Battles and hijacks: noncoding transcription in plants

Trends in Plant Science 20, 362-371

DOI: 10.1016/j.tplants.2015.03.003

Citation Report

#	Article	IF	CITATIONS
1	RNA-Seq Analysis of Rice Roots Reveals the Involvement of Post-Transcriptional Regulation in Response to Cadmium Stress. Frontiers in Plant Science, 2015, 6, 1136.	1.7	90
2	IncRNAs in Stress Response. Current Topics in Microbiology and Immunology, 2015, 394, 203-236.	0.7	24
3	Long Non-coding RNAs and Their Biological Roles in Plants. Genomics, Proteomics and Bioinformatics, 2015, 13, 137-147.	3.0	231
4	miRNA-encoded peptides (miPEPs): A new tool to analyze the roles of miRNAs in plant biology. RNA Biology, 2015, 12, 1178-1180.	1.5	48
5	Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates. BMC Genomics, 2016, 17, 490.	1.2	28
6	Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. International Journal of Molecular Sciences, 2016, 17, 702.	1.8	78
7	Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1079.	1.7	26
8	Plant micro < scp > RNA < / scp > s: key regulators of root architecture and biotic interactions. New Phytologist, 2016, 212, 22-35.	3.5	53
9	Long Non-coding RNAs in Human Disease. Current Topics in Microbiology and Immunology, 2016, , .	0.7	4
10	Put your 3D glasses on: plant chromatin is on show. Journal of Experimental Botany, 2016, 67, 3205-3221.	2.4	59
11	Noncoding RNAs, Emerging Regulators in Root Endosymbioses. Molecular Plant-Microbe Interactions, 2016, 29, 170-180.	1.4	44
12	The role of microRNA in abiotic stress response in plants. Molecular Biology, 2016, 50, 337-343.	0.4	26
13	Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics, 2016, 17, 238.	1.2	74
14	Viroids, infectious long non-coding RNAs with autonomous replication. Virus Research, 2016, 212, 12-24.	1.1	42
15	Functions of plants long non-coding RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 155-162.	0.9	72
16	Transposable elements (<scp>TE</scp> s) contribute to stressâ€related long intergenic noncoding <scp>RNA</scp> s in plants. Plant Journal, 2017, 90, 133-146.	2.8	116
17	Plant Epigenetics: Non-coding RNAs as Emerging Regulators. RNA Technologies, 2017, , 129-147.	0.2	0
18	Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10018-E10027.	3.3	168

#	Article	IF	Citations
19	Antisense movement on the clock. New Phytologist, 2017, 216, 626-628.	3.5	4
20	A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiology, 2017, 175, 1321-1336.	2.3	251
21	Long noncoding RNAs in the model species Brachypodium distachyon. Scientific Reports, 2017, 7, 11252.	1.6	51
22	The antiphasic regulatory module comprising <i>CDF5</i> and its antisense <scp>RNA </scp> <i>FLORE</i> links the circadian clock to photoperiodic flowering. New Phytologist, 2017, 216, 854-867.	3.5	112
23	History, Discovery, and Classification of IncRNAs. Advances in Experimental Medicine and Biology, 2017, 1008, 1-46.	0.8	659
24	Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L.). Plant Growth Regulation, 2017, 83, 141-156.	1.8	30
25	Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 3-20.	0.9	75
26	Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Reports, 2017, 36, 1-35.	2.8	110
27	Survey of High Throughput RNA-Seq Data Reveals Potential Roles for IncRNAs during Development and Stress Response in Bread Wheat. Frontiers in Plant Science, 2017, 8, 1019.	1.7	111
28	Transcription factors network in root endosymbiosis establishment and development. World Journal of Microbiology and Biotechnology, 2018, 34, 37.	1.7	34
29	Splicing regulation by long noncoding RNAs. Nucleic Acids Research, 2018, 46, 2169-2184.	6.5	226
30	Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. Journal of Experimental Botany, 2018, 69, 2847-2862.	2.4	56
31	Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Critical Reviews in Biotechnology, 2018, 38, 93-105.	5.1	100
32	Transcriptional and Posttranscriptional Regulation of Drought Stress Treatments in Brachypodium Leaves. Methods in Molecular Biology, 2018, 1667, 21-29.	0.4	2
33	Structure, target-specificity and expression of PN_LNC_N13, a long non-coding RNA differentially expressed in apomictic and sexual Paspalum notatum. Plant Molecular Biology, 2018, 96, 53-67.	2.0	13
34	Role of Next-Generation RNA-Seq Data in Discovery and Characterization of Long Non-Coding RNA in Plants. , 0, , .		5
35	The MAP3K-Coding QUI-GON JINN (QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum. Frontiers in Plant Science, 2018, 9, 1547.	1.7	36
36	Global identification of Arabidopsis IncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nature Communications, 2018, 9, 5056.	5.8	233

#	Article	IF	CITATIONS
38	Copaifera langsdorffii Novel Putative Long Non-Coding RNAs: Interspecies Conservation Analysis in Adaptive Response to Different Biomes. Non-coding RNA, 2018, 4, 27.	1.3	4
39	Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE, 2018, 13, e0206221.	1.1	54
40	Functions of long non-coding RNAs in plants: a riddle to explore. Nucleus (India), 2018, 61, 261-272.	0.9	5
41	Integrative analysis of genomeâ€wide lnc <scp>RNA</scp> and <scp>mRNA</scp> expression in newly synthesized <i>Brassica</i> hexaploids. Ecology and Evolution, 2018, 8, 6034-6052.	0.8	20
42	Plant Immunity: From Signaling to Epigenetic Control of Defense. Trends in Plant Science, 2018, 23, 833-844.	4.3	198
43	Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert. Genes, 2018, 9, 170.	1.0	53
44	Arabidopsis thaliana ambient temperature responsive lncRNAs. BMC Plant Biology, 2018, 18, 145.	1.6	52
45	Plant Noncoding RNAs: Hidden Players in Development and Stress Responses. Annual Review of Cell and Developmental Biology, 2019, 35, 407-431.	4.0	228
46	Competing Endogenous RNA Networks Underlying Anatomical and Physiological Characteristics of Poplar Wood in Acclimation to Low Nitrogen Availability. Plant and Cell Physiology, 2019, 60, 2478-2495.	1.5	26
47	Plant-Mycorrhizal and Plant-Rhizobial Interfaces: Underlying Mechanisms and Their Roles in Sustainable Agroecosystems., 2019,, 27-67.		3
48	Small RNA discovery in the interaction between barley and the powdery mildew pathogen. BMC Genomics, 2019, 20, 610.	1.2	37
49	A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis. Industrial Crops and Products, 2019, 139, 111547.	2.5	78
50	Identification and functional prediction of IncRNAs in response to PEG and ABA treatment in cassava. Environmental and Experimental Botany, 2019, 166, 103809.	2.0	12
51	Identification and characterization of circular RNAs during the sea buckthorn fruit development. RNA Biology, 2019, 16, 354-361.	1.5	30
52	Transcripts with systematic nucleotide deletion of 1-12 nucleotide in human mitochondrion suggest potential non-canonical transcription. PLoS ONE, 2019, 14, e0217356.	1.1	12
53	Identification of IncRNAs Responsive to Infection by <i>Plasmodiophora brassicae</i> in Clubroot-Susceptible and -Resistant <i>Brassica napus</i> Lines Carrying Resistance Introgressed from Rutabaga. Molecular Plant-Microbe Interactions, 2019, 32, 1360-1377.	1.4	24
54	Characterization and Cloning of Grape Circular RNAs Identified the Cold Resistance-Related <i>Vv-circATS1</i> . Plant Physiology, 2019, 180, 966-985.	2.3	75
55	IncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochemical Journal, 2019, 476, 1083-1104.	1.7	26

#	Article	IF	Citations
56	Long Non-Coding RNAs: Rising Regulators of Plant Reproductive Development. Agronomy, 2019, 9, 53.	1.3	17
57	Screening and characterization of long noncoding RNAs involved in the albinism of Ananas comosus var. bracteatus leaves. PLoS ONE, 2019, 14, e0225602.	1.1	5
58	Single-Molecule Long-Read Sequencing Reveals the Diversity of Full-Length Transcripts in Leaves of Gnetum (Gnetales). International Journal of Molecular Sciences, 2019, 20, 6350.	1.8	8
59	Classification and experimental identification of plant long non-coding RNAs. Genomics, 2019, 111, 997-1005.	1.3	88
60	Genetic dissection of the gene coexpression network underlying photosynthesis in <i>Populus</i> Plant Biotechnology Journal, 2020, 18, 1015-1026.	4.1	21
61	Pod-shattering characteristics differences between two groups of soybeans are associated with specific changes in gene expression. Functional and Integrative Genomics, 2020, 20, 201-210.	1.4	11
62	Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops. Genomics, 2020, 112, 1419-1424.	1.3	32
64	Reprogramming of Root Cells during Nitrogen-Fixing Symbiosis Involves Dynamic Polysome Association of Coding and Noncoding RNAs. Plant Cell, 2020, 32, 352-373.	3.1	20
65	Genome-Wide Identification and Characterization of Fusarium graminearum-Responsive IncRNAs in Triticum aestivum. Genes, 2020, 11, 1135.	1.0	4
66	The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. NAR Genomics and Bioinformatics, 2020, 2, Iqaa066.	1.5	12
67	Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biology, 2020, 20, 466.	1.6	100
68	Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. International Journal of Molecular Sciences, 2020, 21, 8401.	1.8	57
69	Identification and functional prediction of salt stress-related long noncoding RNAs in grapevine roots. Environmental and Experimental Botany, 2020, 179, 104215.	2.0	15
70	The <i>Arabidopsis</i> lnc <scp>RNA </scp> <i><scp>ASCO</scp></i> modulates the transcriptome through interaction with splicing factors. EMBO Reports, 2020, 21, e48977.	2.0	57
71	Long non-coding RNAs in plants: emerging modulators of gene activity in development and stress responses. Planta, 2020, 252, 92.	1.6	57
72	Genome-Wide Screening and Characterization of Non-Coding RNAs in Coffea canephora. Non-coding RNA, 2020, 6, 39.	1.3	5
73	Non-Canonical Functions of Splicing Factors in RNA Metabolism. Critical Reviews in Plant Sciences, 2020, 39, 493-513.	2.7	3
74	Landscape of the Noncoding Transcriptome Response of Two Arabidopsis Ecotypes to Phosphate Starvation. Plant Physiology, 2020, 183, 1058-1072.	2.3	23

#	Article	IF	Citations
75	Systematic Identification and Analysis of Light-Responsive Circular RNA and Co-expression Networks in Lettuce (Lactuca sativa). G3: Genes, Genomes, Genetics, 2020, 10, 2397-2410.	0.8	6
76	Long noncoding RNAs shape transcription in plants. Transcription, 2020, 11, 160-171.	1.7	24
77	Transcriptomic and functional analyses uncover the regulatory role of lncRNA000170 in tomato multicellular trichome formation. Plant Journal, 2020, 104, 18-29.	2.8	16
78	Co-Regulation of Long Non-Coding RNAs with Allele-Specific Genes in Wheat Responding to Powdery Mildew Infection. Agronomy, 2020, 10, 896.	1.3	5
79	Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biology, 2020, 21, 104.	3.8	99
80	Relationships between genome methylation, levels of nonâ€coding RNAs, mRNAs and metabolites in ripening tomato fruit. Plant Journal, 2020, 103, 980-994.	2.8	46
81	Long Non-coding RNA in Plants in the Era of Reference Sequences. Frontiers in Plant Science, 2020, 11, 276.	1.7	88
82	The Emerging Role of Long Non-Coding RNAs in Plant Defense Against Fungal Stress. International Journal of Molecular Sciences, 2020, 21, 2659.	1.8	25
83	Potato CYCLING DOF FACTORÂ1 and its lncRNA counterpart <i>StFLORE</i> link tuber development and drought response. Plant Journal, 2021, 105, 855-869.	2.8	64
84	Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. New Phytologist, 2021, 229, 1251-1260.	3.5	48
85	Interplay between miRNAs and IncRNAs: Mode of action and biological roles in plant development and stress adaptation. Computational and Structural Biotechnology Journal, 2021, 19, 2567-2574.	1.9	45
86	Roles of long noncoding RNA during stress response in maize. , 2021, , 93-105.		0
88	Noncoding RNAs in Lingzhi Mushroom. Compendium of Plant Genomes, 2021, , 131-146.	0.3	0
89	Comprehending IncRNA-mediated gene regulation during abiotic stresses and reproductive development in legumes., 2021,, 151-176.		2
90	Plant Long Noncoding RNAs: New Players in the Field of Post-Transcriptional Regulations. Non-coding RNA, 2021, 7, 12.	1.3	18
91	Perspective: 50 years of plant chromosome biology. Plant Physiology, 2021, 185, 731-753.	2.3	1
92	Insights into long non-coding RNA regulation of anthocyanin carrot root pigmentation. Scientific Reports, 2021, 11, 4093.	1.6	9
95	Genome-Wide Identification and Characterization of Long Noncoding RNAs Involved in Chinese Wheat Mosaic Virus Infection of Nicotiana benthamiana. Biology, 2021, 10, 232.	1.3	9

#	ARTICLE	IF	CITATIONS
96	Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. Horticulture Research, 2021, 8, 44.	2.9	19
97	miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany, 2021, 184, 104369.	2.0	54
98	Genome-Wide Identification of Barley Long Noncoding RNAs and Analysis of Their Regulatory Interactions during Shoot and Grain Development. International Journal of Molecular Sciences, 2021, 22, 5087.	1.8	4
99	Genome-wide analysis of long non-coding RNAs (IncRNAs) in two contrasting soybean genotypes subjected to phosphate starvation. BMC Genomics, 2021, 22, 433.	1.2	7
100	The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Molecular Plant, 2021, 14, 937-948.	3.9	72
101	Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba. Scientific Reports, 2021, 11, 15725.	1.6	5
102	Barley Anther and Meiocyte Transcriptome Dynamics in Meiotic Prophase I. Frontiers in Plant Science, 2020, 11, 619404.	1.7	19
103	Multi-feature fusion for deep learning to predict plant lncRNA-protein interaction. Genomics, 2020, 112, 2928-2936.	1.3	26
107	LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS ONE, 2016, 11, e0158936.	1.1	97
108	Long Non-Coding RNAs, the Dark Matter: An Emerging Regulatory Component in Plants. International Journal of Molecular Sciences, 2021, 22, 86.	1.8	40
111	Long Non-coding RNAs Diversity in Form and Function: From Microbes to Humans. RNA Technologies, 2020, , 1-57.	0.2	0
112	TRAP-SEQ of Eukaryotic Translatomes Applied to the Detection of Polysome-Associated Long Noncoding RNAs. Methods in Molecular Biology, 2020, 2166, 451-472.	0.4	2
114	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas., 2020,, 143-172.		0
116	Non-Coding RNAs in Response to Drought Stress. International Journal of Molecular Sciences, 2021, 22, 12519.	1.8	32
118	Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA–miRNA–mRNA Network in White Spruce. International Journal of Molecular Sciences, 2022, 23, 1111.	1.8	14
119	Multi-feature Fusion Method Based on Linear Neighborhood Propagation Predict Plant LncRNA–Protein Interactions. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 545-554.	2.2	5
120	Transcriptomic analysis of Mesoamerican and Andean Phaseolus vulgaris accessions revealed mRNAs and IncRNAs associated with strain selectivity during symbiosis. Scientific Reports, 2022, 12, 2614.	1.6	3
121	Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. International Journal of Molecular Sciences, 2022, 23, 3695.	1.8	15

#	Article	IF	CITATIONS
122	The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. International Journal of Molecular Sciences, 2022, 23, 4124.	1.8	27
123	Transcriptional Association between mRNAs and Their Paired Natural Antisense Transcripts Following Fusarium oxysporum Inoculation in Brassica rapa L Horticulturae, 2022, 8, 17.	1.2	8
125	Comprehensive transcriptomic analysis of two RIL parents with contrasting salt responsiveness identifies polyadenylated and nonâ€polyadenylated flower lncRNAs in chickpea. Plant Biotechnology Journal, 2022, , .	4.1	2
126	Secondary structure prediction of long noncoding RNA: review and experimental comparison of existing approaches. Briefings in Bioinformatics, 2022, 23, .	3.2	11
127	Whole-Transcriptome Analysis Reveals Long Noncoding RNAs Involved in Female Floral Development of Hickory (Carya cathayensis Sarg.). Frontiers in Genetics, 2022, 13, .	1.1	2
128	Identification and Characterization of Circular RNAs in Brassica rapa in Response to Plasmodiophora brassicae. International Journal of Molecular Sciences, 2022, 23, 5369.	1.8	4
129	Chromosome-level genome assembly of $\langle i \rangle$ Mentha longifolia $\langle i \rangle$ L. reveals gene organization underlying disease resistance and essential oil traits. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	8
130	Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene, 2022, 833, 146556.	1.0	1
131	Regulation mechanism of long non-coding RNA in plant secondary metabolite biosynthesis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12604.	0.5	1
132	Variable selection in sparse GLARMA models. Statistics, 0, , 1-30.	0.3	0
133	Long Non-Coding RNAs: New Players in Plants. International Journal of Molecular Sciences, 2022, 23, 9301.	1.8	21
134	Regulatory non-coding RNA: The core defense mechanism against plant pathogens. Journal of Biotechnology, 2022, , .	1.9	5
135	Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. International Journal of Molecular Sciences, 2022, 23, 12918.	1.8	13
136	Pervasive translation of small open reading frames in plant long non-coding RNAs. Frontiers in Plant Science, 0, 13, .	1.7	4
137	Charting plant gene functions in the multi-omics and single-cell era. Trends in Plant Science, 2023, 28, 283-296.	4.3	21
138	Role of long non coding RNA in plants under abiotic and biotic stresses. Plant Physiology and Biochemistry, 2023, 194, 96-110.	2.8	15
139	Desert plant transcriptomics and adaptation to abiotic stress., 2023,, 199-256.		0
140	Regulatory non-coding RNAs: Emerging roles during plant cell reprogramming and in vitro regeneration. Frontiers in Plant Science, 0, 13 , .	1.7	3

#	Article	IF	Citations
141	Plant Immunity Is Regulated by Biological, Genetic, and Epigenetic Factors. Agronomy, 2022, 12, 2790.	1.3	1
142	Whole-transcriptome profiles of Chrysanthemum seticuspe improve genome annotation and shed new light on mRNA–miRNA–lncRNA networks in ray florets and disc florets. BMC Plant Biology, 2022, 22, .	1.6	3
143	Plant Non-coding Transcriptomics: Overview of lncRNAs in Abiotic Stress Responses. , 2022, , 79-96.		1
144	Single-Molecule Real-Time Sequencing of Full-Length Transcriptome and Identification of Genes Related to Male Development in Cannabis sativa. Plants, 2022, 11, 3559.	1.6	O
145	Altered expression levels of long nonâ€coding natural antisense transcripts overlapping the <i>UGT73C6</i> gene affect rosette size in <i>Arabidopsis thaliana</i> . Plant Journal, 2023, 113, 460-477.	2.8	2
146	Plant long non-coding RNAs: biologically relevant and mechanistically intriguing. Journal of Experimental Botany, 2023, 74, 2364-2373.	2.4	5
147	A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress. Planta, 2023, 257, .	1.6	5
148	Long non-coding RNAs reveal new regulatory mechanisms controlling gene expression. Comptes Rendus - Biologies, 2022, 345, 15-39.	0.1	1
149	LncRNA evolution and DNA methylation variation participate in photosynthesis pathways of distinct lineages of <i>Populus</i> . Forestry Research, 2023, 3, 0-0.	0.5	2
150	Nuclear and cytoplasmic <scp>IncRNAs</scp> in root tips of the model legume <scp><i>Medicago truncatula</i></scp> under control and submergence. IUBMB Life, 2023, 75, 580-594.	1.5	0
151	Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. International Journal of Molecular Sciences, 2023, 24, 3143.	1.8	4
152	Regulatory role of ncRNAs networks in the expression and maintenance of the embryogenic competence in <i>Solanum betaceum</i> Cav. calli. Acta Horticulturae, 2023, , 179-184.	0.1	0
153	Noncoding RNAs and their roles in regulating the agronomic traits of crops. Fundamental Research, 2023, , .	1.6	1
154	Genome-Wide Analysis of Long Non-Coding RNAs Related to UV-B Radiation in the Antarctic Moss Pohlia nutans. International Journal of Molecular Sciences, 2023, 24, 5757.	1.8	1
155	Promoter Variation of the Key Apple Fruit Texture Related Gene MdPG1 and the Upstream Regulation Analysis. Plants, 2023, 12, 1452.	1.6	1
156	LncRNA-encoded peptides: the case of the IncRNA gene located downstream of EIN2. Functional and Integrative Genomics, 2023, 23, .	1.4	0
157	Roles of long non-coding RNAs in plant immunity. PLoS Pathogens, 2023, 19, e1011340.	2.1	7
169	Non-Coding RNA and Its Prospective Utilization in Plant Breeding. , 0, , .		0

ARTICLE IF CITATIONS

Role of Non-coding RNAs in Disease Resistance in Plants. , 2024, , 167-190.