In vivo genome editing using Staphylococcus aureus Ca

Nature 520, 186-191 DOI: 10.1038/nature14299

Citation Report

#	Article	IF	CITATIONS
4	Genome editing: the end of the beginning. Genome Biology, 2015, 16, 292.	3.8	15
5	The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology, 2015, 16, 251.	3.8	91
6	The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Global Cardiology Science & Practice, 2015, 2015, 59.	0.3	2
7	CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Scientific Reports, 2015, 5, 16277.	1.6	130
8	Neurogenethics: An emerging discipline at the intersection of ethics, neuroscience, and genomics. Applied & Translational Genomics, 2015, 5, 18-22.	2.1	10
9	A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease. BMC Genomics, 2015, 16, 863.	1.2	21
10	Genome Editing Gene Therapy for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 343-355.	1.1	14
11	Science and Ethics in Dialogue: Ethical Research Conduct and Genetic Information Application. Colloquium Series on the Genetic Basis of Human Disease, 2015, 4, 1-163.	0.0	0
12	Gene-based therapies in lipidology. Current Opinion in Lipidology, 2015, 26, 553-565.	1.2	19
13	Selfâ€Assembled DNA Nanoclews for the Efficient Delivery of CRISPR–Cas9 for Genome Editing. Angewandte Chemie - International Edition, 2015, 54, 12029-12033.	7.2	517
15	Highly efficient heritable plant genome engineering using Cas9 orthologues from <i>Streptococcus thermophilus</i> and <i>Staphylococcus aureus</i> . Plant Journal, 2015, 84, 1295-1305.	2.8	235
16	Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases. International Journal of Molecular Sciences, 2015, 16, 24751-24771.	1.8	28
17	Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research. International Journal of Molecular Sciences, 2015, 16, 23143-23164.	1.8	11
18	Single-Base Pair Genome Editing in Human Cells by Using Site-Specific Endonucleases. International Journal of Molecular Sciences, 2015, 16, 21128-21137.	1.8	10
19	Application of CRISPR/Cas9 Technology to HBV. International Journal of Molecular Sciences, 2015, 16, 26077-26086.	1.8	35
20	A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Frontiers in Genetics, 2015, 6, 300.	1.1	96
23	CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling. International Journal of Molecular Sciences, 2015, 16, 22151-22168.	1.8	26
24	Alternative CRISPR system could improve genome editing. Nature, 2015, 526, 17-17.	13.7	19

ATION RED

		CITATION R	EPORT	
#	Article		IF	CITATIONS
25	The CRISPR revolution and its impact on cancer research. Swiss Medical Weekly, 2015,	145, w14230.	0.8	13
26	CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Re 10833.	borts, 2015, 5,	1.6	245
27	Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Human Gene ⁻ 452-462.	⁻ herapy, 2015, 26,	1.4	164
28	Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CR Molecules and Cells, 2015, 38, 475-481.	ISPR-Cas9.	1.0	181
29	Human Germline CRISPR-Cas Modification: Toward a Regulatory Framework. American Bioethics, 2015, 15, 25-29.	ournal of	0.5	53
30	Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. 2015, 16, 253.	Genome Biology,	3.8	177
31	Gene therapy for Rett syndrome: prospects and challenges. Future Neurology, 2015, 10), 467-484.	0.9	7
32	A generic strategy for CRISPR-Cas9-mediated gene tagging. Nature Communications, 2	015, 6, 10237.	5.8	176
33	Research: Biology's big hit. Nature, 2015, 528, S4-S5.		13.7	3
34	Resources for the design of CRISPR gene editing experiments. Genome Biology, 2015, 2	.6, 260.	3.8	91
35	Towards a new era in medicine: therapeutic genome editing. Genome Biology, 2015, 16	i, 286.	3.8	52
36	Genome Editing and Its Applications in Model Organisms. Genomics, Proteomics and B 2015, 13, 336-344.	oinformatics,	3.0	55
37	Adenovirus-Mediated Somatic Genome Editing of <i>Pten</i> by CRISPR/Cas9 in Mouse Cas9-Specific Immune Responses. Human Gene Therapy, 2015, 26, 432-442.	2 Liver in Spite of	1.4	291
38	Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nature Nephrology, 2015, 11, 576-588.	Reviews	4.1	208
39	Application of CRISPR/Cas9 for biomedical discoveries. Cell and Bioscience, 2015, 5, 33		2.1	52
40	Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome M 53.	edicine, 2015, 7,	3.6	88
41	Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. Rna, 2015, 2	l, 1683-1689.	1.6	54
42	Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia Patient-Derived iPSCs Using CRISPR-Cas9. Cell Stem Cell, 2015, 17, 213-220.	A	5.2	263

#	Article	IF	CITATIONS
43	CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 2015, 69, 209-228.	2.9	160
44	Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Research, 2015, 43, 6450-6458.	6.5	278
45	Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523, 481-485.	13.7	1,388
46	The Bacterial Origins of the CRISPR Genome-Editing Revolution. Human Gene Therapy, 2015, 26, 413-424.	1.4	75
47	CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy. Human Gene Therapy, 2015, 26, 463-471.	1.4	55
48	Delivery and Specificity of CRISPR/Cas9 Genome Editing Technologies for Human Gene Therapy. Human Gene Therapy, 2015, 26, 443-451.	1.4	157
49	Delivering the Goods for Genome Engineering and Editing. Human Gene Therapy, 2015, 26, 486-497.	1.4	13
50	Enabling functional genomics with genome engineering. Genome Research, 2015, 25, 1442-1455.	2.4	89
51	Modeling Disease In Vivo With CRISPR/Cas9. Trends in Molecular Medicine, 2015, 21, 609-621.	3.5	91
52	Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 2015, 163, 759-771.	13.5	3,558
53	Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and <i>PiggyBac</i> transposase lineage labeling. Development (Cambridge), 2015, 142, 3601-11.	1.2	56
54	CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV. Virologica Sinica, 2015, 30, 317-325.	1.2	18
55	Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015, 33, 1293-1298.	9.4	511
56	Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics and Chromatin, 2015, 8, 34.	1.8	50
57	Conformational control of DNA target cleavage by CRISPR–Cas9. Nature, 2015, 527, 110-113.	13.7	514
58	Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Molecular Cell, 2015, 60, 398-407.	4.5	94
59	Delivering the goods: Scientists seek a way to make CRISPR-Cas gene editing more targeted. Nature Medicine, 2015, 21, 1239-1241.	15.2	11
60	Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Nucleic Acid Therapeutics, 2015, 25, 287-296.	2.0	26

		CITATION REPORT	
#	Article	IF	CITATIONS
61	Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antiviral Research, 2015, 123, 188-192.	1.9	75
62	DNase H Activity of Neisseria meningitidis Cas9. Molecular Cell, 2015, 60, 242-255.	4.5	54
63	Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nature Protocols, 2015, 10, 1842-1859.	5.5	113
64	How specific is CRISPR/Cas9 really?. Current Opinion in Chemical Biology, 2015, 29, 72-78.	2.8	97
65	DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nature Methods 12, 1150-1156.	s, 2015, 9.0	107
66	Gene therapy returns to centre stage. Nature, 2015, 526, 351-360.	13.7	943
67	Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic. Methods, 201 82-86.	5, 91, 1.9	13
68	Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Ca International Journal of Pharmaceutics, 2015, 494, 180-194.	s9. 2.6	94
69	Sequence-specific DNA nicking endonucleases. Biomolecular Concepts, 2015, 6, 253-267.	1.0	25
70	Crystal Structure of Staphylococcus aureus Cas9. Cell, 2015, 162, 1113-1126.	13.5	357
71	Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports, 2015, 5, 448-459.	2.3	158
72	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 52	7, 192-197. 13.7	726
73	Proven and novel strategies for efficient editing of the human genome. Current Opinion in Pharmacology, 2015, 24, 105-112.	1.7	18
74	Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 2015, 31, 4014-4016.	1.8	306
75	Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated v delivery and paired nickase applications. Genome Biology, 2015, 16, 257.	virus 3.8	239
76	Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proceedings of the Nation Academy of Sciences of the United States of America, 2015, 112, E7110-7.	al 3.3	151
77	Gene Delivery Technologies for Efficient Genome Editing: Applications in Gene Therapy. , 2016, ,		0
78	Gene Editing in Adult Hematopoietic Stem Cells. , 0, , .		1

#	Article	IF	CITATIONS
79	CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget, 2016, 7, 12305-12317.	0.8	48
80	CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget, 2016, 7, 52541-52552.	0.8	68
81	Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget, 2016, 7, 33461-33471.	0.8	19
82	Gene Insertion and Deletion in Mosquitoes. , 2016, , 139-168.		4
83	The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. International Journal of Genomics, 2016, 2016, 1-10.	0.8	40
84	Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks. BioMed Research International, 2016, 2016, 1-14.	0.9	7
85	The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells International, 2016, 2016, 1-17.	1.2	21
86	AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo. , 2016, 57, 3470.		117
87	Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain. Frontiers in Genetics, 2015, 6, 362.	1.1	25
88	Genome Engineering with TALE and CRISPR Systems in Neuroscience. Frontiers in Genetics, 2016, 7, 47.	1.1	25
89	Hereditary Angioedema as a Metabolic Liver Disorder: Novel Therapeutic Options and Prospects for Cure. Frontiers in Immunology, 2016, 7, 547.	2.2	12
90	The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing. Frontiers in Molecular Neuroscience, 2016, 9, 70.	1.4	50
91	In Vivo Delivery Systems for Therapeutic Genome Editing. International Journal of Molecular Sciences, 2016, 17, 626.	1.8	71
92	Recent Advances in Genome Editing Using CRISPR/Cas9. Frontiers in Plant Science, 2016, 7, 703.	1.7	94
93	An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant–Pathogen Interactions for Better Crop Protection. Frontiers in Plant Science, 2016, 7, 765.	1.7	49
94	Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing. Frontiers in Plant Science, 2016, 7, 1683.	1.7	73
95	Beyond CRISPR: A guide to the many other ways to edit a genome. Nature, 2016, 536, 137-137.	13.7	10
96	<scp>CRISPR</scp> guide <scp>RNA</scp> design for research applications. FEBS Journal, 2016, 283, 3232-3238.	2.2	74

#	Article	IF	CITATIONS
97	Next stop for the CRISPR revolution: RNAâ€guided epigenetic regulators. FEBS Journal, 2016, 283, 3181-3193.	2.2	63
98	On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends in Microbiology, 2016, 24, 811-820.	3.5	143
99	A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Briefings in Bioinformatics, 2017, 18, bbw052.	3.2	15
100	Using <scp>CRISPR</scp> /Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant Journal, 2016, 87, 5-15.	2.8	78
101	Engineering of synthetic gene circuits for (reâ€)balancing physiological processes in chronic diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 402-422.	6.6	24
102	Genome-editing technologies for gene correction of hemophilia. Human Genetics, 2016, 135, 977-981.	1.8	32
103	Guide RNAs: A Glimpse at the Sequences that Drive CRISPR–Cas Systems. Cold Spring Harbor Protocols, 2016, 2016, pdb.top090902.	0.2	13
104	Stacking up <scp>CRISPR</scp> against <scp>RNA</scp> i for therapeutic gene inhibition. FEBS Journal, 2016, 283, 3249-3260.	2.2	15
105	The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges. Therapeutic Advances in Hematology, 2016, 7, 302-315.	1.1	33
106	Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 2016, 17, 148.	3.8	1,334
107	In-vivo genome editing using CRISPR-Cas9 to study lipid metabolism. Current Opinion in Lipidology, 2016, 27, 92-93.	1.2	0
108	A simple, flexible and highâ€ŧhroughput cloning system for plant genome editing via CRISPR as system. Journal of Integrative Plant Biology, 2016, 58, 705-712.	4.1	61
109	Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. Journal of Biotechnology, 2016, 233, 74-83.	1.9	73
110	Applying CRISPR–Cas9 tools to identify and characterize transcriptional enhancers. Nature Reviews Molecular Cell Biology, 2016, 17, 597-604.	16.1	54
111	Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Human Molecular Genetics, 2016, 25, 3588-3599.	1.4	74
112	Using CRISPR/Cas to study gene function and model disease <i>in vivo</i> . FEBS Journal, 2016, 283, 3194-3203.	2.2	37
114	Prevention of Muscle Wasting by CRISPR/Cas9-mediated Disruption of Myostatin In Vivo. Molecular Therapy, 2016, 24, 1889-1891.	3.7	22
115	Sequence variants of <i>BIEC2-808543</i> near <i>LCORL</i> are associated with body composition in Thoroughbreds under training. Journal of Equine Science, 2016, 27, 107-114.	0.2	12

#	Article	IF	CITATIONS
116	Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports, 2016, 6, 38169.	1.6	264
117	To CRISPR and beyond: the evolution of genome editing in stem cells. Regenerative Medicine, 2016, 11, 801-816.	0.8	13
118	Naturally Occurring Off-Switches for CRISPR-Cas9. Cell, 2016, 167, 1829-1838.e9.	13.5	345
119	Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9. Scientific Reports, 2016, 6, 32565.	1.6	27
120	Overview of CRISPR–Cas9 Biology. Cold Spring Harbor Protocols, 2016, 2016, pdb.top088849.	0.2	14
121	A Retroviral CRISPR-Cas9 System for Cellular Autism-Associated Phenotype Discovery in Developing Neurons. Scientific Reports, 2016, 6, 25611.	1.6	36
122	Postâ€modern therapeutic approaches for progressive myoclonus epilepsy. Epileptic Disorders, 2016, 18, 154-158.	0.7	6
123	CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Scientific Reports, 2016, 6, 29032.	1.6	51
124	CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization. Scientific Reports, 2016, 6, 25516.	1.6	36
125	Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature, 2016, 540, 579-582.	13.7	456
126	Designed nucleases for targeted genome editing. Plant Biotechnology Journal, 2016, 14, 448-462.	4.1	57
127	Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. Molecular Cell, 2016, 62, 137-147.	4.5	290
128	Proteomics in the genome engineering era. Proteomics, 2016, 16, 177-187.	1.3	7
129	2015 ASHG Awards and Addresses. American Journal of Human Genetics, 2016, 98, 405-406.	2.6	1
130	Gene editing and its application for hematological diseases. International Journal of Hematology, 2016, 104, 18-28.	0.7	24
131	CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annual Review of Genomics and Human Genetics, 2016, 17, 131-154.	2.5	80
132	The future of iPS cells in advancing regenerative medicine. Genetical Research, 2016, 98, e4.	0.3	5
133	The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair, 2016, 44, 6-16.	1.3	181

#	Article	IF	CITATIONS
134	Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping. Journal of Genetics and Genomics, 2016, 43, 329-340.	1.7	8
135	2015 William Allan Award 1. American Journal of Human Genetics, 2016, 98, 419-426.	2.6	0
136	Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Progress in Retinal and Eye Research, 2016, 53, 1-20.	7.3	42
137	Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Therapy, 2016, 23, 690-695.	2.3	167
138	Detecting DNA double-stranded breaks in mammalian genomes by linear amplification–mediated high-throughput genome-wide translocation sequencing. Nature Protocols, 2016, 11, 853-871.	5.5	213
139	Genome editing in pluripotent stem cells: research and therapeutic applications. Biochemical and Biophysical Research Communications, 2016, 473, 665-674.	1.0	17
140	Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Human Reproduction Update, 2016, 22, 411-419.	5.2	93
141	Progress of targeted genome modification approaches in higher plants. Plant Cell Reports, 2016, 35, 1401-1416.	2.8	43
142	Homology-based double-strand break-induced genome engineering in plants. Plant Cell Reports, 2016, 35, 1429-1438.	2.8	84
143	Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nature Reviews Genetics, 2016, 17, 300-312.	7.7	380
144	CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos. Human Gene Therapy, 2016, 27, 464-475.	1.4	118
145	Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nature Protocols, 2016, 11, 960-975.	5.5	59
146	Pharmacodynamics of anti-HIV gene therapy using viral vectors and targeted endonucleases. Journal of Antimicrobial Chemotherapy, 2016, 71, 2089-2099.	1.3	5
147	A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1058-1075.	1.1	44
148	Stem cell-based therapies for HIV/AIDS. Advanced Drug Delivery Reviews, 2016, 103, 187-201.	6.6	28
149	Gene Editing for Treatment of Neurological Infections. Neurotherapeutics, 2016, 13, 547-554.	2.1	9
150	Imaging Specific Genomic DNA in Living Cells. Annual Review of Biophysics, 2016, 45, 1-23.	4.5	67
151	Engineering Delivery Vehicles for Genome Editing. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 637-662.	3.3	93

#	Article	IF	Citations
" 152	Current and future prospects for hemophilia gene therapy. Expert Review of Hematology, 2016, 9, 649-659.	1.0	13
153	Genome Editing with CRISPR-Cas9: Can It Get Any Better?. Journal of Genetics and Genomics, 2016, 43, 239-250.	1.7	59
154	The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Reports, 2016, 35, 1451-1468.	2.8	30
155	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	5.2	398
156	CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular Plant, 2016, 9, 961-974.	3.9	376
157	CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 2016, 85, 227-264.	5.0	897
158	Customizing the genome as therapy for the \hat{I}^2 -hemoglobinopathies. Blood, 2016, 127, 2536-2545.	0.6	48
159	A genome editing primer for the hematologist. Blood, 2016, 127, 2525-2535.	0.6	23
160	The emerging role of viral vectors as vehicles for DMD gene editing. Genome Medicine, 2016, 8, 59.	3.6	18
161	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie, 2016, 128, 12628-12632.	1.6	29
162	A multifunctional AAV–CRISPR–Cas9 and its host response. Nature Methods, 2016, 13, 868-874.	9.0	506
163	Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10661-10665.	3.3	158
164	Applications of CRISPR Genome Engineering in Cell Biology. Trends in Cell Biology, 2016, 26, 875-888.	3.6	68
165	Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 2016, 34, 933-941.	9.4	735
166	A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell, 2016, 166, 1500-1511.e9.	13.5	315
167	Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Research, 2016, 44, gkw908.	6.5	55
168	Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biology Direct, 2016, 11, 46.	1.9	65
169	Targeting the gastrointestinal tract with viral vectors: state of the art and possible applications in research and therapy. Histochemistry and Cell Biology, 2016, 146, 709-720.	0.8	9

#	Article	IF	CITATIONS
170	CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic Engineering, 2016, 38, 293-302.	3.6	181
171	Optimization Strategies for the CRISPR–Cas9 Genome-Editing System. Cold Spring Harbor Protocols, 2016, 2016, pdb.top090894.	0.2	8
172	The zebrafish genome editing toolkit. Methods in Cell Biology, 2016, 135, 149-170.	0.5	35
173	<scp>CRISPR</scp> /Cas9â€mediated somatic correction of a novel coagulator factor <scp>IX</scp> gene mutation ameliorates hemophilia in mouse. EMBO Molecular Medicine, 2016, 8, 477-488.	3.3	144
174	Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9. Nature Protocols, 2016, 11, 2154-2169.	5.5	27
175	Genome-Editing Technologies: Principles and Applications. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023754.	2.3	209
176	Deciphering Combinatorial Genetics. Annual Review of Genetics, 2016, 50, 515-538.	3.2	16
177	Highly multiplexed CRISPRâ€Cas9â€nuclease and Cas9â€nickase vectors for inactivation of hepatitis B virus. Genes To Cells, 2016, 21, 1253-1262.	0.5	55
178	CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Molecular Therapy - Nucleic Acids, 2016, 5, e338.	2.3	56
179	CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. Journal of Controlled Release, 2016, 244, 139-148.	4.8	52
180	Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Molecular Cell, 2016, 63, 355-370.	4.5	247
181	Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 353, aad5147.	6.0	523
182	Cas9 cleavage assay for pre-screening of sgRNAs using nicking triggered isothermal amplification. Chemical Science, 2016, 7, 4951-4957.	3.7	55
183	Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles. Human Gene Therapy, 2016, 27, 729-740.	1.4	42
184	An â€~Omics' Perspective on Cardiomyopathies and Heart Failure. Trends in Molecular Medicine, 2016, 22, 813-827.	3.5	48
186	Continuous Delivery of Oligonucleotides into the Brain. Neuromethods, 2016, , 89-117.	0.2	1
187	Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Research, 2016, 223, 197-205.	1,1	27
188	DNA Breaks and End Resection Measured Genome-wide by End Sequencing. Molecular Cell, 2016, 63, 898-911.	4.5	206

#	Article	IF	CITATIONS
189	New therapies for chronic hepatitis B. Liver International, 2016, 36, 775-782.	1.9	19
190	Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breeding, 2016, 135, 139-147.	1.0	80
191	Using CRISPR-Cas9 Genome Editing to Enhance Cell Based Therapies for the Treatment of Diabetes Mellitus. , 2016, , 127-147.		1
192	At the Conflux of Human Genome Engineering and Induced Pluripotency. , 2016, , 45-64.		1
193	Current Status of Genome Editing in Cardiovascular Medicine. , 2016, , 107-126.		1
194	Finding DNA Ends within a Haystack of Chromatin. Molecular Cell, 2016, 63, 726-728.	4.5	2
195	CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles. Molecular Therapy - Nucleic Acids, 2016, 5, e349.	2.3	120
196	CRISPR-Cas9 nuclear dynamics and target recognition in living cells. Journal of Cell Biology, 2016, 214, 529-537.	2.3	165
197	Development of Lightâ€Activated CRISPR Using Guide RNAs with Photocleavable Protectors. Angewandte Chemie - International Edition, 2016, 55, 12440-12444.	7.2	144
199	Genome Editing with Targetable Nucleases. , 2016, , 1-29.		0
200	In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. Molecular Therapy - Nucleic Acids, 2016, 5, e389.	2.3	147
201	Systems Metabolic Engineering of <i>Escherichia coli</i> . EcoSal Plus, 2016, 7, .	2.1	31
202	Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nature Communications, 2016, 7, 10934.	5.8	57
203	CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening. BMC Genomics, 2016, 17, 917.	1.2	16
204	Genome editing: A breakthrough in life science and medicine [Review]. Endocrine Journal, 2016, 63, 105-110.	0.7	12
205	CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 197-207.	3.3	45
206	The present and future of genome editing in cancer research. Human Genetics, 2016, 135, 1083-1092.	1.8	13
207	Desktop Genetics. Personalized Medicine, 2016, 13, 517-521.	0.8	21

		CITATION RE	IPORT	
#	Article		IF	Citations
208	Diving into marine genomics with CRISPR/Cas9 systems. Marine Genomics, 2016, 30, 5	5-65.	0.4	29
209	Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic g Journal of Controlled Release, 2016, 244, 83-97.	gene editing.	4.8	17
210	Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human plur cell differentiation and direct reprogramming. Scientific Reports, 2016, 6, 37540.	ripotent stem	1.6	38
211	An RNA-aptamer-based two-color CRISPR labeling system. Scientific Reports, 2016, 6, 20	6857.	1.6	88
212	The new editor—targeted genome engineering in the absence of homology-directed re Discovery, 2016, 2, 16042.	epair. Cell Death	2.0	0
213	Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Na Methods, 2016, 13, 1043-1049.	ature	9.0	271
214	Emerging cellular and gene therapies for congenital anemias. American Journal of Medic Part C: Seminars in Medical Genetics, 2016, 172, 332-348.	al Genetics,	0.7	6
215	Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Me Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology. Scientific 30910.	etabolic c Reports, 2016, 6,	1.6	180
216	Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CF Scientific Reports, 2016, 6, 32230.	TR gene.	1.6	26
217	Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activ Communications, 2016, 7, 12009.	vity. Nature	5.8	90
218	Adeno-Associated Virus–Mediated Delivery of CRISPR–Cas Systems for Genome En Mammalian Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot086868.	gineering in	0.2	14
219	Genome engineering: <i>Drosophila melanogaster</i> and beyond. Wiley Interdisciplina Developmental Biology, 2016, 5, 233-267.	ary Reviews:	5.9	35
220	<i>Plasmodium</i> meets <scp>AAV</scp> —the (un)likely marriage of parasitology a how to make the match. FEBS Letters, 2016, 590, 2027-2045.	nd virology, and	1.3	1
221	Genome engineering tools for building cellular models of disease. FEBS Journal, 2016, 2	83, 3222-3231.	2.2	23
222	Genome editing and the next generation of antiviral therapy. Human Genetics, 2016, 13	35, 1071-1082.	1.8	40
223	Death receptor-based enrichment of Cas9-expressing cells. BMC Biotechnology, 2016, 1	16, 17.	1.7	12
224	Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 2016, 34, 863-868.	е	9.4	612
225	Meet the Editors. Cell, 2016, 165, 1295-1297.		13.5	0

#	Article	IF	Citations
226	RNA therapeutics – The potential treatment for myocardial infarction. Regenerative Therapy, 2016, 4, 83-91.	1.4	5
227	Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells. Journal of Immunology, 2016, 197, 971-982.	0.4	21
228	Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 2016, 7, 166-174.	1.4	66
229	Impact of gene editing on the study of cystic fibrosis. Human Genetics, 2016, 135, 983-992.	1.8	15
231	Nucleic acids delivery methods for genome editing in zygotes and embryos: the old, the new, and the old-new. Biology Direct, 2016, 11, 16.	1.9	28
232	Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes. Journal of Cellular Physiology, 2016, 231, 2380-2392.	2.0	26
233	Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9. G3: Genes, Genomes, Genetics, 2016, 6, 2517-2521.	0.8	18
234	Cellular Therapies: Gene Editing and Next-Gen CAR T Cells. , 2016, , 203-247.		1
235	Offâ€ŧarget effects of engineered nucleases. FEBS Journal, 2016, 283, 3239-3248.	2.2	71
236	Salient Features of Endonuclease Platforms for Therapeutic Genome Editing. Molecular Therapy, 2016, 24, 422-429.	3.7	13
237	An essential receptor for adeno-associated virus infection. Nature, 2016, 530, 108-112.	13.7	342
238	Genetic manipulation of brain endothelial cells in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 381-394.	1.8	15
239	Providing Appropriate Risk Information on Genome Editing for Patients. Trends in Biotechnology, 2016, 34, 86-90.	4.9	25
240	Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nature Methods, 2016, 13, 127-137.	9.0	341
241	The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells. Molecular Therapy, 2016, 24, 645-654.	3.7	190
242	Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy, 2016, 24, 430-446.	3.7	523
243	Expanding the CRISPR imaging toolset with <i>Staphylococcus aureus</i> Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Research, 2016, 44, e75-e75.	6.5	155
244	Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell, 2016, 164, 29-44.	13.5	889

#	Article	IF	CITATIONS
245	Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Research, 2016, 26, 406-415.	2.4	184
246	Recent Progress in CRISPR/Cas9 Technology. Journal of Genetics and Genomics, 2016, 43, 63-75.	1.7	94
247	Cas9 Variants Expand the Target Repertoire in <i>Caenorhabditis elegans</i> . Genetics, 2016, 202, 381-388.	1.2	22
248	Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Molecular Therapy, 2016, 24, 465-474.	3.7	92
249	Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter. Molecular Therapy, 2016, 24, 508-521.	3.7	67
250	Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Molecular Therapy, 2016, 24, 636-644.	3.7	204
251	Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2016, 17, 5-15.	16.1	698
252	CRISPR-Cas9 for medical genetic screens: applications and future perspectives. Journal of Medical Genetics, 2016, 53, 91-97.	1.5	45
253	Genome Editing: A New Approach to Human Therapeutics. Annual Review of Pharmacology and Toxicology, 2016, 56, 163-190.	4.2	97
254	Applications of CRISPR–Cas systems in neuroscience. Nature Reviews Neuroscience, 2016, 17, 36-44.	4.9	245
255	Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Developmental Biology, 2016, 409, 420-428.	0.9	68
256	Using Engineered Nucleases to Create HIV-Resistant Cells. Advances in Experimental Medicine and Biology, 2016, , 161-186.	0.8	1
257	Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods, 2016, 12, 8.	1.9	132
258	Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns?. Atherosclerosis, 2016, 248, 62-75.	0.4	42
259	Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biology, 2016, 17, 41.	3.8	248
259 260	high-abundance species in sequencing libraries and molecular counting applications. Genome Biology,	3.8 0.8	248 1
	high-abundance species in sequencing libraries and molecular counting applications. Genome Biology, 2016, 17, 41. Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. Advances in Experimental		

#	Article	IF	CITATIONS
263	Rewiring Cas9 to Target New PAM Sequences. Molecular Cell, 2016, 61, 793-794.	4.5	11
264	Genome Editing for Neuromuscular Diseases. Advances in Experimental Medicine and Biology, 2016, , 51-79.	0.8	2
265	Genome Editing of Structural Variations: Modeling and Gene Correction. Trends in Biotechnology, 2016, 34, 548-561.	4.9	18
266	Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. Aids, 2016, 30, 1163-1173.	1.0	68
267	Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnology Journal, 2016, 14, 483-495.	4.1	195
268	Potential pitfalls of <scp>CRISPR</scp> /Cas9â€mediated genome editing. FEBS Journal, 2016, 283, 1218-1231.	2.2	196
269	Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports, 2016, 35, 1545-1554.	2.8	74
270	Lessons from Domestication: Targeting Cis -Regulatory Elements for Crop Improvement. Trends in Plant Science, 2016, 21, 506-515.	4.3	151
271	Structure and Engineering of Francisella novicida Cas9. Cell, 2016, 164, 950-961.	13.5	296
272	Gene Therapy: The View from NCATS. Human Gene Therapy, 2016, 27, 7-13.	1.4	18
273	Using Xenopus to study genetic kidney diseases. Seminars in Cell and Developmental Biology, 2016, 51, 117-124.	2.3	41
274	Gene targeting, genome editing: from Dolly to editors. Transgenic Research, 2016, 25, 273-287.	1.3	129
275	Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense. Trends in Microbiology, 2016, 24, 294-306.	3.5	25
276	Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method. Molecular Therapy - Nucleic Acids, 2016, 5, e283.	2.3	72
277	A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nature Biotechnology, 2016, 34, 334-338.	9.4	476
278	Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 2016, 34, 328-333.	9.4	732
279	CRISPR: taking the shortcut to a healthy genome editing enterprise. Regenerative Medicine, 2016, 11, 229-234.	0.8	1
280	Gene editing technology as an approach to the treatment of liver diseases. Expert Opinion on Biological Therapy, 2016, 16, 595-608.	1.4	15

#	Article	IF	CITATIONS
281	Scalpel or Straitjacket: CRISPR/Cas9 Approaches for Muscular Dystrophies. Trends in Pharmacological Sciences, 2016, 37, 249-251.	4.0	6
282	Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology. Journal of Genetics and Genomics, 2016, 43, 251-262.	1.7	57
283	Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. Molecular Therapy, 2016, 24, 685-696.	3.7	78
284	CRISPR/Cas9: A powerful tool for crop genome editing. Crop Journal, 2016, 4, 75-82.	2.3	150
285	Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit. Trends in Biotechnology, 2016, 34, 575-587.	4.9	113
287	A Broad Overview and Review of CRISPR-Cas Technology and Stem Cells. Current Stem Cell Reports, 2016, 2, 9-20.	0.7	33
288	Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chemical Biology, 2016, 23, 57-73.	2.5	42
289	CRISPR-Cas9 Targeting of <i>PCSK9</i> in Human Hepatocytes In Vivo—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 783-786.	1.1	118
290	Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant). Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 263-276.	2.2	65
291	Cas9 loosens its grip on off-target sites. Nature Biotechnology, 2016, 34, 299-299.	9.4	9
292	CRISPR-Based Methods for <i>Caenorhabditis elegans</i> Genome Engineering. Genetics, 2016, 202, 885-901.	1.2	258
293	RNA Study Using DNA Nanotechnology. Progress in Molecular Biology and Translational Science, 2016, 139, 121-163.	0.9	0
294	In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351, 403-407.	6.0	957
295	In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351, 407-411.	6.0	889
296	Structure of the Sec61 channel opened by a signal sequence. Science, 2016, 351, 88-91.	6.0	198
297	In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Molecular Therapy, 2016, 24, 556-563.	3.7	255
298	Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions. Cell Stem Cell, 2016, 18, 53-65.	5.2	96
299	Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends in Biotechnology, 2016, 34, 106-123.	4.9	50

#	Article	IF	CITATIONS
300	Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing. Molecular Therapy, 2016, 24, 475-487.	3.7	100
301	CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090175.	0.2	20
302	High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529, 490-495.	13.7	2,126
303	Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods, 2016, 13, 41-50.	9.0	99
304	Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351, 84-88.	6.0	1,948
305	Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology, 2016, 217, 90-97.	1.9	220
306	Origins of Programmable Nucleases for Genome Engineering. Journal of Molecular Biology, 2016, 428, 963-989.	2.0	239
307	New and improved AAVenues: current status of hemophilia B gene therapy. Expert Opinion on Biological Therapy, 2016, 16, 79-92.	1.4	17
308	Efficient genomic correction methods in human iPS cells using CRISPR–Cas9 system. Methods, 2016, 101, 27-35.	1.9	54
309	Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Molecular Therapy, 2016, 24, 458-464.	3.7	93
310	Engineered Viruses as Genome Editing Devices. Molecular Therapy, 2016, 24, 447-457.	3.7	119
311	Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 2016, 168, 15-21.	2.2	176
312	Application of CRISPR-mediated genome engineering in cancer research. Cancer Letters, 2017, 387, 10-17.	3.2	16
313	Viral vectors for therapy of neurologic diseases. Neuropharmacology, 2017, 120, 63-80.	2.0	130
314	CRISPR-Cas9 technology: applications and human disease modelling. Briefings in Functional Genomics, 2017, 16, 4-12.	1.3	48
315	Applications of the CRISPR/Cas9 system in murine cancer modeling. Briefings in Functional Genomics, 2017, 16, 25-33.	1.3	12
316	CRISPR-Based Epigenome Editing of Cytokine Receptors for the Promotion of Cell Survival and Tissue Deposition in Inflammatory Environments. Tissue Engineering - Part A, 2017, 23, 738-749.	1.6	68
317	Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Computational and Structural Biotechnology Journal, 2017, 15, 146-160.	1.9	86

#	Article	IF	CITATIONS
318	CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. Journal of Insect Physiology, 2017, 98, 245-257.	0.9	104
319	The application of CRISPR technology to high content screening in primary neurons. Molecular and Cellular Neurosciences, 2017, 80, 170-179.	1.0	15
320	CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Molecular Therapy, 2017, 25, 331-341.	3.7	213
321	A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Research, 2017, 27, 440-443.	5.7	255
322	CRISPR/Cas9 Editing of the Mutant Huntingtin Allele InÂVitro and InÂVivo. Molecular Therapy, 2017, 25, 12-23.	3.7	226
323	sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity. ACS Synthetic Biology, 2017, 6, 902-904.	1.9	189
324	Cas9, Cpf1 and C2c1/2/3―What's next?. Bioengineered, 2017, 8, 265-273.	1.4	80
325	MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems. Scientific Reports, 2017, 7, 41993.	1.6	17
326	Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond. Human Gene Therapy, 2017, 28, 361-372.	1.4	40
327	Correction of the Exon 2 Duplication in DMD Myoblasts by a Single CRISPR/Cas9 System. Molecular Therapy - Nucleic Acids, 2017, 7, 11-19.	2.3	44
328	Rapid and Efficient Genome Editing in <i>Staphylococcus aureus</i> by Using an Engineered CRISPR/Cas9 System. Journal of the American Chemical Society, 2017, 139, 3790-3795.	6.6	98
329	In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 2017, 8, 14500.	5.8	539
330	New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnology Reports, 2017, 11, 1-8.	0.9	67
331	Genome Editing for the Study of Cardiovascular Diseases. Current Cardiology Reports, 2017, 19, 22.	1.3	21
332	Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18, 35.	3.8	348
333	Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b. Molecular Therapy, 2017, 25, 368-378.	3.7	76
334	Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical Science, 2017, 8, 2923-2930.	3.7	101
335	Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Research, 2017, 27, 419-426.	2.4	136

-		_	
СІТАТ	ION	VEDO	DT
CITAI	IUN	NLFU	IX I

#	Article	IF	CITATIONS
336	Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nature Genetics, 2017, 49, 625-634.	9.4	96
338	The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9. ACS Synthetic Biology, 2017, 6, 1103-1113.	1.9	27
339	Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B, 2017, 7, 292-302.	5.7	150
340	Modern Genome Editing Technologies in Huntington's Disease Research. Journal of Huntington's Disease, 2017, 6, 19-31.	0.9	20
341	Application of CRISPR/Cas9 to Autophagy Research. Methods in Enzymology, 2017, 588, 79-108.	0.4	27
342	Overcoming cellular barriers for RNA therapeutics. Nature Biotechnology, 2017, 35, 222-229.	9.4	781
343	Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2, 16274.	5.9	368
344	An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites. Insect Biochemistry and Molecular Biology, 2017, 83, 13-20.	1.2	34
345	What rheumatologists need to know about CRISPR/Cas9. Nature Reviews Rheumatology, 2017, 13, 205-216.	3.5	18
346	Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circulation Research, 2017, 120, 876-894.	2.0	61
347	Genome editing for inborn errors of metabolism: advancing towards the clinic. BMC Medicine, 2017, 15, 43.	2.3	42
348	Approaches to Reduce CRISPR Off-Target Effects for Safer Genome Editing. Applied Biosafety, 2017, 22, 7-13.	0.2	18
349	Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Applied and Environmental Microbiology, 2017, 83, .	1.4	72
350	Genome Editing in Cardiovascular Biology. Circulation Research, 2017, 120, 778-780.	2.0	40
351	In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. Bioconjugate Chemistry, 2017, 28, 880-884.	1.8	183
352	Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35, 371-376.	9.4	609
353	Therapeutic genome engineering via <scp>CRISPR</scp> as systems. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1380.	6.6	22
354	Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nature Communications, 2017, 8, 14454.	5.8	298

#	Article	IF	CITATIONS
355	Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nature Biotechnology, 2017, 35, 475-480.	9.4	239
356	CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science Advances, 2017, 3, e1602814.	4.7	189
357	An efficient method to enrich for knock-out and knock-in cellular clones using the CRISPR/Cas9 system. Cellular and Molecular Life Sciences, 2017, 74, 3413-3423.	2.4	12
358	Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP. Cell Reports, 2017, 19, 655-667.	2.9	77
359	Applications of the CRISPR-Cas9 system in kidney research. Kidney International, 2017, 92, 324-335.	2.6	15
360	Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein and Cell, 2017, 8, 634-643.	4.8	81
361	A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 2017, 15, 351-364.	13.6	147
362	Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. ACS Synthetic Biology, 2017, 6, 1509-1519.	1.9	31
363	BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nature Communications, 2017, 8, 15058.	5.8	298
364	Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing. Molecular Therapy - Methods and Clinical Development, 2017, 5, 153-164.	1.8	106
365	CRISPR/Cas9: at the cutting edge of hepatology. Gut, 2017, 66, 1329-1340.	6.1	31
366	Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. Human Gene Therapy, 2017, 28, 588-597.	1.4	12
367	Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration. Current Stem Cell Reports, 2017, 3, 112-123.	0.7	27
368	CRISPR Editing Technology in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 3586-3594.	1.2	21
369	CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nature Methods, 2017, 14, 607-614.	9.0	601
370	Short DNA Hairpins Compromise Recombinant Adeno-Associated Virus Genome Homogeneity. Molecular Therapy, 2017, 25, 1363-1374.	3.7	74
371	The CRISPR/Cas9 system: Their delivery, <i>in vivo</i> and <i>ex vivo</i> applications and clinical development by startups. Biotechnology Progress, 2017, 33, 1035-1045.	1.3	35
372	CRISPR/Cas9- loxP -Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool. Molecular Therapy - Nucleic Acids, 2017, 7, 378-386.	2.3	31

#	Article	IF	CITATIONS
373	Structures and mechanisms of CRISPR RNA-guided effector nucleases. Current Opinion in Structural Biology, 2017, 43, 68-78.	2.6	72
374	Applications of CRISPR-Cas for synthetic biology and genetic recording. Current Opinion in Systems Biology, 2017, 5, 9-15.	1.3	18
375	Developmental history and application of CRISPR in human disease. Journal of Gene Medicine, 2017, 19, e2963.	1.4	9
376	Research on genodermatoses using novel genomeâ€editing tools. JDDG - Journal of the German Society of Dermatology, 2017, 15, 783-789.	0.4	8
377	GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases. BMC Genomics, 2017, 18, 379.	1.2	32
378	Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends in Microbiology, 2017, 25, 833-850.	3.5	65
379	CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Science Advances, 2017, 3, e1601910.	4.7	104
380	Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Science China Life Sciences, 2017, 60, 458-467.	2.3	40
381	Generation of a SOX2 reporter human induced pluripotent stem cell line using CRISPR/SaCas9. Stem Cell Research, 2017, 22, 16-19.	0.3	11
382	CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mammalian Genome, 2017, 28, 247-261.	1.0	104
383	Mammalian synthetic biology in the age of genome editing and personalized medicine. Current Opinion in Chemical Biology, 2017, 40, 57-64.	2.8	16
384	Harnessing the natural diversity and in vitro evolution of Cas9 to expand the genome editing toolbox. Current Opinion in Microbiology, 2017, 37, 88-94.	2.3	30
385	Conformational regulation of CRISPR-associated nucleases. Current Opinion in Microbiology, 2017, 37, 110-119.	2.3	43
386	CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chemical Reviews, 2017, 117, 9874-9906.	23.0	418
387	Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Research, 2017, 45, 7897-7908.	6.5	87
388	Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Failure Reviews, 2017, 22, 795-823.	1.7	7
389	Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing. Current Atherosclerosis Reports, 2017, 19, 32.	2.0	13
390	Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1. Molecular Cell, 2017, 67, 139-147.e2.	4.5	88

		CITATION R	EPORT	
#	Article		IF	CITATIONS
391	Therapeutic editing of hepatocyte genome in vivo. Journal of Hepatology, 2017, 67, 81	8-828.	1.8	17
392	Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nature Comm 2017, 8, 15334.	unications,	5.8	75
393	CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Scienc 447-457.	es, 2017, 60,	2.3	34
394	CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Scien Sciences, 2017, 60, 468-475.	ce China Life	2.3	27
395	Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric dia and Cellular Neurosciences, 2017, 82, 157-166.	sease. Molecular	1.0	25
396	Engineered CRISPR Systems for Next Generation Gene Therapies. ACS Synthetic Biolog 1614-1626.	y, 2017, 6,	1.9	30
397	The Hope and Hype of CRISPR-Cas9 Genome Editing. JAMA Cardiology, 2017, 2, 914.		3.0	43
398	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment o Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	f Inherited	3.7	121
399	InÂVivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Anima Molecular Therapy, 2017, 25, 1168-1186.	l Models.	3.7	228
400	New variants of CRISPR RNAâ€guided genome editing enzymes. Plant Biotechnology Jo 917-926.	burnal, 2017, 15,	4.1	79
401	A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants. Plant Physiology, 2017, 58, 643-649.	: and Cell	1.5	43
402	Temperature effect on CRISPR-Cas9 mediated genome editing. Journal of Genetics and 44, 199-205.	Genomics, 2017,	1.7	78
403	Delivery technologies for genome editing. Nature Reviews Drug Discovery, 2017, 16, 3	87-399.	21.5	422
404	Functional variomics and network perturbation: connecting genotype to phenotype in Reviews Genetics, 2017, 18, 395-410.	cancer. Nature	7.7	84
405	Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief over 2017, 121-122, 3-8.	view. Methods,	1.9	23
406	CRISPR applications in ophthalmologic genome surgery. Current Opinion in Ophthalmo 252-259.	blogy, 2017, 28,	1.3	27
407	The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and Development, 2017, 39, 547-556.	BMD. Brain and	0.6	33
408	Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via targeting. Nature Communications, 2017, 8, 14958.	proximal CRISPR	5.8	123

		CITATION R	EPORT	
#	Article		IF	CITATIONS
409	Refining strategies to translate genome editing to the clinic. Nature Medicine, 2017, 2	3, 415-423.	15.2	213
410	CRISPR–Cas9 Structures and Mechanisms. Annual Review of Biophysics, 2017, 46, 5	05-529.	4.5	1,289
411	Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. N Communications, 2017, 8, 14716.	ature	5.8	231
412	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods 118-129.	, 2017, 121-122,	1.9	28
413	Re-engineered RNA-Guided FokI-Nucleases for Improved Genome Editing in Human Cell Therapy, 2017, 25, 342-355.	s. Molecular	3.7	25
414	Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecula the CRISPR-Cas9 Systems. Molecular Cell, 2017, 65, 1109-1121.e3.	r Diversity in	4.5	145
415	Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease Reports, 2017, 7, 44624.	. Scientific	1.6	76
416	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome,	2017, 28, 348-364.	1.0	72
417	Deciphering, Communicating, and Engineering the CRISPR PAM. Journal of Molecular B 177-191.	iology, 2017, 429,	2.0	147
418	Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other s nucleases. Biotechnology Advances, 2017, 35, 95-104.	equence-specific	6.0	269
419	Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 syste YG8R-derived cells and mouse models of Friedreich ataxia. Gene Therapy, 2017, 24, 26		2.3	50
420	Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell, 2017, 168, 150-158.e10.		13.5	409
421	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edit 6396-6419.	ion, 2017, 56,	7.2	141
422	Synthetische Biologie – die Synthese der Biologie. Angewandte Chemie, 2017, 129, 0	5494-6519.	1.6	11
423	Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Csx27 and Csx28. Molecular Cell, 2017, 65, 618-630.e7.	Accessory Proteins	4.5	445
424	Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Rel. Gerontology, 2017, 63, 103-117.	ated Disease.	1.4	11
425	H2AX facilitates classical non-homologous end joining at the expense of limited nucleo repair junctions. Nucleic Acids Research, 2017, 45, 10614-10633.	tide loss at	6.5	14
426	Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG A 2017, 9, e441-e441.	sia Materials,	3.8	132

#	Article	IF	CITATIONS
427	Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nature Reviews Neurology, 2017, 13, 647-661.	4.9	68
428	Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017, 1, 889-901.	11.6	566
429	Targeting of Photoreceptor Genes in <i>Chlamydomonas reinhardtii</i> via Zinc-Finger Nucleases and CRISPR/Cas9. Plant Cell, 2017, 29, 2498-2518.	3.1	260
431	CRISPR-Mediated Ophthalmic Genome Surgery. Current Ophthalmology Reports, 2017, 5, 199-206.	0.5	12
432	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
433	Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Molecular Cell, 2017, 68, 26-43.	4.5	199
434	RNA targeting with CRISPR–Cas13. Nature, 2017, 550, 280-284.	13.7	1,442
435	The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 2017, 1, .	13.8	111
436	Genome editing technologies to fight infectious diseases. Expert Review of Anti-Infective Therapy, 2017, 15, 1001-1013.	2.0	10
437	CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy - Nucleic Acids, 2017, 9, 230-241.	2.3	82
438	Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR–Cas9 genome editing. Nature Biomedical Engineering, 2017, 1, 878-888.	11.6	83
440	Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chemical Science, 2017, 8, 7923-7931.	3.7	92
441	Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Molecular Cell, 2017, 68, 479-490.e5.	4.5	99
442	A simple method based on Sanger sequencing and MS Word wildcard searching to identify Cas9-induced frameshift mutations. Laboratory Investigation, 2017, 97, 1500-1507.	1.7	5
443	Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism. Advances in Experimental Medicine and Biology, 2017, 1007, 157-178.	0.8	10
444	CRISPR/CAS9, the king of genome editing tools. Molecular Biology, 2017, 51, 514-525.	0.4	18
445	Recent Advancements in DNA Damage–Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annual Review of Genomics and Human Genetics, 2017, 18, 87-113.	2.5	37
446	Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:C-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3, eaao4774.	4.7	582

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
447	Targeting Specificity of the CRISPR/Cas9 System. ACS Synthetic Biology, 2017, 6, 1609	-1613.	1.9	19
448	Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nuclea Reports, 2017, 7, 11606.	ses. Scientific	1.6	164
449	USH2A Gene Editing Using the CRISPR System. Molecular Therapy - Nucleic Acids, 2017	, 8, 529-541.	2.3	56
450	The Chromatin Structure Differentially Impacts High-Specificity CRISPR-Cas9 Nuclease S Molecular Therapy - Nucleic Acids, 2017, 8, 558-563.	trategies.	2.3	36
451	Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core–Shell Nanocarrier. Advanced Science, 2017, 4, 1700175.		5.6	166
452	Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications Controlled Release, 2017, 266, 17-26.	. Journal of	4.8	376
453	CRISPR-based Gene Editing: A Guide for the Clinician. International Ophthalmology Clini 151-164.	cs, 2017, 57,	0.3	3
454	Therapeutic Gene Editing in Muscles and Muscle Stem Cells. Research and Perspectives Neurosciences, 2017, , 103-123.	in	0.4	1
455	Use of the Cas9 Orthologs from Streptococcus thermophilus and Staphylococcus aured Non-Homologous End-Joining Mediated Site-Specific Mutagenesis in Arabidopsis thalian Molecular Biology, 2017, 1669, 365-376.		0.4	10
456	Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation Research Reviews, 2017, 37, 94-116.	on. Ageing	5.0	64
457	A Standard Methodology to Examine On-site Mutagenicity As a Function of Point Muta Catalyzed by CRISPR/Cas9 and SsODN in Human Cells. Journal of Visualized Experiment		0.2	3
458	Beyond Native Cas9: Manipulating Genomic Information and Function. Trends in Biotec 35, 983-996.	hnology, 2017,	4.9	64
459	Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nature Methods, 2017	', 14, 891-896.	9.0	88
460	The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types Cancers as a Model System. Molecular Therapy - Nucleic Acids, 2017, 8, 56-63.	: Virally Driven	2.3	18
461	Correction of a splicing defect in a mouse model of congenital muscular dystrophy type homology-directed-repair-independent mechanism. Nature Medicine, 2017, 23, 984-989		15.2	72
462	In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Thera Alternative to Genome Editing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017	peutic 7, 37, 1741-1747.	1.1	181
463	Implications of human genetic variation in CRISPR-based therapeutic genome editing. N 2017, 23, 1095-1101.	ature Medicine,	15.2	105
464	Progress and prospects in plant genome editing. Nature Plants, 2017, 3, 17107.		4.7	349

#	Article	IF	CITATIONS
465	Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Cell Reports, 2017, 20, 1017-1028.	2.9	156
466	Technical considerations for the use of CRISPR/Cas9 in hematology research. Experimental Hematology, 2017, 54, 4-11.	0.2	18
467	Genome editing in crop improvement: Present scenario and future prospects. Journal of Crop Improvement, 2017, 31, 453-559.	0.9	57
468	Forschung zu Genodermatosen durch neue Genomâ€∢i>Editingâ€Methoden. JDDG - Journal of the German Society of Dermatology, 2017, 15, 783-790.	0.4	1
469	Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Molecular Cell, 2017, 67, 633-645.e3.	4.5	206
470	ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Scientific Reports, 2017, 7, 7401.	1.6	53
471	A Protocol for the Production of Integrase-deficient Lentiviral Vectors for CRISPR/Cas9-mediated Gene Knockout in Dividing Cells. Journal of Visualized Experiments, 2017, , .	0.2	15
472	CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Scientific Reports, 2017, 7, 17113.	1.6	70
473	Techniques and strategies employing engineered transcription factors. Current Opinion in Biomedical Engineering, 2017, 4, 152-162.	1.8	1
474	Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688.	5.8	244
475	Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Scientific Reports, 2017, 7, 16174.	1.6	66
476	Genome Editing. Journal of the American College of Cardiology, 2017, 70, 2808-2821.	1.2	27
477	Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nature Communications, 2017, 8, 1647.	5.8	112
478	A thermostable Cas9 with increased lifetime in human plasma. Nature Communications, 2017, 8, 1424.	5.8	142
479	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
480	Combining Engineered Nucleases with Adeno-associated Viral Vectors for Therapeutic Gene Editing. Advances in Experimental Medicine and Biology, 2017, 1016, 29-42.	0.8	13
481	The pigmented epithelium, a bright partner against photoreceptor degeneration. Journal of Neurogenetics, 2017, 31, 203-215.	0.6	16
482	Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 2017, 8, .	1.8	88

ARTICLE IF CITATIONS # InÂVivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment 483 2.3 61 Epithelium Cells. Molecular Therapy - Nucleic Acids, 2017, 9, 89-99. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B 484 1.6 mice. Scientific Reports, 2017, 7, 4159 Genetic engineering as a tool for the generation of mouse models to understand disease phenotypes 485 3.3 0 and gene function. Current Opinion in Biotechnology, 2017, 48, 228-233. Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of 486 5.8 sarcoma. Nature Communications, 2017, 8, 15999. A Novel Regulatory Mechanism of Smooth Muscle α-Actin Expression by NRG-1/circACTA2/miR-548f-5p 487 2.0 118 Axis. Circulation Research, 2017, 121, 628-635. 488 CRISPR–Cas9 claim sets and the potential to stifle innovation. Nature Biotechnology, 2017, 35, 630-633. 9.4 Host determinants of adeno-associated viral vector entry. Current Opinion in Virology, 2017, 24, 489 2.6 67 124-131. Biodegradable Amino-Ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo. ACS Applied 4.0 74 Materials & amp; Interfaces, 2017, 9, 25481-25487. Illuminating the structure and dynamics of chromatin by fluorescence labeling. Frontiers in Biology, 491 0.7 4 2017, 12, 241-257. Tailoring non-viral delivery vehicles for transporting genome-editing tools. Science China Materials, 3.5 2017, 60, 511-515. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 2017, 35, 789-792. 493 9.4 351 The applications and advances of CRISPR-Cas9 in medical research. Briefings in Functional Genomics, 494 1.3 2017, 16, 1-3. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. 495 1.8 98 Epigenetics and Chromatin, 2017, 10, 24. Massively Parallel Biophysical Analysis of CRISPR-Cas Complexes on Next Generation Sequencing Chips. Cell, 2017, 170, 35-47.e13. 13.5 CRISPR/Cas9, a universal tool for genomic engineering. Russian Journal of Genetics: Applied Research, 497 0.4 4 2017, 7, 440-458. Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells. Nucleic Acids Research, 2017, 45, 8411-8422. 499 Non-viral delivery of genome-editing nucleases for gene therapy. Gene Therapy, 2017, 24, 144-150. 2.388 Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. Methods in 0.4 Molecular Biology, 2017, , .

#	Article	IF	Citations
501	Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells. Methods in Molecular Biology, 2017, 1507, 221-233.	0.4	31
502	Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. Journal of Biotechnology, 2017, 241, 50-60.	1.9	9
503	Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs. Transgenic Research, 2017, 26, 97-107.	1.3	42
504	CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 168, 20-36.	13.5	783
505	CRISPR/Cas9, a powerful tool to target human herpesviruses. Cellular Microbiology, 2017, 19, e12694.	1.1	46
506	CRISPR/Cas9 in allergic and immunologic diseases. Expert Review of Clinical Immunology, 2017, 13, 5-9.	1.3	8
507	A Precision Medicine Approach to the Rescue of Function on Malignant Calmodulinopathic Long-QT Syndrome. Circulation Research, 2017, 120, 39-48.	2.0	129
508	Gene and Cell Therapy for Inborn Errors of Metabolism. , 2017, , 155-171.		1
509	Adaptation of CRISPR nucleases for eukaryotic applications. Analytical Biochemistry, 2017, 532, 90-94.	1.1	8
510	Exploring the potential of genome editing CRISPR-Cas9 technology. Gene, 2017, 599, 1-18.	1.0	119
511	<i>In vivo</i> and <i>in vitro</i> disease modeling with CRISPR/Cas9. Briefings in Functional Genomics, 2017, 16, 13-24.	1.3	16
512	Therapeutic applications of CRISPR RNA-guided genome editing. Briefings in Functional Genomics, 2017, 16, 38-45.	1.3	26
513	Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics, 2017, 33, 286-288.	1.8	313
514	Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discovery Today, 2017, 22, 17-30.	3.2	6
515	Gene Editing: A New Tool for Viral Disease. Annual Review of Medicine, 2017, 68, 401-411.	5.0	25
516	Genome editing in cardiovascular diseases. Nature Reviews Cardiology, 2017, 14, 11-20.	6.1	76
517	Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2017, 1498, 3-21.	0.4	10
518	Heritability of targeted gene modifications induced by plant-optimized CRISPR systems. Cellular and Molecular Life Sciences, 2017, 74, 1075-1093.	2.4	44

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
519	Precision genome editing in the CRISPR era. Biochemistry and Cell Biology, 2017, 95, 187-201.	0.9	120
520	The Yin and Yang of nucleic acid-based therapy in the brain. Progress in Neurobiology, 2017, 155, 194	211. 2.8	22
521	InÂvivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Progress in Retinal and Eye Research, 2017, 56, 1-18.	7.3	62
522	TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Research, 2017, 45, e3-e3.	6.5	8
523	Modification of ethylene sensitivity in ornamental plants using CRISPR/Cas9. Acta Horticulturae, 2017, , 271-280.	0.1	3
524	CRISPR/Cas9: A Potential Life-Saving Tool. What's next?. Molecular Therapy - Nucleic Acids, 2017, 9 333-336.	9, 2.3	10
525	Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nature Communications, 2017, 8, 2212.	5.8	81
526	Nuclear Transformation and Toolbox Development. Microbiology Monographs, 2017, , 27-58.	0.3	0
527	In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Scienc Advances, 2017, 3, eaar3952.	e 4.7	127
528	Chlamydomonas: Molecular Genetics and Physiology. Microbiology Monographs, 2017, , .	0.3	2
529	CRISPR in Animals and Animal Models. Progress in Molecular Biology and Translational Science, 2017, 152, 95-114.	0.9	39
530	CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif. International Journal of Biological Sciences, 2017, 13, 1470-1478.	. 2.6	44
531	Editing Citrus Genome via SaCas9/sgRNA System. Frontiers in Plant Science, 2017, 8, 2135.	1.7	87
532	The gRNA-miRNA-gRNA Ternary Cassette Combining CRISPR/Cas9 with RNAi Approach Strongly Inhibit Hepatitis B Virus Replication. Theranostics, 2017, 7, 3090-3105.	s 4.6	39
533	Applications of Alternative Nucleases in the Age of CRISPR/Cas9. International Journal of Molecular Sciences, 2017, 18, 2565.	1.8	22
534	New Directions for Epigenetics: Application of Engineered DNA-Binding Molecules to Locus-Specific Epigenetic Research. , 2017, , 635-652.		2
535	CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics, 2017, 7, 4445-4469.	4.6	22
536	CRISPR–Cas9., 2017, , .		0

#	Article	IF	CITATIONS
537	Employment of Microencapsulated Sertoli Cells as a New Tool to Treat Duchenne Muscular Dystrophy. Journal of Functional Morphology and Kinesiology, 2017, 2, 47.	1.1	3
538	Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nature Biotechnology, 2017, 35, 1179-1187.	9.4	375
539	Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era. Frontiers in Immunology, 2017, 8, 1616.	2.2	6
540	Long-Term Assessment of AAV-Mediated Zinc Finger Nuclease Expression in the Mouse Brain. Frontiers in Molecular Neuroscience, 2017, 10, 142.	1.4	7
541	The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells International, 2017, 2017, 1-13.	1.2	36
542	Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. Stem Cells International, 2017, 2017, 1-11.	1.2	30
543	Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS ONE, 2017, 12, e0179514.	1.1	34
544	TowardÂGenome-Based Metabolic Engineering in Bacteria. Advances in Applied Microbiology, 2017, 101, 49-82.	1.3	8
545	Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology, 2017, 14, 51.	0.9	36
546	A highly efficient ligation-independent cloning system for CRISPR/Cas9 based genome editing in plants. Plant Methods, 2017, 13, 86.	1.9	18
547	Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 2017, 18, 191.	3.8	111
548	Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing in a single-cell-derived cell population. BMC Research Notes, 2017, 10, 720.	0.6	7
549	Deep mutational scanning of S. pyogenes Cas9 reveals important functional domains. Scientific Reports, 2017, 7, 16836.	1.6	37
550	The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Global Cardiology Science & Practice, 2017, 2017, e201702.	0.3	31
551	Challenges and Advances in Gene Therapy Approaches for Neurodegenerative Disorders. Current Gene Therapy, 2017, 17, 187-193.	0.9	9
552	Drug Discovery Technologies: Current and Future Trends. , 2017, , 1-32.		4
553	In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Research, 2017, 6, 2153.	0.8	127
554	Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Research, 2018, 152, 58-67.	1.9	65

#	Article	IF	CITATIONS
555	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
556	Biofuels: Greenhouse Gas Mitigation and Global Warming. , 2018, , .		22
557	Application and development of genome editing technologies to the Solanaceae plants. Plant Physiology and Biochemistry, 2018, 131, 37-46.	2.8	25
559	Eradication of cervical cancer in vivo by an AAV vector that encodes shRNA targeting human papillomavirus type $16\tilde{A}^{-}\hat{A}_{2}\hat{A}_{2}$ E6/E7. International Journal of Oncology, 2018, 52, 687-696.	1.4	11
560	Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556, 57-63.	13.7	1,195
561	Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances, 2018, 4, eaao5508.	4.7	64
562	A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent InÂVivo Genome Editing. Cell Reports, 2018, 22, 2227-2235.	2.9	543
563	CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Molecular Cell, 2018, 69, 893-905.e7.	4.5	122
564	Advanced editing of the nuclear and plastid genomes in plants. Plant Science, 2018, 273, 42-49.	1.7	26
565	A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods, 2018, 143, 48-57.	1.9	36
566	CRISPR-Directed <i>In Vitro</i> Gene Editing of Plasmid DNA Catalyzed by Cpf1 (Cas12a) Nuclease and a Mammalian Cell-Free Extract. CRISPR Journal, 2018, 1, 191-202.	1.4	16
567	VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function. Endocrinology, 2018, 159, 2036-2049.	1.4	26
568	Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Molecular Genetics and Genomics, 2018, 293, 1051-1060.	1.0	14
569	Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 2018, 171, 207-218.	5.7	289
570	Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes. Plant and Cell Physiology, 2018, 59, 1608-1620.	1.5	40
571	Single step production of Cas9 mRNA for zygote injection. BioTechniques, 2018, 64, 118-124.	0.8	2
572	How genome editing could be used in the treatment of cardiovascular diseases. Personalized Medicine, 2018, 15, 67-69.	0.8	7
573	The <scp>CRISPR</scp> /Cas revolution reaches the <scp>RNA</scp> world: Cas13, a new Swiss Army knife for plant biologists. Plant Journal, 2018, 94, 767-775.	2.8	83

#	Article	IF	CITATIONS
574	CRISPys: Optimal sgRNA Design for Editing Multiple Members of a Gene Family Using the CRISPR System. Journal of Molecular Biology, 2018, 430, 2184-2195.	2.0	18
575	Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Research, 2018, 250, 21-30.	1.1	35
576	An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus, 2018, 9, 265-276.	0.6	68
577	Innovations in CRISPR technology. Current Opinion in Biotechnology, 2018, 52, 95-101.	3.3	17
578	Engineering Point Mutant and Epitopeâ€Tagged Alleles in Mice Using Cas9 RNAâ€Guided Nuclease. Current Protocols in Mouse Biology, 2018, 8, 28-53.	1.2	22
579	Intrathecal Injection of scAAV9–hIGF1 Prolongs the Survival of ALS Model Mice by Inhibiting the NF-kB Pathway. Neuroscience, 2018, 381, 1-10.	1.1	16
580	Multigene delivery in mammalian cells: Recent advances and applications. Biotechnology Advances, 2018, 36, 871-879.	6.0	10
581	Understanding the Molecular Mechanisms of the CRISPR Toolbox Using Single Molecule Approaches. ACS Chemical Biology, 2018, 13, 516-526.	1.6	10
582	The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561774183.	1.5	15
583	The multiplexed CRISPR targeting platforms. Drug Discovery Today: Technologies, 2018, 28, 53-61.	4.0	9
584	Hallmarks of cancer: The CRISPR generation. European Journal of Cancer, 2018, 93, 10-18.	1.3	54
585	Personalised genome editing – The future for corneal dystrophies. Progress in Retinal and Eye Research, 2018, 65, 147-165.	7.3	31
586	Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports, 2018, 12, 57-68.	0.9	41
587	A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology, 2018, 36, 265-271.	9.4	377
588	Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nature Chemical Biology, 2018, 14, 311-316.	3.9	186
589	<i>In Vivo</i> Ovarian Cancer Gene Therapy Using CRISPR-Cas9. Human Gene Therapy, 2018, 29, 223-233.	1.4	60
590	Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity. Journal of Neuroscience, 2018, 38, 2923-2943.	1.7	26
591	Hybridization Kinetics Explains CRISPR-Cas Off-Targeting Rules. Cell Reports, 2018, 22, 1413-1423.	2.9	96

#	Article	IF	CITATIONS
592	Lignocellulosic Feedstock Improvement for Biofuel Production Through Conventional Breeding and Biotechnology. , 2018, , 107-140.		3
593	A Survey of Validation Strategies for CRISPR-Cas9 Editing. Scientific Reports, 2018, 8, 888.	1.6	241
594	CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nature Protocols, 2018, 13, 358-376.	5.5	240
595	Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. Crop Journal, 2018, 6, 22-31.	2.3	29
596	Emerging Issues in AAV-Mediated InÂVivo Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2018, 8, 87-104.	1.8	578
597	Genome Editing in Retinal Diseases using CRISPR Technology. Ophthalmology Retina, 2018, 2, 1-3.	1.2	8
598	Thermoâ€ŧriggered Release of CRISPR as9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie - International Edition, 2018, 57, 1491-1496.	7.2	306
599	Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nature Biotechnology, 2018, 36, 179-189.	9.4	216
600	CRISPR/Cas9 therapeutics for liver diseases. Journal of Cellular Biochemistry, 2018, 119, 4265-4278.	1.2	9
601	Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discovery Today, 2018, 23, 519-533.	3.2	31
602	Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nature Biotechnology, 2018, 36, 170-178.	9.4	120
603	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	1.2	154
604	A Robust CRISPR Interference Gene Repression System in Pseudomonas. Journal of Bacteriology, 2018, 200, .	1.0	82
605	Thermoâ€triggered Release of CRISPRâ€Cas9 System by Lipidâ€Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie, 2018, 130, 1507-1512.	1.6	17
606	Split Cas9, Not Hairs â´' Advancing the Therapeutic Index of CRISPR Technology. Biotechnology Journal, 2018, 13, e1700432.	1.8	26
607	Macrophage-Specific <i>in Vivo</i> Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles. ACS Nano, 2018, 12, 994-1005.	7.3	163
608	Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nature Biomedical Engineering, 2018, 2, 38-47.	11.6	230
609	Engineering the Delivery System for CRISPR-Based Genome Editing. Trends in Biotechnology, 2018, 36, 173-185.	4.9	260

#	Article	IF	Citations
610	Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Human Molecular Genetics, 2018, 27, 761-779.	1.4	107
611	Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications. Nucleic Acids Research, 2018, 46, 1375-1385.	6.5	213
612	Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Research, 2018, 46, e25-e25.	6.5	38
613	Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nature Communications, 2018, 9, 57.	5.8	58
614	MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. Rna, 2018, 24, 966-981.	1.6	58
615	The Dorsal Column Lesion Model of Spinal Cord Injury and Its Use in Deciphering the Neuronâ€Intrinsic Injury Response. Developmental Neurobiology, 2018, 78, 926-951.	1.5	23
616	Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC Biology, 2018, 16, 32.	1.7	36
617	Time-Restricted PiggyBac DNA Transposition by Transposase Protein Delivery Using Lentivirus-Derived Nanoparticles. Molecular Therapy - Nucleic Acids, 2018, 11, 253-262.	2.3	12
618	Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas. Frontiers of Medicine, 2018, 12, 497-508.	1.5	2
619	Harnessing "A Billion Years of Experimentationâ€: The Ongoing Exploration and Exploitation of CRISPR–Cas Immune Systems. CRISPR Journal, 2018, 1, 141-158.	1.4	44
620	Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology. Nature Communications, 2018, 9, 1800.	5.8	33
621	RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nature Communications, 2018, 9, 1674.	5.8	123
622	Concerns regarding â€~off-target' activity of genome editing endonucleases. Plant Physiology and Biochemistry, 2018, 131, 22-30.	2.8	32
623	Efficient InÂVivo Liver-Directed Gene Editing Using CRISPR/Cas9. Molecular Therapy, 2018, 26, 1241-1254.	3.7	52
624	Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell, 2018, 173, 665-676.e14.	13.5	789
625	Gene Editing and Gene-Based Therapeutics for Cardiomyopathies. Heart Failure Clinics, 2018, 14, 179-188.	1.0	8
626	Chemically Modified Cpf1-CRISPR RNAs Mediate Efficient Genome Editing in Mammalian Cells. Molecular Therapy, 2018, 26, 1228-1240.	3.7	60
627	CRISPR-Cas9-Mediated Correction of the 1.02 kb Common Deletion in CLN3 in Induced Pluripotent Stem Cells from Patients with Batten Disease. CRISPR Journal, 2018, 1, 75-87.	1.4	15

#	Article	IF	CITATIONS
628	Long Terminal Repeat CRISPR-CAR-Coupled "Universal―T Cells Mediate Potent Anti-leukemic Effects. Molecular Therapy, 2018, 26, 1215-1227.	3.7	104
629	Programmable Single and Multiplex Base-Editing in <i>Bombyx mori</i> Using RNA-Guided Cytidine Deaminases. G3: Genes, Genomes, Genetics, 2018, 8, 1701-1709.	0.8	19
630	Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. Journal of Physiological Sciences, 2018, 68, 333-343.	0.9	54
631	Rational Design of Mini-Cas9 for Transcriptional Activation. ACS Synthetic Biology, 2018, 7, 978-985.	1.9	47
632	Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants. International Journal for Parasitology, 2018, 48, 591-596.	1.3	30
633	CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Progress in Retinal and Eye Research, 2018, 65, 28-49.	7.3	64
635	Non-viral Methodology for Efficient Co-transfection. Methods in Molecular Biology, 2018, 1767, 241-254.	0.4	5
636	Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods in Molecular Biology, 2018, 1767, 19-63.	0.4	73
637	Neuroepigenetic Editing. Methods in Molecular Biology, 2018, 1767, 113-136.	0.4	17
638	Key to Delivery: The (Epi-)genome Editing Vector Toolbox. Methods in Molecular Biology, 2018, 1767, 147-166.	0.4	2
639	Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus. Virus Research, 2018, 244, 311-320.	1.1	53
640	Use of CRISPR/Cas9 to model brain diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 488-492.	2.5	18
641	Simultaneous Knockout of <i>CXCR4</i> and <i>CCR5</i> Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection. Human Gene Therapy, 2018, 29, 51-67.	1.4	75
642	The potential and challenges of CRISPR-Cas in eradication of hepatitis B virus covalently closed circular DNA. Virus Research, 2018, 244, 304-310.	1.1	37
643	CRISPR-engineered genome editing for the next generation neurological disease modeling. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 459-467.	2.5	11
644	Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochemistry International, 2018, 112, 187-196.	1.9	28
645	The contribution of alternative splicing to genetic risk for psychiatric disorders. Genes, Brain and Behavior, 2018, 17, e12430.	1.1	31
646	Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1408.	6.6	96

#	Article	IF	CITATIONS
647	The Promise and Challenge of <i>In Vivo</i> Delivery for Genome Therapeutics. ACS Chemical Biology, 2018, 13, 376-382.	1.6	69
648	Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods. Methods in Molecular Biology, 2018, 1672, 167-194.	0.4	15
649	Malectin gene polymorphisms promote cerebral palsy via M2â€like macrophage polarization. Clinical Genetics, 2018, 93, 794-799.	1.0	4
650	Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications. ACS Chemical Biology, 2018, 13, 333-342.	1.6	7
651	CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 12-18.	1.1	23
652	Inducible CRISPR genome-editing tool: classifications and future trends. Critical Reviews in Biotechnology, 2018, 38, 573-586.	5.1	24
653	A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription. ACS Chemical Biology, 2018, 13, 443-448.	1.6	103
654	Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnology Advances, 2018, 36, 295-310.	6.0	87
655	Retinal Gene Therapy. Methods in Molecular Biology, 2018, , .	0.4	8
656	The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing. Current Microbiology, 2018, 75, 107-115.	1.0	41
657	Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina. Methods in Molecular Biology, 2018, 1715, 113-133.	0.4	12
658	SaCas9 Requires 5′â€NNGRRTâ€3′ PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells. Biotechnology Journal, 2018, 13, e1700561.	1.8	46
659	Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chemical Biology, 2018, 13, 357-365.	1.6	95
660	CRISPR Cas9 â^' Licensing the unlicensable. Journal of Biotechnology, 2018, 265, 86-92.	1.9	6
661	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	2.3	15
662	Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9. Analytical Chemistry, 2018, 90, 429-439.	3.2	33
663	Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology, 2018, 13, 347-356.	1.6	25
664	CRISPR-Cas based antiviral strategies against HIV-1. Virus Research, 2018, 244, 321-332.	1.1	69

#	Article	IF	CITATIONS
665	Multidimensional Control of Cas9 by Evolved RNA Polymerase-Based Biosensors. ACS Chemical Biology, 2018, 13, 431-437.	1.6	21
666	CRISPR editing in biological and biomedical investigation. Journal of Cellular Physiology, 2018, 233, 3875-3891.	2.0	19
667	Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes, 2018, 9, 632.	1.0	43
668	CRISPR/Cas9‑mediated cervical cancer treatment targeting human papillomavirus E6. Oncology Letters, 2019, 17, 2197-2206.	0.8	56
669	Reversal of tumor malignization and modulation of cell behaviors through genome editing mediated by a multi-functional nanovector. Nanoscale, 2018, 10, 21209-21218.	2.8	19
670	Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. Journal of Clinical Investigation, 2018, 128, 1010-1025.	3.9	133
671	DNA methylation and de-methylation using hybrid site-targeting proteins. Genome Biology, 2018, 19, 187.	3.8	45
672	The forty years of medical genetics in China. Journal of Genetics and Genomics, 2018, 45, 569-582.	1.7	11
673	Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discovery, 2018, 4, 63.	3.1	183
674	Orthogonal Cas9–Cas9 chimeras provide a versatile platform for genome editing. Nature Communications, 2018, 9, 4856.	5.8	27
675	Phosphate Lock Residues of <i>Acidothermus cellulolyticus</i> Cas9 Are Critical to Its Substrate Specificity. ACS Synthetic Biology, 2018, 7, 2908-2917.	1.9	7
676	Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma) Tj ETQq1	107843	14 ₃ rgBT /Ove
677	Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy. ChemBioChem, 2019, 20, 634-643.	1.3	48
678	Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 563, 646-651.	13.7	414
679	CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nature Communications, 2018, 9, 5454.	5.8	56
680	Delivery systems of CRISPR/Cas9-based cancer gene therapy. Journal of Biological Engineering, 2018, 12, 33.	2.0	35
681	Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR Journal, 2018, 1, 379-404.	1.4	17
682	Engineering CRISPR-Cas9 RNA–Protein Complexes for Improved Function and Delivery. CRISPR Journal, 2018, 1, 367-378.	1.4	11

#	Article	IF	CITATIONS
683	Expanding the RNA-Guided Endonuclease Toolkit for Mouse Genome Editing. CRISPR Journal, 2018, 1, 431-439.	1.4	5
684	llluminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biology, 2018, 19, 226.	3.8	28
685	New Developments in CRISPR Technology: Improvements in Specificity and Efficiency. Current Pharmaceutical Biotechnology, 2018, 18, 1038-1054.	0.9	12
686	NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biology, 2018, 19, 214.	3.8	95
687	Efficient DNA Condensation by a C ₃ â€ S ymmetric Codeine Scaffold. ChemPlusChem, 2019, 84, 38-42.	1.3	6
688	Delivery of an Artificial Transcription Regulator dCas9-VPR by Extracellular Vesicles for Therapeutic Gene Activation. ACS Synthetic Biology, 2018, 7, 2715-2725.	1.9	43
689	In utero CRISPR-mediated therapeutic editing of metabolic genes. Nature Medicine, 2018, 24, 1513-1518.	15.2	169
690	Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nature Medicine, 2018, 24, 1519-1525.	15.2	301
691	Inhibition of HBV Expression in HBV Transgenic Mice Using AAV-Delivered CRISPR-SaCas9. Frontiers in Immunology, 2018, 9, 2080.	2.2	40
692	Recognition of CRISPR/Cas9 off-target sites through ensemble learning of uneven mismatch distributions. Bioinformatics, 2018, 34, i757-i765.	1.8	38
693	DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. IScience, 2018, 6, 247-263.	1.9	25
694	Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Research, 2018, 46, 10272-10285.	6.5	62
695	Targeting Tumor Microenvironment by Bioreduction-Activated Nanoparticles for Light-Triggered Virotherapy. ACS Nano, 2018, 12, 9894-9902.	7.3	61
696	CRISPR/CAS Targeted in vivo Genome Modification for Studying the Functional Role of Genomic Regulatory Elements in Health and Carcinogenesis. Molecular Genetics, Microbiology and Virology, 2018, 33, 1-7.	0.0	0
697	In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Research, 2018, 27, 489-509.	1.3	26
698	Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nature Communications, 2018, 9, 4092.	5.8	142
699	HIT-Cas9: A CRISPR/Cas9 Genome-Editing Device under Tight and Effective Drug Control. Molecular Therapy - Nucleic Acids, 2018, 13, 208-219.	2.3	22
700	Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy. Current Gene Therapy, 2018, 17, 301-308.	0.9	21

#	Article	IF	CITATIONS
701	In Vivo <i>Ryr</i> 2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2018, 123, 953-963.	2.0	63
702	CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biology, 2018, 19, 177.	3.8	105
703	The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology, 2018, 60, 1127-1153.	4.1	109
704	Minimal PAM specificity of a highly similar SpCas9 ortholog. Science Advances, 2018, 4, eaau0766.	4.7	183
705	Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018, 3, 217-228.	1.8	20
706	Getting Into the Rhythm With CRISPR. Circulation Research, 2018, 123, 928-930.	2.0	0
707	Base editing: precision chemistry on the genome and transcriptome ofÂliving cells. Nature Reviews Genetics, 2018, 19, 770-788.	7.7	1,072
708	CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genetics Research International, 2018, 2018, 1-17.	2.0	19
709	The Development of an AAV-Based CRISPR SaCas9 Genome Editing System That Can Be Delivered to Neurons in vivo and Regulated via Doxycycline and Cre-Recombinase. Frontiers in Molecular Neuroscience, 2018, 11, 413.	1.4	56
710	In Vivo Genome Editing as a Therapeutic Approach. International Journal of Molecular Sciences, 2018, 19, 2721.	1.8	57
711	Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nature Communications, 2018, 9, 3651.	5.8	137
712	Comprehensive off-target analysis of dCas9-SAM-mediated HIV reactivation via long noncoding RNA and mRNA profiling. BMC Medical Genomics, 2018, 11, 78.	0.7	15
713	All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biology, 2018, 19, 137.	3.8	89
714	Delivery approaches for CRISPR/Cas9 therapeutics <i>in vivo</i> : advances and challenges. Expert Opinion on Drug Delivery, 2018, 15, 905-913.	2.4	98
715	CRISPR-Induced Deletion with SaCas9 Restores Dystrophin Expression in Dystrophic Models InÂVitro and InÂVivo. Molecular Therapy, 2018, 26, 2604-2616.	3.7	63
716	Increasing the precision of gene editing inÂvitro, exÂvivo, and inÂvivo. Current Opinion in Biomedical Engineering, 2018, 7, 83-90.	1.8	8
717	Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. Journal of Central Nervous System Disease, 2018, 10, 117957351878746.	0.7	7
718	Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. Current Opinion in Biomedical Engineering, 2018, 7, 33-41.	1.8	13

		CITATION REF	PORT	
#	Article		IF	CITATIONS
719	Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361, 1	259-1262.	6.0	783
720	CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361, 866-869.		6.0	1,024
721	Ubiquitin A-52 residue ribosomal protein fusion product 1 (<i>Uba52</i>) is essential fo preimplantation embryo development. Biology Open, 2018, 7, .	e e e e e e e e e e e e e e e e e e e	0.6	23
722	CRISPR/Cas9ã∗ā,^ã,‹ã,²ãƒŽãƒç∵集技術ã®é€²å±•ãë作物ãặã®å¿œç"". Kagaku To	Seibutsu, 2018, 56, 759-7	7680	0
724	Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 2018, 25,	234-1257.	2.5	776
725	The new normal of structure/function studies in the era of CRISPR/Cas9. Biochemical Jou 475, 1635-1642.	rnal, 2018,	1.7	1
726	HPV Oncogene Manipulation Using Nonvirally Delivered CRISPR/Cas9 or <i>Natronobact gregoryi</i> Argonaute. Advanced Science, 2018, 5, 1700540.	zerium	5.6	78
727	Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for geno Interdisciplinary Reviews RNA, 2018, 9, e1481.	ne editing. Wiley	3.2	164
728	CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease. Methods in Molec 1780, 463-481.	ular Biology, 2018,	0.4	17
729	In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Molecul 26, 1818-1827.	ar Therapy, 2018,	3.7	111
730	Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity. Analytical C 2018, 90, 6913-6921.	hemistry,	3.2	20
731	2DåŠå°Žä¼2"ã®æ [™] æ—1åʿāf~ãf†ãf接å•ã,'ãf~ãf³ãfãffãf^ã§. Nature Digest, 2018, 15,	33-35.	0.0	0
732	High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editi Peripheral Blood Mononuclear Cells. Stem Cell Reports, 2018, 10, 1821-1834.	ıg of Human	2.3	21
733	The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9, 1	911.	5.8	1,159
734	RNA Polymerase II Activity of Type 3 Pol III Promoters. Molecular Therapy - Nucleic Acids, 135-145.	2018, 12,	2.3	37
735	Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dy patient-derived iPS and myogenic cells. Nucleic Acids Research, 2018, 46, 8275-8298.	rstrophy	6.5	78
736	Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanc Nanotechnology, Biology, and Medicine, 2018, 14, 2095-2102.	medicine:	1.7	68
737	Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proceedings of the National Academy of Sciences of the United States or 2018, 115, E6722-E6730.	America,	3.3	124

		CITATION RE	PORT	
#	ARTICLE		IF	CITATIONS
738	RNA-dependent RNA targeting by CRISPR-Cas9. ELife, 2018, 7, .		2.8	152
739	CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered, 2018, 9,	. 214-221.	1.4	30
740	The CRISPR/Cas9 System as a Tool to Engineer Chromosomal Translocation In Vivo. Ac Experimental Medicine and Biology, 2018, 1044, 39-48.	lvances in	0.8	12
741	How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediting. Nucleic Acids Research, 2018, 46, 6435-6454.	nediated genome	6.5	37
742	Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene Therapy. Neural Plasticity, 2018, 2018, 1-15.	e and Cell	1.0	29
743	Essential function of NHE8 in mouse retina demonstrated by AAV-mediated CRISPR/Ca Experimental Eye Research, 2018, 176, 29-39.	as9 knockdown.	1.2	13
744	CRISPR/Cas9 genome surgery for retinal diseases. Drug Discovery Today: Technologies	s, 2018, 28, 23-32.	4.0	10
745	An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Na Biotechnology, 2018, 36, 977-982.	ture	9.4	328
746	Somatic Editing of <i>Ldlr</i> With Adeno-Associated Viral-CRISPR Is an Efficient Tool Atherosclerosis Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38		1.1	63
747	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing Reviews, 2018, 98, 1205-1240.	g. Physiological	13.1	31
748	Unbiased Detection of Off-target Cleavage by CRISPR/Cas9 and TALENs Using Integrat Lentiviral Vectors. , 0, , 22-36.	tion-defective		0
749	CRISPR-Cas9 therapies in experimental mouse models of cancer. Future Oncology, 202	18, 14, 2083-2095.	1.1	5
750	CRISPR for Crop Improvement: An Update Review. Frontiers in Plant Science, 2018, 9,	985.	1.7	425
751	A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient human hematopoietic stem and progenitor cells. Nature Medicine, 2018, 24, 1216-12		15.2	573
752	In Silico Processing of the Complete CRISPR as Spacer Space for Identification of P. Biotechnology Journal, 2018, 13, e1700595.	AM Sequences.	1.8	16
753	Ecel1 Knockdown With an AAV2-Mediated CRISPR/Cas9 System Promotes Optic Nerve RGC Death in the Mouse Retina. , 2018, 59, 3943.	e Damage-Induced		10
754	Cell Line Techniques and Gene Editing Tools for Antibody Production: A Review. Fronti Pharmacology, 2018, 9, 630.	ers in	1.6	51
755	New breeding technique "genome editing―for crop improvement: applications, p challenges. 3 Biotech, 2018, 8, 336.	otentials and	1.1	45

	CITATION	REFORT	
# 756	ARTICLE Gene Editing of Stem Cells to Model and Treat Disease. Current Stem Cell Reports, 2018, 4, 253-263.	IF 0.7	CITATIONS
757	Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. Journal of Cancer, 2018, 9, 219-231.	1.2	21
758	Personalized gene and cell therapy for Duchenne Muscular Dystrophy. Neuromuscular Disorders, 2018, 28, 803-824.	0.3	45
759	Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. Nature Communications, 2018, 9, 2962.	5.8	32
760	A functional type II-A CRISPR–Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Research, 2018, 46, 6920-6933.	6.5	58
761	Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Research, 2018, 46, 8417-8434.	6.5	85
762	Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Genome Biology, 2018, 19, 62.	3.8	66
763	Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants. Methods in Molecular Biology, 2018, 1830, 23-40.	0.4	26
764	Application of CRISPR for Pooled, Vector-based Functional Genomic Screening in Mammalian Cell Lines. , 0, , 209-222.		0
765	Genome Editing for Retinal Diseases. , 0, , 358-370.		0
766	Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Scientific Reports, 2018, 8, 11544.	1.6	81
767	Feasibility of a Conditional Knockout System for Chlamydia Based on CRISPR Interference. Frontiers in Cellular and Infection Microbiology, 2018, 8, 59.	1.8	41
768	Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nature Biotechnology, 2018, 36, 717-725.	9.4	95
769	CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses, 2018, 10, 40.	1.5	35
770	CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions. Viruses, 2018, 10, 55.	1.5	20
771	An ode to gene edits that prevent deafness. Nature, 2018, 553, 162-163.	13.7	2
772	Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7379-E7388.	3.3	31
773	CRISPR as9: A cornerstone for the evolution of precision medicine. Annals of Human Genetics, 2018, 82, 331-357.	0.3	13

#	Article	IF	CITATIONS
774	DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biology, 2018, 19, 80.	3.8	285
775	In Vivo Applications of CRISPR-Based Genome Editing in the Retina. Frontiers in Cell and Developmental Biology, 2018, 6, 53.	1.8	26
776	Gene editing in the context of an increasingly complex genome. BMC Genomics, 2018, 19, 595.	1.2	8
777	Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis. Viruses, 2018, 10, 412.	1.5	34
778	Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein. Molecular Therapy - Nucleic Acids, 2018, 12, 672-683.	2.3	22
779	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced Biology, 2018, 2, 1800132.	3.0	11
780	Inherited Retinal Diseases. Current Practices in Ophthalmology, 2018, , 133-154.	0.1	0
781	A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Letters, 2018, 431, 171-181.	3.2	96
782	Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. Cancer Discovery, 2018, 8, 1006-1025.	7.7	248
783	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.	3.8	89
784	Different Methods of Delivering CRISPR/Cas9 Into Cells. Progress in Molecular Biology and Translational Science, 2018, 159, 157-176.	0.9	41
785	CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology, 2018, 53, 443-468.	1.4	28
786	CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo. Current Gene Therapy, 2018, 17, 263-274.	0.9	14
787	Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. International Review of Cell and Molecular Biology, 2018, 335, 85-141.	1.6	23
788	Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Molecular Therapy - Methods and Clinical Development, 2018, 10, 105-112.	1.8	181
789	Cenome editing by natural and engineered CRISPR-associated nucleases. Nature Chemical Biology, 2018, 14, 642-651.	3.9	91
790	CRISPRâ€Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnology Journal, 2018, 13, e1700586.	1.8	30
791	Viral delivery of genome-modifying proteins for cellular reprogramming. Current Opinion in Genetics and Development, 2018, 52, 92-99.	1.5	4

#	Article	IF	CITATIONS
792	CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology, 2019, 431, 88-101.	2.0	113
793	Potentials of CRISPR in liver research and therapy. Clinics and Research in Hepatology and Gastroenterology, 2019, 43, 5-11.	0.7	6
794	Genome editing in the mammalian brain using the CRISPR–Cas system. Neuroscience Research, 2019, 141, 4-12.	1.0	21
795	The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses. Journal of Medical Virology, 2019, 91, 1-13.	2.5	11
796	Gene Editing in Regenerative Medicine. , 2019, , 741-759.		0
797	PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biology, 2019, 16, 504-517.	1.5	160
798	Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems. RNA Biology, 2019, 16, 423-434.	1.5	22
799	CRISPR for Neuromuscular Disorders: Gene Editing and Beyond. Physiology, 2019, 34, 341-353.	1.6	14
800	Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Molecular Biology, 2019, 101, 355-371.	2.0	27
801	Systematic Evaluation of CRISPRa and CRISPRi Modalities Enables Development of a Multiplexed, Orthogonal Gene Activation and Repression System. ACS Synthetic Biology, 2019, 8, 1998-2006.	1.9	41
802	Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms, 2019, 7, 269.	1.6	87
803	Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. International Journal of Molecular Sciences, 2019, 20, 4045.	1.8	133
804	Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina. Human Gene Therapy, 2019, 30, 1349-1360.	1.4	22
805	Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nature Biotechnology, 2019, 37, 945-952.	9.4	39
806	Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Human Gene Therapy, 2019, 30, 1190-1203.	1.4	25
807	Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nature Biomedical Engineering, 2019, 3, 806-816.	11.6	77
808	Current status and future prospects of virus-based gene medicine. Drug Delivery System, 2019, 34, 99-105.	0.0	0
809	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	4.7	294

#	Article	IF	CITATIONS
810	Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nature Methods, 2019, 16, 722-730.	9.0	44
811	Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient â€~hit-and-run' genome editing. Nucleic Acids Research, 2019, 47, e99-e99.	6.5	67
812	Balance between DNAâ€binding affinity and specificity enables selective recognition of longer target sequences in vivo. Protein Science, 2019, 28, 1630-1639.	3.1	3
813	Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Research, 2019, 12, 2437-2450.	5.8	46
814	Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nature Neuroscience, 2019, 22, 1223-1234.	7.1	168
815	Label-Free CRISPR/Cas9 Assay for Site-Specific Nucleic Acid Detection. Analytical Chemistry, 2019, 91, 10870-10878.	3.2	25
816	A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature, 2019, 572, 125-130.	13.7	105
817	Standard screening methods underreport AAV-mediated transduction and gene editing. Nature Communications, 2019, 10, 3415.	5.8	39
818	CRISPR–Cas Gene Editing for Neurological Disease. , 2019, , 365-376.		1
819	Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice. Molecular Therapy, 2019, 27, 1372-1388.	3.7	38
820	Genome Editing for Muscle Gene Therapy. , 2019, , 275-287.		0
821	Epigenetics and addiction. Current Opinion in Neurobiology, 2019, 59, 128-136.	2.0	85
822	Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nature Medicine, 2019, 25, 1123-1130.	15.2	149
823	Friend or Foe? Evidence Indicates Endogenous Exosomes Can Deliver Functional gRNA and Cas9 Protein. Small, 2019, 15, e1902686.	5.2	58
824	Plasmodium falciparum In Vitro Drug Resistance Selections and Gene Editing. Methods in Molecular Biology, 2019, 2013, 123-140.	0.4	21
826	The Daunting Economics of Therapeutic Genome Editing. CRISPR Journal, 2019, 2, 280-284.	1.4	21
827	Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6. Molecular Cell, 2019, 76, 922-937.e7.	4.5	44
828	In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nature Communications, 2019, 10, 4620.	5.8	192

#	Article	IF	CITATIONS
829	Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 2019, 17, e3000496.	2.6	17
830	Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 2019, 8, 33-41.	1.1	24
831	Allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci using Staphylococcus aureus Cas9 (SaCas9). Science Bulletin, 2019, 64, 1592-1600.	4.3	9
832	Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Molecular Cell, 2019, 76, 938-952.e5.	4.5	80
834	Gene Delivery to Nonhuman Primate Preimplantation Embryos Using Recombinant Adenoâ€Associated Virus. Advanced Science, 2019, 6, 1900440.	5.6	7
835	Using CRISPR/Cas9 to model human liver disease. JHEP Reports, 2019, 1, 392-402.	2.6	20
836	Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature. PLoS Computational Biology, 2019, 15, e1007480.	1.5	41
837	Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Letters, 2019, 593, 3623-3648.	1.3	35
838	Targeted PMP22 TATA-box editing by CRISPR/Cas9 reduces demyelinating neuropathy of Charcot-Marie-Tooth disease type 1A in mice. Nucleic Acids Research, 2020, 48, 130-140.	6.5	23
839	Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing. Cell Reports, 2019, 29, 1739-1746.e5.	2.9	35
840	Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE, 2019, 14, e0225206.	1.1	145
841	Gene Therapy: Principles and Clinical Potential. , 2019, , 540-560.		0
842	The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. Molecular Cell, 2019, 73, 775-787.e10.	4.5	100
843	Cyclin-Dependent Kinase Inhibitor 2b Mediates Excitotoxicity-Induced Death of Retinal Ganglion Cells. , 2019, 60, 4479.		10
844	Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in <i>Leishmania</i> . MSphere, 2019, 4, .	1.3	34
845	In Vivo Editing of Macrophages through Systemic Delivery of CRISPRâ€Cas9â€Ribonucleoproteinâ€Nanoparticle Nanoassemblies. Advanced Therapeutics, 2019, 2, 1900041.	1.6	32
846	Elimination of infectious HIV DNA by CRISPR–Cas9. Current Opinion in Virology, 2019, 38, 81-88.	2.6	28
847	Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metabolism, 2019, 30, 877-889.e7.	7.2	68

ARTICLE IF CITATIONS # CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington's 848 2.3 92 Disease Mouse Model. Molecular Therapy - Nucleic Acids, 2019, 17, 829-839. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific 849 1.6 Reports, 2019, 9, 12719. Methods for Correction of the Single-Nucleotide Substitution c.840C>T in Exon 7 of the SMN2 850 0.7 4 Gene. Biochemistry (Moscow), 2019, 84, 1074-1084. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances, 59 2019, 37, 107447. CRISPR-ERA for Switching Off (Onco) Genes., 0,,. 852 3 On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 2019, 306, 62-70. The Protein Phosphatase 1 Complex Is a Direct Target of AKT that Links Insulin Signaling to Hepatic 854 2.9 43 Glycogen Deposition. Cell Reports, 2019, 28, 3406-3422.e7. Targeting Adeno-Associated Virus Vectors for Local Delivery to Fractures and Systemic Delivery to 1.8 the Skeleton. Molecular Therapy - Methods and Clinical Development, 2019, 15, 101-111. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nature 856 5.8 78 Communications, 2019, 10, 4544. Engineered materials for in vivo delivery of genome-editing machinery. Nature Reviews Materials, 2019, 23.3 139 4, 726-737. Rationally engineered <i>Staphylococcus aureus</i> Cas9 nucleases with high genome-wide specificity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 858 3.3 81 20969-20976. CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 12.5 127 281-295. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nature 860 5.8 119 Communications, 2019, 10, 439. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, 2019, 25, 15.2 249-254. 862 Directed evolution studies of a thermophilic Type II-C Cas9. Methods in Enzymology, 2019, 616, 265-288. 0.4 9 Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed 2.4 circular DNA of hepatitis B virus. Cellular and Molecular Life Sciences, 2019, 76, 1779-1794. CRISPR to the Rescue: Advances in Gene Editing for the FMR1 Gene. Brain Sciences, 2019, 9, 17. 864 1.1 10

865	Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing. Methods in Molecular Biology, 2019, 1937, 29-45.	0.4	4
-----	---	-----	---

#	Article	IF	CITATIONS
866	Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms. Genomics, Proteomics and Bioinformatics, 2019, 17, 119-128.	3.0	69
867	CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges. Advances in Experimental Medicine and Biology, 2019, 1144, 37-52.	0.8	37
868	Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform. Analytical Methods, 2019, 11, 559-565.	1.3	24
869	Quantifying CRISPR off-target effects. Emerging Topics in Life Sciences, 2019, 3, 327-334.	1.1	9
870	qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nature Communications, 2019, 10, 2313.	5.8	40
871	Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles. Advanced Materials, 2019, 31, e1902575.	11.1	244
872	CRISPR as system: Toward a more efficient technology for genome editing and beyond. Journal of Cellular Biochemistry, 2019, 120, 16379-16392.	1.2	9
873	CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Seminars in Cell and Developmental Biology, 2019, 96, 32-43.	2.3	9
874	Identification of Guide-Intrinsic Determinants of Cas9 Specificity. CRISPR Journal, 2019, 2, 172-185.	1.4	16
875	Recent advances in novel therapies for lipid disorders. Human Molecular Genetics, 2019, 28, R49-R54.	1.4	15
876	Progress and challenges in development of new therapies for urea cycle disorders. Human Molecular Genetics, 2019, 28, R42-R48.	1.4	26
877	Delivery of CRISPR/Cas9 for therapeutic genome editing. Journal of Gene Medicine, 2019, 21, e3107.	1.4	93
878	CRISPR-READI: Efficient Generation of Knockin Mice by CRISPR RNP Electroporation and AAV Donor Infection. Cell Reports, 2019, 27, 3780-3789.e4.	2.9	73
879	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	2.4	108
880	Cas9 Ribonucleoprotein Complex Delivery: Methods and Applications for Neuroinflammation. Journal of NeuroImmune Pharmacology, 2019, 14, 565-577.	2.1	10
881	CRISPR/Cas9-targeted removal of unwanted sequences from small-RNA sequencing libraries. Nucleic Acids Research, 2019, 47, e84-e84.	6.5	17
882	Global transcriptomic analysis of the arcuate nucleus following chronic glucocorticoid treatment. Molecular Metabolism, 2019, 26, 5-17.	3.0	14
883	Gene Therapy for Facioscapulohumeral Muscular Dystrophy (FSHD). , 2019, , 509-524.		1

#	Article	IF	Citations
884	Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences, 2019, 20, 2542.	1.8	40
885	The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019, 20, 490-507.	16.1	957
886	CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases. Seminars in Cell and Developmental Biology, 2019, 96, 22-31.	2.3	14
887	Cas Endonuclease Technology—A Quantum Leap in the Advancement of Barley and Wheat Genetic Engineering. International Journal of Molecular Sciences, 2019, 20, 2647.	1.8	26
888	Multiplexed promoterless gene expression with CRISPReader. Genome Biology, 2019, 20, 113.	3.8	17
889	Active fusions of Cas9 orthologs. Journal of Biotechnology, 2019, 301, 18-23.	1.9	12
890	LCK rs10914542-G allele associates with type 1 diabetes in children via T cell hyporesponsiveness. Pediatric Research, 2019, 86, 311-315.	1.1	10
891	CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology, 2019, 16, 15.	0.9	36
892	Gene editing based hearing impairment research and therapeutics. Neuroscience Letters, 2019, 709, 134326.	1.0	3
893	Therapeutic potential of CRISPR/Cas9 gene editing in engineered Tâ€cell therapy. Cancer Medicine, 2019, 8, 4254-4264.	1.3	57
894	Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs. Plant and Cell Physiology, 2019, 60, 2255-2262.	1.5	28
895	Targeted Transgene Activation in the Brain Tissue by Systemic Delivery of Engineered AAV1 Expressing CRISPRa. Molecular Therapy - Nucleic Acids, 2019, 16, 637-649.	2.3	36
896	Therapeutic application of the CRISPR system: current issues and new prospects. Human Genetics, 2019, 138, 563-590.	1.8	16
897	Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems. Genes and Genomics, 2019, 41, 871-877.	0.5	15
898	Live-Animal Epigenome Editing: Convergence of Novel Techniques. Trends in Genetics, 2019, 35, 527-541.	2.9	15
899	CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 725-735.	1.3	27
900	Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast <i>Rhodosporidium toruloides</i> . Biotechnology Journal, 2019, 14, e1900036.	1.8	34
901	Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID as9 fusion. FASEB Journal, 2019, 33, 9210-9219.	0.2	26

#	Article	IF	CITATIONS
902	CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 2019, 164-165, 109-119.	1.9	42
903	Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology, 2019, 37, 626-631.	9.4	207
904	Production of CRISPR/Cas9-Mediated Self-Cleaving Helper-Dependent Adenoviruses. Molecular Therapy - Methods and Clinical Development, 2019, 13, 432-439.	1.8	22
905	Characterization of Cas proteins for CRISPRâ€Cas editing in streptomycetes. Biotechnology and Bioengineering, 2019, 116, 2330-2338.	1.7	27
906	Engineering CRISPR mouse models of cancer. Current Opinion in Genetics and Development, 2019, 54, 88-96.	1.5	25
907	CRISPR/Cas9 as a tool to dissect cancer mutations. Methods, 2019, 164-165, 36-48.	1.9	5
908	DNAzyme activated protein-scaffolded CRISPR–Cas9 nanoassembly for genome editing. Chemical Communications, 2019, 55, 6511-6514.	2.2	18
909	Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Accounts of Chemical Research, 2019, 52, 1555-1564.	7.6	188
910	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of NeuroImmune Pharmacology, 2019, 14, 608-641.	2.1	22
911	Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Molecular Plant, 2019, 12, 1015-1026.	3.9	109
912	Gene Therapy Leaves a Vicious Cycle. Frontiers in Oncology, 2019, 9, 297.	1.3	236
913	Development and Application of Base Editors. CRISPR Journal, 2019, 2, 91-104.	1.4	46
914	Noncoding RNA. Microbiology Spectrum, 2019, 7, .	1.2	34
915	Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Molecular Plant, 2019, 12, 1003-1014.	3.9	116
916	Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. European Journal of Pharmacology, 2019, 854, 398-405.	1.7	53
917	Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Nature Communications, 2019, 10, 1968.	5.8	33
918	Novel biologics targeting the P2X7 ion channel. Current Opinion in Pharmacology, 2019, 47, 110-118.	1.7	33
919	Unified energetics analysis unravels SpCas9 cleavage activity for optimal gRNA design. Proceedings of the United States of America, 2019, 116, 8693-8698.	3.3	46

#	Article	IF	CITATIONS
920	Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 259-290.	2.5	20
921	Applications of CRISPR systems in respiratory health: Entering a new â€~red pen' era in genome editing. Respirology, 2019, 24, 628-637.	1.3	13
922	The Impact of HIV-1 Genetic Diversity on CRISPR-Cas9 Antiviral Activity and Viral Escape. Viruses, 2019, 11, 255.	1.5	31
923	Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). International Journal of Molecular Medicine, 2019, 43, 1559-1574.	1.8	67
924	Development of therapeutic genome engineering in laminin-α2-deficient congenital muscular dystrophy. Emerging Topics in Life Sciences, 2019, 3, 11-18.	1.1	0
925	Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annual Review of Biochemistry, 2019, 88, 191-220.	5.0	120
926	Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 13.	1.8	102
927	Precision Medicine and Exercise Therapy in Duchenne Muscular Dystrophy. Sports, 2019, 7, 64.	0.7	11
928	Cysteine Dioxygenase Regulates the Epithelial Morphogenesis of Mammary Gland via Cysteine Sulfinic Acid. IScience, 2019, 13, 173-189.	1.9	4
929	Comparison of efficiency and specificity of CRISPR-associated (Cas) nucleases in plants: An expanded toolkit for precision genome engineering. PLoS ONE, 2019, 14, e0211598.	1.1	42
931	Toward In Vivo Gene Therapy Using CRISPR. Methods in Molecular Biology, 2019, 1961, 293-306.	0.4	7
932	Rapid and Simple Screening of CRISPR Guide RNAs (gRNAs) in Cultured Cells Using Adeno-Associated Viral (AAV) Vectors. Methods in Molecular Biology, 2019, 1961, 111-126.	0.4	10
933	CRISPR/Cas9-mediated genome editing of splicing mutation causing congenital hearing loss. Gene, 2019, 703, 83-90.	1.0	6
934	Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic To Translational Science, 2019, 4, 122-131.	1.9	32
935	Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Annals of the Rheumatic Diseases, 2019, 78, 676-682.	0.5	86
936	Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BioMed Research International, 2019, 2019, 1-18.	0.9	64
937	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. , 2019, 9, 665-714.		7
938	Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nature Communications, 2019, 10, 1234.	5.8	36

#	Article	IF	CITATIONS
939	Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 2019, 103, 3239-3248.	1.7	37
940	sgRNA-shRNA Structure Mediated SNP Site Editing on Porcine IGF2 Gene by CRISPR/StCas9. Frontiers in Genetics, 2019, 10, 347.	1.1	3
941	CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives. Emerging Topics in Life Sciences, 2019, 3, 313-326.	1.1	6
942	Genome Editing in Mammalian Cell Lines using CRISPR-Cas. Journal of Visualized Experiments, 2019, , .	0.2	3
943	Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nature Biotechnology, 2019, 37, 657-666.	9.4	252
944	Combined Computational–Experimental Approach to Explore the Molecular Mechanism of SaCas9 with a Broadened DNA Targeting Range. Journal of the American Chemical Society, 2019, 141, 6545-6552.	6.6	31
945	Lentiviral Vector Platform for the Efficient Delivery of Epigenome-editing Tools into Human Induced Pluripotent Stem Cell-derived Disease Models. Journal of Visualized Experiments, 2019, , .	0.2	9
946	Efficient Human Genome Editing Using SaCas9 Ribonucleoprotein Complexes. Biotechnology Journal, 2019, 14, e1800689.	1.8	20
947	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.0	5
948	Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Science Advances, 2019, 5, eaav7199.	4.7	198
949	CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Molecular Biology Reports, 2019, 46, 3557-3569.	1.0	48
950	New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. Frontiers in Plant Science, 2019, 10, 525.	1.7	32
951	Plant genome editing using xCas9 with expanded PAM compatibility. Journal of Genetics and Genomics, 2019, 46, 277-280.	1.7	24
952	Recent advances in developing PCSK9 inhibitors for lipid-lowering therapy. Future Medicinal Chemistry, 2019, 11, 423-441.	1.1	18
953	The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants. Seminars in Cell and Developmental Biology, 2019, 96, 77-90.	2.3	14
954	Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerging Topics in Life Sciences, 2019, 3, 261-275.	1.1	2
955	Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. International Journal of Molecular Sciences, 2019, 20, 888.	1.8	98
957	Local magnetic activation of CRISPR. Nature Biomedical Engineering, 2019, 3, 83-84.	11.6	9

		CITATION REPO	RT	
#	ARTICLE	IF	-	CITATIONS
958	Biomaterials as vectors for the delivery of CRISPR–Cas9. Biomaterials Science, 2019, 7, 1240)-1261. 2.	.6	75
959	CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Human Vaccines i Immunotherapeutics, 2019, 15, 1126-1132.	and 1.	.4	42
960	Constructing Synthetic Pathways in Plants. , 2019, , 77-113.			1
961	Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. N Medicine, 2019, 25, 423-426.	ature 1	5.2	115
962	Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Natur Medicine, 2019, 25, 427-432.	e 1	5.2	303
963	Adeno-Associated Virus Vectors. Methods in Molecular Biology, 2019, , .	O	.4	2
964	Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. Jour Gene Medicine, 2019, 21, e3082.	nal of 1.	.4	36
965	AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Me Molecular Biology, 2019, 1950, 333-360.	thods in O	.4	22
966	Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Pept CRISPR Journal, 2019, 2, 51-63.	ides. 1.	.4	60
967	Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficie genome editing. Nucleic Acids Research, 2019, 47, e44-e44.	nt 6.	.5	64
968	Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,	23100-23105. ^{3.}	.3	17
969	Noncoding RNA. , 2019, , 562-573.			Ο
970	Application and optimization of the CRISPR/Cas9 system in grape. Acta Horticulturae, 2019, ,	149-154. 0	.1	1
971	TraFo-CRISPR: Enhanced Genome Engineering by Transient Foamy Virus Vector-Mediated Deliv CRISPR/Cas9 Components. Molecular Therapy - Nucleic Acids, 2019, 18, 708-726.	ery of 2.	.3	12
972	CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loc Nature Communications, 2019, 10, 5454.	i. 5.	.8	31
973	Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice International Journal of Molecular Sciences, 2019, 20, 5926.	2. 1.	.8	11
974	Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome Journal of Genetics and Genomics, 2019, 46, 513-521.	editing. 1.	.7	45
975	AcrIIA5 Inhibits a Broad Range of Cas9 Orthologs by Preventing DNA Target Cleavage. Cell Rep 2019, 29, 2579-2589.e4.	orts, 2.	.9	24

#	Article	IF	CITATIONS
976	Carrot genome editing using CRISPR-based systems. Acta Horticulturae, 2019, , 53-66.	0.1	2
977	Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 2019, 20, 6041.	1.8	74
978	Targeting proprotein convertase subtilisin/kexin type 9 in mice and monkeys. Current Opinion in Lipidology, 2019, 30, 154-155.	1.2	1
979	CRISPR. Current Opinion in Lipidology, 2019, 30, 172-176.	1.2	7
980	Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences. Frontiers in Plant Science, 2019, 10, 1468.	1.7	99
981	Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria (Mollicutes). Frontiers in Microbiology, 2019, 10, 2701.	1.5	24
982	Understanding CRISPR/Cas9: A Magnificent Tool for Plant Genome Editing. , 2019, , .		1
983	Review of Cell and Molecular Biology. , 2019, , 1-39.		0
984	Progress in the application of CRISPR: From gene to base editing. Medicinal Research Reviews, 2019, 39, 665-683.	5.0	21
985	Gene therapy for visual loss: Opportunities and concerns. Progress in Retinal and Eye Research, 2019, 68, 31-53.	7.3	78
986	Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications. Bioinformatics, 2019, 35, 1108-1115.	1.8	25
987	Genome Editing for Cardiovascular Diseases—A Brief Review for Cardiologists. American Journal of Cardiology, 2019, 123, 1002-1006.	0.7	0
988	Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Research, 2019, 47, e13-e13.	6.5	56
989	Pharmacology of PCSK9 Inhibitors: Current Status and Future Perspectives. Current Pharmaceutical Design, 2019, 24, 3622-3633.	0.9	12
990	Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Research, 2019, 47, e23-e23.	6.5	27
991	CRISPR/Cas-based genome engineering in natural product discovery. Natural Product Reports, 2019, 36, 1262-1280.	5.2	88
992	A pipeline for characterization of novel Cas9 orthologs. Methods in Enzymology, 2019, 616, 219-240.	0.4	13
993	A Simple Cloning-free Method to Efficiently Induce Gene Expression Using CRISPR/Cas9. Molecular Therapy - Nucleic Acids, 2019, 14, 184-191.	2.3	13

#	Article	IF	CITATIONS
994	Basic and Clinical Application of Adeno-Associated Virus–Mediated Genome Editing. Human Gene Therapy, 2019, 30, 673-681.	1.4	5
995	A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for InÂVivo Genome Editing. Molecular Cell, 2019, 73, 714-726.e4.	4.5	194
996	Small molecules as inhibitors of PCSK9: Current status and future challenges. European Journal of Medicinal Chemistry, 2019, 162, 212-233.	2.6	58
997	Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium. Cells, 2019, 8, 46.	1.8	12
998	A Self-Deleting AAV-CRISPR System for InÂVivo Genome Editing. Molecular Therapy - Methods and Clinical Development, 2019, 12, 111-122.	1.8	93
999	Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Frontiers in Cardiovascular Medicine, 2018, 5, 199.	1.1	47
1000	Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nature Communications, 2019, 10, 67.	5.8	103
1001	Viral Delivery Systems for CRISPR. Viruses, 2019, 11, 28.	1.5	174
1002	Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. Molecular Therapy - Nucleic Acids, 2019, 14, 212-238.	2.3	41
1003	In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biology, 2019, 17, 4.	1.7	59
1004	Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2019, 116, 1066-1079.	1.7	29
1005	CRISPR/Cas9â€Based Genome Editing and its Applications for Functional Genomic Analyses in Plants. Small Methods, 2019, 3, 1800473.	4.6	24
1006	Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today, 2019, 26, 40-66.	8.3	89
1007	Lamin B is a target for selective nuclear PQC by BAG3: implication for nuclear envelopathies. Cell Death and Disease, 2019, 10, 23.	2.7	8
1008	Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nature Protocols, 2019, 14, 379-414.	5.5	235
1009	CRISPR–Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell International, 2019, 19, 12.	1.8	46
1010	<i>Staphylococcus aureus</i> Cas9 is a multiple-turnover enzyme. Rna, 2019, 25, 35-44.	1.6	72
1011	CRISPR/Cas system: A game changing genome editing technology, to treat human genetic diseases. Gene, 2019, 685, 70-75.	1.0	37

		CITATION RE	EPORT	
# 1012	ARTICLE CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 2019	, 70, 239-255.	IF 5.0	CITATIONS
1013	Genome editing opens a new era of genetic improvement in polyploid crops. Crop Journ 141-150.		2.3	67
1014	Efficient CRISPR/Cas9â€Mediated Mutagenesis in Primary Murine T Lymphocytes. Curre Immunology, 2019, 124, e62.	ent Protocols in	3.6	13
1015	A Single H1 Promoter Can Drive Both Guide RNA and Endonuclease Expression in the C System. Molecular Therapy - Nucleic Acids, 2019, 14, 32-40.	RISPR-Cas9	2.3	32
1016	CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haple Science, 2019, 363, .	insufficiency.	6.0	230
1017	AAV-CRISPR Persistence in the Eye of the Beholder. Molecular Therapy, 2019, 27, 12-14		3.7	5
1018	A revolutionary tool: CRISPR technology plays an important role in construction of intel gene circuits. Cell Proliferation, 2019, 52, e12552.	ligentized	2.4	7
1019	CRISPR–Cas molecular beacons as tool for studies of assembly of CRISPR–Cas effe their interactions with DNA. Methods in Enzymology, 2019, 616, 337-363.	ctor complexes and	0.4	6
1020	Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and Genome Editing. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 47-59.	CRISPR/Cas9	1.0	11
1021	Whole genome sequencing reveals rare offâ€target mutations and considerable inhere somaclonal variations in <scp>CRISPR</scp> /Cas9â€edited cotton plants. Plant Biotecl 2019, 17, 858-868.	nt genetic or/and nnology Journal,	4.1	159
1022	Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome. Reviews in Me 2019, 29, e2009.	dical Virology,	3.9	16
1023	Targeted Gene Editing of Glia Maturation Factor in Microglia: a Novel Alzheimer's D Target. Molecular Neurobiology, 2019, 56, 378-393.	isease Therapeutic	1.9	43
1024	Genome editing-based approaches for imaging protein localization and dynamics in the brain. Neuroscience Research, 2020, 150, 2-7.	mammalian	1.0	6
1025	Advances in gene therapy for hemophilia: basis, current status, and future perspectives Journal of Hematology, 2020, 111, 31-41.	. International	0.7	36
1026	An overview and metanalysis of machine and deep learning-based CRISPR gRNA design Biology, 2020, 17, 13-22.	tools. RNA	1.5	57
1027	CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia- lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model. Haematolog e232-e236.		1.7	4
1028	Emerging Life Sciences: New Challenges to Strategic Stability. Advanced Sciences and T Security Applications, 2020, , 31-48.	echnologies for	0.4	2
1029	Disruptive and Game Changing Technologies in Modern Warfare. Advanced Sciences ar for Security Applications, 2020, , .	nd Technologies	0.4	3

#	Article	IF	CITATIONS
1030	TALEN-Based Chemically Inducible, Dimerization-Dependent, Sequence-Specific Nucleases. Biochemistry, 2020, 59, 197-204.	1.2	8
1031	Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biology and Toxicology, 2020, 36, 17-29.	2.4	10
1032	Data imbalance in CRISPR off-target prediction. Briefings in Bioinformatics, 2020, 21, 1448-1454.	3.2	24
1033	Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. National Science Review, 2020, 7, 92-101.	4.6	22
1034	CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research, 2020, 29, 1-35.	1.3	31
1035	CRISPR therapy towards an HIV cure. Briefings in Functional Genomics, 2020, 19, 201-208.	1.3	21
1036	Bacteriophage MS2 displays unreported capsid variability assembling <i>T</i> Â=Â4 and mixed capsids. Molecular Microbiology, 2020, 113, 143-152.	1.2	24
1037	Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133, 1603-1622.	1.8	28
1038	Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nature Protocols, 2020, 15, 338-363.	5.5	48
1039	Towards a novel therapy against AIDS. Medical Hypotheses, 2020, 137, 109569.	0.8	4
1040	CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. Journal of Applied Genetics, 2020, 61, 51-65.	1.0	21
1041	The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnology Advances, 2020, 40, 107502.	6.0	216
1042	An efficient gene knock-in strategy using 5′-modified double-stranded DNA donors with short homology arms. Nature Chemical Biology, 2020, 16, 387-390.	3.9	43
1043	Highly efficient base editing with expanded targeting scope using SpCas9â€NG in rabbits. FASEB Journal, 2020, 34, 588-596.	0.2	18
1044	A Survey of Genome Editing Activity for 16 Cas12a Orthologs. Keio Journal of Medicine, 2020, 69, 59-65.	0.5	41
1045	Hematopoietic stem cell gene therapy: The optimal use of lentivirus and gene editing approaches. Blood Reviews, 2020, 40, 100641.	2.8	14
1046	Versatile and robust genome editing with <i>Streptococcus thermophilus</i> CRISPR1-Cas9. Genome Research, 2020, 30, 107-117.	2.4	51
1047	Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation. ACS Chemical Biology, 2020, 15, 533-542.	1.6	23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1048	CRISPR-Cas nucleases and base editors for plant genome editing. ABIOTECH, 2020, 1, 7	4-87.	1.8	16
1049	Adeno-associated viral vector-mediated immune responses: Understanding barriers to g 2020, 207, 107453.	ene delivery. ,		108
1050	ExÂVivo/InÂvivo Gene Editing in Hepatocytes Using "All-in-One―CRISPR-Adeno-Ass with a Self-Linearizing Repair Template. IScience, 2020, 23, 100764.	ociated Virus Vectors	1.9	33
1051	Strategies for the CRISPR-Based Therapeutics. Trends in Pharmacological Sciences, 2020), 41, 55-65.	4.0	39
1052	Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges. Brief Functional Genomics, 2020, 19, 215-228.	ings in	1.3	9
1053	The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotroph sclerosis mouse model. Gene Therapy, 2020, 27, 157-169.	nic lateral	2.3	42
1054	Application of genome-editing systems to enhance available pig resources for agricultur biomedicine. Reproduction, Fertility and Development, 2020, 32, 40.	e and	0.1	12
1055	Sensitization of spinal itch transmission neurons in a mouse model of chronic itch requi astrocytic factor. Journal of Allergy and Clinical Immunology, 2020, 145, 183-191.e10.	res an	1.5	32
1056	Learning and aging affect neuronal excitability and learning. Neurobiology of Learning a 2020, 167, 107133.	nd Memory,	1.0	20
1057	Gene editing prospects for treating inherited retinal diseases. Journal of Medical Genetic 437-444.	s, 2020, 57,	1.5	32
1058	Optimization of S.Âaureus dCas9 and CRISPRi Elements for a Single Adeno-Associated V an Endogenous Gene. Molecular Therapy - Methods and Clinical Development, 2020, 19		1.8	9
1059	DNA and RNA editing without sequence limitation using the flap endonuclease 1 guided probes. Nucleic Acids Research, 2020, 48, e117-e117.	by hairpin DNA	6.5	6
1060	A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and s of Capsicum annuum. BMC Plant Biology, 2020, 20, 449.	weet cultivars	1.6	35
1061	Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for Mammalian Genome Frontiers in Cell and Developmental Biology, 2020, 8, 583164.	Editing.	1.8	16
1062	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11,	1113.	1.0	37
1063	The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Organism Growth and Development. MBio, 2020, 11, .	Functions in	1.8	24
1064	CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease Review. Neurology and Therapy, 2020, 9, 419-434.	—A Narrative	1.4	24
1065	Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA. Natu 281-284.	ıre, 2020, 587,	13.7	92

#	Article	IF	CITATIONS
1066	Generation of Nonhuman Primate Model of Cone Dysfunction through In Situ AAV-Mediated CNGB3 Ablation. Molecular Therapy - Methods and Clinical Development, 2020, 18, 869-879.	1.8	16
1067	Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system. Veterinary Microbiology, 2020, 250, 108868.	0.8	17
1068	Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for <i>In Vivo</i> CRISPR/Cas-Based Genome Editing. ACS Nano, 2020, 14, 9243-9262.	7.3	69
1069	DL-CRISPR: A Deep Learning Method for Off-Target Activity Prediction in CRISPR/Cas9 With Data Augmentation. IEEE Access, 2020, 8, 76610-76617.	2.6	13
1070	Applications of CRISPR for musculoskeletal research. Bone and Joint Research, 2020, 9, 351-359.	1.3	6
1071	CRISPR–Cas immune systems and genome engineering. , 2020, , 157-177.		0
1072	CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics, 2020, 12, 1845-1859.	1.0	15
1073	Prophages are associated with extensive CRISPR–Cas auto-immunity. Nucleic Acids Research, 2020, 48, 12074-12084.	6.5	35
1074	SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm. Journal of Genetics and Genomics, 2020, 47, 672-680.	1.7	6
1075	CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Scientific Reports, 2020, 10, 19307.	1.6	10
1076	Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Molecular Therapy, 2020, 28, 2527-2539.	3.7	15
1077	MiCas9 increases large size gene knock-in rates and reduces undesirable on-target and off-target indel edits. Nature Communications, 2020, 11, 6082.	5.8	25
1078	Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit―Genome-Editing Tools. Cells, 2020, 9, 2572.	1.8	4
1079	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	5.7	58
1080	Advances in oligonucleotide drug delivery. Nature Reviews Drug Discovery, 2020, 19, 673-694.	21.5	1,036
1081	A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nature Communications, 2020, 11, 3708.	5.8	31
1082	Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals, 2020, 13, 158.	1.7	28
1083	Therapeutic Strategies for Duchenne Muscular Dystrophy: An Update. Genes, 2020, 11, 837.	1.0	82

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1084	Targeting Viral cccDNA for Cure of Chronic Hepatitis B. Current Hepatology Reports, 20)20, 19, 235-244.	0.4	12
1085	Protocol to Design, Clone, and Validate sgRNAs forÂlnÂVivo Reverse Genetic Studies. S 2020, 1, 100070.	TAR Protocols,	0.5	8
1086	Designing Safer CRISPR/Cas9 Therapeutics for HIV: Defining Factors That Regulate and Used to Detect Off-Target Editing. Frontiers in Microbiology, 2020, 11, 1872.	Technologies	1.5	11
1087	Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far?. Journal of 2020, 9, 2577.	Clinical Medicine,	1.0	15
1088	Benchmarking and integrating genome-wide CRISPR off-target detection and predictio Research, 2020, 48, 11370-11379.	n. Nucleic Acids	6.5	14
1089	Intrinsic braking role of descending locus coeruleus noradrenergic neurons in acute an itch in mice. Molecular Brain, 2020, 13, 144.	d chronic	1.3	11
1090	Depletion of essential isoprenoids and ER stress induction following acute liver-specific HMG-CoA reductase. Journal of Lipid Research, 2020, 61, 1675-1686.	deletion of	2.0	12
1091	In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Frontiers in 10, 584404.	Oncology, 2020,	1.3	7
1092	Multicellular systems to translate somatic cell genome editors to human. Current Opin Biomedical Engineering, 2020, 16, 72-81.	ion in	1.8	1
1093	Precise base editing with CC context-specificity using engineered human APOBEC3G-n Biology, 2020, 18, 111.	Cas9 fusions. BMC	1.7	28
1094	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sc 6240.	iences, 2020, 21,	1.8	179
1095	Structural basis for designing an array of engrailed homeodomains. Acta Crystallograph D: Structural Biology, 2020, 76, 824-833.	nica Section	1.1	0
1096	Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X 2020, 3, 83-91.	Research,	0.3	0
1097	CrisPam: SNP-Derived PAM Analysis Tool for Allele-Specific Targeting of Genetic Variant CRISPR-Cas Systems. Frontiers in Genetics, 2020, 11, 851.	is Using	1.1	16
1098	Mitochondrial import, health and mtDNA copy number variability using type II and type effectors. Journal of Cell Science, 2020, 133, .	V CRISPR	1.2	16
1099	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes,	2020, 11, 976.	1.0	9
1100	Human Autoinflammatory Diseases Mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-Inf Dysregulation Updates on Diagnosis, Treatment, and the Respective Roles of IL-1 and II Immunology, 2020, 11, 1840.		2.2	67
1101	Comparison of CRISPR/Cas Endonucleases for in vivo Retinal Gene Editing. Frontiers in Neuroscience, 2020, 14, 570917.	Cellular	1.8	19

ARTICLE IF CITATIONS Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis, 1102 16.1 23 2020, 3, 813-823. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Frontiers in 2.2 Immunology, 2020, 11, 1689. Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on 1104 1.4 12 CRISPR/Cas-Based Gene Editing. Frontiers in Neuroscience, 2020, 14, 838. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Science China Life Sciences, 2022, 65, 718-730. 1106 CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biology, 1107 3.8 14 2020, 21, 204. Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing 1108 1.4 Efficiency. CRISPR Journal, 2020, 3, 276-283. Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic 1109 1.0 14 Stem and Progenitor Cell Clones. Genes, 2020, 11, 1501. Genome Editing: Small-Size Casî | Is Shining. Molecular Plant, 2020, 13, 1235. 3.9 1110 1111 CRISPR-Cas Systems: Prospects for Use in Medicine. Applied Sciences (Switzerland), 2020, 10, 9001. 1.3 5 Various Aspects of a Gene Editing Systemâ€"CRISPRâ€"Cas9. International Journal of Molecular Sciences, 1.8 2020, 21, 9604. Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 613252. 1113 2.7 31 The molecular basis for recognition of 5â€2-NNNCC-3â€2 PAM and its methylation state by Acidothermus 1114 5.8 cellulolyticus Cas9. Nature Communications, 2020, 11, 6346. Nucleolus localization of SpyCas9 affects its stability and interferes with host protein translation in 1115 1.5 9 mammalian cells. Genes and Diseases, 2022, 9, 731-740. InÂVitro and InÂVivo Genetic Disease Modeling via NHEJ-Precise Deletions Using CRISPR-Cas9. Molecular Therapy - Methods and Clinical Development, 2020, 19, 426-437. 1.8 Programmable Extracellular Vesicles for Macromolecule Delivery and Genome Modifications. 1117 3.156 Developmental Cell, 2020, 55, 784-801.e9. AAV-mediated in vivo genome editing in vascular endothelial cells. Methods, 2020, 194, 12-17. 1.9 Efficient viral delivery of Cas9 into human safe harbor. Scientific Reports, 2020, 10, 21474. 1119 1.6 25 Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Computational and Structural Biotechnology Journal, 2020, 18, 3649-3665.

#	Article	IF	CITATIONS
1121	A comparison of AAV-vector production methods for gene therapy and preclinical assessment. Scientific Reports, 2020, 10, 21532.	1.6	16
1122	Single-Cell Profiling of Ebola Virus Disease InÂVivo Reveals Viral and Host Dynamics. Cell, 2020, 183, 1383-1401.e19.	13.5	79
1123	m6A Regulates Liver Metabolic Disorders and Hepatogenous Diabetes. Genomics, Proteomics and Bioinformatics, 2020, 18, 371-383.	3.0	49
1124	PpCas9 from <i>Pasteurella pneumotropica</i> —Âa compact Type II-C Cas9 ortholog active in human cells. Nucleic Acids Research, 2020, 48, 12297-12309.	6.5	19
1125	Advances in engineering CRISPR-Cas9 as a molecular Swiss Army knife. Synthetic Biology, 2020, 5, ysaa021.	1.2	9
1126	Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing. Cell Reports, 2020, 33, 108350.	2.9	25
1127	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95
1128	A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nature Communications, 2020, 11, 5512.	5.8	116
1129	Immunity to Cas9 as an Obstacle to Persistent Genome Editing. Molecular Therapy, 2020, 28, 1389-1391.	3.7	22
1130	Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. Russian Journal of Genetics, 2020, 56, 387-401.	0.2	1
1131	A Novel Role for NUAK1 in Promoting Ovarian Cancer Metastasis through Regulation of Fibronectin Production in Spheroids. Cancers, 2020, 12, 1250.	1.7	20
1132	Protein Engineering of DNA-Dependent Enzymes. Advances in Experimental Medicine and Biology, 2020, 1241, 19-33.	0.8	1
1133	Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology, 2020, 22, 740-750.	4.6	69
1134	An engineered ScCas9 with broad PAM range and high specificity and activity. Nature Biotechnology, 2020, 38, 1154-1158.	9.4	93
1135	Artificial Platelets for Efficient siRNA Delivery to Clear "Bad Cholesterol― ACS Applied Materials & Interfaces, 2020, 12, 28034-28046.	4.0	20
1136	CRISPR/Cas9-Mediated Gene Correction to Understand ALS. International Journal of Molecular Sciences, 2020, 21, 3801.	1.8	31
1137	Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1118-1128.	1.8	33
1138	Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice. Cancer Gene Therapy, 2020, 27, 960-975.	2.2	6

#	Article	IF	CITATIONS
1139	EDEM3 Modulates Plasma Triglyceride Level through Its Regulation of LRP1 Expression. IScience, 2020, 23, 100973.	1.9	8
1140	CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6, eaba2983.	4.7	77
1141	The application of a heatâ€inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (<i>G.Ahirsutum</i>) plants. Plant Biotechnology Journal, 2020, 18, 2436-2443.	4.1	58
1142	Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 2020, 20, 234.	1.6	152
1143	Introducing Chemistry Students to Emerging Technologies in Gene Editing, Their Applications, and Ethical Considerations. Journal of Chemical Education, 2020, 97, 1931-1943.	1.1	5
1144	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 711.	2.0	37
1145	Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today, 2020, 34, 100895.	6.2	45
1146	Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38, 824-844.	9.4	1,277
1147	Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA. RNA Biology, 2020, 17, 1472-1479.	1.5	10
1148	Applications of Nanomaterials in Human Health. , 2020, , .		21
1148 1149		2.6	21 12
	Applications of Nanomaterials in Human Health. , 2020, , . Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020,	2.6 1.8	
1149	Applications of Nanomaterials in Human Health. , 2020, , . Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293.		12
1149 1150	Applications of Nanomaterials in Human Health., 2020, , . Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293. Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839. A Review on the Molecular Mechanism, Superiorities, Appli-cations, Limitations and Experimental Workflow of CRISPR/Cas-9 System, and the Future of Gene Engineering. IOP Conference Series:	1.8	12 164
1149 1150 1151	Applications of Nanomaterials in Human Health. , 2020, , . Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293. Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839. A Review on the Molecular Mechanism, Superiorities, Appli-cations, Limitations and Experimental Workflow of CRISPR/Cas-9 System, and the Future of Gene Engineering. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012044.	1.8	12 164 0
1149 1150 1151 1152	Applications of Nanomaterials in Human Health. , 2020, , . Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293. Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839. A Review on the Molecular Mechanism, Superiorities, Applications, Limitations and Experimental Workflow of CRISPR/Cas-9 System, and the Future of Gene Engineering. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012044. CRISPR/Cas system of prokaryotic extremophiles and its applications. , 2020, 155-168.	1.8 0.3	12 164 0 1
1149 1150 1151 1152 1153	Applications of Nanomaterials in Human Health. , 2020, , . Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293. Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839. A Review on the Molecular Mechanism, Superiorities, Appli-cations, Limitations and Experimental Workflow of CRISPR/Cas-9 System, and the Future of Gene Engineering. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012044. CRISPR/Cas system of prokaryotic extremophiles and its applications. , 2020, 155-168. Nucleic Acid Immunotherapeutics for Cancer. ACS Applied Bio Materials, 2020, 3, 2838-2849.	1.8 0.3 2.3	12 164 0 1 18

#	Article	IF	Citations
1157	CRISPR-Cas9 for therapy: the challenges and ways to overcome them. , 2020, , 101-110.		0
1158	Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of Molecular Medicine, 2020, 98, 615-632.	1.7	66
1159	CRISPR-Cas9 Dual-gRNA Attack Causes Mutation, Excision and Inversion of the HIV-1 Proviral DNA. Viruses, 2020, 12, 330.	1.5	21
1160	Allele-specific genome targeting in the development of precision medicine. Theranostics, 2020, 10, 3118-3137.	4.6	18
1161	Conditional Single Vector CRISPR/SaCas9 Viruses for Efficient Mutagenesis in the Adult Mouse Nervous System. Cell Reports, 2020, 30, 4303-4316.e6.	2.9	55
1162	Highly efficient CRISPR-SaKKH tools for plant multiplex cytosine base editing. Crop Journal, 2020, 8, 418-423.	2.3	11
1163	Potent CRISPR-Cas9 inhibitors from <i>Staphylococcus</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6531-6539.	3.3	47
1164	Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain. Science Advances, 2020, 6, eaay6687.	4.7	27
1165	A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biology, 2020, 21, 78.	3.8	51
1166	A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biology, 2020, 18, e3000686.	2.6	96
1167	Principles of Genetic Engineering. Genes, 2020, 11, 291.	1.0	41
1168	CRISPR/Cas9-Mediated miR-29b Editing as a Treatment of Different Types of Muscle Atrophy in Mice. Molecular Therapy, 2020, 28, 1359-1372.	3.7	31
1169	CRISPR-Cas9 system "a mighty player in cancer therapy― , 2020, , 95-99.		2
1170	Emergent challenges for CRISPR: biosafety, biosecurity, patenting, and regulatory issues. , 2020, , 281-307.		1
1171	The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron, 2020, 106, 498-514.e8.	3.8	65
1172	Gene editing and central nervous system regeneration. , 2020, , 399-433.		0
1173	The delivery challenge: fulfilling the promise of therapeutic genome editing. Nature Biotechnology, 2020, 38, 845-855.	9.4	163
1174	Nuclear-Targeting Delivery of CRISPRa System for Upregulation of <i>β </i> -Defensin against Virus Infection by Dexamethasone and Phenylalanine Dual-Modified Dendrimer. Advances in Polymer Technology, 2020, 2020, 1-13.	0.8	3

#	Article	IF	CITATIONS
1175	Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Molecular Therapy, 2020, 28, 2120-2138.	3.7	38
1176	Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Trends in Cardiovascular Medicine, 2021, 31, 341-348.	2.3	5
1177	A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences, 2020, 45, 874-888.	3.7	23
1178	High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biology, 2020, 18, e3000747.	2.6	38
1179	Application of Various Delivery Methods for CRISPR/dCas9. Molecular Biotechnology, 2020, 62, 355-363.	1.3	11
1180	Detection and Modulation of DNA Translocations During Multi-Gene Genome Editing in T Cells. CRISPR Journal, 2020, 3, 177-187.	1.4	31
1181	Progress and challenges towards CRISPR/Cas clinical translation. Advanced Drug Delivery Reviews, 2020, 154-155, 176-186.	6.6	33
1182	Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5, 686-705.	23.3	420
1183	Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster. Archives of Insect Biochemistry and Physiology, 2020, 104, e21662.	0.6	6
1184	How to start your monocot CRISPR/Cas project: plasmid design, efficiency detection, and offspring analysis. Rice, 2020, 13, 9.	1.7	15
1185	Strategies to eliminate HBV infection: an update. Future Virology, 2020, 15, 35-51.	0.9	7
1186	CRISPR/Cas9â€mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 2020, 24, 3766-3778.	1.6	61
1187	Human embryo gene editing: God's scalpel or Pandora's box?. Briefings in Functional Genomics, 2020, 19, 154-163.	1.3	3
1188	Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Research, 2020, 48, 3722-3733.	6.5	83
1189	Genome editing methods in animal models. Animal Cells and Systems, 2020, 24, 8-16.	0.8	33
1190	Rapid identification of human mast cell degranulation regulators using functional genomics coupled to high-resolution confocal microscopy. Nature Protocols, 2020, 15, 1285-1310.	5.5	20
1191	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	1.7	37
1192	CRISPRpic: fast and precise analysis for CRISPR-induced mutations via <u>p</u> refixed <u>i</u> ndex <u>c</u> ounting. NAR Genomics and Bioinformatics, 2020, 2, Iqaa012.	1.5	15

IF

ARTICLE

CITATIONS

1193	Citrus biotechnology. , 2020, , 171-192.		5
1194	High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation. Cell Reports, 2020, 30, 2859-2868.e5.	2.9	46
1195	The rapidly advancing Class 2 CRISPR as technologies: A customizable toolbox for molecular manipulations. Journal of Cellular and Molecular Medicine, 2020, 24, 3256-3270.	1.6	39
1196	A mutation-independent CRISPR-Cas9–mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Science Advances, 2020, 6, eaax5701.	4.7	44
1197	High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nature Biomedical Engineering, 2020, 4, 111-124.	11.6	98
1198	Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering, 2020, 4, 97-110.	11.6	293
1199	CRISPR/Cas9-Mediated TERT Disruption in Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 653.	1.8	18
1200	Factors Impacting Efficacy of AAV-Mediated CRISPR-Based Genome Editing for Treatment of Choroidal Neovascularization. Molecular Therapy - Methods and Clinical Development, 2020, 17, 409-417.	1.8	26
1201	CRISPR screening strategies for microRNA target identification. FEBS Journal, 2020, 287, 2914-2922.	2.2	16
1202	Genome Editing for Mucopolysaccharidoses. International Journal of Molecular Sciences, 2020, 21, 500.	1.8	31
1203	Genome editing technologies to treat rare liver diseases. Translational Gastroenterology and Hepatology, 2020, 5, 23-23.	1.5	10
1204	How are genes modified? Crossbreeding, mutagenesis, and CRISPR-Cas9. , 2020, , 39-54.		4
1205	DNA targeting by Clostridium cellulolyticum CRISPR–Cas9 Type II-C system. Nucleic Acids Research, 2020, 48, 2026-2034.	6.5	20
1206	Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9. Molecular Therapy, 2020, 28, 820-829.	3.7	52
1207	Haplotyping by CRISPR-mediated DNA circularization (CRISPR-hapC) broadens allele-specific gene editing. Nucleic Acids Research, 2020, 48, e25-e25.	6.5	8
1208	Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death and Disease, 2020, 11, 36.	2.7	25
1209	Epigenetic Control of a Local Chromatin Landscape. International Journal of Molecular Sciences, 2020, 21, 943.	1.8	15
1210	An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomaterials Science, 2020, 8, 2966-2976.	2.6	94

#	Article	IF	CITATIONS
1211	CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. International Journal of Molecular Sciences, 2020, 21, 3038.	1.8	27
1212	Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomaterials Science, 2020, 8, 2771-2777.	2.6	44
1214	CRISPR-Based Therapeutic Genome Editing: Strategies and InÂVivo Delivery by AAV Vectors. Cell, 2020, 181, 136-150.	13.5	289
1215	Visualization and correction of social abnormalities-associated neural ensembles in adult MECP2 duplication mice. Science Bulletin, 2020, 65, 1192-1202.	4.3	17
1216	Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology, 2020, 38, 892-900.	9.4	299
1217	Computational design of anti-CRISPR proteins with improved inhibition potency. Nature Chemical Biology, 2020, 16, 725-730.	3.9	14
1218	Quantification of the affinities of CRISPR–Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. Journal of Biological Chemistry, 2020, 295, 6509-6517.	1.6	17
1219	Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases. Theranostics, 2020, 10, 4374-4382.	4.6	80
1220	A simple and practical workflow for genotyping of CRISPR–Cas9â€based knockout phenotypes using multiplexed amplicon sequencing. Genes To Cells, 2020, 25, 498-509.	0.5	11
1221	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	5.6	9
1222	mRNA as a Tool for Gene Transfection in 3D Cell Culture for Future Regenerative Therapy. Micromachines, 2020, 11, 426.	1.4	7
1223	A Novel Eukaryoteâ€Like CRISPR Activation Tool in Bacteria: Features and Capabilities. BioEssays, 2020, 42, e1900252.	1.2	6
1224	Genome and base editing for genetic hearing loss. Hearing Research, 2020, 394, 107958.	0.9	18
1225	AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9. Molecular Therapy, 2020, 28, 1432-1441.	3.7	140
1226	Engineering Stable <i>Pseudomonas putida</i> S12 by CRISPR for 2,5-Furandicarboxylic Acid (FDCA) Production. ACS Synthetic Biology, 2020, 9, 1138-1149.	1.9	25
1227	Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Research, 2020, 48, 4698-4708.	6.5	70
1228	Recent advances in genome editing for cardiovascular disease. Current Opinion in Cardiology, 2020, 35, 242-248.	0.8	1
1229	Mouse Î ³ -Synuclein Promoter-Mediated Gene Expression and Editing in Mammalian Retinal Ganglion Cells. Journal of Neuroscience, 2020, 40, 3896-3914.	1.7	46

#	Article	IF	CITATIONS
1230	CRISPR Interference–Potential Application in Retinal Disease. International Journal of Molecular Sciences, 2020, 21, 2329.	1.8	22
1231	Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Advanced Drug Delivery Reviews, 2021, 168, 55-78.	6.6	46
1232	Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Advanced Drug Delivery Reviews, 2021, 168, 158-180.	6.6	111
1233	CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiological Reviews, 2021, 101, 177-211.	13.1	13
1234	Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Advanced Drug Delivery Reviews, 2021, 168, 181-195.	6.6	17
1235	Therapeutic genome editing in cardiovascular diseases. Advanced Drug Delivery Reviews, 2021, 168, 147-157.	6.6	23
1236	Dystrophin Gene-Editing Stability Is Dependent on Dystrophin Levels in Skeletal but Not Cardiac Muscles. Molecular Therapy, 2021, 29, 1070-1085.	3.7	13
1237	Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 2021, 39, 35-40.	9.4	277
1238	CRISPR-Cas9 Applications in Cardiovascular Disease. Current Problems in Cardiology, 2021, 46, 100652.	1.1	3
1239	Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Communications, 2021, 2, 100101.	3.6	31
1240	Research on CRISPR/system in major cancers and its potential in cancer treatments. Clinical and Translational Oncology, 2021, 23, 425-433.	1.2	3
1241	Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops and Food, 2021, 12, 125-144.	2.0	60
1242	CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 2021, 29, 207-221.	4.4	136
1243	crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Research, 2021, 49, D855-D861.	6.5	16
1244	Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing. Molecular Therapy, 2021, 29, 1057-1069.	3.7	29
1245	An overview of currently available molecular Cas-tools for precise genome modification. Gene, 2021, 769, 145225.	1.0	5
1246	Pointâ€of are Pathogen Detection with CRISPRâ€based Programmable Nucleic Acid Binding Proteins. ChemMedChem, 2021, 16, 1566-1575.	1.6	9
1247	The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review). Biosensors and Bioelectronics, 2021, 175, 112867.	5.3	58

#	Article	IF	CITATIONS
1248	Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism: Clinical and Experimental, 2021, 116, 154461.	1.5	41
1249	Revisiting gene delivery to the brain: silencing and editing. Biomaterials Science, 2021, 9, 1065-1087.	2.6	14
1250	Expansion of the CRISPR/Cas Genome-Sculpting Toolbox: Innovations, Applications and Challenges. Molecular Diagnosis and Therapy, 2021, 25, 41-57.	1.6	9
1251	Cyclophilin 19 secreted in the host cell cytosol by <i>Trypanosoma cruzi</i> promotes <scp>ROS</scp> production required for parasite growth. Cellular Microbiology, 2021, 23, e13295.	1.1	5
1252	Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nature Protocols, 2021, 16, 10-26.	5.5	52
1253	Widely used gene editing strategies in cancer treatment a systematic review. Gene Reports, 2021, 22, 100983.	0.4	2
1254	Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. Journal of Controlled Release, 2021, 330, 61-71.	4.8	54
1255	Rational Selection of CRISPR-Cas Triggering Homology-Directed Repair in Human Cells. Human Gene Therapy, 2021, 32, 302-309.	1.4	2
1256	Engineering precision therapies: lessons and motivations from the clinic. Synthetic Biology, 2021, 6, ysaa024.	1.2	5
1257	High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS. Nature Protocols, 2021, 16, 1034-1061.	5.5	3
1258	Induction of core symptoms of autism spectrum disorder by in vivo CRISPR/Cas9-based gene editing in the brain of adolescent rhesus monkeys. Science Bulletin, 2021, 66, 937-946.	4.3	13
1259	Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opinion on Biological Therapy, 2021, 21, 229-240.	1.4	11
1260	Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nature Biotechnology, 2021, 39, 84-93.	9.4	80
1261	CRISPR Guide RNA Design. Methods in Molecular Biology, 2021, , .	0.4	2
1262	Genetic engineering in plants using CRISPRs. , 2021, , 223-233.		0
1263	Functional Pituitary Networks in Vertebrates. Frontiers in Endocrinology, 2020, 11, 619352.	1.5	19
1265	Choosing a nuclease, guide RNA, and repair template. , 2021, , 41-59.		0
1266	Full-Spectrum Targeted Mutagenesis in Plant and Animal Cells. International Journal of Molecular Sciences, 2021, 22, 857.	1.8	0

#	Article	IF	CITATIONS
1267	A brief history and primer on genome editing. , 2021, , 1-19.		0
1268	Genome editing in cardiovascular diseases. Progress in Molecular Biology and Translational Science, 2021, 181, 289-308.	0.9	53
1269	CRISPRing protozoan parasites to better understand the biology of diseases. Progress in Molecular Biology and Translational Science, 2021, 180, 21-68.	0.9	3
1270	The role of gap junctions in cell death and neuromodulation in the retina. Neural Regeneration Research, 2021, 16, 1911.	1.6	8
1271	Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks. Computational and Structural Biotechnology Journal, 2021, 19, 1445-1457.	1.9	20
1272	History, evolution and classification of CRISPR-Cas associated systems. Progress in Molecular Biology and Translational Science, 2021, 179, 11-76.	0.9	18
1273	Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 618406.	2.7	36
1274	Genome editing and RNA interference technologies in plants. , 2021, , 195-212.		0
1275	Genome editing in the human liver: Progress and translational considerations. Progress in Molecular Biology and Translational Science, 2021, 182, 257-288.	0.9	2
1276	Harnessing CRISPR-Cas system diversity for gene editing technologies. Journal of Biomedical Research, 2021, 35, 91.	0.7	1
1277	CRISPR–Cas systems in bioactive peptide research. , 2021, , 285-307.		0
1278	Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 2021, 16, 1089-1128.	5.5	90
1279	Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regeneration Research, 2021, 16, 414.	1.6	5
1280	CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 2021, 182, 29-79.	0.9	13
1281	Element coding based accurate evaluation of CRISPR/Cas9 initial cleavage. Chemical Science, 2021, 12, 13404-13412.	3.7	8
1282	New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 604220.	1.8	10
1283	CRISPR/Cas13: A Novel and Emerging Tool for RNA Editing in Plants. Concepts and Strategies in Plant Sciences, 2021, , 301-337.	0.6	6
1284	Corynebacterium glutamicum as a robust microbial factory for production of value-added proteins and small molecules: fundamentals and applications. , 2021, , 235-263.		5

#	Article	IF	CITATIONS
1285	CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome. Science China Life Sciences, 2021, 64, 1463-1472.	2.3	14
1286	Delivery Methods, Resources and Design Tools in CRISPR/Cas. , 2021, , 63-116.		5
1287	A Light-Inducible Split-dCas9 System for Inhibiting the Progression of Bladder Cancer Cells by Activating p53 and E-cadherin. Frontiers in Molecular Biosciences, 2020, 7, 627848.	1.6	10
1288	Patents and technology transfer in CRISPR technology. Progress in Molecular Biology and Translational Science, 2021, 180, 153-182.	0.9	5
1289	CRISPR/dCas9 as a Therapeutic Approach for Neurodevelopmental Disorders: Innovations and Limitations Compared to Traditional Strategies. Developmental Neuroscience, 2021, 43, 253-261.	1.0	10
1290	CRISPR-Cas9 in cancer therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 129-163.	0.9	2
1291	Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cellular and Molecular Life Sciences, 2021, 78, 2683-2708.	2.4	29
1292	MicroRNAs Regulating Autophagy in Neurodegeneration. Advances in Experimental Medicine and Biology, 2021, 1208, 191-264.	0.8	1
1293	Precise and broad scope genome editing based on high-specificity Cas9 nickases. Nucleic Acids Research, 2021, 49, 1173-1198.	6.5	29
1294	Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in Molecular Biology and Translational Science, 2021, 181, 31-43.	0.9	11
1295	Therapeutic genome editing. , 2021, , 193-211.		0
1296	Identifying genome-wide off-target sites of CRISPR RNA–guided nucleases and deaminases with Digenome-seq. Nature Protocols, 2021, 16, 1170-1192.	5.5	16
1297	Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing. Expert Opinion on Biological Therapy, 2021, 21, 1049-1061.	1.4	8
1298	Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells. Methods in Molecular Biology, 2021, 2312, 193-223.	0.4	1
1299	CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12, 555.	5.8	148
1300	Fungal genome editing using CRISPR-Cas nucleases: a new tool for the management of plant diseases. , 2021, , 333-360.		1
1301	Designer nucleases to treat malignant cancers driven by viral oncogenes. Virology Journal, 2021, 18, 18.	1.4	0
1302	Bioanalytical challenges and strategies of CRISPRÂgenome editors. Bioanalysis, 2021, 13, 169-179.	0.6	0

#	Article	IF	CITATIONS
1303	Microbial single-strand annealing proteins enable CRISPR gene-editing tools with improved knock-in efficiencies and reduced off-target effects. Nucleic Acids Research, 2021, 49, e36-e36.	6.5	17
1304	Genome editing for Duchenne muscular dystrophy: a glimpse of the future?. Gene Therapy, 2021, 28, 542-548.	2.3	24
1306	History of genome editing: From meganucleases to CRISPR. Laboratory Animals, 2022, 56, 60-68.	0.5	25
1307	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99, 593-617.	1.7	41
1308	AAV-Mediated CRISPRi and RNAi Based Gene Silencing in Mouse Hippocampal Neurons. Cells, 2021, 10, 324.	1.8	5
1309	Development of Genome Editing Approaches against Herpes Simplex Virus Infections. Viruses, 2021, 13, 338.	1.5	8
1311	Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells. Journal of Clinical Medicine, 2021, 10, 513.	1.0	11
1312	CRISPR/Cas9 gene editing for curing sickle cell disease. Transfusion and Apheresis Science, 2021, 60, 103060.	0.5	32
1313	Base editing and prime editing in laboratory animals. Laboratory Animals, 2022, 56, 35-49.	0.5	14
1314	Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing. Bioinformatics, 2021, 37, 2299-2307.	1.8	25
1316	Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nature Protocols, 2021, 16, 1511-1547.	5.5	23
1317	Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Therapy, 2021, 28, 911-923.	2.2	44
1318	Advanced domestication: harnessing the precision of gene editing in crop breeding. Plant Biotechnology Journal, 2021, 19, 660-670.	4.1	39
1319	Crop gene editing against biotic stresses via CRISPR/Cas9 tools: a review. Archives of Phytopathology and Plant Protection, 2021, 54, 1159-1181.	0.6	2
1320	Increasing the Specificity of AAV-Based Gene Editing through Self-Targeting and Short-Promoter Strategies. Molecular Therapy, 2021, 29, 1047-1056.	3.7	11
1321	CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. Molecular Therapy - Methods and Clinical Development, 2021, 20, 258-275.	1.8	62
1322	CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Frontiers in Medicine, 2021, 8, 649896.	1.2	48
1323	A CRISPR/Cas9â€based method for targeted DNA methylation enables cancer initiation in B lymphocytes. Genetics & Genomics Next, 2021, 2, e10040.	0.8	2

#	Article	IF	Citations
1324	Genome editing reagent delivery in plants. Transgenic Research, 2021, 30, 321-335.	1.3	35
1325	α1A-adrenaline receptors in dorsal horn inhibitory neurons have an inhibitory role in the regulation of chloroquine-induced itch in mice. Molecular Brain, 2021, 14, 55.	1.3	2
1326	CRISPR-mediated rapid generation of neural cell-specific knockout mice facilitates research in neurophysiology and pathology. Molecular Therapy - Methods and Clinical Development, 2021, 20, 755-764.	1.8	5
1327	Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Molecular Biotechnology, 2021, 63, 459-476.	1.3	6
1328	CRISPR/Cas-Dependent and Nuclease-Free <i>In Vivo</i> Therapeutic Gene Editing. Human Gene Therapy, 2021, 32, 275-293.	1.4	26
1329	Next Generation Sequence-based Technologies for Analyzing DNA Strand Breaks. Cytologia, 2021, 86, 3-9.	0.2	0
1330	Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Molecular Therapy - Methods and Clinical Development, 2021, 20, 298-311.	1.8	25
1332	Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Molecular Therapy, 2021, 29, 937-948.	3.7	12
1333	Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Research, 2021, 30, 529-549.	1.3	49
1334	InÂvivo PCSK9 gene editing using an all-in-one self-cleavage AAV-CRISPR system. Molecular Therapy - Methods and Clinical Development, 2021, 20, 652-659.	1.8	26
1335	Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Research, 2021, 49, 4008-4019.	6.5	33
1336	Systematic <i>in vitro</i> specificity profiling reveals nicking defects in natural and engineered CRISPR–Cas9 variants. Nucleic Acids Research, 2021, 49, 4037-4053.	6.5	10
1337	CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. International Journal of Molecular Sciences, 2021, 22, 3196.	1.8	23
1338	Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Frontiers in Genome Editing, 2021, 3, 618378.	2.7	27
1339	Enhancing gene editing efficiency for cells by CRISPR/Cas9 system-loaded multilayered nanoparticles assembled via microfluidics. Chinese Journal of Chemical Engineering, 2021, 38, 216-216.	1.7	6
1340	Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito. Proceedings of the United States of America, 2021, 118, .	3.3	27
1341	Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nature Communications, 2021, 12, 2121.	5.8	155
1342	Molecular phylogeny and ancestral biogeographic reconstruction of Platanthera subgenus Limnorchis (Orchidaceae) using target capture methods. Molecular Phylogenetics and Evolution, 2021, 157, 107070.	1.2	2

#	Article	IF	CITATIONS
1344	Targeting Gys1 with AAVâ€SaCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics, 2021, 18, 1414-1425.	2.1	26
1345	CRISPR, animals, and FDA oversight: Building a path to success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
1346	CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3179-3191.	3.7	31
1347	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
1348	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	1.3	97
1349	CRISPR-Cas systems for diagnosing infectious diseases. Methods, 2022, 203, 431-446.	1.9	60
1352	Current Applications and Future Perspectives of CRISPR-Cas9 for the Treatment of Lung Cancer. Biologics: Targets and Therapy, 2021, Volume 15, 199-204.	3.0	5
1353	Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. Nature Communications, 2021, 12, 2770.	5.8	13
1354	Early and late stage gene therapy interventions for inherited retinal degenerations. Progress in Retinal and Eye Research, 2022, 86, 100975.	7.3	85
1356	Knowledge From London and Berlin: Finding Threads to a Functional HIV Cure. Frontiers in Immunology, 2021, 12, 688747.	2.2	13
1358	CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Molecular Biotechnology, 2021, 63, 768-779.	1.3	9
1359	Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Scientific Reports, 2021, 11, 11163.	1.6	11
1360	Generation of a homozygous LRP2 knockout human embryonic stem cell line (FDCHDPe010-A-56) by CRISPR/Cas9 system. Stem Cell Research, 2021, 53, 102342.	0.3	2
1362	Gene Therapy for Mucopolysaccharidosis Type Il—A Review of the Current Possibilities. International Journal of Molecular Sciences, 2021, 22, 5490.	1.8	17
1363	Single AAV-mediated CRISPR-Nme2Cas9 efficiently reduces mutant hTTR expression in a transgenic mouse model of transthyretin amyloidosis. Molecular Therapy, 2022, 30, 164-174.	3.7	12
1364	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	4.6	50
1365	Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Horticulture Research, 2021, 8, 114.	2.9	37
1366	Cell-Based Delivery Approaches for DNA-Binding Domains into the Central Nervous System. Current Neuropharmacology, 2021, 19, .	1.4	1

#	Article	IF	CITATIONS
1367	ROLE OF CRISPR TO IMPROVE ABIOTIC STRESS TOLERANCE IN CROP PLANTS. Biological & Clinical Sciences Research Journal, 2021, 2021, .	0.4	15
1368	Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Science Advances, 2021, 7, .	4.7	56
1369	CRISPR-Cas system: a precise tool for plant genome editing. Nucleus (India), 0, , 1.	0.9	2
1371	Inhibition of Hepatitis B Virus by AAV8-Derived CRISPR/SaCas9 Expressed From Liver-Specific Promoters. Frontiers in Microbiology, 2021, 12, 665184.	1.5	20
1372	Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR as systems. FEBS Open Bio, 2021, 11, 1965-1980.	1.0	1
1373	Recent advances in CRISPR technologies for genome editing. Archives of Pharmacal Research, 2021, 44, 537-552.	2.7	5
1374	Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review. Frontiers in Plant Science, 2021, 12, 688980.	1.7	18
1375	A novel therapeutic modality using CRISPR-engineered dendritic cells to treat allergies. Biomaterials, 2021, 273, 120798.	5.7	10
1376	Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. Molecular Therapy - Nucleic Acids, 2021, 24, 403-415.	2.3	17
1377	Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD inÂvitro. Molecular Therapy - Nucleic Acids, 2021, 24, 253-263.	2.3	17
1378	Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 592-606.	1.8	11
1379	Controlling CRISPR with small molecule regulation for somatic cell genome editing. Molecular Therapy, 2022, 30, 17-31.	3.7	8
1380	Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals, 2021, 14, 554.	1.7	20
1381	Transduction catalysis: Doxorubicin amplifies rAAV-mediated gene expression in the cortex of higher-order vertebrates. IScience, 2021, 24, 102685.	1.9	7
1382	Epigenetic Editing in Prostate Cancer: Challenges and Opportunities. Epigenetics, 2022, 17, 564-588.	1.3	4
1383	CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. Materials, 2021, 14, 3164.	1.3	10
1384	Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell, 2021, 28, 1136-1147.e5.	5.2	95
1385	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	1.3	7

#	Article	IF	CITATIONS
1386	Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus, 2021, 9, eESP00062020.	2.1	2
1388	Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian Journal of Pharmaceutical Sciences, 2021, 16, 687-703.	4.3	45
1389	Long-term stable reduction of low-density lipoprotein in nonhuman primates following inÂvivo genome editing of PCSK9. Molecular Therapy, 2021, 29, 2019-2029.	3.7	42
1390	Structural basis of <i>Staphylococcus aureus</i> Cas9 inhibition by AcrIIA14. Nucleic Acids Research, 2021, 49, 6587-6595.	6.5	10
1391	Versatile and efficient inÂvivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy, 2022, 30, 256-267.	3.7	16
1392	Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nature Communications, 2021, 12, 4219.	5.8	29
1394	ĐŸĐ¾Đ»ÑƒÑ‡ĐµĐ½Đ,е Ñ,Ñ€Đ°Đ½ÑĐ³ĐµĐ½Đ½Ñ‹Ñ ÑĐ¼Đ±Ñ€Đ,Đ¾Đ½Đ°Đ»ÑŒĐ½Ñ‹Ñ ÑÑ,Đ²Đ¾Đ	» Ðð∕₄Ð ²Ñ∢	Ñ.Ω Đ⁰леÑ
1395	Advances in Accurate Microbial Genome-Editing CRISPR Technologies. Journal of Microbiology and Biotechnology, 2021, 31, 903-911.	0.9	6
1396	Base Editing in Plants: Applications, Challenges, and Future Prospects. Frontiers in Plant Science, 2021, 12, 664997.	1.7	31
1397	Programmable System of Cas13-Mediated RNA Modification and Its Biological and Biomedical Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 677587.	1.8	22
1398	A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Research and Therapy, 2021, 12, 428.	2.4	63
1399	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3
1400	CRISPR-Cas9 and beyond: what's next in plant genome engineering. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 584.	0.9	13
1401	Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Molecular Genetics and Metabolism, 2021, 134, 117-131.	0.5	13
1402	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	4.3	76
1403	Generation of Transgenic Rat Embryonic Stem Cells Using the CRISPR/Cpf1 System for Inducible Gene Knockout. Biochemistry (Moscow), 2021, 86, 843-851.	0.7	0
1404	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	1.6	15
1405	Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 2021, 49, 107737.	6.0	19

щ		IF	Citations
#	ARTICLE Small nucleic acids and the path to the clinic for anti-CRISPR. Biochemical Pharmacology, 2021, 189,		
1406	114492.	2.0	7
1407	Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice. Nature Biomedical Engineering, 2022, 6, 168-180.	11.6	27
1408	A Dynamic, Ring-Forming Bactofilin Critical for Maintaining Cell Size in the Obligate Intracellular Bacterium Chlamydia trachomatis. Infection and Immunity, 2021, 89, e0020321.	1.0	14
1409	CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction, Detection, and Overcoming Strategies. Current Bioinformatics, 2022, 17, 119-132.	0.7	3
1410	CRISPR/Cas9-Induced Loss-of-Function Mutation in the Barley Mitogen-Activated Protein Kinase 6 Gene Causes Abnormal Embryo Development Leading to Severely Reduced Grain Germination and Seedling Shootless Phenotype. Frontiers in Plant Science, 2021, 12, 670302.	1.7	10
1411	CRISPR-Cas9 Gene Editing for Fruit and Vegetable Crops: Strategies and Prospects. Horticulturae, 2021, 7, 193.	1.2	21
1412	Unlocking loxP to Track Genome Editing In Vivo. Genes, 2021, 12, 1204.	1.0	1
1413	CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Scientific Reports, 2021, 11, 16186.	1.6	20
1414	Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. International Journal of Molecular Sciences, 2021, 22, 8422.	1.8	7
1415	Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic Resistance. Trends in Genetics, 2021, 37, 745-757.	2.9	8
1416	InÂvivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharmaceutica Sinica B, 2021, 11, 2150-2171.	5.7	97
1417	Simple-to-use CRISPR-SpCas9/SaCas9/AsCas12a vector series for genome editing in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
1418	CRISPR/Cas9-Mediated in vivo Genetic Correction in a Mouse Model of Hemophilia A. Frontiers in Cell and Developmental Biology, 2021, 9, 672564.	1.8	10
1419	CRISPR Toolbox for Genome Editing in Dictyostelium. Frontiers in Cell and Developmental Biology, 2021, 9, 721630.	1.8	5
1420	Adeno-Associated Vector-Delivered CRISPR/SaCas9 System Reduces Feline Leukemia Virus Production In Vitro. Viruses, 2021, 13, 1636.	1.5	5
1422	Novel vectors and approaches for gene therapy in liver diseases. JHEP Reports, 2021, 3, 100300.	2.6	57
1423	Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s. Journal of Biological Chemistry, 2021, 297, 100909.	1.6	14
1424	Small molecule inhibition of ATM kinase increases CRISPR-Cas9 1-bp insertion frequency. Nature Communications, 2021, 12, 5111.	5.8	15

#	Article	IF	CITATIONS
1425	Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. Journal of Controlled Release, 2021, 336, 354-374.	4.8	30
1426	Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals, 2021, 14, 765.	1.7	3
1427	Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nature Methods, 2021, 18, 965-974.	9.0	56
1428	Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM. Cells, 2021, 10, 2099.	1.8	1
1429	Design of time-delayed safety switches for CRISPR gene therapy. Scientific Reports, 2021, 11, 16908.	1.6	2
1430	PCSK9 and cancer: Rethinking the link. Biomedicine and Pharmacotherapy, 2021, 140, 111758.	2.5	41
1431	Construction of a rAAV-SaCas9 system expressing eGFP and its application to improve muscle mass. Biotechnology Letters, 2021, 43, 2111-2129.	1.1	2
1433	The ScCas9 ⁺⁺ variant expands the CRISPR toolbox for genome editing in plants. Journal of Integrative Plant Biology, 2021, 63, 1611-1619.	4.1	17
1434	Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules. Nature Communications, 2021, 12, 5664.	5.8	25
1435	Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3243-3257.	3.7	27
1437	Off-target effects of base editors: what we know and how we can reduce it. Current Genetics, 2022, 68, 39-48.	0.8	9
1438	Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology, 2021, 17, 1132-1138.	3.9	121
1439	Hepatokine Pregnancy Zone Protein Governs the Dietâ€Induced Thermogenesis Through Activating Brown Adipose Tissue. Advanced Science, 2021, 8, e2101991.	5.6	16
1440	Drug discovery oncology in a mouse: concepts, models and limitations. Future Science OA, 2021, 7, FSO737.	0.9	6
1441	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40, 94-102.	9.4	119
1443	Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through miR-3075. Nature Metabolism, 2021, 3, 1163-1174.	5.1	43
1444	A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Molecular Therapy - Methods and Clinical Development, 2021, 22, 122-132.	1.8	20
1445	Genome editing with type IIâ€C CRISPRâ€Cas9 systems from <i>Neisseria meningitidis</i> in rice. Plant Biotechnology Journal, 2022, 20, 350-359.	4.1	15

		CITATION REPORT		
#	Article		IF	CITATIONS
1446	CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants,	2021, 10, 2055.	1.6	32
1447	Advances in base editing with an emphasis on an AAV-based strategy. Methods, 2021,	194, 56-64.	1.9	1
1448	Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. Journa Delivery Science and Technology, 2021, 65, 102728.	of Drug	1.4	19
1449	Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoi Cell and Developmental Biology, 2021, 9, 748576.	ds. Frontiers in	1.8	13
1450	Generation of a homozygous LRPAP1 knockout human embryonic stem cell line (FDCF CRISPR/Cas9 system. Stem Cell Research, 2021, 56, 102516.	IDPe009-B) by	0.3	1
1451	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagno of cancer. Molecular Cancer, 2021, 20, 126.	osis, and therapy	7.9	86
1452	Extensive humoral immune response to AAVs and Cas proteins in nonhuman primates. 2021, 66, 2061-2064.	Science Bulletin,	4.3	1
1453	A robust method for protein depletion based on gene editing. Methods, 2021, 194, 3-	11.	1.9	3
1454	Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Ec Medicine, 2021, 8, 698521.	liting. Frontiers in	1.2	6
1455	Applications of adeno-associated virus vector-mediated gene delivery for neurodegene and psychiatric diseases: Progress, advances, and challenges. Mechanisms of Ageing a 2021, 199, 111549.		2.2	9
1456	Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: challenges. Cellular Immunology, 2021, 369, 104436.	Implications and	1.4	5
1457	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408	3, 112844.	1.2	11
1458	Replacing the SpCas9 HNH domain by deaminases generates compact base editors wi targeting scope. Molecular Therapy - Nucleic Acids, 2021, 26, 502-510.	th an alternative	2.3	7
1459	CRISPR-Cas9-mediated genome editing technology for abiotic stress tolerance in crop 331-354.	plant. , 2022, ,		4
1460	The evolution and history of gene editing technologies. Progress in Molecular Biology Translational Science, 2021, 178, 1-62.	and	0.9	7
1461	Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prosp International Journal of Molecular Sciences, 2021, 22, 682.	ects.	1.8	29
1462	Gene and epigenetic editing in the treatment of primary ciliopathies. Progress in Molec and Translational Science, 2021, 182, 353-401.	ular Biology	0.9	3
1464	Off-target effects in genome editing. , 2021, , 715-727.			1

#	Article	IF	CITATIONS
1465	Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biology, 2021, 18, 1048-1062.	1.5	24
1466	Engineered dual selection for directed evolution of SpCas9 PAM specificity. Nature Communications, 2021, 12, 349.	5.8	10
1467	CRISPRâ€Mediated Gene Targeting of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2015, 35, 5A.8.1-5A.8.22.	3.0	21
1468	Myotonic Dystrophy and Developmental Regulation of RNA Processing. , 2018, 8, 509-553.		26
1469	Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods in Molecular Biology, 2020, 2116, 199-224.	0.4	18
1470	Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. Springer Protocols, 2020, , 1-23.	0.1	15
1471	Genome-Wide CRISPR Off-Target DNA Break Detection by the BLISS Method. Methods in Molecular Biology, 2021, 2162, 261-281.	0.4	4
1472	Optogenetics and CRISPR: A New Relationship Built to Last. Methods in Molecular Biology, 2020, 2173, 261-281.	0.4	8
1473	Biotechnological Approaches for the Resistance to Citrus Diseases. Compendium of Plant Genomes, 2020, , 245-257.	0.3	7
1474	Using Genome Engineering to Understand Huntington's Disease. Research and Perspectives in Neurosciences, 2017, , 87-101.	0.4	5
1475	Application of Nanomaterials in Cancer Diagnosis, Drug Delivery, and Therapy. , 2020, , 147-171.		1
1476	Gene therapy and gene editing. , 2020, , 463-477.		2
1477	CRISPR interference-mediated noggin knockdown promotes BMP2-induced osteogenesis and calvarial bone healing. Biomaterials, 2020, 252, 120094.	5.7	32
1478	Hepatic DNAJB9 Drives Anabolic Biasing to Reduce Steatosis and Obesity. Cell Reports, 2020, 30, 1835-1847.e9.	2.9	14
1479	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	1.9	100
1480	Efficient inÂvivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Reports, 2020, 2, 100065.	2.6	18
1481	Single AAV-Mediated CRISPR-SaCas9 Inhibits HSV-1 Replication by Editing ICP4 in Trigeminal Ganglion Neurons. Molecular Therapy - Methods and Clinical Development, 2020, 18, 33-43.	1.8	14
1482	Am I ready for CRISPR? A user's guide to genetic screens. Nature Reviews Genetics, 2018, 19, 67-80.	7.7	325

		CITATION REPORT		
#	Article		IF	Citations
1483	CRISPR/Cas9 increases mitotic gene conversion in human cells. Gene Therapy, 2020, 2	7, 281-296.	2.3	19
1484	Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction neonatal intracerebroventricular delivery in mice. Gene Therapy, 2021, 28, 456-468.	of AAV by	2.3	14
1485	Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Communications, 2019, 10, 560.	. Nature	5.8	43
1486	Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Scie 2016, 6, 26871.	ntific Reports,	1.6	112
1487	CRISPR Highlights and Transition of Cas9 into a Genome Editing Tool. Chemical Biolog	y, 2018, , 391-407.	0.1	1
1488	Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biocher Transactions, 2020, 48, 207-219.	nical Society	1.6	14
1526	A most formidable arsenal: genetic technologies for building a better mouse. Genes an 2020, 34, 1256-1286.	d Development,	2.7	24
1527	Gene Editing Effects of CRISPR/Cas on Breakpoint Cluster Region Gene Targets Using V Colony Formation Assay. Nanoscience and Nanotechnology Letters, 2017, 9, 1998-200		0.4	1
1528	Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently metabolic diseases. JCI Insight, 2019, 4, .	correct liver	2.3	28
1529	Gene therapy and genome surgery in the retina. Journal of Clinical Investigation, 2018,	128, 2177-2188.	3.9	111
1530	TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury Clinical Investigation, 2018, 128, 2297-2309.	. Journal of	3.9	28
1531	Critical roles of αll spectrin in brain development and epileptic encephalopathy. Journa Investigation, 2018, 128, 760-773.	l of Clinical	3.9	52
1532	Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold Nanobiomedicine, 2020, 7, 184954352098319.	l nanomaterials.	4.4	14
1533	CRISPR/Cas: a potential gene-editing tool in the nervous system. Cell Regeneration, 20	20, 9, 12.	1.1	8
1534	CRISPR-based strategies for targeted transgene knock-in and gene correction. Faculty 20.	Reviews, 2020, 9,	1.7	8
1535	Base Editing. Materials and Methods, 0, 9, .		0.0	2
1536	A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patt its mechanism of action. PLoS Computational Biology, 2017, 13, e1005807.	erns underlying	1.5	147
1537	No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (N cells. PLoS ONE, 2017, 12, e0177444.	gAgo) in human	1.1	29

	Стато	N REPORT	
#	ARTICLE	IF	Citations
1538	Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLoS ONE, 2017, 12, e0188593.	1.1	53
1539	Lactobacillus gasseri CRISPR-Cas9 characterization In Vitro reveals a flexible mode of protospacer-adjacent motif recognition. PLoS ONE, 2018, 13, e0192181.	1.1	2
1540	P.F508del editing in cells from cystic fibrosis patients. PLoS ONE, 2020, 15, e0242094.	1.1	11
1541	The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37, 191-204.	0.6	13
1542	Genetically Engineering the Nervous System with CRISPR-Cas. ENeuro, 2020, 7, ENEURO.0419-19.2020.	0.9	12
1543	Dynamics of <i>Staphylococcus aureus</i> Cas9 in <scp>DNA</scp> target Association and Dissociation. EMBO Reports, 2020, 21, e50184.	2.0	20
1544	Genetically engineered mouse models for studying radiation biology. Translational Cancer Research, 2017, 6, S900-S913.	0.4	21
1545	The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Animal Reproduction, 2018, 15, 171-179.	0.4	1
1546	Directions and applications of CRISPR technology in livestock research. Animal Reproduction, 2018, 15, 292-300.	0.4	13
1547	An Overview of Computational Tools of Nucleic Acid Binding Site Prediction for Site-specific Proteins and Nucleases. Protein and Peptide Letters, 2020, 27, 370-384.	0.4	2
1548	Designer Nucleases: Gene-Editing Therapies using CCR5 as an Emerging Target in HIV. Current HIV Research, 2019, 17, 306-323.	0.2	9
1549	CRISPR/Cas9 System and its Research Progress in Gene Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2020, 19, 1912-1919.	0.9	4
1550	Keeping CRISPR/Cas on-Target. Current Issues in Molecular Biology, 2016, , .	1.0	21
1551	Treating Genetic Disorders Using State-Of-The-Art Technology. Current Issues in Molecular Biology, 2018, 26, 33-46.	1.0	1
1552	In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Science Alliance, 2020, 3, e201900528.	1.3	5
1553	The advances and challenges of Gene Therapy for Duchenne Muscular Dystrophy. , 2017, 1, 019-036.		4
1554	The CRISPR/Cas9 system for gene editing and its potential application in pain research. Translational Perioperative and Pain Medicine, 2016, 3, .	0.0	6
1555	Computational Tools and Resources Supporting CRISPR-Cas Experiments. Cells, 2020, 9, 1288.	1.8	38

#	Article	IF	Citations
1556	Therapeutic Potential of Anti-HIV RNA-loaded Exosomes. Biomedical and Environmental Sciences, 2018, 31, 215-226.	0.2	8
1557	The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs. Journal of Microbiology and Biotechnology, 2017, 27, 207-218.	0.9	17
1558	A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virologica, 2019, 63, 129-138.	0.3	3
1559	CRISPR/Cas system: An emerging technology in stem cell research. World Journal of Stem Cells, 2019, 11, 937-956.	1.3	23
1560	Astonishing advances in mouse genetic tools for biomedical research. Swiss Medical Weekly, 2015, 145, w14186.	0.8	15
1561	Gene editing for corneal disease management. World Journal of Translational Medicine, 2016, 5, 1.	3.5	5
1562	Herpesviral lytic gene functions render the viral genome susceptible to novel editing by CRISPR/Cas9. ELife, 2019, 8, .	2.8	30
1564	Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Current Genomics, 2021, 22, 450-467.	0.7	7
1566	Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. CRISPR Journal, 2021, 4, 710-727.	1.4	1
1567	Bombesin-like peptide recruits disinhibitory cortical circuits and enhances fear memories. Cell, 2021, 184, 5622-5634.e25.	13.5	35
1568	CRISPR Systems Suitable for Single AAV Vector Delivery. Current Gene Therapy, 2021, 22, 1-14.	0.9	8
1569	Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. Sugar Tech, 2022, 24, 369-385.	0.9	9
1570	Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021, 184, 5635-5652.e29.	13.5	332
1571	Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells. Nature Communications, 2021, 12, 6191.	5.8	53
1572	Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of Staphylococci. Frontiers in Microbiology, 2021, 12, 736565.	1.5	5
1573	Carrier-Free Cellular Transport of CRISPR/Cas9 Ribonucleoprotein for Genome Editing by Cold Atmospheric Plasma. Biology, 2021, 10, 1038.	1.3	5
1574	Strategies for genetic manipulation of adult stem cell-derived organoids. Experimental and Molecular Medicine, 2021, 53, 1483-1494.	3.2	19
1575	Expansion of CRISPR Targeting Sites Using an Integrated Gene-Editing System in Apis mellifera. Insects, 2021, 12, 954.	1.0	2

#	Article	IF	CITATIONS
1576	Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Advanced Science, 2021, 8, e2102051.	5.6	35
1577	Genome engineering in rodents – status quo and perspectives. Laboratory Animals, 2022, 56, 83-87.	0.5	2
1578	An endogenous opioid circuit determines state-dependent reward consumption. Nature, 2021, 598, 646-651.	13.7	49
1579	Epigenetic targeting for lung cancer treatment via CRISPR/Cas9 technology. Advances in Cancer Biology Metastasis, 2021, 3, 100012.	1.1	3
1580	The potential of Genome-editing techniques. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 534-540.	0.1	0
1582	The Current State-of-the-Art in Therapeutic Genome Editing and the Future. Gene Technology, 2016, 05, .	0.5	0
1587	Dissecting the Role of Synaptic Proteins with CRISPR. Research and Perspectives in Neurosciences, 2017, , 51-62.	0.4	0
1597	CRISPR/CAS targeted in vivo genome modification for studying functional role of genomic regulatory elements in health and carcinogenesis. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2018, 36, 3.	0.1	0
1606	Strengthening the competitiveness of agricultural biotechnology through practical application of gene editing technology. Journal of Plant Biotechnology, 2018, 45, 155-170.	0.1	5
1608	Targeted Genome Engineering and Its Application in Trait Improvement of Crop Plants. Agricultural Sciences, 2019, 10, 1312-1342.	0.2	1
1610	CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine. RSC Drug Discovery Series, 2019, , 400-433.	0.2	1
1611	One Anti-CRISPR to Rule Them All: Potent Inhibition of Cas9 Homologs Used for Genome Editing. SSRN Electronic Journal, 0, , .	0.4	1
1612	Gene Delivery in Lipid Research and Therapies. Methodist DeBakey Cardiovascular Journal, 2021, 15, 62.	0.5	5
1617	A Facile and Convenient Synthesis of Boc-Protected 5-Carboxyspermine. Letters in Organic Chemistry, 2019, 16, 615-618.	0.2	0
1619	The Synergy between CRISPR and Chemical Engineering. Current Gene Therapy, 2019, 19, 147-171.	0.9	3
1620	Current Status of New Plant Breeding Technologies and Crop Development. Han'guk Yukchong Hakhoe Chi, 2019, 51, 161-174.	0.2	3
1623	Application of genome editing technology in human gene therapy. Translational and Regulatory Sciences, 2020, 2, 100-106.	0.2	0
1629	Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Frontiers in Genome Editing, 2021, 3, 737632.	2.7	13

ARTICLE IF CITATIONS Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed 1630 5.8 52 repair in vivo. Nature Communications, 2021, 12, 6267. CRISPR/Cas9 for the Clinician: Current uses of gene editing and applications for new therapeutics in oncology., 2020, 24, 1-3. CRISPR/Cas9-based Antibody Production in Plants. Pakistan Journal of Biochemistry and 1634 0.1 0 Biotechnology, 2020, 1, . Genome Engineering in Plant Using an Efficient CRISPR-xCas9 Toolset With an Expanded PAM 2.7 Compatibility. Frontiers in Genome Editing, 2020, 2, 618385. CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish. STAR Protocols, 2020, 1, 100208. 1636 0.5 1 Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a 5.3 handheld device. Biosensors and Bioelectronics, 2022, 196, 113701. CRISPR-Cas orthologs and variants., 2022, , 7-38. 1638 0 Efficient Homologous Recombination-Mediated in Planta Gene Targeting by Egg-Cell-Specific 1640 0.1 Expression of Staphylococcus aureus Cas9 from Arabidopsis. Springer Protocols, 2020, , 25-34. RPE and Gene Therapy., 2020, , 265-279. 0 1641 Enhancing Abiotic Stress Tolerance in Plants Through Genome Editing. Concepts and Strategies in 1642 Plant Sciences, 2020, , 91-117. Applications of CRISPR technology to lung cancer research. European Respiratory Journal, 2022, 59, 1646 3.16 2102610. Endotoxin contamination in commercially available Cas9 proteins potentially induces T-cell mediated 1647 2.3 responses. Gene Therapy, 2021, , . Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Frontiers in 1648 1.1 14 Cardiovascular Medicine, 2021, 8, 760140. CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Molecular Biotechnology, 1649 1.3 2022, 64, 355-372. Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, 1650 12 2.9 glucose uptake, and glycogen storage. Cell Reports, 2021, 37, 109938. Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish 1.2 embryos. Genetics, 2022, 220, . The CRISPR/Cas9 system for gene editing and its potential application in pain research. Translational 1658 0.0 12 Perioperative and Pain Medicine, 2016, 1, 22-33. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity. Yale Journal of Biology and Medicine, 2016, 89, 457-470.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1660	CRISPR-Mediated Epigenome Editing. Yale Journal of Biology and Medicine, 2016, 89, 4	171-486.	0.2	30
1661	The Application of CRISPR/Cas9 for the Treatment of Retinal Diseases. Yale Journal of B Medicine, 2017, 90, 533-541.	iology and	0.2	17
1662	Potential of Gene Editing and Induced Pluripotent Stem Cells (iPSCs) in Treatment of R Yale Journal of Biology and Medicine, 2017, 90, 635-642.	etinal Diseases.	0.2	9
1663	Nuclease-Mediated Gene Therapies for Inherited Metabolic Diseases of the Liver. Yale Jo Biology and Medicine, 2017, 90, 553-566.	burnal of	0.2	11
1664	Applications of CRISPR/Cas9 in the Mammalian Central Nervous System. Yale Journal o Medicine, 2017, 90, 567-581.	f Biology and	0.2	31
1665	Biological characteristics and conjugated antigens of ClfA A-FnBPA and CP5 in. Canadia Veterinary Research, 2018, 82, 48-54.	an Journal of	0.2	1
1667	Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in canc Drug Delivery Reviews, 2022, 180, 114042.	er. Advanced	6.6	20
1668	Application of CRISPR–Cas9 in plant–plant growth-promoting rhizobacteria interac Green Revolution. 3 Biotech, 2021, 11, 492.	ctions for next	1.1	3
1669	CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Frontiers in Cell a Developmental Biology, 2021, 9, 761709.	and	1.8	20
1670	Applications of CRISPR-Cas Technologies to Proteomics. Genes, 2021, 12, 1790.		1.0	5
1671	Detection of pks Island mRNAs Using Toehold Sensors in Escherichia coli. Life, 2021, 1	1, 1280.	1.1	3
1672	Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on t Emerging Technologies. Frontiers in Plant Science, 2021, 12, 768197.	the New	1.7	9
1673	Organelle-level precision with next-generation targeting technologies. Nature Reviews 2022, 7, 355-371.	Materials,	23.3	63
1674	Applications of Genome Editing Tools in Stem Cells Towards Regenerative Medicine: Ar Current Stem Cell Research and Therapy, 2022, 17, 267-279.	n Update.	0.6	4
1675	CRISPR/Cas9-Mediated Gene Editing in Porcine Models for Medical Research. DNA and 2021, 40, 1462-1475.	Cell Biology,	0.9	6
1677	CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nu Therapeutics, 2022, 32, 14-28.	cleic Acid	2.0	4
1678	Morphogeneâ€assisted transformation of <i>Sorghum bicolor</i> allows more efficien editing. Plant Biotechnology Journal, 2022, 20, 748-760.	t genome	4.1	26
1679	Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viab interventional approaches. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112257.		2.5	9

	CHAHON		
#	Article	IF	CITATIONS
1680	Rearrangement of T Cell Genome Architecture Regulates GVHD. SSRN Electronic Journal, 0, , .	0.4	0
1681	Potato improvement through genetic engineering. GM Crops and Food, 2021, 12, 479-496.	2.0	11
1682	Conditional Gene Editing in Presynaptic Extinction-ensemble Cells via the CRISPR-SaCas9 System. Bio-protocol, 2021, 11, e4246.	0.2	0
1683	Delivery Methods for CRISPR/Cas Reagents. , 2022, , 113-148.		0
1684	Reengineering of the CRISPR/Cas System. , 2022, , 149-186.		0
1685	Moving toward genome-editing therapies for cardiovascular diseases. Journal of Clinical Investigation, 2022, 132, .	3.9	22
1686	Robust genome editing in adult vascular endothelium by nanoparticle delivery of CRISPR-Cas9 plasmid DNA. Cell Reports, 2022, 38, 110196.	2.9	34
1687	Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361.	4.8	82
1688	Investigation of the properties and activity of DfCas9 and DsCas9 nucleases in eucaryotic cells. Pharmacy Formulas, 2021, 3, 10-23.	0.2	0
1689	Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox. NAR Cancer, 2021, 3, zcab048.	1.6	8
1690	Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (Review). Journal of Nanobiotechnology, 2022, 20, 41.	4.2	47
1691	Green Fluorescent Protein Tagged Polycistronic Reporter System Reveals Functional Editing Characteristics of CRISPR-Cas. CRISPR Journal, 2022, 5, 254-263.	1.4	1
1692	Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiology, 2022, 188, 1825-1837.	2.3	39
1693	Genome Editing Using CRISPR-Cas9 and Autoimmune Diseases: A Comprehensive Review. International Journal of Molecular Sciences, 2022, 23, 1337.	1.8	13
1694	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	1.8	16
1696	CRISPR-Cas genome editing system: A versatile tool for developing disease resistant crops. Plant Stress, 2022, 3, 100056.	2.7	11
1697	Targeting Cancer with CRISPR/Cas9-Based Therapy. International Journal of Molecular Sciences, 2022, 23, 573.	1.8	18
1698	CRISPR/Cas: The New Frontier in Plant Improvement. ACS Agricultural Science and Technology, 2022, 2, 2022-214.	1.0	4

#	Article	IF	CITATIONS
1700	ON-Target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. CRISPR Journal, 2022, 5, 19-30.	1.4	27
1701	How to Find the Right RNA-Sensing CRISPR-Cas System for an In Vitro Application. Biosensors, 2022, 12, 53.	2.3	5
1702	Strategies for Enhancing the Homology-Directed Repair Efficiency of CRISPR-Cas Systems. CRISPR Journal, 2022, 5, 7-18.	1.4	8
1703	The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems—A Systematic Review. Frontiers in Genetics, 2021, 12, 814131.	1.1	4
1704	Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations. Scientific Reports, 2022, 12, 1481.	1.6	4
1705	Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better?. Gene Therapy, 2022, 29, 458-463.	2.3	4
1706	Application of CRISPR/Cas system in iPSC-based disease model of hereditary deafness. , 2022, , 225-245.		0
1707	Gene Therapy Targeting PCSK9. Metabolites, 2022, 12, 70.	1.3	19
1708	Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nature Communications, 2022, 13, 437.	5.8	20
1709	High-fidelity KKH variant of <i>Staphylococcus aureus</i> Cas9 nucleases with improved base mismatch discrimination. Nucleic Acids Research, 2022, 50, 1650-1660.	6.5	11
1711	Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Molecular Cell, 2022, 82, 852-867.e5.	4.5	40
1712	Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Medical Journal, 2022, 63, 105.	0.9	11
1713	Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nature Communications, 2022, 13, 474.	5.8	23
1714	MOF effectively deliver CRISPR and enhance gene-editing efficiency via MOF's hydrolytic activity of phosphate ester bonds. Chemical Engineering Journal, 2022, 439, 134992.	6.6	7
1715	Rearrangement of T Cell Genome Architecture Regulates GVHD. SSRN Electronic Journal, 0, , .	0.4	0
1716	Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cellular and Molecular Life Sciences, 2022, 79, 130.	2.4	14
1717	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	6.1	21
1718	Gene Editing with CRISPR/Cas Methodology and Thyroid Cancer: Where Are We?. Cancers, 2022, 14, 844.	1.7	5

#	Article	IF	CITATIONS
1719	CRISPR Therapeutics for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 1832.	1.8	14
1720	Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model. Molecular Therapy, 2022, 30, 2176-2185.	3.7	6
1721	dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nature Cell Biology, 2022, 24, 268-278.	4.6	24
1722	Delivery strategies for CRISPR/Cas genome editing tool for retinal dystrophies: challenges and opportunities. Asian Journal of Pharmaceutical Sciences, 2022, 17, 153-176.	4.3	12
1723	Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. Journal of Controlled Release, 2022, 343, 703-723.	4.8	25
1724	Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia. Gene, 2022, 820, 146289.	1.0	3
1727	<i>In Vivo</i> Visualized Tracking of Tumor-Derived Extracellular Vesicles Using CRISPR-Cas9 System. Technology in Cancer Research and Treatment, 2022, 21, 153303382210853.	0.8	12
1729	Genome Editing in Organoid to Improve Understanding of Human Disease. Pancreatic Islet Biology, 2022, , 179-192.	0.1	0
1731	Crispr-Embedding: CRISPR/Cas9 Off-Target Activity Prediction Using DNA <i>k</i> -Mer Embedding. SSRN Electronic Journal, 0, , .	0.4	0
1732	In Vivo Gene Editing in Lipid and Atherosclerosis Research. Methods in Molecular Biology, 2022, 2419, 673-713.	0.4	3
1733	GuideMaker: Software to design CRISPR-Cas guide RNA pools in non-model genomes. GigaScience, 2022, 11, .	3.3	7
1734	Development of transgenic Daphnia magna for visualizing homology-directed repair of DNA. Scientific Reports, 2022, 12, 2497.	1.6	1
1735	Antiviral Targeting of Varicella Zoster Virus Replication and Neuronal Reactivation Using CRISPR/Cas9 Cleavage of the Duplicated Open Reading Frames 62/71. Viruses, 2022, 14, 378.	1.5	2
1736	Loss of LKB1-NUAK1 signalling enhances NF-κB activity in a spheroid model of high-grade serous ovarian cancer. Scientific Reports, 2022, 12, 3011.	1.6	7
1737	CRISPR-Cas9 Gene Editing Protects from the A53T-SNCA Overexpression-Induced Pathology of Parkinson's Disease <i>In Vivo</i> . CRISPR Journal, 2022, 5, 95-108.	1.4	25
1738	Treating Cardiovascular Disease with Liver Genome Engineering. Current Atherosclerosis Reports, 2022, 24, 75-84.	2.0	0
1739	Hyperexcitable arousal circuits drive sleep instability during aging. Science, 2022, 375, eabh3021.	6.0	74
1740	Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1741	Genome editing interventions to combat rice blast disease. Plant Biotechnology Reports	, 0, , 1.	0.9	1
1742	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.		12.8	157
1744	CRISPR based therapeutics: a new paradigm in cancer precision medicine. Molecular Car	ncer, 2022, 21, 85.	7.9	15
1746	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Ch 2022, 17, 33.	inese Medicine,	1.6	19
1747	Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based Cell Reports, 2022, 38, 110476.	platforms.	2.9	14
1748	Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targe Communications Biology, 2022, 5, 211.	ting range.	2.0	19
1750	Antitumor activity and molecular mechanism of proprotein convertase subtilisin/kexin ty inhibition. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 643-658.	pe 9 (PCSK9)	1.4	4
1751	Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG. CRISPR Jou 187-202.	rnal, 2022, 5,	1.4	12
1752	Induction of an immortalized songbird cell line allows for gene characterization and kno CRISPR-Cas9. Scientific Reports, 2022, 12, 4369.	ckout by	1.6	5
1754	CRISPR-Mediated Synergistic Epigenetic and Transcriptional Control. CRISPR Journal, 20	22, 5, 264-275.	1.4	13
1755	Regulation of GTPase function by autophosphorylation. Molecular Cell, 2022, 82, 950-9	58.e14.	4.5	9
1756	Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus Interactions. Cells, 2022, 11, 999.	-Host	1.8	3
1758	CRISPR-Cas9-mediated loss of function of β-catenin attenuates intervertebral disc dege Molecular Therapy - Nucleic Acids, 2022, 28, 387-396.	neration.	2.3	8
1759	Deleting the β-catenin degradation domain in mouse hepatocytes drives hepatocellular hepatoblastoma-like tumor growth. Journal of Hepatology, 2022, 77, 424-435.	carcinoma or	1.8	17
1760	Disruption of anthrax toxin receptor 1 in pigs leads to a rare disease phenotype and pro- senecavirus A infection. Scientific Reports, 2022, 12, 5009.	ection from	1.6	7
1762	Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. N 2022, 82, 1199-1209.e6.	1olecular Cell,	4.5	29
1763	Target residence of Cas9: challenges and opportunities in genome editing. Genome Inst 2022, 3, 57-69.	ability & Disease,	0.5	1
1764	Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement therapy. Molecular Cancer, 2022, 21, 64.	for cancer	7.9	45

#	Article	IF	CITATIONS
1766	A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Research, 2022, 50, 3565-3580.	6.5	21
1767	Spacer2PAM: A computational framework to guide experimental determination of functional CRISPR-Cas system PAM sequences. Nucleic Acids Research, 2022, 50, 3523-3534.	6.5	8
1769	Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology, 2022, , .	2.8	10
1770	Nanoparticlesâ€Mediated CRISPR/Cas Gene Editing Delivery System. ChemMedChem, 2022, 17, .	1.6	6
1771	CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation. Molecular Therapy - Nucleic Acids, 2022, 28, 450-461.	2.3	13
1772	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	5.4	30
1774	Structure of the type V-C CRISPR-Cas effector enzyme. Molecular Cell, 2022, 82, 1865-1877.e4.	4.5	12
1775	Development and Application of CRISPR-Cas Based Tools. Frontiers in Cell and Developmental Biology, 2022, 10, 834646.	1.8	13
1776	From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sciences, 2022, 295, 120409.	2.0	5
1777	CRISPR and cardiovascular diseases. Cardiovascular Research, 2023, 119, 79-93.	1.8	10
1778	Dual-gRNA approach with limited off-target effect corrects C9ORF72 repeat expansion in vivo. Scientific Reports, 2022, 12, 5672.	1.6	13
1779	mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology, 2022, 76, 869-887.	3.6	11
1780	Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomedicine and Pharmacotherapy, 2022, 148, 112743.	2.5	27
1781	CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunology Letters, 2022, 245, 18-28.	1.1	5
1782	InÂvivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria. Molecular Therapy - Methods and Clinical Development, 2022, 25, 137-146.	1.8	8
1783	Short term but highly efficient Cas9 expression mediated by excisional system using adenovirus vector and Cre. Scientific Reports, 2021, 11, 24369.	1.6	0
1784	A Comprehensive Review of Recent Advancements in Cancer Immunotherapy and Generation of CAR T Cell by CRISPR-Cas9. Processes, 2022, 10, 16.	1.3	13
1785	Analysis of a Cas12a-based gene-drive system in budding yeast. Access Microbiology, 2021, 3, 000301.	0.2	6

#	Article	IF	CITATIONS
1787	Transient CRISPR-Cas Treatment Can Prevent Reactivation of HIV-1 Replication in a Latently Infected T-Cell Line. Viruses, 2021, 13, 2461.	1.5	6
1788	Application of CRISPR/Cas9 in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 803894.	1.4	17
1789	"Bind, cleave and leaveâ€i multiple turnover catalysis of RNA cleavage by bulge–loop inducing supramolecular conjugates. Nucleic Acids Research, 2022, 50, 651-673.	6.5	4
1790	Compact SchCas9 Recognizes the Simple NNGR PAM. Advanced Science, 2022, 9, e2104789.	5.6	13
1791	Mechanistic insights into the versatile class II CRISPR toolbox. Trends in Biochemical Sciences, 2022, 47, 433-450.	3.7	11
1792	Recent Progress and Future Prospective in HBV Cure by CRISPR/Cas. Viruses, 2022, 14, 4.	1.5	18
1793	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	2.3	20
1794	Adeno-Associated Virus Toolkit to Target Diverse Brain Cells. Annual Review of Neuroscience, 2022, 45, 447-469.	5.0	44
1795	Simulation-Based Engineering of Time-Delayed Safety Switches for Safer Gene Therapies. ACS Synthetic Biology, 2022, 11, 1782-1789.	1.9	0
1796	Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics, 2022, 14, 894.	2.0	2
1797	An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABAA receptor. Cell Death and Disease, 2022, 13, 356.	2.7	5
1798	Insulin null ß-cells have a prohormone processing defect that is not reversed by AAV rescue of proinsulin expression. Endocrinology, 2022, , .	1.4	1
1799	Efficient disruption of the function of the mnuA nuclease gene using the endogenous CRISPR/Cas system in Mycoplasma gallisepticum. Veterinary Microbiology, 2022, 269, 109436.	0.8	7
1800	High-throughput functional evaluation of human cancer-associated mutations using base editors. Nature Biotechnology, 2022, 40, 874-884.	9.4	32
1801	Nano-vectors for CRISPR/Cas9-mediated genome editing. Nano Today, 2022, 44, 101482.	6.2	15
1830	Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities. Nature Communications, 2022, 13, 2219.	5.8	8
1832	The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. , 2022, 13, 491.		17
1833	Synthetic biology: Novel approaches for microbiology. International Microbiology, 2015, 18, 71-84.	1.1	4

#	Article	IF	CITATIONS
1834	Antibiofilm activity against Staphylococcus aureus and content analysis of Taraxacum Officinale phenolic extract. Polish Journal of Veterinary Sciences, 2021, 24, 243-251.	0.2	7
1835	CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics, 2022, 12, 3329-3344.	4.6	16
1836	Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment. Science, 2022, 376, eabi8175.	6.0	24
1837	Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Progress in Retinal and Eye Research, 2022, 90, 101065.	7.3	4
1838	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .	3.9	8
1839	Genetic physical unclonable functions in human cells. Science Advances, 2022, 8, eabm4106.	4.7	4
1840	Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. Plants, 2022, 11, 1297.	1.6	10
1841	Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic <i>CRB1</i> single nucleotide variant. Ophthalmic Genetics, 2022, 43, 661-670.	0.5	1
1842	Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature, 2022, 605, 722-727.	13.7	24
1843	Essential cues of engineered polymeric materials regulating gene transfer pathways. Progress in Materials Science, 2022, 128, 100961.	16.0	7
1844	Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme and Microbial Technology, 2022, 159, 110056.	1.6	4
1845	CRISPR/Cas-Mediated Genome Editing of Streptomyces. Methods in Molecular Biology, 2022, 2479, 207-225.	0.4	2
1846	Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Frontiers in Neuroscience, 2022, 16, .	1.4	14
1847	The origin of unwanted editing byproducts in gene editing. Acta Biochimica Et Biophysica Sinica, 2022, 54, 767-781.	0.9	6
1848	Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nature Communications, 2022, 13, .	5.8	18
1849	Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas. , 2022, , 61-83.		1
1850	PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Molecular Therapy - Methods and Clinical Development, 2022, 26, 26-37.	1.8	1
1851	Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation(China), 2022, 3, 100264.	5.2	7

#	Article	IF	CITATIONS
1852	Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	2
1853	Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Critical Reviews in Biotechnology, 2023, 43, 559-574.	5.1	8
1854	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
1855	Bio-informatic analysis of CRISPR protospacer adjacent motifs (PAMs) in T4 genome. BMC Genomic Data, 2022, 23, .	0.7	2
1856	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	1.8	12
1858	Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. Methods in Molecular Biology, 2022, , 29-46.	0.4	16
1859	Internally inlaid SaCas9 base editors enable window specific base editing. Theranostics, 2022, 12, 4767-4778.	4.6	6
1860	Reduction of Pre-Existing Adaptive Immune Responses Against SaCas9 in Humans Using Epitope Mapping and Identification. CRISPR Journal, 2022, 5, 445-456.	1.4	4
1861	Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cellular and Molecular Neurobiology, 2023, 43, 1019-1035.	1.7	3
1862	CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Current Issues in Molecular Biology, 2022, 44, 2664-2682.	1.0	20
1863	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
1864	Adenine Base Editing <i>In Vivo</i> with a Single Adeno-Associated Virus Vector. , 2022, 1, 285-299.		27
1865	CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics, 2022, 14, 1252.	2.0	18
1866	CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing. Molecular Biology Reports, 2022, 49, 7079-7086.	1.0	10
1867	Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nature Communications, 2022, 13, .	5.8	22
1868	Challenges and opportunities when transitioning from <i>in vivo</i> gene replacement to <i>in vivo</i> CRISPR/Cas9 therapies – a spotlight on hemophilia. Expert Opinion on Biological Therapy, 2022, 22, 1091-1098.	1.4	1
1869	Tools and targets: The dual role of plant viruses in CRISPR–Cas genome editing. Plant Genome, 2023, 16,	1.6	17
1870	Combinatorial CRISPR Interference Library for Enhancing 2,3-BDO Production and Elucidating Key Genes in Cyanobacteria. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5

#	Article	IF	CITATIONS
1871	Compact Cje3Cas9 for Efficient <i>In Vivo</i> Genome Editing and Adenine Base Editing. CRISPR Journal, 2022, 5, 472-486.	1.4	15
1872	In vivo engineered B cells secrete high titers of broadly neutralizing anti-HIV antibodies in mice. Nature Biotechnology, 2022, 40, 1241-1249.	9.4	29
1873	Cell-derived extracellular vesicles for CRISPR/Cas9 delivery: engineering strategies for cargo packaging and loading. Biomaterials Science, 2022, 10, 4095-4106.	2.6	32
1875	Transcriptome profiling of the ventral pallidum reveals a role for pallido-thalamic neurons in cocaine reward. Molecular Psychiatry, 2022, 27, 3980-3991.	4.1	12
1876	Technical considerations towards commercialization of porcine respiratory and reproductive syndrome (PRRS) virus resistant pigs. CABI Agriculture and Bioscience, 2022, 3, .	1.1	3
1877	The Progression of Treatment for Refractory Hypercholesterolemia: Focus on the Prospect of Gene Therapy. Frontiers in Genetics, 0, 13, .	1.1	2
1878	Drug Discovery Study Aimed at a Functional Cure for HBV. Viruses, 2022, 14, 1393.	1.5	5
1879	Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Frontiers in Genome Editing, 0, 4, .	2.7	0
1881	Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nature Communications, 2022, 13, .	5.8	11
1882	Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis. Cell and Bioscience, 2022, 12, .	2.1	1
1883	Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells, 2022, 11, 2186.	1.8	25
1884	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	3.1	2
1885	Therapeutic inÂvivo delivery of gene editing agents. Cell, 2022, 185, 2806-2827.	13.5	131
1886	CRISPR-Cas9 mediated genome tailoring to improve nutritional quality and shelf life in crops: A review. Plant Gene, 2022, 31, 100369.	1.4	1
1887	Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nature Methods, 2022, 19, 976-985.	9.0	56
1888	Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nature Biomedical Engineering, 2022, 6, 1272-1283.	11.6	70
1889	<scp>CRISPR</scp> applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mechanisms of Disease, 2023, 15, .	1.5	6
1890	Comprehending the evolution of gene editing platforms for crop trait improvement. Frontiers in Genetics, 0, 13, .	1.1	6

#	Article	IF	CITATIONS
1891	Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR Journal, 2022, 5, 517-535.	1.4	3
1892	Cytosine base editing systems with minimized off-target effect and molecular size. Nature Communications, 2022, 13, .	5.8	19
1894	A Novel CRISPR-MultiTargeter Multi-agent Reinforcement learning (CMT-MARL) algorithm to identify editable target regions using a Hybrid scoring from multiple similar sequences. Applied Intelligence, 2023, 53, 9562-9579.	3.3	0
1895	Closely related type II-C Cas9 orthologs recognize diverse PAMs. ELife, 0, 11, .	2.8	13
1896	Translational potential of base-editing tools for gene therapy of monogenic diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1897	The Prominent Characteristics of the Effective sgRNA for a Precise CRISPR Genome Editing. , 0, , .		3
1898	CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Molecular Biology Reports, 2022, 49, 11443-11467.	1.0	4
1899	Rearrangement of T Cell genome architecture regulates GVHD. IScience, 2022, 25, 104846.	1.9	0
1901	A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy. Acta Biomaterialia, 2022, 153, 481-493.	4.1	18
1902	AAV infection of bovine embryos: Novel, simple and effective tool for genome editing. Theriogenology, 2022, 193, 77-86.	0.9	6
1903	New Directions for Epigenetics: Application of Engineered DNA-binding Molecules to Locus-specific Epigenetic Research. , 2023, , 843-868.		0
1904	Genome editing in cancer: Challenges and potential opportunities. Bioactive Materials, 2023, 21, 394-402.	8.6	3
1905	CRISPR/Cas9 On- and Off-Target Activity Using Correlative Force and Fluorescence Single-Molecule Microscopy. Methods in Molecular Biology, 2022, , 349-378.	0.4	0
1906	Negative DNA Supercoiling Induces Genome Wide Cas9 Off-Target Activity. SSRN Electronic Journal, 0, ,	0.4	0
1907	The Use of CRISPR Technologies for Crop Improvement in Maize. , 2022, , 271-294.		2
1908	CRISPR-Cas Technology: A Genome-Editing Powerhouse for Molecular Plant Breeding. , 2022, , 803-879.		4
1909	Expanding the Scope of Base Editing in Crops Using Cas9 Variants. , 2022, , 161-175.		1
1914	CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 2022, 49, 12133-12150.	1.0	9

#	Article	IF	CITATIONS
1915	Prime Editing: An All-Rounder for Genome Editing. International Journal of Molecular Sciences, 2022, 23, 9862.	1.8	13
1917	Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Molecular Biology, 2022, 56, 854-873.	0.4	17
1918	CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Frontiers in Genome Editing, 0, 4, .	2.7	17
1919	Haplotyping SNPs for allele-specific gene editing of the expanded huntingtin allele using long-read sequencing. Human Genetics and Genomics Advances, 2023, 4, 100146.	1.0	6
1920	Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierarchies among Diverse CRISPR/Cas Systems in Human Cells. ACS Synthetic Biology, 2022, 11, 3239-3250.	1.9	9
1921	Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Research, 2022, 10, .	5.4	85
1922	Tag-Dependent Substrate Selection of ClpX Underlies Secondary Differentiation of Chlamydia trachomatis. MBio, 2022, 13, .	1.8	6
1923	Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nature Biotechnology, 2023, 41, 337-343.	9.4	32
1924	CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Molecular Biology Reports, 2022, 49, 11587-11600.	1.0	1
1926	Efficient Homology-Directed Repair with Circular Single-Stranded DNA Donors. CRISPR Journal, 2022, 5, 685-701.	1.4	16
1927	Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Reports, 2022, 40, 111418.	2.9	22
1928	Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
1929	Gene Pyramiding in Transgenic Plant Development: Approaches and Challenges. Journal of Plant Growth Regulation, 2023, 42, 6038-6056.	2.8	6
1930	CRISPR/Cas System Toward the Development of Next-Generation Recombinant Vaccines: Current Scenario and Future Prospects. Arabian Journal for Science and Engineering, 2023, 48, 1-11.	1.7	3
1931	Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase. Molecular Cancer, 2022, 21, .	7.9	2
1932	Generation of a homozygous P4HA2 knockout human embryonic stem cell line (FDCHDPe012-A) by CRISPR/Cas9 system. Stem Cell Research, 2022, 64, 102930.	0.3	0
1933	CRISPR Spherical Nucleic Acids. Journal of the American Chemical Society, 2022, 144, 18756-18760.	6.6	16
1934	Recent advances in the production, reprogramming, and application of CAR-T cells for treating hematological malignancies. Life Sciences, 2022, 309, 121016.	2.0	6

#	Article	IF	CITATIONS
1935	Challenges and hopes in CRISPR CAS technology in future. , 0, , 5-12.		0
1936	Polymer-Mediated Delivery of CRISPR-Cas9 Genome-Editing Therapeutics for CNS Disease. , 2022, , 229-258.		0
1937	Phages, anti-CRISPR proteins, and drug-resistant bacteria: what do we know about this triad?. Pathogens and Disease, 2022, 80, .	0.8	0
1938	Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25Âyears. Journal of Biomedical Science, 2022, 29, .	2.6	8
1939	Application of Gene Therapy in Hemophilia. Current Medical Science, 2022, 42, 925-931.	0.7	1
1940	Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. Molecular Therapy - Nucleic Acids, 2022, 30, 379-397.	2.3	3
1941	Current advances of CRISPR-Cas technology in cell therapy. , 2022, 1, 100067.		10
1942	Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data. Nature Communications, 2022, 13, .	5.8	6
1944	Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA. Nature, 2022, 610, 575-581.	13.7	10
1945	Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B, 2023, 13, 916-941.	5.7	50
1946	Activation of homology-directed DNA repair plays key role in CRISPR-mediated genome correction. Gene Therapy, 0, , .	2.3	0
1947	Translating musculoskeletal bioengineering into tissue regeneration therapies. Science Translational Medicine, 2022, 14, .	5.8	5
1948	In vivo application of base and prime editing to treat inherited retinal diseases. Progress in Retinal and Eye Research, 2023, 94, 101132.	7.3	3
1949	Application of CRISPR for In Vivo Mouse Cancer Studies. Cancers, 2022, 14, 5014.	1.7	6
1950	Using Staphylococcus aureus Cas9 to Expand the Scope of Potential Gene Targets for Genome Editing in Soybean. International Journal of Molecular Sciences, 2022, 23, 12789.	1.8	2
1952	Current updates of CRISPR/Cas9â€mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Communications, 2022, 42, 1257-1287.	3.7	12
1953	Contribution of CRISPRable DNA to human complex traits. Communications Biology, 2022, 5, .	2.0	2
1954	Design of SaCas9-HF for In Vivo Gene Therapy. Methods in Molecular Biology, 2023, , 261-268.	0.4	0

# 1955	ARTICLE Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metabolic Engineering, 2023, 75, 68-77.	lF 3.6	Citations
1958	DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Molecular Cell, 2022, 82, 4160-4175.e6.	4.5	13
1959	Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 2022, 378, .	6.0	119
1960	Population-wide gene disruption in the murine lung epithelium via AAV-mediated delivery of CRISPR-Cas9 components. Molecular Therapy - Methods and Clinical Development, 2022, 27, 431-449.	1.8	3
1962	LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model: A proof-of-concept study. Molecular Therapy - Methods and Clinical Development, 2022, 27, 337-351.	1.8	7
1963	In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials, 2022, 291, 121876.	5.7	13
1964	Gene editing hPSCs for modeling neurological disorders. , 2023, , 289-311.		0
1965	"Genetic scissors―CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioactive Materials, 2023, 22, 254-273.	8.6	7
1967	Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nature Biotechnology, 2023, 41, 673-685.	9.4	50
1968	Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review, 2022, 2, 471-500.	0.3	6
1969	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
1970	Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Advances, 2023, 7, 2252-2270.	2.5	2
1971	Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?. Nano Today, 2022, 47, 101665.	6.2	11
1972	CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System. Methods in Molecular Biology, 2023, , 411-425.	0.4	2
1973	Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sciences, 2023, 312, 121204.	2.0	4
1974	Improvements in the genetic editing technologies: CRISPR-Cas and beyond. Gene, 2023, 852, 147064.	1.0	1
1975	A review of CRISPR Cas9 for ASCVD: treatment strategies and could target PSCK9 gene using CRISPR cas9 prevent the patient from atherosclerotic vascular disease?. Bali Medical Journal, 2022, 11, 985-993.	0.1	2
1976	Versatile and efficient genome editing with Neisseria cinerea Cas9. Communications Biology, 2022, 5, .	2.0	2

# 1977	ARTICLE CRISPR/Cas systems: Delivery and application in gene therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	IF 2.0	CITATIONS
1978	In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes, 2022, 13, 2222.	1.0	6
1979	High-content CRISPR screening in tumor immunology. Frontiers in Immunology, 0, 13, .	2.2	3
1980	Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response. Nature Communications, 2022, 13, .	5.8	11
1981	Identification of SaCas9 orthologs containing a conserved serine residue that determines simple NNGG PAM recognition. PLoS Biology, 2022, 20, e3001897.	2.6	6
1982	CRISPR-Based Tools for Fighting Rare Diseases. Life, 2022, 12, 1968.	1.1	2
1983	Superior Fidelity and Distinct Editing Outcomes of SaCas9 Compared to SpCas9 in Genome Editing. Genomics, Proteomics and Bioinformatics, 2022, , .	3.0	3
1984	Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science, 2022, 378, 1227-1234.	6.0	53
1985	Genome Editing and Fatty Liver. Advances in Experimental Medicine and Biology, 2023, , 191-206.	0.8	0
1986	CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Research and Therapy, 2022, 19, .	0.7	10
1987	Chapter 29: Perspectives on the genetic manipulation of mosquitoes: advancements in studying sensory biology in vector insects. , 2022, , 743-771.		1
1988	Single and multiplexed gene repression in solventogenic Clostridium via Cas12a-based CRISPR interference. Synthetic and Systems Biotechnology, 2023, 8, 148-156.	1.8	5
1989	Computer-aided engineering of CRISPR-Cas proteins for enhanced human genome editing. Science China Life Sciences, 0, , .	2.3	0
1990	Plant Genome Editing. , 2022, , 205-216.		0
1991	Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. Advances in Experimental Medicine and Biology, 2023, , 315-339.	0.8	0
1992	Beneficial Effects of Moderate Hepatic Activin A Expression on Metabolic Pathways, Inflammation, and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 330-349.	1.1	5
1993	Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. Journal of Nanobiotechnology, 2022, 20, .	4.2	10
1994	Achieving single nucleotide sensitivity in direct hybridization genome imaging. Nature Communications, 2022, 13, .	5.8	2

#	Article	IF	CITATIONS
1995	Two-Color CRISPR Imaging Reveals Dynamics of Herpes Simplex Virus 1 Replication Compartments and Virus-Host Interactions. Journal of Virology, 2022, 96, .	1.5	3
1996	Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clinical Science, 2022, 136, 1731-1758.	1.8	4
1997	PEG-mediated transduction of rAAV as a platform for spatially confined and efficient gene delivery. Biomaterials Research, 2022, 26, .	3.2	1
1998	An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, 2023, , 3-16.	0.8	1
1999	Genome Editing in Dyslipidemia and Atherosclerosis. Advances in Experimental Medicine and Biology, 2023, , 139-156.	0.8	1
2001	SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice. Nature Communications, 2022, 13, .	5.8	6
2002	Carotenoid biosynthesis is associated with low-temperature adaptation in Rhodosporidium kratochvilovae. BMC Microbiology, 2022, 22, .	1.3	4
2003	Advances in off-target detection for CRISPR-based genome editing. Human Gene Therapy, 0, , .	1.4	0
2004	Full-Length Model of SaCas9-sgRNA-DNA Complex in Cleavage State. International Journal of Molecular Sciences, 2023, 24, 1204.	1.8	0
2005	Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nature Biotechnology, 2023, 41, 919-931.	9.4	36
2006	Gene editing for dyslipidemias: New tools to "cut―lipids. Atherosclerosis, 2023, 368, 14-24.	0.4	5
2007	Enhanced RNA knockdown efficiency with engineered fusion guide RNAs that function with both CRISPR-CasRx and hammerhead ribozyme. Genome Biology, 2023, 24, .	3.8	4
2008	Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. Chinese Chemical Letters, 2023, 34, 108134.	4.8	2
2009	An evolved AAV variant enables efficient genetic engineering of murine TÂcells. Cell, 2023, 186, 446-460.e19.	13.5	17
2010	Comparison of DNA targeting CRISPR editors in human cells. Cell and Bioscience, 2023, 13, .	2.1	5
2011	CRISPR-Cas9 editing of a TNPO3 mutation in a muscle cell model of limb-girdle muscular dystrophy type D2. Molecular Therapy - Nucleic Acids, 2023, 31, 324-338.	2.3	1
2013	Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS Omega, 2023, 8, 1817-1837.	1.6	2
2014	High throughput mutagenesis and screening for yeast engineering. Journal of Biological Engineering, 2022, 16, .	2.0	1

#	Article	IF	CITATIONS
2015	Updates and Applications of CRISPR/Cas Technology in Plants. Journal of Plant Biology, 0, , .	0.9	3
2016	Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases. Current Problems in Cardiology, 2023, 48, 101603.	1.1	1
2017	CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
2018	TargetedÂmutagenesis with sequenceâ€specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. Plant Genome, 2023, 16, .	1.6	5
2019	Genome Editing of Murine Liver Hepatocytes by AAV Vector-Mediated Expression of Cas9 In Vivo. Methods in Molecular Biology, 2023, , 195-211.	0.4	0
2021	CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie, 0, , .	1.6	0
2023	Roles of innovative genome editing technologies in stem cell engineering, rheumatic diseases and other joint/bone diseases. , 2023, , 53-77.		0
2024	Biogenic materials for CRISPR delivery and therapeutics. Biomaterials Science, 2023, 11, 3016-3033.	2.6	2
2025	A high-content flow cytometry and dual CRISPR-Cas9 based platform to quantify genetic interactions. Methods in Cell Biology, 2024, , 299-312.	0.5	0
2026	Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Molecular Cell, 2023, 83, 442-451.	4.5	5
2027	Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 2023, 24, 4778.	1.8	10
2028	Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Molecular Biomedicine, 2023, 4, .	1.7	3
2029	Emergence of CRISPR/Cas9-mediated bioimaging: A new dawn of in-situ detection. Biosensors and Bioelectronics, 2023, 232, 115302.	5.3	2
2030	GPCR-mediated calcium and cAMP signaling determines psychosocial stress susceptibility and resiliency. Science Advances, 2023, 9, .	4.7	5
2031	Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neuroscience and Biobehavioral Reviews, 2023, 149, 105155.	2.9	9
2032	Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. International Journal of Molecular Sciences, 2023, 24, 7052.	1.8	6
2033	Inclisiran—A Revolutionary Addition to a Cholesterol-Lowering Therapy. International Journal of Molecular Sciences, 2023, 24, 6858.	1.8	3
2034	CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. International Journal of Biological Macromolecules, 2023, 238, 124054.	3.6	17

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
2035	Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants. Nucleic Acids Research, 2023, 51, 3465-3484.	6.5	5
2036	Viral Vectors, Exosomes, and Vexosomes: Potential armamentarium for delivering CRISPR/Cas to cancer cells. Biochemical Pharmacology, 2023, 212, 115555.	2.0	8
2037	Gene Nanovector for Genome Therapy. , 2022, , 1-36.		0
2038	Genome editing with natural and engineered CjCas9 orthologs. Molecular Therapy, 2023, 31, 1177-1	187. 3.7	2
2039	Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Experimental and Molecular Medicine, 2023, 55, 377-384.	3.2	3
2040	Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	14
2041	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	2.3	10
2042	The PROTECTOR strategy employs dCas orthologs to sterically shield off-target sites from CRISPR/Cas activity. Scientific Reports, 2023, 13, .	5 1.6	2
2043	Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. Journal of Materials Chemistry B, 2023, 11, 5251-5271.	2.9	5
2044	A luciferase reporter mouse model to optimize inÂvivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Molecular Therapy, 2023, 31, 1159-1166.	3.7	4
2045	Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology. Translational Psychiatry, 2023, 13, .	2.4	6
2046	Delivery challenges for CRISPR—Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	5 1.0	2
2047	High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells. Molecular Therapy - Nucleic Acids, 2023, 31, 746-762.	2.3	2
2048	Inducible CRISPR Epigenome Systems Mimic Cocaine Induced Bidirectional Regulation of Nab2 and Eg Journal of Neuroscience, 2023, 43, 2242-2259.	gr3. 1.7	2
2049	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6
2050	Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Therapy, 2023, 30, 936-954.	2.2	15
2052	Correction of F8 intron 1 inversion in hemophilia A patient-specific iPSCs by CRISPR/Cas9 mediated ge editing. Frontiers in Genetics, 0, 14, .	ene 1.1	3
2053	Nucleases in gene-editing technologies: past and prologue. , 2023, , .		1

#	Article	IF	CITATIONS
2054	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	1.9	5
2055	Structures of apo Cas12a and its complex with crRNA and DNA reveal the dynamics of ternary complex formation and target DNA cleavage. PLoS Biology, 2023, 21, e3002023.	2.6	2
2056	Seedlessness Trait and Genome Editing—A Review. International Journal of Molecular Sciences, 2023, 24, 5660.	1.8	3
2057	Voltage-gated calcium channel subunit α2δ-1 in spinal dorsal horn neurons contributes to aberrant excitatory synaptic transmission and mechanical hypersensitivity after peripheral nerve injury. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	2
2058	CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Molecular Therapy, 2023, 31, 1920-1937.	3.7	15
2059	Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Frontiers in Immunology, 0, 14, .	2.2	5
2060	CRISPR-mediated optogene expression from a cell-specific endogenous promoter in retinal ON-bipolar cells to restore vision. Frontiers in Drug Delivery, 0, 3, .	0.4	1
2061	Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	19
2062	The CRISPR technology: A promising strategy for improving dark fermentative biohydrogen production using Clostridium spp International Journal of Hydrogen Energy, 2023, 48, 23498-23515.	3.8	5
2063	<scp>CRISPR</scp> â€Based <scp>KCC2</scp> Upregulation Attenuates Drugâ€Resistant Seizure in Mouse Models of Epilepsy. Annals of Neurology, 2023, 94, 91-105.	2.8	2
2064	DNA rehybridization drives product release from Cas9 ribonucleoprotein to enable multiple-turnover cleavage. Nucleic Acids Research, 0, , .	6.5	1
2065	Use of gene therapy for optic nerve protection: Current concepts. Frontiers in Neuroscience, 0, 17, .	1.4	3
2066	Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. , 2023, , 373-424.		0
2067	A Review of CRISPR-Based Advances in Dermatological Diseases. Molecular Diagnosis and Therapy, 2023, 27, 445-456.	1.6	1
2068	Gene Editing as the Future of Cardiac Amyloidosis Therapeutics. Current Problems in Cardiology, 2023, 48, 101741.	1.1	2
2072	Programmable mammalian translational modulators by CRISPR-associated proteins. Nature Communications, 2023, 14, .	5.8	5
2073	Decoding CRISPR–Cas PAM recognition with UniDesign. Briefings in Bioinformatics, 2023, 24, .	3.2	2
2075	Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Briefings in Bioinformatics, 2023, 24, .	3.2	8

#	Article	IF	CITATIONS
2077	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 2023, 62, 3465-3487.	1.2	13
2091	Expanding the RNA and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 1-35.		0
2101	Genome Editing Inhibits Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy. Methods in Molecular Biology, 2023, , 207-217.	0.4	0
2107	Therapeutic targeting non-coding RNAs. , 2023, , 349-417.		0
2120	Multi-faceted CRISPR/Cas technological innovation aspects in the framework of 3P medicine. EPMA Journal, 2023, 14, 201-217.	3.3	0
2121	A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Functional and Integrative Genomics, 2023, 23, .	1.4	10
2130	Gene Nanovector for Genome Therapy. , 2023, , 1697-1732.		1
2131	Expanding the RNA- and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 2361-2395.		0
2138	Advances in the application of CRISPR/Cas9 system in the study of hematologic diseases and cancer. , 2023, , .		0
2142	Drug delivery systems for CRISPR-based genome editors. Nature Reviews Drug Discovery, 2023, 22, 875-894.	21.5	9
2153	CRISPR/CAS: The Beginning of a New Era in Crop Improvement. , 2023, , 489-505.		1
2192	Methods and Techniques to Select Efficient Guides for CRISPR-Mediated Genome Editing in Plants. , 2024, , 89-117.		0
2197	Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains. Acta Parasitologica, 2024, 69, 121-134.	0.4	0
2204	Emerging strategies to minimize the off-target effects in CRISPR/Cas9 system. , 2024, , .		0
2207	Gene Editing in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 177-199.	0.8	0
2209	Reagents and their delivery systems in CRISPR/Cas. , 2024, , 71-90.		0
2211	CRISPR/Cas genome editing and applications in forest tree breeding. , 2024, , 343-366.		0
2223	Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems. Methods in Molecular Biology, 2024, , 205-231.	0.4	0

#	Article	IF	CITATIONS
2233	RPE und Gentherapie. , 2024, , 291-307.		0
2236	Plant Genome Editing Technologies: An Updated Overview. , 2024, , 1-23.		0
2237	CRISPR workflow solutions: Cargos and versatile delivery platforms in genome editing. , 2024, , 67-90.		0