Biodegradable polymeric nanoparticles for oral delivery and in vivo investigations

Colloids and Surfaces B: Biointerfaces

128, 448-456

DOI: 10.1016/j.colsurfb.2015.02.043

Citation Report

#	Article	IF	CITATIONS
1	Nanoemulsions as novel oral carriers of stiripentol: insights into the protective effect and absorption enhancement. International Journal of Nanomedicine, 2015, 10, 4937.	6.7	21
2	Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids and Surfaces B: Biointerfaces, 2015, 135, 35-41.	5.0	20
3	FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. Journal of Controlled Release, 2015, 218, 36-44.	9.9	52
4	Rationally developed core–shell polymeric-lipid hybrid nanoparticles as a delivery vehicle for cromolyn sodium: implications of lipid envelop on in vitro and in vivo behaviour of nanoparticles upon oral administration. RSC Advances, 2015, 5, 76491-76506.	3.6	38
5	Redox-Responsive Nanophotosensitizer Composed of Chlorin e6-Conjugated Dextran for Photodynamic Treatment of Colon Cancer Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	2.7	9
6	Enhanced oral bioavailability of acetylpuerarin by poly(lactide-co-glycolide) nanoparticles optimized using uniform design combined with response surface methodology. Drug Design, Development and Therapy, 2016, 10, 2029.	4.3	11
7	Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs. International Journal of Molecular Sciences, 2016, 17, 1171.	4.1	42
8	Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies. International Journal of Pharmaceutics, 2016, 507, 61-71.	5.2	7
9	Nano-phytosome as a potential food-grade delivery system. Food Bioscience, 2016, 15, 126-135.	4.4	109
10	Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies. Pharmacological Research, 2016, 113, 146-165.	7.1	32
11	Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 2016, 240, 504-526.	9.9	332
12	Improved oral efficacy of epirubicin through polymeric nanoparticles: pharmacodynamic and toxicological investigations. Drug Delivery, 2016, 23, 2990-2997.	5.7	12
13	Surface decorated nanoparticles as surrogate carriers for improved transport and absorption of epirubicin across the gastrointestinal tract: Pharmacokinetic and pharmacodynamic investigations. International Journal of Pharmaceutics, 2016, 501, 18-31.	5.2	24
14	Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. European Journal of Pharmaceutical Sciences, 2016, 84, 83-91.	4.0	63
15	Highly water-soluble mast cell stabiliser-encapsulated solid lipid nanoparticles with enhanced oral bioavailability. Journal of Microencapsulation, 2016, 33, 209-220.	2.8	9
16	Ultrafast synthesis of stabilized gold nanoparticles using aqueous fruit extract of Limonia acidissima L. and conjugated epirubicin: targeted drug delivery for treatment of breast cancer. RSC Advances, 2016, 6, 26874-26882.	3.6	25
17	Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile. Pharmaceutical Development and Technology, 2017, 22, 156-167.	2.4	23
18	Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a Quality by Design-driven perspective. Nanomedicine, 2017, 12, 333-356.	3.3	33

#	Article	IF	CITATIONS
19	Biodegradable Poly(ester-urethane) Carriers Exhibiting Controlled Release of Epirubicin. Pharmaceutical Research, 2017, 34, 780-792.	3.5	11
20	Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics, 2017, 528, 675-691.	5.2	425
21	Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. International Journal of Pharmaceutics, 2017, 523, 203-216.	5.2	81
22	Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 2017, 9, 15252-15277.	5.6	177
23	Tenofovir disoproxil fumarate loaded PLGA nanoparticles for enhanced oral absorption: Effect of experimental variables and in vitro, ex vivo and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 158, 610-619.	5.0	18
24	Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide. European Journal of Pharmaceutical Sciences, 2017, 96, 440-448.	4.0	13
25	Multilayer micro-dispersing system as oral carriers for co-delivery of doxorubicin hydrochloride and P-gp inhibitor. International Journal of Biological Macromolecules, 2017, 94, 170-180.	7.5	22
26	Chitosan nanoparticles for the oral delivery of tenofovir disoproxil fumarate: formulation optimization, characterization and <i>ex vivo</i> and <i>in vivo</i> evaluation for uptake mechanism in rats. Drug Development and Industrial Pharmacy, 2018, 44, 1109-1119.	2.0	25
27	Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids and Surfaces B: Biointerfaces, 2018, 164, 11-19.	5.0	41
28	Multi-functional magnetic nanoparticles as an effective drug carrier for the controlled anti-tumor treatment. Journal of Biomaterials Applications, 2018, 32, 967-976.	2.4	9
29	Transport of biodegradable polymeric particles loaded with grape seed extract across Cacoâ€2 cell monolayers. International Journal of Food Science and Technology, 2018, 53, 794-803.	2.7	4
30	Developed and validated stability indicating HPLC method for the determination of epirubicin in bulk drug, marketed injection and polymeric nanoparticles. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	9
31	Nanocolloidal lipidic carriers of olmesartan medoxomil surface-tailored with Concavalin-A for lectin receptor targeting. Nanomedicine, 2018, 13, 3107-3128.	3.3	17
32	Co-Delivery of Teriflunomide and Methotrexate from Hydroxyapatite Nanoparticles for the Treatment of Rheumatoid Arthritis: In Vitro Characterization, Pharmacodynamic and Biochemical Investigations. Pharmaceutical Research, 2018, 35, 201.	3.5	20
33	Polymeric nanoparticles as a platform for permeability enhancement of class III drug amikacin. Colloids and Surfaces B: Biointerfaces, 2018, 169, 206-213.	5.0	17
34	Potential of nanoparticles as drug delivery system for cancer treatment. , 2018, , 431-468.		4
35	Preparation of Nanoparticles Including Antisolvent Drugs by the Combination of Roll Milling and High-pressure Homogenization. Current Nanoscience, 2018, 14, 143-147.	1.2	8
36	Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five. International Journal of Pharmaceutics, 2018, 549, 133-149.	5.2	110

#	Article	IF	CITATIONS
37	Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chemistry Central Journal, 2018, 12, 65.	2.6	55
39	Active targeting carrier for breast cancer treatment: Monoclonal antibody conjugated epirubicin loaded nanoparticle. Journal of Drug Delivery Science and Technology, 2019, 53, 101136.	3.0	32
40	Nanostructured Lipid Carriers for Oral Bioavailability Enhancement of Exemestane: Formulation Design, InÂVitro, ExÂVivo, and InÂVivo Studies. Journal of Pharmaceutical Sciences, 2019, 108, 3382-3395.	3.3	83
41	Encapsulation of food ingredients by nanophytosomes. , 2019, , 405-443.		9
42	Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles. International Journal of Biological Macromolecules, 2019, 128, 825-838.	7.5	54
43	Cherry Extract from Prunus avium L. to Improve the Resistance of Endothelial Cells to Oxidative Stress: Mucoadhesive Chitosan vs. Poly(lactic-co-glycolic acid) Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 1759.	4.1	15
44	Design and development of bioinspired calcium phosphate nanoparticles of MTX: pharmacodynamic and pharmacokinetic evaluation. Drug Development and Industrial Pharmacy, 2019, 45, 1181-1192.	2.0	7
45	One-Pot Synthesis of Epirubicin-Capped Silver Nanoparticles and Their Anticancer Activity against Hep G2 Cells. Pharmaceutics, 2019, 11, 123.	4.5	29
46	Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. European Journal of Pharmaceutical Sciences, 2019, 132, 72-85.	4.0	15
47	Nanoparticle and polymeric nanoparticle-based targeted drug delivery systems. , 2019, , 191-240.		9
48	Rational design and in-vivo estimation of Ivabradine Hydrochloride loaded nanoparticles for management of stable angina. Journal of Drug Delivery Science and Technology, 2019, 54, 101337.	3.0	28
49	A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2019, 175, 231-238.	5.0	43
50	Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. International Journal of Biological Macromolecules, 2020, 144, 259-266.	7.5	42
51	Routes of administration for nanocarriers. , 2020, , 67-87.		3
52	Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Advances in Colloid and Interface Science, 2020, 284, 102261.	14.7	83
53	Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. International Journal of Biological Macromolecules, 2020, 163, 2392-2404.	7.5	70
54	Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. Journal of Controlled Release, 2020, 321, 669-709.	9.9	63
55	Albumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammation. Materialia, 2020, 9, 100605.	2.7	16

#	Article	IF	CITATIONS
57	Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticles. , 2021, , 297-339.		2
58	Current Nanocarrier Strategies Improve Vitamin B12 Pharmacokinetics, Ameliorate Patients' Lives, and Reduce Costs. Nanomaterials, 2021, 11, 743.	4.1	13
59	Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. Journal of Drug Delivery Science and Technology, 2021, 62, 102324.	3.0	16
60	Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. International Journal of Biological Macromolecules, 2021, 179, 314-323.	7.5	16
61	Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. Journal of Pharmaceutical Innovation, 2022, 17, 1011-1026.	2.4	6
62	Nanoformulation Development to Improve the Biopharmaceutical Properties of Fisetin Using Design of Experiment Approach. Molecules, 2021, 26, 3031.	3.8	22
63	Dual-labeled visual tracer system for topical drug delivery by nanoparticle-triggered P-glycoprotein silencing. Chinese Chemical Letters, 2021, 32, 3954-3961.	9.0	6
64	Formulation design, optimization and inÂvivo evaluation of oral co-encapsulated resveratrol-humic acid colloidal polymeric nanocarriers. Pharmaceutical Development and Technology, 2021, 26, 953-966.	2.4	0
65	Synthetic, Natural Derived Lipid Nanoparticles and Polymeric Nanoparticles Drug Delivery Applications. Engineering Materials, 2020, , 147-165.	0.6	2
66	Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology – From Drug Discovery to Nanocarrier Design and Development. Current Topics in Medicinal Chemistry, 2017, 17, 1451-1468.	2.1	12
67	Encapsulated Curcumin Enhances Intestinal Absorption and Improves Hepatic Damage in Alcoholic Liver Disease-Induced Rats. Preventive Nutrition and Food Science, 2019, 24, 410-417.	1.6	4
68	Optimization and Designing of Amikacin-loaded Poly d, l-Lactide-co-glycolide Nanoparticles for Effective and Sustained Drug Delivery. Journal of Pharmacy and Bioallied Sciences, 2019, 11, 83.	0.6	7
69	SYNTHESIS AND CHARACTERIZATION OF POLY(D,L-LACTIC-CO-GLYCOLIC)ACID MICROPARTICLES LOADED BY DIPHTHERIA TOXOID. Biotechnologia Acta, 2018, 11, 23-29.	0.2	0
70	CYTOTOXICITY AND HEMOCOMPATIBILITY OF DOXORUBICIN-LOADED PLGA NANOPARTICLES. , 2020, 19, 71-80.	0.3	0
71	Carrying epirubicin on nanoemulsion containing algae and cinnamon oils augments its apoptotic and anti-invasion effects on human colon cancer cells. American Journal of Translational Research (discontinued), 2020, 12, 2463-2472.	0.0	1
72	Lysine Decorated Solid Lipid Nanoparticles of Epirubicin for Cancer Targeting and Therapy. Advanced Pharmaceutical Bulletin, 2021, 11, 96-103.	1.4	1
73	Lysine Decorated Solid Lipid Nanoparticles of Epirubicin for Cancer Targeting and Therapy. Advanced Pharmaceutical Bulletin, 2021, 11, 96-103.	1.4	14
74	Cationic nanoparticles for treatment of neurological diseases. , 2022, , 273-292.		6

#	Article	IF	CITATIONS
75	Nanoencapsulation of saffron crocin into chitosan/alginate interpolyelectrolyte complexes for oral delivery: A Taguchi approach to design optimization. Journal of Food Science, 2022, 87, 1148-1160.	3.1	9
76	The Promise of Nanotechnology in Personalized Medicine. Journal of Personalized Medicine, 2022, 12, 673.	2.5	27
77	QbD-assisted development of lipidic nanocapsules for antiestrogenic activity of exemestane in breast cancer. Journal of Liposome Research, 2023, 33, 154-169.	3.3	1
78	Tailoring the properties of chitosan by grafting with 2-mercaptobenzoic acid to improve mucoadhesion: in silico studies, synthesis and characterization. Progress in Biomaterials, 2022, 11, 397-408.	4.5	1
79	Recent Nanoscale Carriers for Therapy of Alzheimer's Disease: Current Strategies and Perspectives. Current Medicinal Chemistry, 2023, 30, 3743-3774.	2.4	3
80	Pharmacokinetics and tumor delivery of nanoparticles. Journal of Drug Delivery Science and Technology, 2023, 83, 104404.	3.0	3
81	Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica, 2023, 53, 25-45.	1.1	2
82	Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorganic Chemistry Communication, 2023, 155, 110999.	3.9	7
83	Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS Nano, 2023, 17, 13044-13061.	14.6	12
84	Nanoparticle design for hydrophilic drugs: Isoniazid biopolymeric nanostructure. Journal of Drug Delivery Science and Technology, 2023, 87, 104754.	3.0	0
85	Characterization of folic acid-grafted poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate.co-3-hydroxyvalerate) nanoparticles as carriers for sustained release of epirubicin. Journal of Molecular Structure, 2024, 1304, 137631.	3.6	0
86	ON/OFF based synergetic plasmonic photothermal drug release approach through core-satellite like mussel-inspired polydopamine nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2024, 253, 112889	3.8	0