Reducing the energy cost of human walking using an un

Nature 522, 212-215 DOI: 10.1038/nature14288

Citation Report

#	Article	IF	CITATIONS
1	Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness. Review of Scientific Instruments, 2015, 86, 095107.	0.6	9
2	Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 97.	2.4	124
3	Direct Measurements of Local Coupling between Myosin Molecules Are Consistent with a Model of Muscle Activation. PLoS Computational Biology, 2015, 11, e1004599.	1.5	9
4	The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion. PLoS ONE, 2015, 10, e0142878.	1.1	76
5	Initial investigation into the effect of an Active/Passive exoskeleton on hammer curl performance in healthy subjects. , 2015, 2015, 3607-10.		3
6	Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. Journal of Neurophysiology, 2015, 114, 2509-2527.	0.9	104
7	An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Journal of Applied Physiology, 2015, 119, 541-557.	1.2	164
8	A Review on Compliant Joint Mechanisms for Lower Limb Exoskeletons. Journal of Robotics, 2016, 2016, 1-9.	0.6	20
9	Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running. PLoS ONE, 2016, 11, e0150378.	1.1	95
10	Powered exoskeletons for bipedal locomotion after spinal cord injury. Journal of Neural Engineering, 2016, 13, 031001.	1.8	148
11	Compliant actuation for energy efficient impedance modulation. , 2016, , .		22
12	Controlling negative and positive power at the ankle with a soft exosuit. , 2016, , .		70
13	Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate. Scientific Reports, 2016, 6, 23243.	1.6	16
14	Preliminary Design and Engineering Evaluation of a Hydraulic Ankle–Foot Orthosis. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.4	5
15	A simple 2D straight-leg passive dynamic walking model without foot-scuffing problem. , 2016, , .		4
16	Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking. Scientific Reports, 2016, 6, 29870.	1.6	71
17	Effect of timing of hip extension assistance during loaded walking with a soft exosuit. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 87.	2.4	134
18	Analysis of an Energy Saving Ratchet-Based Ankle Exoskeleton. , 2016, , .		0

#	Article	IF	CITATIONS
19	Effects of Load Connection Form on Efficiency and Kinetics of Biped Walking. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	21
20	Using position dependent damping forces around reaching targets for transporting heavy objects: A Fitts' law approach. , 2016, , .		3
21	Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies. IEEE Transactions on Biomedical Engineering, 2016, 63, 879-893.	2.5	121
22	Upper limb joint forces and moments during underwater cyclical movements. Journal of Biomechanics, 2016, 49, 3355-3361.	0.9	19
23	A quasi-passive lower limb exoskeleton for partial body weight support. , 2016, , .		17
24	Review and analysis of recent development of lower extremity exoskeletons for walking assist. , 2016, ,		21
25	A critical examination of three approaches for the design of passive ankle walking assist devices. , 2016, , .		1
26	A design concept of parallel elasticity extracted from biological muscles for engineered actuators. Bioinspiration and Biomimetics, 2016, 11, 056009.	1.5	5
27	FlexSEA-Execute: Advanced motion controller for wearable robotic applications. , 2016, , .		8
28	Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy. Nano Research, 2016, 9, 2226-2233.	5.8	78
29	A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 43.	2.4	239
30	Shoes alter the spring-like function of the human foot during running. Journal of the Royal Society Interface, 2016, 13, 20160174.	1.5	55
31	A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. , 2016, , .		79
32	IMU-based iterative control for hip extension assistance with a soft exosuit. , 2016, , .		69
33	An individual approach for optimizing ankle-foot orthoses to improve mobility in children with spastic cerebral palsy walking with excessive knee flexion. Gait and Posture, 2016, 46, 104-111.	0.6	32
34	A Simple Model to Estimate Plantarflexor Muscle–Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons. IEEE Transactions on Biomedical Engineering, 2016, 63, 914-923.	2.5	61
35	A Novel Approach to Apply Gait Synchronized External Forces on the Pelvis Using A-TPAD to Reduce Walking Effort. IEEE Robotics and Automation Letters, 2016, 1, 1118-1124.	3.3	20
36	A Novel Application of Eddy Current Braking for Functional Strength Training During Gait. Annals of Biomedical Engineering, 2016, 44, 2760-2773.	1.3	28

#	Article	IF	CITATIONS
37	Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 4.	2.4	161
38	Cognetics: Robotic Interfaces for the Conscious Mind. Trends in Cognitive Sciences, 2016, 20, 162-164.	4.0	30
39	Evaluation of the Achilles Ankle Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 151-160.	2.7	60
40	State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 171-182.	2.7	611
41	Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Science Robotics, 2017, 2, .	9.9	285
42	Once-Per-Step Control of Ankle Push-Off Work Improves Balance in a Three-Dimensional Simulation of Bipedal Walking. IEEE Transactions on Robotics, 2017, 33, 406-418.	7.3	50
43	Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. International Materials Reviews, 2017, 62, 415-440.	9.4	124
44	Clutched Elastic Actuators. IEEE/ASME Transactions on Mechatronics, 2017, 22, 739-750.	3.7	45
45	Precision orthotics: optimising ankle foot orthoses to improve gait in patients with neuromuscular diseases; protocol of the PROOF-AFO study, a prospective intervention study. BMJ Open, 2017, 7, e013342.	0.8	19
46	Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons. Journal of Applied Physiology, 2017, 122, 242-252.	1.2	15
47	Stiffness Perception During Active Ankle and Knee Movement. IEEE Transactions on Biomedical Engineering, 2017, 64, 2949-2956.	2.5	22
48	Conceptualizing movement by expert Bobath instructors in neurological rehabilitation. Journal of Evaluation in Clinical Practice, 2017, 23, 1153-1163.	0.9	13
49	Muscle Activation Levels During Upper Limb Exercise Performed Using Dumbbells and A Spring-Loaded Exoskeleton. Journal of Medical and Biological Engineering, 2017, 37, 345-356.	1.0	3
50	Criterion for the Design of Low-Power Variable Stiffness Mechanisms. IEEE Transactions on Robotics, 2017, 33, 1002-1010.	7.3	31
51	Effects of Passive Ankle Exoskeleton on Human Energy Expenditure: Pilot Evaluation. Advances in Intelligent Systems and Computing, 2017, , 491-498.	0.5	5
52	Muscle recruitment and coordination with an ankle exoskeleton. Journal of Biomechanics, 2017, 59, 50-58.	0.9	53
53	Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 2017, 356, 1280-1284.	6.0	616
54	Fast exoskeleton optimization. Science, 2017, 356, 1230-1231.	6.0	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
55	Reducing the metabolic cost of running with a tethered soft exosuit. Science Robotics, 20	17, 2, .	9.9	94
56	A benchtop biorobotic platform for in vitro observation of muscle-tendon dynamics with p mechanical assistance from an elastic exoskeleton. Journal of Biomechanics, 2017, 57, 8-1	arallel 7.	0.9	7
57	Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metab during walking. Journal of Experimental Biology, 2017, 220, 2082-2095.	olic rate	0.8	73
58	Modulation of leg joint function to produce emulated acceleration during walking and run humans. Royal Society Open Science, 2017, 4, 160901.	ning in	1.1	24
59	Exoskeleton plantarflexion assistance for elderly. Gait and Posture, 2017, 52, 183-188.		0.6	48
60	Impact of ankle foot orthosis stiffness on Achilles tendon and gastrocnemius function dur unimpaired gait. Journal of Biomechanics, 2017, 64, 145-152.	ng	0.9	24
61	The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, K Muscle Activity in Children with Cerebral Palsy. Scientific Reports, 2017, 7, 13512.	netics, and	1.6	50
62	Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip a 2017, 2017, 387-393.	ssistance. ,		19
63	Template model inspired leg force feedback based control can assist human walking. , 201 473-478.	7, 2017,		22
64	Design and characterization of a hyperelastic tubular soft composite. Journal of the Mecha Behavior of Biomedical Materials, 2017, 75, 228-235.	nical	1.5	5
65	Walking economy is predictably determined by speed, grade, and gravitational load. Journ Physiology, 2017, 123, 1288-1302.	al of Applied	1.2	33
66	Manufacturing Choices for Ankle-Foot Orthoses: A Multi-objective Optimization. Procedia 65, 145-150.	CIRP, 2017,	1.0	29
67	Designing of a Passive Knee-Assisting Exoskeleton for Weight-Bearing. Lecture Notes in Co Science, 2017, , 273-285.	omputer	1.0	5
68	Adaptive Natural Oscillator to exploit natural dynamics for energy efficiency. Robotics and Autonomous Systems, 2017, 97, 51-60.		3.0	19
69	Predictive simulation of diabetic gait: Individual contribution of ankle stiffness and muscle weakening. Gait and Posture, 2017, 58, 208-213.		0.6	5
70	Development of a pneumatic artificial muscle driven by low pressure and its application to unplugged powered suit. Advanced Robotics, 2017, 31, 1135-1143.	the	1.1	51
71	Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sci the United States of America, 2017, 114, 13132-13137.	ences of	3.3	499
72	Instrumented Ankle–Foot Orthosis: Toward a Clinical Assessment Tool for Patient-Specie Optimization of Orthotic Ankle Stiffness. IEEE/ASME Transactions on Mechatronics, 2017,		3.7	15

#	Article	IF	CITATIONS
73	Lower limb biomechanical analysis during an unanticipated step on a bump reveals specific adaptations of walking on uneven terrains. Journal of Experimental Biology, 2017, 220, 4169-4176.	0.8	18
74	Energy neutral: the human foot and ankle subsections combine to produce near zero net mechanical work during walking. Scientific Reports, 2017, 7, 15404.	1.6	70
75	Novel frictional-locking-mechanism for a flat belt: Theory, mechanism, and validation. Mechanism and Machine Theory, 2017, 116, 371-382.	2.7	5
76	Varying negative work assistance at the ankle with a soft exosuit during loaded walking. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 62.	2.4	46
77	Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 35.	2.4	153
78	Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 40.	2.4	102
82	The Metabolic Cost of Walking with a Passive Lower Limb Assistive Device. Lecture Notes in Electrical Engineering, 2017, , 301-305.	0.3	1
83	Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study. Gait and Posture, 2017, 52, 124-128.	0.6	26
84	Development and testing of stiffness model for pneumatic artificial muscle. International Journal of Mechanical Sciences, 2017, 120, 30-41.	3.6	23
85	Efficacy of a knee orthosis that uses an elastic element. , 2017, 2017, 942-945.		2
86	Using wearable physiological sensors to predict energy expenditure. , 2017, 2017, 340-345.		5
87	Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton. , 2017, 2017, 498-504.		45
88	Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation. , 2017, , .		58
89	A hybrid powered ankle exoskeleton for walking. , 2017, , .		1
90	Structure design of active power-assist lower limb exoskeleton APAL robot. Advances in Mechanical Engineering, 2017, 9, 168781401773579.	0.8	35
91	A flexible exoskeleton for hip assistance. , 2017, , .		14
92	Design of force support device for human ankle joint. , 2017, , .		1
93	Individual Leg and Joint Work during Sloped Walking for People with a Transtibial Amputation Using Passive and Powered Prostheses. Frontiers in Robotics and Al, 2017, 4, .	2.0	13

#	Article	IF	CITATIONS
94	Torque Control in Legged Locomotion ⎠âŽSupplementary document of this chapter is located at https://www.andrew.cmu.edu/user/shc17/Zhang_2016_BLL—SuppMat.pdf , 2017, , 347-400.		18
95	Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton. Frontiers in Bioengineering and Biotechnology, 2017, 5, 4.	2.0	80
96	A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton. Frontiers in Bioengineering and Biotechnology, 2017, 5, 37.	2.0	51
97	Locomotor Sub-functions for Control of Assistive Wearable Robots. Frontiers in Neurorobotics, 2017, 11, 44.	1.6	11
98	Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation. Applied Bionics and Biomechanics, 2017, 2017, 1-14.	0.5	31
99	Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait. PLoS ONE, 2017, 12, e0180219.	1.1	22
100	Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE, 2017, 12, e0180320.	1.1	121
102	Effect of medial thighplasty on oxygen and metabolic consumption rates in a transfemoral amputee during sustained overground walking bouts. , 2017, , .		0
103	Legged Robots with Bioinspired Morphology. , 2017, , 457-561.		5
105	State of the Art: Bipedal Robots for Lower Limb Rehabilitation. Applied Sciences (Switzerland), 2017, 7, 1182.	1.3	34
106	Metabolic Effects Induced by a Kinematically Compatible Hip Exoskeleton During STS. IEEE Transactions on Biomedical Engineering, 2018, 65, 1399-1409.	2.5	19
107	Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Science Robotics, 2018, 3, .	9.9	387
108	Development of an Ankle-Foot Orthosis That Provides Support for Flaccid Paretic Plantarflexor and Dorsiflexor Muscles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1036-1045.	2.7	14
109	A High-Performance Cable-Drive Module for the Development of Wearable Devices. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1238-1248.	3.7	31
110	Modelling a soft composite accumulator for human mobility assist devices. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 81-87.	1.5	2
111	A soft exoskeleton suit to reduce muscle fatigue with pneumatic artificial muscles. , 2018, , .		7
112	Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke. Journal of Experimental Biology, 2018, 221, .	0.8	33
113	Energy performance analysis of a backpack suspension system with a timed clutch for human load carriage. Mechanism and Machine Theory, 2018, 120, 250-264.	2.7	13

#	Article	IF	CITATIONS
114	Qualitative Assessment of a Clutch-Actuated Ankle Exoskeleton. Mechanisms and Machine Science, 2018, , 778-786.	0.3	4
115	A Multifunctional Ankle Exoskeleton for Mobility Enhancement of Gait-Impaired Individuals and Seniors. IEEE Robotics and Automation Letters, 2018, 3, 411-418.	3.3	25
116	Energy Harvesting Modeling and Prediction during Walking Gait for a Sliding Shoe. , 2018, , .		1
117	Dynamics Modeling and Performance Analysis of RoboWalk. , 2018, , .		14
118	The Effects on Muscle Activity and Discomfort of Varying Load Carriage With and Without an Augmentation Exoskeleton. Applied Sciences (Switzerland), 2018, 8, 2638.	1.3	13
119	Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation. Applied Mechanics Reviews, 2018, 70, .	4.5	73
120	Cycling-enhanced Knee Exoskeleton Using Planar Spiral Spring. , 2018, 2018, 1-6.		12
121	Concept and Prototype Design of an Underwater Soft Exoskeleton. , 2018, , .		4
122	A Simplified Musculoskeletal Hip Model for Replicating the Natural Human Walking Behavior. , 2018, , .		2
123	The Torque Control and Evaluation of the Ankle Prosthesis. , 2018, , .		Ο
124	On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work. IEEE Control Systems, 2018, 38, 88-113.	1.0	84
125	Research on Passive Stride Assist Based on the Metabolism of Hip Muscles. , 2018, , .		Ο
126	Research on Passive Assist of Hip Joint Based on Muscle Metabolism. , 2018, , .		0
127	Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 111.	2.4	18
128	Development of a Lightweight Flexible Construction Work Assist Suit Using Pneumatic Rubber Artificial Muscles. , 2018, 2018, 4389-4392.		2
129	Design and Development of Customized Physical Interfaces to Reduce Relative Motion Between the User and a Powered Ankle Foot Exoskeleton. , 2018, , .		20
130	Structure Design and Kinematics Analysis of a Novel Unpowered Load-Carrying Lower Extremity Exoskeleton with Parallel Topology. Mathematical Problems in Engineering, 2018, 2018, 1-10.	0.6	6
131	Toward Muscle-Driven Control of Wearable Robots: A Real-Time Framework for the Estimation of Neuromuscular States During Human-Exoskeleton Locomotion Tasks. , 2018, , .		3

#	Article	IF	CITATIONS
132	Verification of a Robotic Ankle Exoskeleton Control Scheme for Gait Assistance in Individuals with Cerebral Palsy. , 2018, , .		12
133	A Soft-Exosuit Enables Multi-Scale Analysis of Wearable Robotics in a Bipedal Animal Model. , 2018, , .		4
134	Characterization of Active/Passive Pneumatic Actuators for Assistive Devices. , 2018, , .		6
135	Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Frontiers in Physiology, 2018, 9, 1789.	1.3	50
136	Towards Online Estimation of Human Joint Muscular Torque with a Lower Limb Exoskeleton Robot. Applied Sciences (Switzerland), 2018, 8, 1610.	1.3	36
137	An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1985-1993.	2.7	69
138	Interaction between step-to-step variability and metabolic cost of transport during human walking. Journal of Experimental Biology, 2018, 221, .	0.8	14
139	Robotizing Double-Bar Ankle-Foot Orthosis. , 2018, , .		10
140	Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2026-2032.	2.7	97
141	The effects of electroadhesive clutch design parameters on performance characteristics. Journal of Intelligent Material Systems and Structures, 2018, 29, 3804-3828.	1.4	56
142	Autonomous and Portable Soft Exosuit for Hip Extension Assistance with Online Walking and Running Detection Algorithm. , 2018, , .		39
143	Altering gait variability with an ankle exoskeleton. PLoS ONE, 2018, 13, e0205088.	1.1	30
144	ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests. , 2018, , .		30
145	Unplugged Powered Suit for Superhuman Tennis. , 2018, , .		7
146	Exobuddy - A Non-Anthropomorphic Quasi-Passive Exoskeleton for Load Carrying Assistance. , 2018, , .		9
147	Autonomous Multi-Joint Soft Exosuit for Assistance with Walking Overground. , 2018, , .		35
148	Quantifying the physical intensity of construction workers, a mechanical energy approach. Advanced Engineering Informatics, 2018, 38, 404-419.	4.0	28
149	On the biomechanical relationship between applied hip, knee and ankle joint moments and the internal knee compressive forces. International Biomechanics, 2018, 5, 63-74.	0.9	18

	Сітатіо	n Report	
ARTICLE Design and Evaluation of a Knee Support Exoskeleton using Variable Non-Active Interv Storage. , 2018, , .	al for Energy	IF	CITATIONS
Theoretical Analysis and Numerical Optimization of a Wearable Spring-Clutch Mechan Reducing Metabolic Energy Cost During Human Walking. Journal of Mechanisms and I		1.5	3
The contributions of ankle, knee and hip joint work to individual leg work change durir downhill walking over a range of speeds. Royal Society Open Science, 2018, 5, 180550		1.1	49
Body Mass Index in Human Walking on Different Types of Soil Using Graph Theory. IEE 47935-47942.	E Access, 2018, 6,	2.6	3
Effect of forward-directed aiding force on gait mechanics in healthy young adults while faster. Gait and Posture, 2018, 64, 12-17.	e walking	0.6	4
Consensus paper on testing and evaluation of military exoskeletons for the dismounte Journal of Science and Medicine in Sport, 2018, 21, 1154-1161.	d combatant.	0.6	29
Exoskeletons for lower-limb rehabilitation. , 2018, , 89-99.			14
Experimental estimation of energy absorption during heel strike in human barefoot wa ONE, 2018, 13, e0197428.	lking. PLoS	1.1	14
The energetic behaviour of the human foot across a range of running speeds. Scientific 8, 10576.	c Reports, 2018,	1.6	57
The Real Time Gait Phase Detection Based on Long Short-Term Memory. , 2018, , .			19
Energy-Optimal Human Walking With Feedback-Controlled Robotic Prostheses: A Con Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26,	nputational 1773-1782.	2.7	29
Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System. Sensors, 2018, 1	8, 566.	2.1	39

162	Effect of the timing of force application on the toe trajectory in the swing phase for a wire-driven gait assistance robot. Mechanical Engineering Journal, 2018, 5, 17-00660-17-00660.	0.2	3
163	A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait. Frontiers in Neurorobotics, 2018, 12, 18.	1.6	27
164	Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton. Frontiers in Neuroscience, 2018, 12, 69.	1.4	54
165	Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off. Frontiers in Neuroscience, 2018, 12, 71.	1.4	23
166	Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 66.	2.4	110
167	Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 42.	2.4	42

#

150

152

154

156

158

160

#	Article	IF	CITATIONS
168	Effects of a powered ankle-foot orthosis on perturbed standing balance. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 50.	2.4	42
169	Advances in Automation Technologies for Lower Extremity Neurorehabilitation: A Review and Future Challenges. IEEE Reviews in Biomedical Engineering, 2018, 11, 289-305.	13.1	43
170	Motor modules during adaptation to walking in a powered ankle exoskeleton. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 2.	2.4	39
171	Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 74.	2.4	21
172	Biomechanical design analysis and experiments evaluation of a passive knee-assisting exoskeleton for weight-climbing. Industrial Robot, 2018, 45, 436-445.	1.2	14
173	Preliminary Testing of an Angled Sliding Shoe for Potential Human Energy Harvesting Applications. , 2018, , .		4
174	Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton. IEEE Robotics and Automation Letters, 2018, 3, 4265-4272.	3.3	82
175	Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia. Journal of Physiological Anthropology, 2018, 37, 18.	1.0	3
176	Soft Wearable Augmented Walking Suit With Pneumatic Gel Muscles and Stance Phase Detection System to Assist Gait. IEEE Robotics and Automation Letters, 2018, 3, 4257-4264.	3.3	37
177	Unpowered Knee Exoskeleton Reduces Quadriceps Activity during Cycling. Engineering, 2018, 4, 471-478.	3.2	21
178	Miniaturized springless hybrid nanogenerator for powering portable and wearable electronic devices from human-body-induced vibration. Nano Energy, 2018, 51, 61-72.	8.2	60
179	An Ankle–Foot Prosthesis Emulator With Control of Plantarflexion and Inversion–Eversion Torque. IEEE Transactions on Robotics, 2018, 34, 1183-1194.	7.3	25
180	Historical Perspective of Humanoid Robot Research in the Americas. , 2018, , 1-9.		1
181	ROS-health: An open-source framework for neurorobotics. , 2018, , .		9
182	Overview of Computational Intelligence (CI) Techniques for Powered Exoskeletons. Studies in Computational Intelligence, 2019, , 353-383.	0.7	8
183	Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robotics and Automation Letters, 2019, 4, 4547-4554.	3.3	66
184	Stiffness modification of two ankleâ€foot orthosis types to optimize gait in individuals with nonâ€spastic calf muscle weakness – a proofâ€ofâ€concept study. Journal of Foot and Ankle Research, 2019, 12, 41.	0.7	16
185	Design and Control of a High-Torque and Highly Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention During Squatting. IEEE Robotics and Automation Letters, 2019, 4, 4579-4586.	3.3	57

#	Article	IF	Citations
186	An Improved Model to Estimate Muscle-Tendon Mechanics and Energetics During Walking with a Passive Ankle Exoskeleton. Lecture Notes in Computer Science, 2019, , 83-96.	1.0	2
187	The Mechanical Design and Torque Control for the Ankle Exoskeleton During Human Walking. Lecture Notes in Computer Science, 2019, , 26-37.	1.0	3
188	Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science, 2019, 365, 668-672.	6.0	287
189	Biomechanical simulation analysis of human lower limbs assisted by exoskeleton. , 2019, , .		1
190	Kinematic Analysis and Dynamic Optimization Simulation of a Novel Unpowered Exoskeleton with Parallel Topology. Journal of Robotics, 2019, 2019, 1-12.	0.6	3
191	A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 2019, 64, 103943.	8.2	30
192	RNN-Based On-Line Continuous Gait Phase Estimation from Shank-Mounted IMUs to Control Ankle Exoskeletons. , 2019, 2019, 809-815.		37
193	An Adaptive Bioinspired Foot Mechanism Based on Tensegrity Structures. Soft Robotics, 2019, 6, 778-789.	4.6	17
194	Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2059-2069.	2.7	49
195	A Vacuum Powered Soft Textile-Based Clutch. Actuators, 2019, 8, 47.	1.2	14
196	Medial part thickness of wearable device affecting running motion. ROBOMECH Journal, 2019, 6, .	0.9	2
197	Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton. Sensors, 2019, 19, 3196.	2.1	17
198	Embodied AI beyond Embodied Cognition and Enactivism. Philosophies, 2019, 4, 39.	0.4	6
199	Flexible Gait Enhancing Mechatronics System for Lower Limb Assistance (GEMS L-Type). IEEE/ASME Transactions on Mechatronics, 2019, 24, 1520-1531.	3.7	27
200	Metabolic cost adaptations during training with a soft exosuit assisting the hip joint. Scientific Reports, 2019, 9, 9779.	1.6	50
201	Reducing the energy cost of walking in older adults using a passive hip flexion device. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 117.	2.4	47
202	Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 120.	2.4	25
203	Bayesian Optimization of Soft Exosuits Using a Metabolic Estimator Stopping Process. , 2019, , .		21

#	Article	IF	CITATIONS
204	Design and Evaluation of an Active Ankle Exoskeleton in Gait Assistance. , 2019, , .		3
205	A Wearable Sensory Textileâ€Based Clutch with High Blocking Force. Advanced Engineering Materials, 2019, 21, 1900886.	1.6	14
206	The effects of compression stockings on the energetics and biomechanics during walking. European Journal of Applied Physiology, 2019, 119, 2701-2710.	1.2	10
207	Humans falling in holes: adaptations in lower-limb joint mechanics in response to a rapid change in substrate height during human hopping. Journal of the Royal Society Interface, 2019, 16, 20190292.	1.5	19
208	Preliminary Evaluation of Disturbance Torque Estimation Approaches for Lower-limb Robotic Rehabilitation. , 2019, 2019, 715-720.		1
209	IMU-based assistance modulation in upper limb soft wearable exosuits. , 2019, 2019, 1197-1202.		21
210	Bio-Inspired Balance Control Assistance Can Reduce Metabolic Energy Consumption in Human Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1760-1769.	2.7	19
211	Unpowered Walking Assistive Device Based on Gait Kinetic Energy Analysis. , 2019, , .		0
212	Multi-articular passive exoskeleton for reducing the metabolic cost during human walking. , 2019, , .		6
213	An Unpowered Flexible Lower Limb Exoskeleton: Walking Assisting and Energy Harvesting. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2236-2247.	3.7	45
214	Make robot motions natural. Nature, 2019, 565, 422-424.	13.7	14
215	A Novel Control Method of A Soft Exosuit with Plantar Pressure Sensors. , 2019, , .		4
216	Variable Stiffness Spring Actuators for Low-Energy-Cost Human Augmentation. IEEE Transactions on Robotics, 2019, 35, 1435-1449.	7.3	48
217	Design and experimental analysis of a low-frequency resonant hybridized nanogenerator with a wide bandwidth and high output power density. Nano Energy, 2019, 66, 104122.	8.2	21
218	Design and Preliminary Evaluation of A Clutch-Spring Lower Limb Exoskeleton. , 2019, , .		4
219	Feedback From Mono-Articular Muscles is Sufficient for Exoskeleton Torque Adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2097-2106.	2.7	9
220	Development and testing of a passive ankle exoskeleton. Biocybernetics and Biomedical Engineering, 2019, 39, 902-913.	3.3	23
221	Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting. Applied Energy, 2019, 255, 113829.	5.1	77

#	Article	IF	CITATIONS
222	Important Movement Concepts: Clinical Versus Neuroscience Perspectives. Motor Control, 2019, 23, 273-293.	0.3	3
223	A Review on the Control of the Mechanical Properties of Ankle Foot Orthosis for Gait Assistance. Actuators, 2019, 8, 10.	1.2	24
224	Unparameterized Optimization of the Spring Characteristic of Parallel Elastic Actuators. IEEE Robotics and Automation Letters, 2019, 4, 854-861.	3.3	16
225	Evaluation of Calf Muscle Reflex Control in the â€~Ankle Strategy' during Upright Standing Push-Recovery. Applied Sciences (Switzerland), 2019, 9, 2085.	1.3	4
226	Design of a Novel Compact Adaptive Ankle Exoskeleton for Walking Assistance. Mechanisms and Machine Science, 2019, , 2159-2168.	0.3	5
227	Trading Symmetry for Energy Cost During Walking in Healthy Adults and Persons Poststroke. Neurorehabilitation and Neural Repair, 2019, 33, 602-613.	1.4	43
228	Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 65.	2.4	47
229	The foot and ankle structures reveal emergent properties analogous to passive springs during human walking. PLoS ONE, 2019, 14, e0218047.	1.1	9
230	Analysis of a Periodic Force Applied to the Trunk to Assist Walking Gait. , 2019, , .		2
231	Design and Experimental Evaluation of Wearable Lower Extremity Exoskeleton with Gait Self-adaptivity. Robotica, 2019, 37, 2035-2055.	1.3	3
232	Reduction in The Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton. , 2019, , .		0
233	Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 57.	2.4	61
234	An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off. Journal of Mechanisms and Robotics, 2019, 11, .	1.5	31
235	A Human-Centered Taxonomy of Interaction Modalities and Devices. Interacting With Computers, 2019, 31, 27-58.	1.0	16
236	Enhancing Mobility With Quasi-Passive Variable Stiffness Exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 487-496.	2.7	28
237	Dynamic Parameter Identification of a Lower Extremity Exoskeleton Using RLS-PSO. Applied Sciences (Switzerland), 2019, 9, 324.	1.3	13
238	A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy. Annals of Biomedical Engineering, 2019, 47, 1345-1356.	1.3	54
239	Autonomous functional movements in a tendon-driven limb via limited experience. Nature Machine Intelligence, 2019, 1, 144-154.	8.3	23

#	ARTICLE	IF	CITATIONS
240	Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 712-723.	2.7	68
241	Knee-braced energy harvester: Reclaim energy and assist walking. Mechanical Systems and Signal Processing, 2019, 127, 172-189.	4.4	20
242	Physiological and kinematic effects of a soft exosuit on arm movements. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 29.	2.4	91
243	Development and testing of a passive Walking Assist Exoskeleton. Biocybernetics and Biomedical Engineering, 2019, 39, 992-1004.	3.3	30
244	Kinematic Analysis and Simulation of a Novel Unpowered Exoskeleton with Parallel Topology. , 2019, , .		1
245	RobcWalk: Conceptual and Optimal Design. , 2019, , .		2
246	Simulation Analysis of Human-RoboWalk Augmented Model. , 2019, , .		5
247	The compensatory strategies among lower limb muscles and its effect on metabolic cost when hip assisted by passive elastic exotendon. , 2019, , .		2
248	Passive Knee Assistance Affects Whole-Body Biomechanics During Sit-to-Stand. , 2019, 2019, 4440-4444.		1
249	Applying the Interaction of Walking-Emotion to an Assistive Device for Rehabilitation and Exercise. , 2019, , .		5
250	An Improved Rocker-based Inverted Pendulum Walk Model for Human Gait. , 2019, , .		0
251	Design and development of a lightweight ankle exoskeleton for human walking augmentation. Mechatronics, 2019, 64, 102297.	2.0	25
252	Auto Cable Pretension Method for Soft Exosuit Based on Gait Trajectory Prediction Network. , 2019, , .		3
253	Human-in-the-Loop Optimization Control for the Ankle Exoskeleton During Walking Based on Iterative Learning and Particle Swarm Optimization Algorithm. , 2019, , .		4
254	The effects of ankle stiffness on mechanics and energetics of walking with added loads: a prosthetic emulator study. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 148.	2.4	13
255	Energy Efficiency of Gait Rehabilitation Robot: A Review. , 2019, , .		0
256	Control Reference Parameter for Stance Assistance Using a Passive Controlled Ankle Foot Orthosis—A Preliminary Study. Applied Sciences (Switzerland), 2019, 9, 4416.	1.3	10
257	Exoskeletons Improve Locomotion Economy by Reducing Active Muscle Volume. Exercise and Sport Sciences Reviews, 2019, 47, 237-245.	1.6	44

#	Article	IF	CITATIONS
258	Design and Analysis of An Anthropomorphic Two-DoF Ankle-Foot Orthosis. , 2019, , .		0
259	On the biological mechanics and energetics of the hip joint muscle–tendon system assisted by passive hip exoskeleton. Bioinspiration and Biomimetics, 2019, 14, 016012.	1.5	32
260	Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance. Journal of Biomechanics, 2019, 83, 76-84.	0.9	40
261	Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running. Journal of Applied Physiology, 2019, 126, 708-716.	1.2	24
262	The Effect of Hip Assistance Levels on Human Energetic Cost Using Robotic Hip Exoskeletons. IEEE Robotics and Automation Letters, 2019, 4, 430-437.	3.3	78
263	Design of a Compliant Mechanical Device for Upper Leg Rehabilitation. IEEE Robotics and Automation Letters, 2019, 4, 870-877.	3.3	2
264	The impact of ankle-foot orthosis stiffness on gait: A systematic literature review. Gait and Posture, 2019, 69, 101-111.	0.6	63
265	Historical Perspective of Humanoid Robot Research in the Americas. , 2019, , 9-17.		0
266	The bipedal saddle space: modelling and validation. Bioinspiration and Biomimetics, 2019, 14, 015001.	1.5	8
267	An Optimization Approach to Design Control Strategies for Soft Wearable Passive Exoskeletons. Biosystems and Biorobotics, 2019, , 525-529.	0.2	0
268	Development of an unpowered ankle exoskeleton for walking assist. Disability and Rehabilitation: Assistive Technology, 2020, 15, 1-13.	1.3	23
269	Biomechanical effects of passive hip springs during walking. Journal of Biomechanics, 2020, 98, 109432.	0.9	18
270	Multi-cell energy-absorbing structures with hollow columns inspired by the beetle elytra. Journal of Materials Science, 2020, 55, 4279-4291.	1.7	23
271	Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking Robotics. Energies, 2020, 13, 86.	1.6	46
272	High Force Density Textile Electrostatic Clutch. Advanced Materials Technologies, 2020, 5, 1900895.	3.0	75
273	Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. , 2020, , .		4
274	Real-Time Neural Network-Based Gait Phase Estimation Using a Robotic Hip Exoskeleton. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 28-37.	2.1	85
275	Lower Limb Exoskeleton Systems—Overview. , 2020, , 207-229.		29

#	Article	IF	CITATIONS
276	Design of Lower-Limb Exoskeletons and Emulator Systems. , 2020, , 251-274.		14
277	"Controlled Slip―Energy Harvesting While Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 437-443.	2.7	7
278	Optimal Control of an Energy-Recycling Actuator for Mobile Robotics Applications. , 2020, , .		3
279	Passive Dynamic Balancing and Walking in Actuated Environments. , 2020, , .		1
280	Smart health: the use of a lower limb exoskeleton in patients with sarcopenia. International Journal on Interactive Design and Manufacturing, 2020, 14, 1475-1489.	1.3	2
281	A Review of the Application of Additive Manufacturing in Prosthetic and Orthotic Clinics from a Biomechanical Perspective. Engineering, 2020, 6, 1258-1266.	3.2	56
282	Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study. Gait and Posture, 2022, 95, 256-263.	0.6	17
283	Rightward shift of optimal fascicle length with decreasing voluntary activity level in the soleus and lateral gastrocnemius muscles. Journal of Experimental Biology, 2021, 224, .	0.8	8
284	A survey on underactuated robotic systems: Bio-inspiration, trajectory planning and control. Mechatronics, 2020, 72, 102443.	2.0	42
285	A Theoretical Framework for a Network of Elastic Elements Generating Arbitrary Torque Fields. , 2020, , .		2
286	Parameter Optimization and Experimental Analysis of Passive Energy Storage Power-Assisted Exoskeleton. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	4
287	Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Sensors, 2020, 20, 4333.	2.1	34
288	A preliminary study of the military applications and future of individual exoskeletons. Journal of Physics: Conference Series, 2020, 1507, 102044.	0.3	11
289	Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 104.	2.4	29
290	Wireless Ti ₃ C ₂ T _{<i>x</i>} MXene Strain Sensor with Ultrahigh Sensitivity and Designated Working Windows for Soft Exoskeletons. ACS Nano, 2020, 14, 11860-11875.	7.3	99
291	Design of a Passive Gait-based Ankle-foot Exoskeleton with Self-adaptive Capability. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	1.9	18
292	Predicting walking response to ankle exoskeletons using data-driven models. Journal of the Royal Society Interface, 2020, 17, 20200487.	1.5	10
293	A Lower Limb Prosthetic Augment for Optimal Energy Recycling, Biomimetic to Gastrocnemius and Achilles Tendon Function. , 2020, , .		0

#	Article	IF	CITATIONS
294	A Fully Soft and Passive Assistive Device to Lower the Metabolic Cost of Sit-to-Stand. Frontiers in Bioengineering and Biotechnology, 2020, 8, 966.	2.0	11
295	Variable Stiffness Springs for Energy Storage Applications. , 2020, , .		2
296	A Novel Portable Lower Limb Exoskeleton for Gravity Compensation during Walking. , 2020, , .		3
297	Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons. PLoS ONE, 2020, 15, e0231996.	1.1	44
298	A Task-Invariant Learning Framework of Lower-Limb Exoskeletons for Assisting Human Locomotion. , 2020, , .		6
299	Stiffness-Optimized Ankle-Foot Orthoses Improve Walking Energy Cost Compared to Conventional Orthoses in Neuromuscular Disorders: A Prospective Uncontrolled Intervention Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2296-2304.	2.7	16
300	Modeling and Simulation of an Unpowered Lower Extremity Exoskeleton Based on Gait Energy. Mathematical Problems in Engineering, 2020, 2020, 1-15.	0.6	4
301	Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2203-2213.	2.7	12
302	Improving Passive Ankle Foot Orthosis System Using Estimated Ankle Velocity Reference. IEEE Access, 2020, 8, 194780-194794.	2.6	4
303	Simulation of a Passive Knee Exoskeleton for Vertical Jump Using Optimal Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2859-2868.	2.7	8
304	Musculoskeletal Model Personalization Affects Metabolic Cost Estimates for Walking. Frontiers in Bioengineering and Biotechnology, 2020, 8, 588925.	2.0	13
305	Modernization of an industrial passive exoskeleton prototype for lower extremities using rapid prototyping technologies. IOP Conference Series: Materials Science and Engineering, 2020, 971, 052049.	0.3	2
306	Benchmarking Wearable Robots: Challenges and Recommendations From Functional, User Experience, and Methodological Perspectives. Frontiers in Robotics and Al, 2020, 7, 561774.	2.0	36
307	Passive Exotendon Spring Elements can replace Muscle Torque during Gait. , 2020, , .		3
308	A System for Simple Robotic Walking Assistance With Linear Impulses at the Center of Mass. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1353-1362.	2.7	6
309	An Underwater Lower-Extremity Soft Exoskeleton for Breaststroke Assistance. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 447-462.	2.1	13
310	Gearing Up the Human Ankle-Foot System to Reduce Energy Cost of Fast Walking. Scientific Reports, 2020, 10, 8793.	1.6	21
311	An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 723-739	1.5	20

#	ARTICLE	IF	CITATIONS
312	Design and performance analysis of human walking induced energy recovery system by means of hydraulic energy conversion and storage. Energy Conversion and Management, 2020, 217, 113008.	4.4	14
313	Extremum Seeking Control for Stiffness Auto-Tuning of a Quasi-Passive Ankle Exoskeleton. IEEE Robotics and Automation Letters, 2020, , 1-1.	3.3	17
314	Design and Research of Lower Limb Exoskeleton Based on a Hill-Type Muscle Model for Assisting People to Walk. , 2020, , .		1
315	Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 75.	2.4	28
316	Reduction in the metabolic cost of human walking gaits using quasi-passive upper body exoskeleton. , 2020, , 135-151.		1
317	Stair negotiation made easier using low-energy interactive stairs. , 2020, , 179-199.		0
318	Human-in-the-loop optimization of wearable robots to reduce the human metabolic energy cost in physical movements. Robotics and Autonomous Systems, 2020, 127, 103495.	3.0	5
319	Accelerating the Estimation of Metabolic Cost Using Signal Derivatives: Implications for Optimization and Evaluation of Wearable Robots. IEEE Robotics and Automation Magazine, 2020, 27, 32-42.	2.2	7
320	Physical and Cognitive Load Effects Due to a Powered Lower-Body Exoskeleton. Human Factors, 2020, 62, 411-423.	2.1	31
321	Shape memory alloy actuator-embedded smart clothes for ankle assistance. Smart Materials and Structures, 2020, 29, 055003.	1.8	35
322	Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics, 2020, 5, .	9.9	100
323	Energy Expenditure of Dynamic Submaximal Human Plantarflexion Movements: Model Prediction and Validation by in-vivo Magnetic Resonance Spectroscopy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 622.	2.0	1
324	Ankle–foot orthosis with dorsiflexion resistance using spring-cam mechanism increases knee flexion in the swing phase during walking in stroke patients with hemiplegia. Gait and Posture, 2020, 81, 27-32.	0.6	16
325	A biarticular passive exosuit to support balance control can reduce metabolic cost of walking. Bioinspiration and Biomimetics, 2020, 15, 036009.	1.5	23
326	Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons. Scientific Reports, 2020, 10, 3604.	1.6	52
327	Evaluation of Lower Leg Muscle Activities During Human Walking Assisted by an Ankle Exoskeleton. IEEE Transactions on Industrial Informatics, 2020, 16, 7168-7176.	7.2	34
328	The exoskeleton expansion: improving walking and running economy. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 25.	2.4	243
329	Characterizing the comfort limits of forces applied to the shoulders, thigh and shank to inform exosuit design. PLoS ONE, 2020, 15, e0228536.	1.1	27

#	Article	IF	CITATIONS
330	Offline Assistance Optimization of a Soft Exosuit for Augmenting Ankle Power of Stroke Survivors During Walking. IEEE Robotics and Automation Letters, 2020, 5, 828-835.	3.3	49
331	Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 461-467.	2.7	61
332	Static, Dynamic, and Cognitive Fit of Exosystems for the Human Operator. Human Factors, 2020, 62, 424-440.	2.1	36
333	Change in telescoping leg strategy with varying walking speed to modulate force advantage. Journal of Theoretical Biology, 2020, 496, 110249.	0.8	0
334	Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mechanism and Machine Theory, 2020, 150, 103840.	2.7	61
335	Simultaneous Control Framework for Humanoid Tracking Human Movement With Interacting Wearable Assistive Device. IEEE Robotics and Automation Letters, 2020, 5, 3604-3611.	3.3	3
336	Modular footwear that partially offsets downhill or uphill grades minimizes the metabolic cost of human walking. Royal Society Open Science, 2020, 7, 191527.	1.1	4
337	How to run 50% faster without external energy. Science Advances, 2020, 6, eaay1950.	4.7	21
338	Knee Joint Biomechanics in Physiological Conditions and How Pathologies Can Affect It: A Systematic Review. Applied Bionics and Biomechanics, 2020, 2020, 1-22.	0.5	33
339	A Compact Ankle Exoskeleton With a Multiaxis Parallel Linkage Mechanism. IEEE/ASME Transactions on Mechatronics, 2021, 26, 191-202.	3.7	15
340	A hip–knee–ankle exoskeleton emulator for studying gait assistance. International Journal of Robotics Research, 2021, 40, 722-746.	5.8	63
341	A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces. Nano Energy, 2021, 80, 105548.	8.2	33
342	Physical Human–Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators. IEEE Transactions on Cybernetics, 2021, 51, 1888-1901.	6.2	50
343	The System of Locomotion: The Distributive Regulation of Limb Mechanics by Spinal Circuits During Locomotion. , 2021, , 201-213.		0
344	Adding a toe joint to a prosthesis: walking biomechanics, energetics, and preference of individuals with unilateral below-knee limb loss. Scientific Reports, 2021, 11, 1924.	1.6	12
345	Trajectory-Free Control of Lower-Limb Exoskeletons Through Underactuated Total Energy Shaping. IEEE Access, 2021, 9, 95427-95443.	2.6	6
346	Selection of Muscle-Activity-Based Cost Function in Human-in-the-Loop Optimization of Multi-Gait Ankle Exoskeleton Assistance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 944-952.	2.7	24
347	Development of a 3D Printed Bipedal Robot: Towards Humanoid Research Platform to Study Human Musculoskeletal Biomechanics. Journal of Bionic Engineering, 2021, 18, 150-170.	2.7	8

#	Article	IF	CITATIONS
348	Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks. IEEE Transactions on Robotics, 2021, 37, 2193-2209.	7.3	24
349	Recent use of deep learning techniques in clinical applications based on gait: a survey. Journal of Computational Design and Engineering, 2021, 8, 1499-1532.	1.5	14
350	Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking. Journal of Neurophysiology, 2021, 125, 344-357.	0.9	35
352	Different kinds of energy harvesters from human activities. International Journal of Energy Research, 2021, 45, 4841-4870.	2.2	8
353	Closing the loop between wearable technology and human biology: A new paradigm for steering neuromuscular form and function. Progress in Biomedical Engineering, 0, , .	2.8	8
354	Fabrication of an insect-like compound-eye SERS substrate with 3D Ag nano-bowls and its application in optical sensor. Sensors and Actuators B: Chemical, 2021, 330, 129357.	4.0	23
355	A Novel Gait Prediction Method for Soft Exosuit Base on Limit Cycle and Neural Network. , 2021, , .		2
356	Effect of a passive hip exoskeleton on walking distance in neurological patients. Assistive Technology, 2022, 34, 527-532.	1.2	9
358	A Single Assistive Profile Applied by a Passive Hip Flexion Device Can Reduce the Energy Cost of Walking in Older Adults. Applied Sciences (Switzerland), 2021, 11, 2851.	1.3	9
359	Series elasticity facilitates safe plantar flexor muscle–tendon shock absorption during perturbed human hopping. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210201.	1.2	17
360	A Control Method With Terrain Classification and Recognition for Lower Limb Soft Exosuit. , 2021, , .		1
361	Personalized Gait Treatment Using Passive Controllable Ankle Foot Orthosis. IOP Conference Series: Materials Science and Engineering, 2021, 1096, 012002.	0.3	1
362	Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 615358.	2.0	14
363	Effect of Hip Assistance Modes on Metabolic Cost of Walking With a Soft Exoskeleton. IEEE Transactions on Automation Science and Engineering, 2021, 18, 426-436.	3.4	51
365	Extracting electricity with exosuit braking. Science, 2021, 372, 909-911.	6.0	9
366	Modeling of Linear Electromagnetic Damper for Walking Assistance and Energy Harvesting. , 2021, , .		0
367	Removing energy with an exoskeleton reduces the metabolic cost of walking. Science, 2021, 372, 957-960.	6.0	52
368	Design and Preliminary Assessment of a Passive Elastic Leg Exoskeleton for Resistive Gait Rehabilitation. IEEE Transactions on Biomedical Engineering, 2021, 68, 1941-1950.	2.5	9

#	Article	IF	CITATIONS
369	Improving the Human Machine. Physics Magazine, 0, 14, .	0.1	0
370	A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue. Biosensors, 2021, 11, 215.	2.3	23
371	Using a simple rope-pulley system that mechanically couples the arms, legs, and treadmill reduces the metabolic cost of walking. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 96.	2.4	3
372	Elastomeric Haptic Devices for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009364.	7.8	39
373	Simulation-based biomechanical assessment of unpowered exoskeletons for running. Scientific Reports, 2021, 11, 11846.	1.6	10
374	Comparison of negative-muscle-work energy harvesters from the human ankle: Different designs and trade-offs. Renewable Energy, 2021, 170, 525-538.	4.3	15
375	Knee energy harvester with variable transmission to reduce the effect on the walking gait. Smart Materials and Structures, 0, , .	1.8	11
376	A lightweight wearable biomechanical energy harvester. Smart Materials and Structures, 2021, 30, 075032.	1.8	5
377	How can representationalism accommodate degrees of belief? A dispositional representationalist proposal. SynthÃ^se, 0, , 1.	0.6	0
378	Individual stiffness optimization of dorsal leaf spring ankle–foot orthoses in people with calf muscle weakness is superior to standard bodyweight-based recommendations. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 97.	2.4	10
379	Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 95.	2.4	21
380	Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor. Mechatronics, 2021, 76, 102554.	2.0	24
381	Towards an ankle-foot orthosis powered by a dielectric elastomer actuator. Mechatronics, 2021, 76, 102551.	2.0	12
382	Gait assist brace with double carbon fiber reinforced plastic spring blades to allow ankle joint movement and change in walking direction. Advanced Robotics, 2021, 35, 927-938.	1.1	0
383	Simulation design of flexible Unpowerd lower limb exoskeleton. , 2021, , .		1
384	Terrain environment classification and recognition for soft lower-limb exosuit. , 2021, , .		2
386	Design and optimisation of load-adaptive actuator with variable stiffness for compact ankle exoskeleton. Mechanism and Machine Theory, 2021, 161, 104323.	2.7	42
387	Iterative Learning Control of Impedance Parameters for a Soft Exosuit. , 2021, , .		1

#	Article	IF	CITATIONS
388	Smart Textiles that Teach: Fabricâ€Based Haptic Device Improves the Rate of Motor Learning. Advanced Intelligent Systems, 2021, 3, 2100043.	3.3	9
389	Effect of Mono- Versus Bi-Articular Ankle Foot Orthosis on Muscular Performance of the Lower Leg. Biosystems and Biorobotics, 2022, , 407-418.	0.2	0
390	Materials with Electroprogrammable Stiffness. Advanced Materials, 2021, 33, e2007952.	11.1	42
391	Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 119.	2.4	111
392	Reduced Achilles Tendon Stiffness Disrupts Calf Muscle Neuromechanics in Elderly Gait. Gerontology, 2022, 68, 241-251.	1.4	18
394	A Multivariate Analysis for Force Element Selection in Passive Ankle Exoskeletons. Biosystems and Biorobotics, 2022, , 545-549.	0.2	0
395	Analysis of a Passive Ankle Exoskeleton for the Reduction of the Metabolic Costs During walking—A Preliminary Study. Biosystems and Biorobotics, 2022, , 541-544.	0.2	0
396	Body-powered variable impedance: An approach to augmenting humans with a passive device by reshaping lifting posture. Science Robotics, 2021, 6, .	9.9	14
397	The effects of footplate stiffness on push-off power when walking with posterior leaf spring ankle-foot orthoses. Clinical Biomechanics, 2021, 88, 105422.	0.5	4
398	Ankle intention detection algorithm using electromyography signal. Journal of Computational Design and Engineering, 2021, 8, 1234-1242.	1.5	1
399	Human-machine Coupled Research of a Passive Lower Limb Exoskeleton for Walking Assistance. , 2021, ,		1
400	Adaptive Ankle Exoskeleton Control: Validation Across Diverse Walking Conditions. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 801-812.	2.1	25
401	Reducing the energy cost of running using a lightweight, low-profile elastic exosuit. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 129.	2.4	7
402	Development and Functional Testing of an Unloading Concept for Knee Osteoarthritis Patients: A Pilot Study. Journal of Biomechanical Engineering, 2022, 144, .	0.6	6
403	A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance. Micromachines, 2021, 12, 1150.	1.4	4
404	Multiplanar Stiffness of Commercial Carbon Composite Ankle-Foot Orthoses. Journal of Biomechanical Engineering, 2022, 144, .	0.6	6
406	Economical and preferred walking speed using body weight support apparatus with a spring-like characteristics. BMC Sports Science, Medicine and Rehabilitation, 2021, 13, 107.	0.7	3
407	Harvesting the negative work of an active exoskeleton robot to extend its operating duration. Energy Conversion and Management, 2021, 245, 114640.	4.4	15

#	Article	IF	CITATIONS
408	Review on Control Strategies for Lower Limb Rehabilitation Exoskeletons. IEEE Access, 2021, 9, 123040-123060.	2.6	29
409	Passive knee exoskeletons in functional tasks: Biomechanical effects of a <i>SpringExo</i> coil-spring on squats. Wearable Technologies, 2021, 2, .	1.6	10
410	Semi-powered exoskeleton that regulates the muscular activity of jaw movement for oral functional rehabilitation/training. Dental Materials Journal, 2021, 40, 101-109.	0.8	6
411	Human Musculoskeletal and Energetic Adaptations to Unilateral Robotic Knee Gait Assistance. IEEE Transactions on Biomedical Engineering, 2022, 69, 1141-1150.	2.5	4
412	RoboWalk: augmented human-robot mathematical modelling for design optimization. Mathematical and Computer Modelling of Dynamical Systems, 2021, 27, 373-404.	1.4	7
413	Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 662-672.	2.7	17
414	Research and Design of Mobility Aids. Journal of Physics: Conference Series, 2021, 1748, 062054.	0.3	2
415	A passive mechanism for decoupling energy storage and return in ankle–foot prostheses: A case study in recycling collision energy. Wearable Technologies, 2021, 2, .	1.6	2
416	Recent Development of Unpowered Exoskeletons for Lower Extremity: A Survey. IEEE Access, 2021, 9, 138042-138056.	2.6	8
417	Preliminary Experimental Study on Variable Stiffness Structures Based on Textile Jamming for Wearable Robotics. Biosystems and Biorobotics, 2019, , 49-52.	0.2	5
418	Towards Embroidered Sensing Technologies for a Lower Limb Soft Exoskeleton. Biosystems and Biorobotics, 2019, , 53-57.	0.2	1
419	Gathering energy from ultra-low-frequency human walking using a double-frequency up-conversion harvester in public squares. Energy Conversion and Management, 2020, 217, 112958.	4.4	27
422	Energy Regeneration From Electromagnetic Induction by Human Dynamics for Lower Extremity Robotic Prostheses. IEEE Transactions on Robotics, 2020, 36, 1442-1451.	7.3	18
423	Direct Validation of Model-Predicted Muscle Forces in the Cat Hindlimb During Locomotion. Journal of Biomechanical Engineering, 2020, 142, .	0.6	10
424	Design and Development of a Quasi-Passive Transtibial Biarticular Prosthesis to Replicate Gastrocnemius Function in Walking. Journal of Medical Devices, Transactions of the ASME, 2020, 14, 0250011-250016.	0.4	8
425	A Lower Limb Exoskeleton Recycling Energy From Knee and Ankle Joints to Assist Push-Off. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	27
426	The Effect of Stiff Foot Plate Length on Walking Gait Mechanics. Journal of Biomechanical Engineering, 2020, 142, .	0.6	2
427	Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study. Journal of Applied Biomechanics, 2020, 36, 59-67.	0.3	12

#	Article	IF	CITATIONS
428	Energetics of Walking With a Robotic Knee Exoskeleton. Journal of Applied Biomechanics, 2019, 35, 320-326.	0.3	51
429	"Body-In-The-Loop": Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost. PLoS ONE, 2015, 10, e0135342.	1.1	97
430	Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running. PLoS ONE, 2016, 11, e0163417.	1.1	127
431	Stair negotiation made easier using novel interactive energy-recycling assistive stairs. PLoS ONE, 2017, 12, e0179637.	1.1	5
432	'Body-in-the-Loop' Optimization of Assistive Robotic Devices: A Validation Study. , 0, , .		60
433	Active Passive Nature of Assistive Wearable Gait Augment Suit for Enhanced Mobility. Journal of Robotics and Mechatronics, 2018, 30, 717-728.	0.5	14
434	One-DOF Wire-Driven Robot Assisting Both Hip and Knee Flexion Motion. Journal of Robotics and Mechatronics, 2019, 31, 135-142.	0.5	3
435	Development of A Passively Powered Knee Exoskeleton for Squat Lifting. Journal of Robotics, Networking and Artificial Life, 2018, 5, 45.	0.2	22
436	Systematic Review of Exoskeletons towards a General Categorization Model Proposal. Applied Sciences (Switzerland), 2021, 11, 76.	1.3	29
437	Assistive Torque of Ankle Exoskeleton Based on a Simple Biomechanical Model and a Genetic Algorithm. Lecture Notes in Computer Science, 2021, , 780-790.	1.0	1
438	Crawling Support Using Wearable SuperLimbs: Human-Robot Synchronization and Metabolic Cost Assessment. , 2021, , .		1
439	SpringExo, a spring-based exoskeleton for providing knee assistance: Design, Characterization and Feasibility Study. , 2021, , .		2
440	Shape Memory Alloy Actuated Ankle Foot Orthosis for Reduction of Locomotion Force. , 2021, , .		1
441	From a biological template model to gait assistance with an exosuit. Bioinspiration and Biomimetics, 2021, 16, 066024.	1.5	9
442	Design of a multi-resiliency exoskeleton and its physiologic cost evaluation in uphill walking and stair climbing locomotion. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 2115-2127.	1.1	1
443	Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Biosensors, 2021, 11, 393.	2.3	3
444	Performance analysis of unpowered lower limb exoskeleton during sit down and stand up. Robotica, 2022, 40, 1274-1292.	1.3	4
445	Optimized hip–knee–ankle exoskeleton assistance at a range of walking speeds. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 152.	2.4	19

# 446	ARTICLE Powered hip exoskeleton improves walking economy in individuals with above-knee amputation. Nature Medicine, 2021, 27, 1783-1788.	IF 15.2	CITATIONS
447	Exoskeleton boots improve on evolution. Nature, 0, , .	13.7	0
449	A Simulation-Based Study on a Clutch-Spring Mechanism Reducing Human Walking Metabolic Cost. International Journal of Mechanical Engineering and Robotics Research, 2017, 6, 55-60.	0.7	4
450	Synthesis and Optimization Considerations for a Knee Orthosis Based on a Watt's Six-Bar Linkage. Biosystems and Biorobotics, 2019, , 18-22.	0.2	0
451	Integrated Exoskeleton to Assist Paraplegics in Driving a Car. , 0, , .		0
452	Minimum Time Path with Smooth and Non-smooth Slope-Dependent Speed. , 2019, , .		0
454	Assistive Soft Exoskeletons with Pneumatic Artificial Muscles. , 2020, , 217-242.		1
456	Human-Centric Optimal Design of Biomimetic Exosuit for Loaded Walking: A Simulation Study. Lecture Notes in Mechanical Engineering, 2021, , 497-510.	0.3	1
457	Modeling, Simulation and Proof-of-Concept of an Augmentation Ankle Exoskeleton with a Manually-Selected Variable Stiffness Mechanism. , 2020, , 013-017.		0
458	Older Adults Overcome Reduced Triceps Surae Structural Stiffness to Preserve Ankle Joint Quasi-Stiffness During Walking. Journal of Applied Biomechanics, 2020, 36, 209-216.	0.3	3
460	Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 157.	2.4	18
462	Using Predictive Simulation Methods to Design Suitable Assistance Modes for Human Walking on Slopes. , 2020, , .		0
463	Unpowered Walking Assistance Device by Using Ingeniously a Gravitational Field. Journal of the Robotics Society of Japan, 2020, 38, 139-142.	0.0	2
465	Uso de la resina poliéster en el diseño de un exoesqueleto pasivo de extremidad inferior. Mare Ingenii, IngenierÃas, 2020, 2, 7-17.	0.0	0
467	A portable exotendon assisting hip and knee joints reduces muscular burden during walking. Royal Society Open Science, 2021, 8, 211266.	1.1	3
468	Modeling the Effects of Linear and Torsional Spring Based Passive Assistance on Human Gait. Lecture Notes in Mechanical Engineering, 2021, , 151-163.	0.3	0
469	Differences between joint-space and musculoskeletal estimations of metabolic rate time profiles. PLoS Computational Biology, 2020, 16, e1008280.	1.5	4
470	Exoskeletons for Lower Limb Applications: A Review. , 2021, , 139-164.		6

#	Article	IF	CITATIONS
472	Design of an Ankle Exoskeleton That Recycles Energy to Assist Propulsion During Human Walking. IEEE Transactions on Biomedical Engineering, 2022, 69, 1212-1224.	2.5	10
473	Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies, 2021, 2, .	1.6	25
474	Work in the Time of Covid-19: Actuators and Sensors for Rehabilitation Robotics. IEEJ Journal of Industry Applications, 2022, 11, 256-265.	0.9	7
475	A Lower Limb Exoskeleton With Rigid and Soft Structure for Loaded Walking Assistance. IEEE Robotics and Automation Letters, 2022, 7, 454-461.	3.3	32
476	Neurophysiological Support of Motor Control in "Hybrid―Postures. Literature Review. Neuroscience and Behavioral Physiology, 2021, 51, 1162-1168.	0.2	0
477	Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Science Robotics, 2021, 6, eabj1362.	9.9	59
479	Stiffening the human foot with a biomimetic exotendon. Scientific Reports, 2021, 11, 22778.	1.6	1
480	Unilateral non-electric assistive walking device helps neurological and orthopedic patients to improve gait patterns. Gait and Posture, 2021, 92, 294-301.	0.6	4
481	Bilateral vs. Paretic-Limb-Only Ankle Exoskeleton Assistance for Improving Hemiparetic Gait: A Case Series. IEEE Robotics and Automation Letters, 2022, 7, 1246-1253.	3.3	6
482	Human-exoskeleton coupling dynamics in the swing of lower limb. Applied Mathematical Modelling, 2022, 104, 439-454.	2.2	7
483	Passive Knee Exoskeleton Using Brake Torque to Assist Stair Ascent. , 2020, , .		11
484	Mechanical design and Optimization on Lower Extremity Rehabilitation Robot. , 2020, , .		2
485	Parallel Variable Stiffness Actuators. , 2021, , .		6
486	Analysis of an Arm-Toothed Rotary Electromagnetic Energy-Harvesting Damper. Lecture Notes in Electrical Engineering, 2022, , 303-318.	0.3	2
487	The Effect of Variable Stiffness Exoskeleton on the Hip Muscle Groups during Walking. , 2021, , .		0
488	A Cable-actuated Prosthetic Emulator for Transradial Amputees. , 2021, 2021, 4529-4532.		2
489	Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance. , 2021, 2021, 4501-4504.		1
490	Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking. Frontiers in Robotics and Al, 2021, 8, 702860.	2.0	9

#	Article	IF	Citations
491	A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running. Micromachines, 2022, 13, 157.	1.4	4
492	Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study. PLoS ONE, 2022, 17, e0261318.	1.1	14
493	Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications. Proceedings of the IEEE, 2022, 110, 246-272.	16.4	40
494	Human-in-the-Loop Optimization of Exoskeleton Assistance Via Online Simulation of Metabolic Cost. IEEE Transactions on Robotics, 2022, 38, 1410-1429.	7.3	31
495	Musculoskeletal Load Analysis for the Design and Control of a Wearable Robot Bracing the Human Body While Crawling on a Floor. IEEE Access, 2022, 10, 6814-6829.	2.6	3
496	Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers With Motorized Tuning of Squat Heights. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 184-193.	2.7	11
497	Hip–Knee Coupling Exoskeleton With Offset Theory for Walking Assistance. Frontiers in Bioengineering and Biotechnology, 2021, 9, 798496.	2.0	2
498	Control of flexible knee joint exoskeleton robot based on dynamic model. Robotica, 2022, 40, 2996-3012.	1.3	2
500	Pneumatic Quasi-Passive Variable Stiffness Mechanism for Energy Storage Applications. IEEE Robotics and Automation Letters, 2022, 7, 1705-1712.	3.3	5
501	Human gait energy harvesting through decoupled suspended load backpacks. Mechanism and Machine Theory, 2022, 171, 104734.	2.7	6
502	Characterization of Open-loop Impedance Control and Efficiency in Wearable Robots. IEEE Robotics and Automation Letters, 2022, 7, 4313-4320.	3.3	4
503	Flexible lower limb exoskeleton systems: A review. NeuroRehabilitation, 2022, 50, 367-390.	0.5	15
504	Model Identification and Human-robot Coupling Control of Lower Limb Exoskeleton with Biogeography-based Learning Particle Swarm Optimization. International Journal of Control, Automation and Systems, 2022, 20, 589-600.	1.6	9
505	Design and investigation of the effectiveness of a metatarsophalangeal assistive device on the muscle activities of the lower extremity. PLoS ONE, 2022, 17, e0263176.	1.1	1
506	Simulating Ideal Assistive Strategies to Reduce the Metabolic Cost of Walking in the Elderly. IEEE Transactions on Biomedical Engineering, 2022, 69, 2797-2805.	2.5	10
507	Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 869-877.	2.7	19
508	Design and optimization of a novel lower limb assisted smart robot technology: Evaluation of human-computer interaction based lower limb assisted robot design. , 2022, , .		0
509	A passive exoskeleton can assist split-belt adaptation. Experimental Brain Research, 2022, 240, 1159.	0.7	1

#	Article	IF	CITATIONS
510	Harnessing Energy of a Treadmill for Push-Off Assistance During Walking: In-Silico Feasibility Study. Frontiers in Bioengineering and Biotechnology, 2022, 10, 832087.	2.0	1
511	Future options of electricity generation for sustainable development: Trends and prospects. Engineering Reports, 2022, 4, .	0.9	11
512	Selectively Stiffening Garments Enabled by Cellular Composites. Advanced Materials Technologies, 2022, 7, .	3.0	10
513	Visual guidance can help with the use of a robotic exoskeleton during human walking. Scientific Reports, 2022, 12, 3881.	1.6	10
514	Progressive Improvement of the Model of an Exoskeleton for the Lower Limb by Applying the Modular Modelling Methodology. Machines, 2022, 10, 248.	1.2	0
515	Metabolically efficient walking assistance using optimized timed forces at the waist. Science Robotics, 2022, 7, eabh1925.	9.9	2
516	Analysis, design and preliminary evaluation of an anthropometric self-stabilization passive exoskeleton for enhancing the ability of walking with loads. Robotics and Autonomous Systems, 2022, 153, 104079.	3.0	2
517	Modular quasi-passive mechanism for energy storage applications: towards lightweight high-performance exoskeleton. , 2021, , .		2
518	Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort. International Journal of Environmental Research and Public Health, 2021, 18, 13115.	1.2	3
519	Energy expenditure in lower limb amputees with prosthesis. , 2022, , .		0
520	A Non-Anthropomorphic Bipedal Walking Robot with a Vertically Stabilized Base. Applied Sciences (Switzerland), 2022, 12, 4108.	1.3	4
521	Artificial Muscles (Review Article). Journal of Computer and Systems Sciences International, 2022, 61, 270-293.	0.2	4
522	Positive Effect of Kinesiotape on 1 km Run Performance in University-Level Males: A Cross-Sectional Study. Journal of Functional Morphology and Kinesiology, 2022, 7, 32.	1.1	2
531	Human-in-the-Loop Control of Soft Exosuits Using Impedance Learning on Different Terrains. IEEE Transactions on Robotics, 2022, 38, 2979-2993.	7.3	66
532	Analysis and evaluation of human lower limb energy collection and walking assisted exoskeleton. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40, 95-102.	0.3	0
533	A Singularity-Free Terminal Sliding Mode Control of an Uncertain Paediatric Exoskeleton System. , 2022, , .		2
534	Representing and Computing the B-Derivative of the Piecewise-Differentiable Flow of a Class of Nonsmooth Vector Fields. Journal of Computational and Nonlinear Dynamics, 2022, 17, .	0.7	1
535	Neuromechanical Model-Based Adaptive Control of Bilateral Ankle Exoskeletons: Biological Joint Torque and Electromyogram Reduction Across Walking Conditions. IEEE Transactions on Robotics, 2022, 38, 1380-1394.	7.3	22

		CITATION REPORT		
#	Article		IF	CITATIONS
536	Modeling and Stiffness-Based Continuous Torque Control of Lightweight Quasi-Direct-Driv Exoskeletons for Versatile Walking Assistance. IEEE Transactions on Robotics, 2022, 38, 14		7.3	23
537	Conclusion or Illusion: Quantifying Uncertainty in Inverse Analyses From Marker-Based Mot Capture due to Errors in Marker Registration and Model Scaling. Frontiers in Bioengineering Biotechnology, 2022, 10, .	tion g and	2.0	8
538	Ergonomic Design and Performance Evaluation of H-Suit for Human Walking. Micromachin 825.	es, 2022, 13,	1.4	2
539	Wearable Robots for Human Underwater Movement Ability Enhancement: A Survey. IEEE/C Automatica Sinica, 2022, 9, 967-977.	AA Journal of	8.5	15
540	Mechanical Compliance and Dynamic Load Isolation Design of Lower Limb Exoskeleton for Assistance. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5392-5402.	Locomotion	3.7	5
541	Design and Electromechanical Performance Evaluation of a Powered Parallel-Elastic Ankle Exoskeleton. IEEE Robotics and Automation Letters, 2022, 7, 8092-8099.		3.3	4
542	Fuzzy-Based Optimization and Control of a Soft Exosuit for Compliant Robot–Humanâ€ Interaction. IEEE Transactions on Fuzzy Systems, 2023, 31, 241-253.	'Environment	6.5	2
543	Passive Exoskeleton-Assisted Gait Shows a Unique Interlimb Coordination Signature Witho Restricting Regular Walking. Frontiers in Physiology, 0, 13, .	ut	1.3	1
544	Comparison of Existing Methods for Characterizing Bi-Linear Natural Ankle Quasi-Stiffness. of Biomechanical Engineering, 2022, , .	Journal	0.6	2
546	A dual-drive four joint time-sharing control walking power-assisted flexible exoskeleton rob system. Robotica, 0, , 1-12.	ot	1.3	0
547	A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement. Micr 2022, 13, 900.	omachines,	1.4	19
548	Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and futu directions. Applied Energy, 2022, 321, 119379.	ıre	5.1	38
549	Passive Knee Exoskeleton Increases Vertical Jump Height. IEEE Transactions on Neural Syste Rehabilitation Engineering, 2022, 30, 1796-1805.	ems and	2.7	6
550	Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton. I Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1786-1795.	EEE	2.7	14
551	Current developments of robotic hip exoskeleton toward sensing, decision, and actuation: Wearable Technologies, 2022, 3, .	A review.	1.6	12
552	Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Walking Economy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20 1961-1970.		2.7	2
553	Development and Functional Evaluation of a Passive Ankle Exoskeleton to Support Military Locomotion. Advances in Military Technology, 2022, 17, 79-95.		0.4	3
554	Comprehensive Swing Leg Motion Predictor for Steady and Transient Walking Conditions.	, 2022, , .		1

CITATION REPORT ARTICLE IF CITATIONS Walking with increasing acceleration is achieved by tuning ankle torque onset timing and rate of 1.5 3 torque development. Journal of the Royal Society Interface, 2022, 19, . Reducing the energy cost of walking with low assistance levels through optimized hip flexion 1.6 assistance from a soft exosuit. Scientific Reports, 2022, 12, . Incorporation of Torsion Springs in a Knee Exoskeleton for Stance Phase Correction of Crouch Gait. 2 1.3 Applied Sciences (Switzerland), 2022, 12, 7034. The Effects of Unpowered Soft Exoskeletons on Preferred Gait Features and Resonant Walking. 1.2 Machines, 2022, 10, 585. Design, modeling, and control of a Series Elastic Actuator with Discretely Adjustable Stiffness 2.0 6 (SEADAS). Mechatronics, 2022, 86, 102863. Effect of fatigue on kinematics, kinetics and muscle activities of lower limbs during gait. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, O, , 1.0 095441192211125. Effect of MXene nanosheets attached to carbonyl iron microspheres on the performance and stability 2.9 10 of magnetorheological fluid. Journal of Industrial and Engineering Chemistry, 2022, 114, 508-517. Cooperativity Model for Improving the Walking-Assistance Efficiency of the Exoskeleton. 1.4 Micromachines, 2022, 13, 1154. Review of Power-Assisted Lower Limb Exoskeleton Robot. Journal of Shanghai Jiaotong University 0.5 1 (Science), 2024, 29, 1-15. Effects of simulated reduced gravity and walking speed on ankle, knee, and hip quasi-stiffness in 1.1 overground walking. PLoS ONE, 2022, 17, e0271927. Optimally-calibrated non-invasive feedback improves amputees' metabolic consumption, balance and 1.8 10 walking confidence. Journal of Neural Engineering, 2022, 19, 046049. Design of a Biomechatronic Device for Upright Mobility in People with SCI Using an Exoskeleton Like a 1.3 Stabilization System. Applied Sciences (Switzerland), 2022, 12, 8098. A review of the design of load-carrying exoskeletons. Science China Technological Sciences, 2022, 65, 2.0 6 2051-2067. Power toÂtheÂSprings: Passive Elements are Sufficient toÂDrive Push-Off inÂHuman Walking. Lecture Notes in Networks and Systems, 2023, , 21-32. Parametric equations to study and predict lower-limb joint kinematics and kinetics during human 1.1 3 walking and slow running on slopes. PLoS ONE, 2022, 17, e0269061. Prediction of ground reaction forces using the artificial neural network from capacitive self-sensing 3.1

572	Preference-based Assistance Map Learning with Robust Adaptive Oscillators. IEEE Transactions on Medical Robotics and Bionics, 2022, , 1-1.	2.1	0
573	Design ofÂMulti-unit Passive Exoskeleton forÂRunning. Lecture Notes in Computer Science, 2022, , 686-697	1.0	0

values of composite ankle springs for exo-robots. Composite Structures, 2022, 301, 116233.

#

555

557

559

561

564

566

568

570

#	Article	IF	CITATIONS
574	Biomechanical and Physiological Evaluation of Biologically-Inspired Hip Assistance With Belt-Type Soft Exosuits. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2802-2814.	2.7	3
575	Powered Hip Exoskeleton Reduces Residual Hip Effort Without Affecting Kinematics and Balance in Individuals With Above-Knee Amputations During Walking. IEEE Transactions on Biomedical Engineering, 2023, 70, 1162-1171.	2.5	3
576	The Study of Ankle Assisted Exoskeleton. Lecture Notes in Computer Science, 2022, , 162-173.	1.0	0
577	A Hip Active Lower Limb Support Exoskeleton for Load Bearing Sit-To-Stand Transfer. Lecture Notes in Computer Science, 2022, , 24-35.	1.0	0
578	Phase-Plane Based Model-Free Estimation of Steady-State Metabolic Cost. IEEE Access, 2022, 10, 97642-97650.	2.6	4
579	Design of Parallel Variable Stiffness Actuators. IEEE Transactions on Robotics, 2023, 39, 768-782.	7.3	5
580	Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2815-2823.	2.7	2
581	The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2494-2505.	2.7	12
582	Designing Custom Mechanics in Running-Specific Prosthetic Feet via Shape Optimization. IEEE Transactions on Biomedical Engineering, 2023, 70, 747-755.	2.5	2
583	Harnessing Energy of a Treadmill for Push-Off Assistance During Walking: a Proof of Concept study. , 2022, , .		0
584	Cooperative Control of a Pediatric Exoskeleton System for Active-Assist Gait Rehabilitation. , 2022, , .		2
585	Effects of Restricting Ankle Joint Motions on Muscle Activity: Preliminary Investigation with an Unpowered Exoskeleton. , 2022, , .		0
586	A Pneumatic Artificial Muscle and Spring Combination System that Assists Ankle Rocker and Transforms Energy into Push-Off Support: A Feasibility Study in Heathy Participants. , 2022, , .		0
587	Varying Joint Patterns and Compensatory Strategies Can Lead to the Same Functional Gait Outcomes: A Case Study. , 2022, , .		0
588	Ankle Intention Detection Algorithm with HD-EMG Sensor. , 2022, , .		1
589	Locomotor adaptations: paradigms, principles and perspectives. Progress in Biomedical Engineering, 2022, 4, 042003.	2.8	2
590	Research and Development of Ankle–Foot Orthoses: A Review. Sensors, 2022, 22, 6596.	2.1	14
591	Modelling and analysis of coupling dynamics of swinging a lower limb exoskeleton. Nonlinear Dynamics, 2023, 111, 1213-1234.	2.7	1

#	Article	IF	CITATIONS
592	Lighter and Simpler Design Paradigm for Widespread Use of Ankle Exosuits Based on Bio-Inspired Patterns. Biomimetics, 2022, 7, 148.	1.5	0
593	Biomechanical Regenerative Braking Energy Harvester: A Systematic Analysis. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 437-456.	2.7	1
594	Experimental investigations on waist supportive passive exoskeleton to improve human comfort. Materials Today: Proceedings, 2023, 72, 884-889.	0.9	1
595	Exploring the Change in Metabolic Cost of Walking before and after Familiarization with a Passive Load-Bearing Exoskeleton: A Case Series. IISE Transactions on Occupational Ergonomics and Human Factors, 2022, 10, 161-172.	O.5	5
596	Biomechanical knee energy harvester: Design optimization and testing. Frontiers in Robotics and AI, O, 9, .	2.0	1
597	Model-based Control for Gait Assistance in the Frontal Plane. , 2022, , .		2
598	Work-sharing of Upper and Lower Limbs (WULL) to Assist Ambulatory Movements. , 2022, , .		0
599	Theoretical Development of a Knee-Ankle ExoNET to Supplement Muscle Function. , 2022, , .		0
600	Development of a Soft Inflatable Exosuit for Knee Flexion Assistance. , 2022, , .		1
601	A Lightweight Transradial Prosthetic Emulator for Optimizing Prosthetic Wrist Design. , 2022, , .		1
602	Effects of Modulation Coefficient Adjustment on Energy Regeneration of Damping Torque Controlled Transtibial Prosthesis. , 2022, , .		0
603	Wearable Elastic Networks for Customized Multijoint Torque Fields. , 2022, , .		0
604	A portable passive clutch system for selective upper extremity movements. , 2022, , .		0
605	Personalizing exoskeleton assistance while walking in the real world. Nature, 2022, 610, 277-282.	13.7	60
607	Modulation of Achilles tendon force with load carriage and exosuit assistance. Science Robotics, 2022, 7, .	9.9	7
608	Development of Lower Limb Exoskeleton for Walking Assistance Using Energy Recycled From Human Knee Joint. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	3
609	Design and implementation of knee-ankle exoskeleton for energy harvesting and walking assistance. Smart Materials and Structures, 2022, 31, 125003.	1.8	3
610	Fractional-Order Prescribed Performance Sliding-Mode Control With Time-Delay Estimation for Wearable Exoskeletons. IEEE Transactions on Industrial Informatics, 2023, 19, 8274-8284.	7.2	3

#	Article	IF	CITATIONS
611	A systematic review on load carriage assistive devices: Mechanism design and performance evaluation. Mechanism and Machine Theory, 2023, 180, 105142.	2.7	3
612	Lower-Limb Exoskeleton for Load-Carrying Augmentation. , 2022, , .		Ο
613	Variable Stiffness Mechanism for Single-Joint Lower Limb Wearable Exoskeleton: A Review. , 2022, , .		0
614	An intelligent decision support system to anticipate the fall of a structure for paraplegic patients. , 2022, , .		0
615	Study of Hip Exoskeleton Technology for Elderly Stability During Walking. , 2022, , .		2
616	Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Sensors, 2022, 22, 8539.	2.1	1
617	On the Timescales of Embodied Intelligence for Autonomous Adaptive Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 95-122.	7.5	2
618	Investigation on the influence of ball milling on the microstructural properties of 2D-hexagonal boron nitride towards electroadhesive applications. , 2023, 173, 207453.		0
619	A Time-Independent Control System for Natural Human Gait Assistance With a Soft Exoskeleton. IEEE Transactions on Robotics, 2023, 39, 1653-1667.	7.3	3
620	Improving Muscle Force Distribution Model Using Reflex Excitation: Toward a Model-Based Exoskeleton Torque Optimization Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 720-728.	2.7	0
621	Human-in-the-Loop Optimization of Wearable Robotic Devices to Improve Human–Robot Interaction: A Systematic Review. IEEE Transactions on Cybernetics, 2023, 53, 7483-7496.	6.2	8
622	Mechanical Design and Experimental Validation of a Variable Stiffness Ankle Exoskeleton. , 2022, , .		0
623	Designing Unpowered Shoulder Complex Exoskeleton via Contralateral Drive for Self-rehabilitation of Post-stroke Hemiparesis. Journal of Bionic Engineering, 2023, 20, 992-1007.	2.7	3
624	A mechanics-based approach to realize high–force capacity electroadhesives for robots. Science Robotics, 2022, 7, .	9.9	9
625	Be Careful What You Wish for: Cost Function Sensitivity in Predictive Simulations for Assistive Device Design. Symmetry, 2022, 14, 2534.	1.1	4
626	Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation. Nature Communications, 2022, 13, .	5.8	7
628	Anticipation of falls from a structure for paraplegics by intelligent methods. , 2022, , .		1
629	Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nature Biomedical Engineering, 2023, 7, 456-472.	11.6	31

#	Article	IF	CITATIONS
630	Exoskeleton design utilizing foot-strike energy for enhancing the climbing ability of the wearer. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 0, , 095441192211407.	1.0	0
631	Modelling the interaction between wearable assistive devices and digital human models—A systematic review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
632	Gastrocnemius and Power Amplifier Soleus Spring-Tendons Achieve Fast Human-like Walking in a Bipedal Robot. , 2022, , .		1
634	Stiffness Optimal Modulation of a Variable Stiffness Energy Storage Hip Exoskeleton and Experiments on Its Assistance Effect. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1045-1055.	2.7	4
635	Comparison of five different methodologies for evaluating ankle–foot orthosis stiffness. Journal of NeuroEngineering and Rehabilitation, 2023, 20, .	2.4	1
636	Applied Exoskeleton Technology: A Comprehensive Review of Physical and Cognitive Human–Robot Interaction. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1102-1122.	2.6	2
637	Pain Level and Pain-Related Behaviour Classification Using GRU-Based Sparsely-Connected RNNs. IEEE Journal on Selected Topics in Signal Processing, 2023, 17, 677-688.	7.3	3
638	Achilles' new heel: Shock absorbing, gait assisting and energy harvesting. Nano Energy, 2023, 109, 108293.	8.2	1
639	Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop. Experimental Gerontology, 2023, 173, 112102.	1.2	13
640	Evaluation of a Bionic Cable-driven Ankle Exoskeleton System for Human Walking Assistance. , 2022, , .		0
641	Design and Evaluation of a Self-Aligning Knee Exoskeleton for Knee Extension Assistance During Walking. , 2022, , .		0
642	The influence of elastic ankle exoskeletons on lower limb mechanical energetics during unexpected perturbations. Royal Society Open Science, 2023, 10, .	1.1	3
643	Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator. PLoS ONE, 2023, 18, e0270078.	1.1	1
644	Human-in-the-Loop Adaptive Control of a Soft Exo-Suit With Actuator Dynamics and Ankle Impedance Adaptation. IEEE Transactions on Cybernetics, 2023, 53, 7920-7932.	6.2	12
645	Exoskeletal solutions to enable mobility with a lower leg fracture in austere environments. Wearable Technologies, 2023, 4, .	1.6	0
647	An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation. Scientific Reports, 2023, 13, .	1.6	1
648	Optimization of the Position and Stiffness of Passive Walking Assistance Devices. Applied Sciences (Switzerland), 2023, 13, 4198.	1.3	0
649	Predicting the metabolic cost of exoskeleton-assisted squatting using foot pressure features and machine learning. Frontiers in Robotics and AI, 0, 10, .	2.0	3

#	Article	IF	CITATIONS
π 650	The foot as a functional unit of gait. , 2023, , 459-625.	11	0
000			0
653	The effects of a passive ankle exoskeleton on biomechanical performance during overground walking. , 2023, , .		0
664	Design andÂGait Control ofÂanÂActive Lower Limb Exoskeleton forÂWalking Assistance. Mechanisms and Machine Science, 2023, , 127-135.	0.3	0
668	Novel Spring Mechanism Enables Iterative Energy Accumulation under Force and Deformation Constraints. , 2023, , .		0
669	Controllable Mechanical-domain Energy Accumulators. , 2023, , .		2
670	Design of a Variable Stiffness Spring with Human-Selectable Stiffness. , 2023, , .		0
686	Individualized Generation of Optimized Assistance Timings for Active Lower Limb Robots via Machine Learning. , 2023, , .		0
687	Circuit Designing for Charging Energy Storage Batteries with a Knee-joint Biomechanical Energy Harvester Aiming at the Optimal Total-Cost-of-Harvesting. , 2023, , .		0
688	Kinematics and Dynamics Analysis of Tensegrity Based Bionic Knee Joint Mechanism. , 2023, , .		0
691	Design andÂControl ofÂaÂPortable Soft Exosuit byÂMusculoskeletal Model-Based Optimization. Lecture Notes in Computer Science, 2023, , 386-397.	1.0	0
698	Design of a Quasi-Passive Ankle-Foot Orthosis with Customizable, Variable Stiffness. , 2023, , .		0
699	Comparison of Two Design Principles of Unpowered Ankle-Foot Orthoses for Supporting Push-Off: A Case Study. , 2023, , .		0
700	An EMC-Based Objective Function for Human-in-the-Loop Optimization. , 2023, , .		0
701	Plugging Energy Regeneration Improves Braking Torque at Low Speed Instead of Dynamic Energy Regeneration. , 2023, , .		0
707	Model-Free Based Neural Network Time Delay Estimation Control for a 3-DOF Ankle Exoskeleton. , 2023, , .		0
710	Design for Hip Abduction Assistive Device Based on Relationship Between Hip Joint Motion and Torque During Running. , 2023, , .		0
711	An Implantable Variable Length Actuator for Modulating in Vivo Musculo-Tendon Force in a Bipedal Animal Model. , 2023, , .		0
712	Investigations into Customizing Bilateral Ankle Exoskeletons to Increase Vertical Jumping Performance. , 2023, , .		1

C		REPC	
	TION	REDU	ND T
CITA	TION	NLFU	

#	Article	IF	CITATIONS
715	A Self-powered and Wearable Pneumatic Artificial Muscle Device using Recycled Walking Energy. , 2023, , .		0
722	Design and Evaluation of a Bidirectional Ankle Exoskeleton System. , 2023, , .		0
727	Human-Mechanical Biomechanical Analysis of a Novel Knee Exoskeleton Robot for Rehabilitation Training. Lecture Notes in Electrical Engineering, 2024, , 390-402.	0.3	0
729	Rehabilitation and Assistive Robotics. , 2023, , 73-99.		0