?. Sexual Health, 2017, 14, 5.	0.4	38
172	Broadly neutralizing antibodies suppress post-transcytosis HIV-1 infectivity. Mucosal Immunology, 2017, 10, 814-826.	2.7	13
173	Time-course, negative-stain electron microscopy–based analysis for investigating protein–protein interactions at the single-molecule level. Journal of Biological Chemistry, 2017, 292, 19400-19410.	1.6	9
174	Maternal but Not Infant Anti-HIV-1 Neutralizing Antibody Response Associates with Enhanced Transmission and Infant Morbidity. MBio, 2017, 8, .	1.8	32
175	Exploration of broadly neutralizing antibody fragments produced in bacteria for the control of HIV. Human Vaccines and Immunotherapeutics, 2017, 13, 2726-2737.	1.4	1
176	Targeted Immune Interventions for an HIV-1 Cure. Trends in Molecular Medicine, 2017, 23, 945-961.	3.5	41
177	How Germinal Centers Evolve Broadly Neutralizing Antibodies: the Breadth of the Follicular Helper T Cell Response. Journal of Virology, 2017, 91, .	1.5	32
178	Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematology/Oncology Clinics of North America, 2017, 31, 883-895.	0.9	9
179	Natural killer cells in HIV-1 infection and therapy. Aids, 2017, 31, 2317-2330.	1.0	90
180	Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Science Translational Medicine, 2017, 9, .	5.8	106
181	Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Scientific Reports, 2017, 7, 8390.	1.6	31
182	Focus on the therapeutic efficacy of 3BNC117 against HIV-1: In vitro studies, in vivo studies, clinical trials and challenges. International Immunopharmacology, 2017, 52, 44-50.	1.7	7
183	Antibody therapies for the prevention and treatment of viral infections. Npj Vaccines, 2017, 2, 19.	2.9	156
184	Non-neutralizing Antibodies Alter the Course of HIV-1 Infection InÂVivo. Cell, 2017, 170, 637-648.e10.	13.5	111
185	Neutralizing Antibodies Against a Specific Human Immunodeficiency Virus gp41 Epitope are Associated With Long-term Non-progressor Status. EBioMedicine, 2017, 22, 122-132.	2.7	16
186	Breaching peripheral tolerance promotes the production of HIV-1–neutralizing antibodies. Journal of Experimental Medicine, 2017, 214, 2283-2302.	4.2	50
187	Infección por el VIH/sida: ¿El principio del fin de la primera gran pandemia contemporánea?. Revista Clinica Espanola, 2017, 217, 468-472.	0.2	2

#	Article	IF	Citations
188	HIV/AIDS infection: The beginning of the end for today's greatest pandemic?. Revista Clínica Espanõla, 2017, 217, 468-472.	0.3	0
189	Humanized Mouse Models for Human Immunodeficiency Virus Infection. Annual Review of Virology, 2017, 4, 393-412.	3.0	65
190	Of Mice, Macaques, and Men: Broadly Neutralizing Antibody Immunotherapy for HIV-1. Cell Host and Microbe, 2017, 22, 207-216.	5.1	60
191	Potent <i>In Vivo</i> NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein. Journal of Virology, 2017, 91, .	1.5	31
192	Engineered Expression of Broadly Neutralizing Antibodies Against Human Immunodeficiency Virus. Annual Review of Virology, 2017, 4, 491-510.	3.0	2
193	HIV-hepatitis B virus coinfection. Aids, 2017, 31, 2035-2052.	1.0	171
194	Fight fire with fire: Gene therapy strategies to cure HIV. Expert Review of Anti-Infective Therapy, 2017, 15, 747-758.	2.0	13
195	Bispecific antibodies for viral immunotherapy. Human Vaccines and Immunotherapeutics, 2017, 13, 836-842.	1.4	22
196	Broadly neutralizing antibodies: An approach to control HIV-1 infection. International Reviews of Immunology, 2017, 36, 31-40.	1.5	12
197	Identification of Human Anti-HIV gp $160\mathrm{Monoclonal}$ Antibodies That Make Effective Immunotoxins. Journal of Virology, 2017, 91, .	1.5	18
198	Design and In Vivo Characterization of Immunoconjugates Targeting HIV gp160. Journal of Virology, 2017, 91, .	1.5	16
199	Current views on HIV-1 latency, persistence, and cure. Folia Microbiologica, 2017, 62, 73-87.	1.1	15
200	Humoral and Innate Antiviral Immunity as Tools to Clear Persistent HIV Infection. Journal of Infectious Diseases, 2017, 215, S152-S159.	1.9	22
201	Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Current Topics in Microbiology and Immunology, 2017, 417, 69-109.	0.7	14
202	Why cure, why now?. Journal of Medical Ethics, 2017, 43, 67-70.	1.0	17
205	Broadly Neutralizing Antibodies. , 2017, , 3-21.		2
206	HIV Diagnosis and Treatment through Advanced Technologies. Frontiers in Public Health, 2017, 5, 32.	1.3	30
207	Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses, 2017, 9, 281.	1.5	21

#	Article	IF	CITATIONS
208	Basis and Statistical Design of the Passive HIV-1 Antibody Mediated Prevention (AMP) Test-of-Concept Efficacy Trials. Statistical Communications in Infectious Diseases, 2017, 9, .	0.2	62
209	Neutralizing Monoclonal Antibodies to Fight HIV-1: On the Threshold of Success. Frontiers in Immunology, 2017, 7, 661.	2.2	11
210	Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design. Frontiers in Immunology, 2017, 8, 780.	2.2	23
211	Natural Killer (NK) Cell Education Differentially Influences HIV Antibody-Dependent NK Cell Activation and Antibody-Dependent Cellular Cytotoxicity. Frontiers in Immunology, 2017, 8, 1033.	2.2	17
212	B-Cell-Activating Factor and the B-Cell Compartment in HIV/SIV Infection. Frontiers in Immunology, 2017, 8, 1338.	2,2	25
213	CD4-Binding Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian Children. Frontiers in Immunology, 2017, 8, 1568.	2.2	16
214	Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Frontiers in Immunology, 2017, 8, 1655.	2.2	22
215	Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Frontiers in Microbiology, 2017, 08, 390.	1.5	11
216	A potent human neutralizing antibody Fc-dependently reduces established HBV infections. ELife, 2017, 6,	2.8	81
217	Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. BioMed Research International, 2017, 2017, 1-12.	0.9	34
218	Pre-existing neutralizing antibody mitigates B cell dysregulation and enhances the Env-specific antibody response in SHIV-infected rhesus macaques. PLoS ONE, 2017, 12, e0172524.	1.1	2
219	Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLoS Pathogens, 2017, 13, e1006601.	2.1	91
220	Prospects for passive immunity to prevent HIV infection. PLoS Medicine, 2017, 14, e1002436.	3.9	29
221	Landscape review of current HIV †kick and kill' cure research - some kicking, not enough killing. BMC Infectious Diseases, 2017, 17, 595.	1.3	60
222	Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nature Communications, 2018, 9, 877.	5.8	65
223	A single injection of crystallizable fragment domain–modified antibodies elicits durable protection from SHIV infection. Nature Medicine, 2018, 24, 610-616.	15.2	94
224	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	2.9	52
225	Passive immunotherapy of viral infections: 'super-antibodies' enter the fray. Nature Reviews Immunology, 2018, 18, 297-308.	10.6	220

#	Article	IF	CITATIONS
226	The rapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice. Journal of Virology, $2018, 92, \ldots$	1.5	24
227	Where are we with injectables against HIV infection and what are the remaining challenges?. Expert Review of Anti-Infective Therapy, 2018, 16, 143-152.	2.0	10
228	HIV-1 superinfection can occur in the presence of broadly neutralizing antibodies. Vaccine, 2018, 36, 578-586.	1.7	4
229	Therapeutic HIV-1 vaccine. Current Opinion in HIV and AIDS, 2018, 13, 119-127.	1.5	22
230	Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection. Current Opinion in HIV and AIDS, 2018, 13, 366-373.	1.5	64
231	Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nature Communications, 2018, 9, 1251.	5.8	85
232	Treatment and prevention of HIV infection with long-acting antiretrovirals. Expert Review of Clinical Pharmacology, 2018, 11, 507-517.	1.3	38
233	New-Generation High-Potency and Designer Antibodies: Role in HIV-1 Treatment. Annual Review of Medicine, 2018, 69, 409-419.	5.0	28
234	Moving forward with treatment options for HIV-infected children. Expert Opinion on Pharmacotherapy, 2018, 19, 27-37.	0.9	4
235	Technologies for Making New Vaccines. , 2018, , 1283-1304.e7.		5
236	Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells. Journal of Virology, 2018, 92, .	1.5	39
237	Guiding the humoral response against HIV-1 toward a MPER adjacent region by immunization with a VLP-formulated antibody-selected envelope variant. PLoS ONE, 2018, 13, e0208345.	1.1	8
238	Treatment outcomes and HIV drug resistance of patients switching to second-line regimens after long-term first-line antiretroviral therapy. Medicine (United States), 2018, 97, e11463.	0.4	10
239	Antibody-dependent cellular cytotoxicity in HIV infection. Aids, 2018, 32, 2439-2451.	1.0	67
240	Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology, 2018, 15, 73.	0.9	53
241	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	2.1	36
242	Virus-Host Interactions: New Insights and Advances in Drug Development Against Viral Pathogens. Current Drug Metabolism, 2018, 18, 942-970.	0.7	8
243	Inference of the HIV-1 VRCO1 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	6.6	61

#	Article	IF	Citations
244	Complex mechanical motion guided without external control. Nature, 2018, 561, 470-471.	13.7	4
245	Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV,the, 2018, 5, e723-e731.	2.1	10
246	Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature, 2018, 563, 360-364.	13.7	246
247	Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology, 2018, 15, 66.	0.9	30
248	Antibodies pose a double threat to HIV. Nature, 2018, 561, 468-470.	13.7	0
249	Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature, 2018, 561, 479-484.	13.7	392
250	Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nature Medicine, 2018, 24, 1701-1707.	15.2	195
251	Coformulation of Broadly Neutralizing Antibodies 3BNC117 and PGT121: Analytical Challenges During Preformulation Characterization and Storage Stability Studies. Journal of Pharmaceutical Sciences, 2018, 107, 3032-3046.	1.6	18
252	Randomized Clinical Trial to Assess the Impact of the Broadly Neutralizing HIV-1 Monoclonal Antibody VRCO1 on HIV-1 Persistence in Individuals on Effective ART. Open Forum Infectious Diseases, 2018, 5, ofy242.	0.4	23
253	Broadly neutralizing antibodies in HIV-1 treatment and prevention. , 2018, 6, 61-68.	1.4	34
255	Antibodies and Antibody Derivatives: New Partners in HIV Eradication Strategies. Frontiers in Immunology, 2018, 9, 2429.	2.2	15
256	Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nature Immunology, 2018, 19, 1199-1211.	7.0	137
257	Genetic Strategies for HIV Treatment and Prevention. Molecular Therapy - Nucleic Acids, 2018, 13, 514-533.	2.3	16
258	HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. Molecular Therapy - Nucleic Acids, 2018, 13, 347-364.	2.3	10
259	Susceptibility to Neutralization by Broadly Neutralizing Antibodies Generally Correlates with Infected Cell Binding for a Panel of Clade B HIV Reactivated from Latent Reservoirs. Journal of Virology, 2018, 92, .	1.5	20
260	Evaluation of susceptibility of HIV-1 CRF01_AE variants to neutralization by a panel of broadly neutralizing antibodies. Archives of Virology, 2018, 163, 3303-3315.	0.9	9
261	The Neutralizing Antibody Response to the HIV-1 Env Protein. Current HIV Research, 2018, 16, 21-28.	0.2	24
262	Engineering multi-specific antibodies against HIV-1. Retrovirology, 2018, 15, 60.	0.9	37

#	ARTICLE	IF	CITATIONS
263	Longing for HIV protection. Nature Microbiology, 2018, 3, 648-649.	5.9	2
264	HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity, 2018, 48, 855-871.	6.6	277
266	HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations. ELife, $2018, 7, .$	2.8	127
267	Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis. Advances in Experimental Medicine and Biology, 2018, 1068, 89-102.	0.8	9
269	Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7854-E7862.	3.3	28
270	Relationship between latent and rebound viruses in a clinical trial of anti–HIV-1 antibody 3BNC117. Journal of Experimental Medicine, 2018, 215, 2311-2324.	4.2	84
271	HIV. Lancet, The, 2018, 392, 685-697.	6.3	219
272	Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults. JAMA - Journal of the American Medical Association, 2018, 320, 379.	3.8	486
273	HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology, 2018, 15, 51.	0.9	43
274	Pharmaceutical Approaches to HIV Treatment and Prevention. Advanced Therapeutics, 2018, 1, 1800054.	1.6	14
275	Antibody-Mediated Therapy against HIV/AIDS: Where Are We Standing Now?. Journal of Pathogens, 2018, 2018, 1-9.	0.9	20
276	Targeting the HIV-1 Spike and Coreceptor with Bi- and Trispecific Antibodies for Single-Component Broad Inhibition of Entry. Journal of Virology, 2018, 92, .	1.5	31
277	The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses. Viruses, 2018, 10, 197.	1.5	18
278	Importance of Fc-mediated functions of anti-HIV-1 broadly neutralizing antibodies. Retrovirology, 2018, 15, 58.	0.9	32
279	Diverse pathways of escape from all well-characterized VRCO1-class broadly neutralizing HIV-1 antibodies. PLoS Pathogens, 2018, 14, e1007238.	2.1	18
280	Insight into treatment of <scp>HIV</scp> infection from viral dynamics models. Immunological Reviews, 2018, 285, 9-25.	2.8	51
281	The role of follicular helper CD4 T cells in the development of HIV-1 specific broadly neutralizing antibody responses. Retrovirology, 2018, 15, 54.	0.9	27
282	Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults. PLoS Medicine, 2018, 15, e1002493.	3.9	174

#	Article	IF	CITATIONS
283	Potential of conventional & Dispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & Diffections. PLoS Pathogens, 2018, 14, e1006860.	2.1	68
284	Passive Immunization. , 2018, , 84-95.e10.		20
285	Human Immunodeficiency Virus Vaccines. , 2018, , 400-429.e25.		0
286	Nanotechnology approaches to eradicating HIV reservoirs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 48-63.	2.0	35
287	The potential of engineered antibodies for HIV-1 therapy and cure. Current Opinion in Virology, 2019, 38, 70-80.	2.6	34
288	Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Science Translational Medicine, 2019, 11,	5.8	104
289	Safety, pharmacokinetics, and immunogenicity of the combination of the broadly neutralizing anti-HIV-1 antibodies 3BNC117 and 10-1074 in healthy adults: A randomized, phase 1 study. PLoS ONE, 2019, 14, e0219142.	1.1	58
290	Rapid Elimination of Broadly Neutralizing Antibodies Correlates with Treatment Failure in the Acute Phase of Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2019, 93, .	1.5	8
291	Super Potent Bispecific Llama VHH Antibodies Neutralize HIV via a Combination of gp41 and gp120 Epitopes. Antibodies, 2019, 8, 38.	1.2	25
292	AAV-Mediated Expression of Broadly Neutralizing and Vaccine-like Antibodies Targeting the HIV-1 Envelope V2 Region. Molecular Therapy - Methods and Clinical Development, 2019, 14, 100-112.	1.8	24
293	AAV-delivered eCD4-lg protects rhesus macaques from high-dose SIV mac 239 challenges. Science Translational Medicine, 2019, 11 , .	5.8	35
294	Impact of HIV-1 Diversity on Its Sensitivity to Neutralization. Vaccines, 2019, 7, 74.	2.1	17
295	Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nature Medicine, 2019, 25, 1589-1600.	15.2	92
296	Accurate Prediction for Antibody Resistance of Clinical HIV-1 Isolates. Scientific Reports, 2019, 9, 14696.	1.6	30
297	Engineering and characterising a novel, highly potent bispecific antibody iMab-CAP256 that targets HIV-1. Retrovirology, 2019, 16, 31.	0.9	11
298	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	2.1	35
299	Harnessing Avidity: Quantifying the Entropic and Energetic Effects of Linker Length and Rigidity for Multivalent Binding of Antibodies to HIV-1. Cell Systems, 2019, 9, 466-474.e7.	2.9	20
300	Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses, 2019, 11, 705.	1.5	30

#	Article	IF	CITATIONS
301	Blocking \hat{l}_{\pm} ₄ \hat{l}^2 ₇ integrin binding to SIV does not improve virologic control. Science, 2019, 365, 1033-1036.	6.0	31
302	Understudied Factors Influencing Fc-Mediated Immune Responses against Viral Infections. Vaccines, 2019, 7, 103.	2.1	15
303	Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology. Frontiers in Immunology, 2019, 10, 2109.	2,2	32
304	Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV,the, 2019, 6, e667-e679.	2.1	67
305	Pre-exposure prophylaxis 2.0: new drugs and technologies in the pipeline. Lancet HIV, the, 2019, 6, e788-e799.	2.1	79
306	An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity, 2019, 50, 520-532.e3.	6.6	81
307	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
308	Unusual Cysteine Content in V1 Region of gp120 From an Elite Suppressor That Produces Broadly Neutralizing Antibodies. Frontiers in Immunology, 2019, 10, 1021.	2.2	8
309	Monoclonal Antibody 2C6 Targets a Cross-Clade Conformational Epitope in gp41 with Highly Active Antibody-Dependent Cell Cytotoxicity. Journal of Virology, 2019, 93, .	1.5	7
310	Development of CAR-T cells for long-term eradication and surveillance of HIV-1 reservoir. Current Opinion in Virology, 2019, 38, 21-30.	2.6	28
311	eCD4-lg Limits HIV-1 Escape More Effectively than CD4-lg or a Broadly Neutralizing Antibody. Journal of Virology, 2019, 93, .	1.5	19
312	Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users. Viruses, 2019, 11, 384.	1.5	6
313	Induction of neutralizing antibodies against tier 2 human immunodeficiency virus 1 in rhesus macaques infected with tier 1B simian/human immunodeficiency virus. Archives of Virology, 2019, 164, 1297-1308.	0.9	1
314	The Antibodiome—Mapping the Humoral Immune Response to HIV. Current HIV/AIDS Reports, 2019, 16, 169-179.	1.1	13
315	Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET. Nature, 2019, 568, 415-419.	13.7	156
316	HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. Journal of Experimental Medicine, 2019, 216, 1301-1310.	4.2	80
317	Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nature Medicine, 2019, 25, 547-553.	15.2	191
318	Broadly Neutralizing Antibodies against HIV: Back to Blood. Trends in Molecular Medicine, 2019, 25, 228-240.	3.5	19

#	Article	IF	CITATIONS
319	Adaptive NK cell responses in HIV/SIV infections: A roadmap to cell-based therapeutics?. Journal of Leukocyte Biology, 2019, 105, 1253-1259.	1.5	15
320	A novel antiâ€HlVâ€1 bispecific bNAbâ€lectin fusion protein engineered in a plantâ€based transient expression system. Plant Biotechnology Journal, 2019, 17, 1646-1656.	4.1	16
321	Playing Chess with HIV. Immunity, 2019, 50, 283-285.	6.6	0
322	Introduction of the YTE mutation into the non-immunogenic HIV bnAb PGT121 induces anti-drug antibodies in macaques. PLoS ONE, 2019, 14, e0212649.	1.1	12
323	On the Road to a HIV Cure. Infectious Disease Clinics of North America, 2019, 33, 857-868.	1.9	16
324	A Robust Method for Assaying the Immunoreactive Fraction in Nonequilibrium Systems. Pharmaceuticals, 2019, 12, 177.	1.7	8
325	Perspective on potential impact of HIV central nervous system latency on eradication. Aids, 2019, 33, S123-S133.	1.0	12
326	Neutralizing antibodies for HIV-1 prevention. Current Opinion in HIV and AIDS, 2019, 14, 318-324.	1.5	34
327	Correlates of broadly neutralizing antibody development. Current Opinion in HIV and AIDS, 2019, 14, 279-285.	1.5	9
328	A Coreceptor-Mimetic Peptide Enhances the Potency of V3-Glycan Antibodies. Journal of Virology, 2019, 93, .	1.5	2
329	Human Anti–HIV-1 gp120 Monoclonal Antibodies with Neutralizing Activity Cloned from Humanized Mice Infected with HIV-1. Journal of Immunology, 2019, 202, 799-804.	0.4	5
330	Sensitivity to Broadly Neutralizing Antibodies of Recently Transmitted HIV-1 Clade CRF02_AG Viruses with a Focus on Evolution over Time. Journal of Virology, 2019, 93, .	1.5	18
331	An HIV-1 Broadly Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes the Contemporaneous and Autologous Evolving Viruses. Journal of Virology, 2019, 93, .	1.5	42
332	HEV ORF3 downregulatesCD14 and CD64 to impair macrophages phagocytosis through inhibiting JAK/STAT pathway. Journal of Medical Virology, 2019, 91, 1112-1119.	2.5	7
333	Bispecific antibodies: Potential immunotherapies for HIV treatment. Methods, 2019, 154, 118-124.	1.9	18
334	Long-Term Persistence of Anti-HIV Broadly Neutralizing Antibody-Secreting Hematopoietic Cells in Humanized Mice. Molecular Therapy, 2019, 27, 164-177.	3.7	25
335	Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infectious Diseases, 2019, 5, 158-176.	1.8	5
336	Neutralization Breadth and Potency of Single-Chain Variable Fragments Derived from Broadly Neutralizing Antibodies Targeting Multiple Epitopes on the HIV-1 Envelope. Journal of Virology, 2020, 94, .	1.5	15

#	Article	IF	CITATIONS
337	Engineering the interactions between a plantâ€produced <scp>HIV</scp> antibody and human Fc receptors. Plant Biotechnology Journal, 2020, 18, 402-414.	4.1	26
338	Framework Mutations of the 10-1074 bnAb Increase Conformational Stability, Manufacturability, and Stability While Preserving Full Neutralization Activity. Journal of Pharmaceutical Sciences, 2020, 109, 233-246.	1.6	9
339	Can we use structural knowledge to design a protective vaccine against HIVâ€1?. Hla, 2020, 95, 95-103.	0.4	5
340	Pregnancy favors circulating ILâ€21–secreting T FH â€like cell recovery in ARVâ€treated HIVâ€1–infected women. American Journal of Reproductive Immunology, 2020, 83, e13204.	1.2	1
341	Broadly Neutralizing Antihuman Immunodeficiency Virus Antibodies in Infants: Promising New Tools for Prevention of Mother-to-Child Transmission?. Journal of Infectious Diseases, 2020, 222, 525-527.	1.9	1
342	Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Antiâ€HIVâ€↓ Antibodies 2F5, 2G12, and PG9 in Plants. Biotechnology Journal, 2020, 15, e1900308.	1.8	10
343	Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines, 2020, 8, 13.	2.1	18
344	Optimization and qualification of a functional anti-drug antibody assay for HIV-1 bnAbs. Journal of Immunological Methods, 2020, 479, 112736.	0.6	9
345	HIV-1 Coreceptor Usage and Variable Loop Contact Impact V3 Loop Broadly Neutralizing Antibody Susceptibility. Journal of Virology, 2020, 94, .	1.5	14
346	Broadly neutralizing antibodies for the treatment and prevention of HIV infection. Current Opinion in HIV and AIDS, 2020, 15, 49-55.	1.5	49
347	V Region of IgG Controls the Molecular Properties of the Binding Site for Neonatal Fc Receptor. Journal of Immunology, 2020, 205, 2850-2860.	0.4	7
348	Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV. Current Opinion in HIV and AIDS, 2020, 15, 316-323.	1.5	6
349	Immunotherapeutics to Treat HIV in the Central Nervous System. Current HIV/AIDS Reports, 2020, 17, 499-506.	1.1	2
350	Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18754-18763.	3.3	53
351	Nanoparticles presenting clusters of CD4 expose a universal vulnerability of HIV-1 by mimicking target cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18719-18728.	3.3	21
352	Nanosystems Applied to HIV Infection: Prevention and Treatments. International Journal of Molecular Sciences, 2020, 21, 8647.	1.8	10
353	Removal of variable domain $\langle i \rangle N \langle i \rangle$ -linked glycosylation as a means to improve the homogeneity of HIV-1 broadly neutralizing antibodies. MAbs, 2020, 12, 1836719.	2.6	4
354	Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunologic Research, 2020, 68, 325-339.	1.3	39

#	Article	IF	Citations
355	Design strategies for long-acting anti-HIV pharmaceuticals. Current Opinion in Pharmacology, 2020, 54, 158-165.	1.7	12
356	Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Frontiers in Immunology, 2020, $11,590780$.	2.2	72
357	Broadly neutralizing antibodies combined with latency-reversing agents or immune modulators as strategy for HIV-1 remission. Current Opinion in HIV and AIDS, 2020, 15, 309-315.	1.5	17
358	Broadly neutralizing plasma antibodies effective against autologous circulating viruses in infants with multivariant HIV-1 infection. Nature Communications, 2020, 11 , 4409.	5.8	26
359	The influence of proline isomerization on potency and stability of anti-HIV antibody 10E8. Scientific Reports, 2020, 10, 14313.	1.6	12
360	Engineering antibody-based molecules for HIV treatment and cure. Current Opinion in HIV and AIDS, 2020, 15, 290-299.	1.5	6
361	CD4 $<$ sup>+ $<$ /sup> T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. MBio, 2020, 11, .	1.8	32
362	A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex. Journal of Virology, 2020, 94, .	1.5	7
363	SMAC Mimetic Plus Triple-Combination Bispecific HIVxCD3 Retargeting Molecules in SHIV.C.CH505-Infected, Antiretroviral Therapy-Suppressed Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	30
364	Lactobacilli Expressing Broadly Neutralizing Nanobodies against HIV-1 as Potential Vectors for HIV-1 Prophylaxis?. Vaccines, 2020, 8, 758.	2.1	8
365	Embracing diversity: how can broadly neutralizing antibodies effectively target a diverse HIV-1 reservoir?. Current Opinion in Pharmacology, 2020, 54, 173-178.	1.7	4
366	Diverse HIV-1 escape pathways from broadly neutralizing antibody PGDM1400 in humanized mice. MAbs, 2020, 12, 1845908.	2.6	2
367	Innovations in structure-based antigen design and immune monitoring for next generation vaccines. Current Opinion in Immunology, 2020, 65, 50-56.	2.4	43
368	The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. MBio, 2020, 11, .	1.8	37
369	An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Science Translational Medicine, 2020, 12 , .	5.8	10
370	Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: a review of recent research. Expert Opinion on Drug Delivery, 2020, 17, 1227-1238.	2.4	30
371	A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies. MBio, 2020, 11, .	1.8	27
372	Long-Term Delivery of an Anti-SIV Monoclonal Antibody With AAV. Frontiers in Immunology, 2020, 11, 449.	2.2	29

#	Article	IF	CITATIONS
373	Anti-HIV-1 Antibodies: An Update. BioDrugs, 2020, 34, 121-132.	2.2	7
374	Curing HIV: Seeking to Target and Clear Persistent Infection. Cell, 2020, 181, 189-206.	13.5	126
375	Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell, 2020, 180, 471-489.e22.	13.5	106
376	Durable protection against repeated penile exposures to simian-human immunodeficiency virus by broadly neutralizing antibodies. Nature Communications, 2020, 11, 3195.	5.8	15
377	Implementation of a three-tiered approach to identify and characterize anti-drug antibodies raised against HIV-specific broadly neutralizing antibodies. Journal of Immunological Methods, 2020, 479, 112764.	0.6	13
378	Mathematical modeling to reveal breakthrough mechanisms in the HIV Antibody Mediated Prevention (AMP) trials. PLoS Computational Biology, 2020, 16, e1007626.	1.5	20
379	Pathways towards human immunodeficiency virus elimination. EBioMedicine, 2020, 53, 102667.	2.7	12
380	Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerging Microbes and Infections, 2020, 9, 194-206.	3.0	54
381	openPrimeR for multiplex amplification of highly diverse templates. Journal of Immunological Methods, 2020, 480, 112752.	0.6	36
382	Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opinion on Investigational Drugs, 2020, 29, 273-283.	1.9	6
383	Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies against HIV. Molecular Therapy, 2020, 28, 805-819.	3.7	36
384	Broadly Neutralizing Antibodies for HIV Prevention. Annual Review of Medicine, 2020, 71, 329-346.	5.0	49
385	Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention. Annual Review of Immunology, 2020, 38, 673-703.	9.5	74
386	Promise and Progress of an HIV-1 Cure by Adeno-Associated Virus Vector Delivery of Anti-HIV-1 Biologics. Frontiers in Cellular and Infection Microbiology, 2020, 10, 176.	1.8	22
387	VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host and Microbe, 2020, 27, 963-975.e5.	5.1	23
388	Clinical Trials of Broadly Neutralizing Monoclonal Antibodies for Human Immunodeficiency Virus Prevention: A Review. Journal of Infectious Diseases, 2021, 223, 370-380.	1.9	50
389	Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomedical Journal, 2021, 44, 7-17.	1.4	38
390	COVID-19 antibody development fueled by HIV-1 broadly neutralizing antibody research. Current Opinion in HIV and AIDS, 2021, 16, 25-35.	1.5	7

#	Article	IF	CITATIONS
391	Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Primary African Isolates. Journal of Virology, 2021, 95, .	1.5	18
392	Glycoengineering of AAV-delivered monoclonal antibodies yields increased ADCC activity. Molecular Therapy - Methods and Clinical Development, 2021, 20, 204-217.	1.8	7
393	Immunotherapy during the acute SHIV infection of macaques confers long-term suppression of viremia. Journal of Experimental Medicine, 2021, 218, .	4.2	31
394	Live unattenuated vaccines for controlling viral diseases, including COVIDâ€19. Journal of Medical Virology, 2021, 93, 1943-1949.	2.5	4
395	Broadly neutralizing antibodies for HIV-1 prevention and therapy. Seminars in Immunology, 2021, 51, 101475.	2.7	28
397	A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs, 2021, 13, 1946918.	2.6	11
398	Generation of HIV-resistant cells with a single-domain antibody: implications for HIV-1 gene therapy. Cellular and Molecular Immunology, 2021, 18, 660-674.	4.8	9
399	Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science, 2021, 371, 850-854.	6.0	700
400	Long-acting injectable HIV therapies: the next frontier. Current Opinion in Infectious Diseases, 2021, 34, 8-15.	1.3	11
401	Therapeutic potential of HIV-1 entry inhibitor peptidomimetics. Experimental Biology and Medicine, 2021, 246, 1060-1068.	1.1	1
402	Long-acting injectable HIV therapies: the next frontier: Republication. Current Opinion in HIV and AIDS, 2021, 16, 98-105.	1.5	4
403	CARD8 is an inflammasome sensor for HIV-1 protease activity. Science, 2021, 371, .	6.0	80
404	A clinical trial of non-invasive imaging with an anti-HIV antibody labelled with copper-64 in people living with HIV and uninfected controls. EBioMedicine, 2021, 65, 103252.	2.7	12
405	Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B′ Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines, 2021, 9, 311.	2.1	9
406	Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nature Communications, 2021, 12, 1474.	5.8	26
407	Anti-HIV-1 ADCC and HIV-1 Env Can Be Partners in Reducing Latent HIV Reservoir. Frontiers in Immunology, 2021, 12, 663919.	2.2	5
408	Mutations that confer resistance to broadly-neutralizing antibodies define HIV-1 variants of transmitting mothers from that of non-transmitting mothers. PLoS Pathogens, 2021, 17, e1009478.	2.1	5
409	Broadly neutralizing HIV-1 antibody reactivity in HIV tests. Aids, 2021, Publish Ahead of Print, 1561-1565.	1.0	1

#	ARTICLE	IF	CITATIONS
410	A radiolabeled mAb 3BNC117 with copper-64: First round in favor for studying clearance of HIV reservoirs. EBioMedicine, 2021, 66, 103282.	2.7	0
411	Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Frontiers in Immunology, 2021, 12, 636775.	2.2	16
412	Geospatial HIV-1 subtype C gp120 sequence diversity and its predicted impact on broadly neutralizing antibody sensitivity. PLoS ONE, 2021, 16, e0251969.	1,1	5
413	Broadly neutralizing antibody-mediated protection of macaques against repeated intravenous exposures to simian-human immunodeficiency virus. Aids, 2021, 35, 1567-1574.	1.0	6
414	Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses, 2021, 13, 843.	1.5	15
415	Neutralization diversity of HIV-1 Indian subtype C envelopes obtained from cross sectional and followed up individuals against broadly neutralizing monoclonal antibodies having distinct gp120 specificities. Retrovirology, 2021, 18, 12.	0.9	1
416	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	13.5	39
417	Antibody-based CCR5 blockade protects Macaques from mucosal SHIV transmission. Nature Communications, 2021, 12, 3343.	5.8	15
418	Identification of the predominant human NK cell effector subset mediating ADCC against HIVâ€infected targets coated with BNAbs or plasma from PLWH. European Journal of Immunology, 2021, 51, 2051-2061.	1.6	6
419	Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination. Aids, 2021, 35, 1895-1905.	1.0	4
421	Enhancement of Antibody-Dependent Cellular Cytotoxicity and Phagocytosis in Anti-HIV-1 Human-Bovine Chimeric Broadly Neutralizing Antibodies. Journal of Virology, 2021, 95, e0021921.	1.5	7
422	Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Frontiers in Immunology, 2021, 12, 708806.	2.2	11
423	Broadly Neutralizing Antibodies for HIV-1 Prevention. Frontiers in Immunology, 2021, 12, 712122.	2.2	43
424	Can Broadly Neutralizing HIV-1 Antibodies Help Achieve an ART-Free Remission?. Frontiers in Immunology, 2021, 12, 710044.	2.2	18
425	Employing Broadly Neutralizing Antibodies as a Human Immunodeficiency Virus Prophylactic & Therapeutic Application. Frontiers in Immunology, 2021, 12, 697683.	2.2	2
426	CD8 Effector T Cells Function Synergistically With Broadly Neutralizing Antibodies to Enhance Suppression of HIV Infection. Frontiers in Immunology, 2021, 12, 708355.	2.2	5
427	Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Viruses, 2021, 13, 1498.	1.5	33
428	Predicting in vivo escape dynamics of HIV-1 from a broadly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14

#	Article	IF	Citations
429	Validation of a Triplex Pharmacokinetic Assay for Simultaneous Quantitation of HIV-1 Broadly Neutralizing Antibodies PGT121, PGDM1400, and VRC07-523-LS. Frontiers in Immunology, 2021, 12, 709994.	2.2	4
430	Blocking $\hat{l}\pm$ ₄ \hat{l}^2 ₇ integrin delays viral rebound in SHIV _{SF162P3} -infected macaques treated with anti-HIV broadly neutralizing antibodies. Science Translational Medicine, 2021, 13, .	5.8	11
431	Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. Journal of Virology, 2021, 95, e0079621.	1.5	6
432	Modeling HIV-1 Within-Host Dynamics After Passive Infusion of the Broadly Neutralizing Antibody VRC01. Frontiers in Immunology, 2021, 12, 710012.	2.2	6
433	Elimination of SHIV Infected Cells by Combinations of Bispecific HIVxCD3 DART® Molecules. Frontiers in Immunology, 2021, 12, 710273.	2.2	4
434	Tandem bispecific antibody prevents pathogenic SHIVSF162P3CN infection and disease progression. Cell Reports, 2021, 36, 109611.	2.9	5
436	TLR-Agonist Mediated Enhancement of Antibody-Dependent Effector Functions as Strategy For an HIV-1 Cure. Frontiers in Immunology, 2021, 12, 704617.	2.2	8
437	Characterizing the Relationship Between Neutralization Sensitivity and env Gene Diversity During ART Suppression. Frontiers in Immunology, 2021, 12, 710327.	2.2	6
438	A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses, 2021, 13, 1774.	1.5	10
440	Identification of a CD4-binding site-directed antibody with ADCC activity from a chronic HIV-1B′-infected Chinese donor. Virus Research, 2021, 302, 198470.	1.1	3
441	HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve Neutralization Potency and Show Improved Fc Effector Function. Frontiers in Immunology, 2021, 12, 733958.	2.2	14
442	Evaluation of Broadly Neutralizing Antibody Sensitivity by Genotyping and Phenotyping for Qualifying Participants to HIV Clinical Trials. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, 88, 61-69.	0.9	6
443	Current Status of HIV-1 Vaccines. Vaccines, 2021, 9, 1026.	2.1	17
444	Broadly neutralizing antibody–derived CAR T cells reduce viral reservoir in individuals infected with HIV-1. Journal of Clinical Investigation, 2021, 131, .	3.9	38
445	Broad and potent bispecific neutralizing antibody gene delivery using adeno-associated viral vectors for passive immunization against HIV-1. Journal of Controlled Release, 2021, 338, 633-643.	4.8	5
446	COVID-19: Antiviral Agents, Antibody Development and Traditional Chinese Medicine. Virologica Sinica, 2020, 35, 685-698.	1.2	18
447	Novel Approaches Towards a Functional Cure of HIV/AIDS. Drugs, 2020, 80, 859-868.	4.9	26
448	The Conformational States of the HIV-1 Envelope Glycoproteins. Trends in Microbiology, 2020, 28, 655-667.	3.5	66

#	ARTICLE	IF	CITATIONS
449	Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. Chemical Biology, 2017, , 300-357.	0.1	4
450	Protection of Humanized Mice From Repeated Intravaginal HIV Challenge by Passive Immunization: A Model for Studying the Efficacy of Neutralizing Antibodies In Vivo. Journal of Infectious Diseases, 2016, 214, 612-616.	1.9	33
451	Modulation of apoptosis and viral latency $\hat{a}\in$ an axis to be well understood for successful cure of human immunodeficiency virus. Journal of General Virology, 2016, 97, 813-824.	1.3	28
452	Characterization of the membrane-bound form of the chimeric, B/C recombinant HIV-1 Env, LT5.J4b12C. Journal of General Virology, 2018, 99, 1438-1443.	1.3	5
462	Predicting the broadly neutralizing antibody susceptibility of the HIV reservoir. JCI Insight, 2019, 4, .	2.3	25
463	Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI lnsight, $2018, 3, .$	2.3	16
464	Tandem bispecific broadly neutralizing antibody — a novel approach to HIV-1 treatment. Journal of Clinical Investigation, 2018, 128, 2189-2191.	3.9	3
465	Glycan-dependent HIV-specific neutralizing antibodies bind to cells of uninfected individuals. Journal of Clinical Investigation, 2019, 129, 4832-4837.	3.9	11
466	Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. Journal of Clinical Investigation, 2020, 130, 5157-5170.	3.9	22
467	SIV infection duration largely determines broadening of neutralizing antibody response in macaques. Journal of Clinical Investigation, 2020, 130, 5413-5424.	3.9	2
468	Towards HIV-1 remission: potential roles for broadly neutralizing antibodies. Journal of Clinical Investigation, 2016, 126, 415-423.	3.9	64
469	Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice. Journal of Clinical Investigation, 2018, 128, 2239-2251.	3.9	44
470	Harnessing the protective potential of HIV-1 neutralizing antibodies. F1000Research, 2016, 5, 20.	0.8	4
471	Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time. PLoS Computational Biology, 2017, 13, e1005789.	1.5	28
472	Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection. PLoS Computational Biology, 2020, 16, e1008434.	1.5	11
473	A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART. PLoS ONE, 2015, 10, e0141456.	1.1	24
474	Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules. PLoS ONE, 2016, 11, e0151572.	1.1	20
475	Protection against SHIV Challenge by Subcutaneous Administration of the Plant-Derived PGT121 Broadly Neutralizing Antibody in Macaques. PLoS ONE, 2016, 11, e0152760.	1.1	11

#	Article	IF	CITATIONS
476	Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection. PLoS ONE, 2017, 12, e0173577.	1.1	5
477	Reverse epitope mapping of the E2 glycoprotein in antibody associated hepatitis C virus. PLoS ONE, 2017, 12, e0175349.	1.1	5
478	Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells. PLoS Pathogens, 2015, 11, e1005233.	2.1	82
479	Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters. PLoS Pathogens, 2017, 13, e1006313.	2.1	23
480	Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage. PLoS Pathogens, 2018, 14, e1006825.	2.1	11
481	Harnessing early life immunity to develop a pediatric HIV vaccine that can protect through adolescence. PLoS Pathogens, 2020, 16, e1008983.	2.1	3
482	HIVâ€1 infection of CD4 T cells impairs antigenâ€specific B cell function. EMBO Journal, 2020, 39, e105594.	3.5	18
483	Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 2020, 12, e8662.	3.3	82
484	Frontier Therapeutics and Vaccine Strategies for SARS-CoV-2 (COVID-19): A Review. Iranian Journal of Public Health, 2020, 49, 18-29.	0.3	30
485	Use of Dried Blood Spots to Elucidate Full-Length Transmitted/Founder HIV-1 Genomes. Pathogens and Immunity, 2016, 1, 129.	1.4	9
486	Antibody Therapy for the Control of Viral Diseases: An Update. Current Pharmaceutical Biotechnology, 2019, 20, 1108-1121.	0.9	27
487	Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target. Current HIV Research, 2020, 18, 114-131.	0.2	6
488	Therapy of HIV Infection: Current Approaches and Prospects. Acta Naturae, 2016, 8, 23-32.	1.7	21
489	Un barrio marginado no es un barrio marginal. A prop $ ilde{A}^3$ sito de Nazaret (Valencia). Revista De Dialectologia Y Tradiciones Populares, 2016, 71, 151-171.	0.3	5
490	Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies. ELife, 2017, 6, .	2.8	52
491	Innate Immune Response Against HIV-1. Advances in Experimental Medicine and Biology, 2021, 1313, 23-58.	0.8	4
492	Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nature Medicine, 2021, 27, 1718-1724.	15.2	39
493	Broadly neutralizing antibodies for the treatment of HIV infection. HIV Infection and Immunosuppressive Disorders, 2021, 13, 81-95.	0.1	1

#	Article	IF	CITATIONS
494	Development of a protective inactivated vaccine against Crimean–Congo hemorrhagic fever infection. Heliyon, 2021, 7, e08161.	1.4	11
496	Epigenetics and Immunotherapy: New Perspective for Breaking Chronic Viral Infection. Immunotherapy (Los Angeles, Calif), 2016, 02, .	0.1	0
497	Entry Inhibitors. , 2016, , 1-12.		0
498	The importance of B cells in the development of preventive and therapeutical approaches against Dengue, Zika and Chikungunya viral infections. Brazilian Journal of Pharmaceutical Sciences, 2016, 52, v-viii.	1.2	0
499	Clinical Relevance of Humanized Mice. , 2017, , 579-599.		O
501	Immunothérapie par anticorps monoclonaux : ingénierie, indications et perspectives. Bulletin De L'Academie Nationale De Medecine, 2017, 201, 1023-1035.	0.0	0
502	Entry Inhibitors. , 2018, , 485-496.		0
503	Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India. Journal of General Virology, 2018, 99, 379-392.	1.3	2
508	Use of Monoclonal Antibodies to Prevent the Sexual Transmission of Human Immunodeficiency Virus Type 1. Current Immunology Reviews, 2019, 15, 123-130.	1.2	1
510	Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology, 2021, 18, 35.	0.9	7
513	SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. Journal of Virology, 2022, 96, JVI0158221.	1.5	0
514	Strategies for eliciting multiple lineages of broadly neutralizing antibodies to HIV by vaccination. Current Opinion in Virology, 2021, 51, 172-178.	2.6	13
515	Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ETC	Qq0,00 rg	BT/Overlock
516	Novel immunological strategies for HIV-1 eradication. Journal of Virus Eradication, 2015, 1, 232-6.	0.3	4
517	HIV-1 prophylactic vaccines: state of the art. Journal of Virus Eradication, 2016, 2, 5-11.	0.3	10
518	Highlights from the Seventh International Workshop on HIV Persistence during Therapy, 8-11 December 2015, Miami, Florida, USA. Journal of Virus Eradication, 2016, 2, 57-65.	0.3	3
519	Therapy of HIV Infection: Current Approaches and Prospects. Acta Naturae, 2016, 8, 23-32.	1.7	11
520	Highlights from the Third Biennial Strategies for an HIV Cure Meeting: 14-16 November 2016, Bethesda, MD, USA. Journal of Virus Eradication, 2017, 3, 69-76.	0.3	2

#	ARTICLE	IF	CITATIONS
521	Highlights from the 24 Conference on Retroviruses and Opportunistic Infections: 13-16 February 2017, Seattle, Washington, USA. Journal of Virus Eradication, 2017, 3, 101-108.	0.3	1
522	Therapeutic HIV vaccines and broadly neutralizing antibodies. Topics in Antiviral Medicine, 2020, 27, 97-101.	0.1	2
523	Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. Yale Journal of Biology and Medicine, 2020, 93, 549-560.	0.2	7
524	Natural products against HIV latency. , 2021, 1, 10-21.		1
525	Cell membrane-anchored anti-HIV single-chain antibodies and bifunctional inhibitors targeting the gp41 fusion protein: new strategies for HIV gene therapy. Emerging Microbes and Infections, 2022, 11, 30-49.	3.0	5
526	Broadly neutralizing monoclonal antibodies for HIV prevention. Journal of the International AIDS Society, 2021, 24, e25829.	1.2	16
527	Anti-Drug Antibodies in Pigtailed Macaques Receiving HIV Broadly Neutralising Antibody PGT121. Frontiers in Immunology, 2021, 12, 749891.	2.2	4
528	The Rational Combination Strategy of Immunomodulatory Latency Reversing Agents and Novel Immunotherapy to Achieve HIV-1 Cure. Infectious Diseases & Immunity, 2022, Publish Ahead of Print, .	0.2	1
529	Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial. Lancet Microbe, The, 2022, 3, e203-e214.	3.4	33
530	So Pathogenic or So What?—A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses, 2022, 14, 135.	1.5	5
531	Past and future of HIV infection. A document based on expert opinion. Revista Espanola De Quimioterapia, 2022, 35, 131-156.	0.5	2
532	Engineering panâ \in "HIV-1 neutralization potency through multispecific antibody avidity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
534	Latency Reversal and Clearance of Persistent HIV Infection. Methods in Molecular Biology, 2022, 2407, 375-389.	0.4	2
536	SARS-CoV-2 variants with reduced infectivity and varied sensitivity to the BNT162b2 vaccine are developed during the course of infection. PLoS Pathogens, 2022, 18, e1010242.	2.1	7
537	Safety and Pharmacokinetics of Monoclonal Antibodies VRC07-523LS and PGT121 Administered Subcutaneously for Human Immunodeficiency Virus Prevention. Journal of Infectious Diseases, 2022, 226, 510-520.	1.9	13
538	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	2.9	19
539	Novel Bent Conformation of CD4 Induced by HIV-1 Inhibitor Indirectly Prevents Productive Viral Attachment. Journal of Molecular Biology, 2022, 434, 167395.	2.0	1
540	Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells. Nature Communications, 2022, 13, 630.	5.8	19

#	Article	IF	CITATIONS
542	Exploring the application of immunotherapy against HIV infection in the setting of malignancy: A detailed review article. International Immunopharmacology, 2022, 105, 108580.	1.7	5
543	Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature, 2022, 602, 314-320.	13.7	78
544	Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study. International Journal of Molecular Sciences, 2022, 23, 2331.	1.8	3
547	HIV-gp140-Specific Antibodies Generated From Indian Long-Term Non-Progressors Mediate Potent ADCC Activity and Effectively Lyse Reactivated HIV Reservoir. Frontiers in Immunology, 2022, 13, 844610.	2.2	3
548	The HIV Env Glycoprotein Conformational States on Cells and Viruses. MBio, 2022, 13, e0182521.	1.8	11
550	Landscape of Human Immunodeficiency Virus Neutralization Susceptibilities Across Tissue Reservoirs. Clinical Infectious Diseases, 2022, 75, 1342-1350.	2.9	4
551	High-Throughput B Cell Epitope Determination by Next-Generation Sequencing. Frontiers in Immunology, 2022, 13, 855772.	2,2	7
552	Structure-guided affinity maturation of a single-chain variable fragment antibody against the Fu-bc epitope of the dengue virus envelope protein. Journal of Biological Chemistry, 2022, 298, 101772.	1.6	6
553	Viral resistance to VRC01-like antibodies with mutations in loop D and V5 from an HIV-1 Bâ \in 2 subtype infected individual with broadly neutralization activity. Molecular Immunology, 2022, 145, 50-58.	1.0	0
554	Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cellular Signalling, 2022, 94, 110325.	1.7	26
555	Immunization against severe acute respiratory syndrome Coronavirus 2: an overview. African Health Sciences, 2021, 21, 1574-83.	0.3	2
556	Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Frontiers in Immunology, 2021, 12, 670561.	2.2	3
558	Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells, 2022, 11, 77.	1.8	1
559	Immunotherapeutic approaches to HIV cure and remission. Current Opinion in Infectious Diseases, 2022, 35, 31-41.	1.3	9
560	pH Dependent Binding Energies of Broadly Neutralizing Antibodies. , 2021, , .		0
561	An exploration of how broadly neutralizing antibodies might induce HIV remission: the â€~vaccinal' effect. Current Opinion in HIV and AIDS, 2022, 17, 162-170.	1.5	6
562	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	15.2	34
563	HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Current HIV/AIDS Reports, 2022, 19, 194-206.	1.1	10

#	ARTICLE	IF	CITATIONS
567	Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nature Medicine, 2022, 28, 1288-1296.	15.2	44
569	Combination anti-HIV antibodies provide sustained virological suppression. Nature, 2022, 606, 375-381.	13.7	65
570	Beyond Inhibition: A Novel Strategy of Targeting HIV-1 Protease to Eliminate Viral Reservoirs. Viruses, 2022, 14, 1179.	1.5	8
571	Fusion Proteins CLD and CLDmut Demonstrate Potent and Broad Neutralizing Activity against HIV-1. Viruses, 2022, 14, 1365.	1.5	1
572	Safety and Pharmacokinetics of Intravenous 10-1074 and VRC01LS in Young Children. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 91, 182-188.	0.9	9
574	Enhanced HIV SOSIP Envelope yields in plants through transient co-expression of peptidyl-prolyl isomerase B and calreticulin chaperones and ER targeting. Scientific Reports, 2022, 12, .	1.6	4
576	Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. ELife, $0,11,$	2.8	11
577	HIV cure strategies: which ones are appropriate for Africa?. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	4
578	Highly mutated monoclonal antibody 3F2 targets a conformational and strain-restricted epitope in human immunodeficiency virus gp41 with significant antibody-dependent cell cytotoxicity. Archives of Virology, 2022, 167, 2193-2201.	0.9	1
579	HIV Transmission Prevention. , 2021, , 30-50.		0
580	The HIV Reservoir and Cure and Remission Strategies. , 2021, , 199-217.		0
581	How to break free: HIV-1 escapes from innovative therapeutic approaches. Frontiers in Virology, 0, 2, .	0.7	3
582	Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies. Scientific Reports, 2022, 12, .	1.6	0
583	Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines, 2022, 10, 1861.	1.4	8
584	Anti-viral efficacy of a next-generation CD4-binding site bNAb in SHIV-infected animals in the absence of anti-drug antibody responses. IScience, 2022, 25, 105067.	1.9	2
585	Phenotypic and functional characteristics of highly differentiated CD57+NKG2C+ NK cells in HIV-1-infected individuals. Clinical and Experimental Immunology, 2022, 210, 163-174.	1.1	2
586	Bispecific antibody-derived molecules to target persistent HIV infection. Journal of Virus Eradication, 2022, 8, 100083.	0.3	3
589	Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Therapy, 0, , .	2.3	6

#	Article	IF	CITATIONS
590	HIV-1 bispecific antibody iMab-N6 exhibits enhanced breadth but not potency over its parental antibodies iMab and N6. Virology Journal, 2022, 19, .	1.4	3
592	A calculated risk: Evaluating HIV resistance to the broadly neutralising antibodies10-1074 and 3BNC117. Current Opinion in HIV and AIDS, 2022, 17, 352-358.	1.5	4
593	Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nature Medicine, 2022, 28, 2424-2435.	15.2	37
594	Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8+ T cell immunity. Nature Communications, 2022, 13 , .	5.8	20
595	Broadly Neutralizing Antibodies for Human Immunodeficiency Virus Treatment: Broad in Theory, Narrow in Reality. Clinical Infectious Diseases, 2023, 76, 1136-1141.	2.9	3
596	Advanced nanomaterial for prostate cancer theranostics. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
597	Optimization and validation of an ELISA assay for the determination of antibody responses to CN54gp140 and AIDSVAX BE for use in the Phase IIb PrEPVacc vaccine trial. PLoS ONE, 2022, 17, e0275927.	1.1	0
598	Pathophysiology of HIV and strategies to eliminate AIDS as a public health threat., 2023,, 339-376.		1
599	T cell deficiency precipitates antibody evasion and emergence of neurovirulent polyomavirus. ELife, 0, 11, .	2.8	2
600	Cross-Reactive Fc-Fused Single-Domain Antibodies to Hemagglutinin Stem Region Protect Mice from Group 1 Influenza a Virus Infection. Viruses, 2022, 14, 2485.	1.5	2
601	Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nature Chemical Biology, 2023, 19, 431-439.	3.9	13
602	HIV-1 Vpu restricts Fc-mediated effector functions inÂvivo. Cell Reports, 2022, 41, 111624.	2.9	8
603	Monoclonal Antibodies as Long-Acting Products: What Are We Learning From Human Immunodeficiency Virus (HIV) and Coronavirus Disease 2019 (COVID-19)?. Clinical Infectious Diseases, 2022, 75, S530-S540.	2.9	4
604	Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection. Journal of Virology, 2022, 96, .	1.5	2
605	Long-Term and Low-Level Envelope C2V3 Stimulation by Highly Diverse Virus Isolates Leads to Frequent Development of Broad and Elite Antibody Neutralization in HIV-1-Infected Individuals. Microbiology Spectrum, 2022, 10, .	1.2	0
606	Mapping the interplay between NK cells and HIV: therapeutic implications. Journal of Leukocyte Biology, 2023, 113, 109-138.	1.5	1
607	Allogeneic gene-edited HIV-specific CAR-T cells secreting PD-1 blocking scFv enhance specific cytotoxic activity against HIV Env+ cells in vivo. Virologica Sinica, 2023, 38, 285-295.	1.2	0
608	The possibility of using Ig Y-antibodies in immunotherapy. E3S Web of Conferences, 2022, 363, 03068.	0.2	0

#	ARTICLE	IF	CITATIONS
609	Nanobodyâ€mediated complement activation to kill <scp>HIV</scp> â€infected cells. EMBO Molecular Medicine, 2023, 15, .	3.3	2
610	Improving the efficacy of plant-made anti-HIV monoclonal antibodies for clinical use. Frontiers in Plant Science, 0, 14, .	1.7	1
611	HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0
612	Replacement of Antiretroviral Therapy with HIV Broadly Neutralizing Antibodies to Maximize the Effectiveness of Chemotherapy in HIV Patients with Lung Cancer. AIDS Research and Human Retroviruses, 2023, 39, 475-481.	0.5	0
613	Partial compartmentalisation of HIV-1 subtype C between lymph nodes, peripheral blood mononuclear cells and plasma. Virology, 2023, 582, 62-70.	1.1	0
615	A lentiviral vector B cell gene therapy platform for the delivery of the anti-HIV-1 eCD4-lg-knob-in-hole-reversed immunoadhesin. Molecular Therapy - Methods and Clinical Development, 2023, 28, 366-384.	1.8	3
616	Adeno-associated virus-vectored delivery of HIV biologics: the promise of a â€æsingle-shot―functional cure for HIV infection. Journal of Virus Eradication, 2023, 9, 100316.	0.3	2
617	The CARD8 inflammasome in HIV infection. Advances in Immunology, 2023, , 59-100.	1.1	1
620	Susceptibility to 3BNC117 and 10-1074 in ART suppressed chronically infected persons. Aids, 0, Publish Ahead of Print, .	1.0	1
632	Technologies for Making New Vaccines. , 2023, , 1350-1373.e9.		O
633	Human Immunodeficiency Virus Vaccines. , 2023, , 458-483.e15.		0
634	Passive Immunization. , 2023, , 100-112.e11.		0
654	Antiretroviral therapy and its cerebral vascular toxicity., 2024, , 567-594.		0
656	Strategies for HIV-1 elimination. , 2024, , 595-617.		0